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Abstract 
A scalable and analytically tractable probabilistic model for the cascading failure dynamics in power grids is 
constructed while retaining key physical attributes and operating characteristics of the power grid. The 
approach is based upon extracting a reduced abstraction of large-scale power grids using a small number of 
aggregate state variables while modeling the system dynamics using a continuous-time Markov chain. The 
aggregate state variables represent critical power-grid attributes, which have been shown, from prior 
simulation-based and historical-data-based analysis, to strongly influence the cascading behavior. The transition 
rates among states are formulated in terms of certain parameters that capture grid's operating characteristics 
comprising loading level, error in transmission-capacity estimation, and constraints in performing load shedding. 
The model allows the prediction of the evolution of blackout probability in time. Moreover, the asymptotic 
analysis of the blackout probability enables the calculation of the probability mass function of the blackout size. 
A key benefit of the model is that it enables the characterization of the severity of cascading failures in terms of 
the operating characteristics of the power grid.. 

SECTION I. Introduction 
While power grids are reliable systems, they have experienced large cascading-failure blackouts at enormous 
costs. A large number of physical attributes of the power grid, such as voltage and frequency at various points in 
the grid, power-flow distribution, and the functionality of the grid's components, determine the state of the 
power grid at each time. Various events, such as contingencies, control actions, and demand changes, may alter 
the state of the system. Cascading failures in power grids can be described as successive changes of power-grid 
states, for instance, due to component failures, transmission-line tripping, voltage instability, phase mismatch, 
and changes in power-flow distribution. However, the analytical modeling of the evolution of the detailed 
system state during cascading failures may not be feasible. This is mainly due the large space of power-grid 
states and the large number of parameters affecting the states, not to mention the complexity of the 
interactions between the physical attributes and the stochastic dynamics of states. Besides the physical 
attributes of the power grid, its operating characteristics (e.g., the power-grid loading level) also affect the 
interactions among components and the cascading behavior of the power grid. For example, the cascading-
failure models reported in [1] and [2] do show that there are critical transitions in the cascading behavior as the 
load of the system is elevated. Moreover, as power grids become more reliant on the communication and 
control systems for their daily operation, a new set of operational characteristics pertaining to control and 
communication systems begin to influence cascading failures [3]. 

In the past two decades, researchers have exerted considerable efforts in modeling and understanding 
cascading failures in power systems. Among such efforts is the class of probabilistic models [2], [4]–[5][6][7]. 
However, many of the existing probabilistic models suffer from a disconnect between the parameters of the 
abstract models they employ and the physical and operating characteristics of the system. We believe that a 
probabilistic model for cascading failures that exhibits a clear connection between its abstract parameters and 
the physical and operational characteristics of the system will provide further insight into the cascading 
behavior. 

In this paper, we present an approach that aims to balance the tradeoff that exists between the scalability and 
analytical tractability of probabilistic models for cascading failures, on the one hand, and the level of details in 
the description of the physical and operational characteristics that can be embedded in the model on the other 
hand. Specifically, we construct a scalable and analytically tractable probabilistic model for cascading failure 
dynamics while retaining certain key physical attributes and operating characteristics of the power grid. This is 
accomplished by defining a reduced abstraction of the detailed power-grid state space (a small set of 
equivalence classes) by means of identifying a few aggregate state variables based upon our analysis of power-



system simulations and historical data. The aggregate state variables describe the physical attributes of the 
power-grid states and govern the cascading failure behavior. The stochastic dynamics of cascading failures are 
then modeled by the sequence of stochastic transitions among the “abstract” states according to a continuous-
time Markov chain. We term the model presented in this paper the stochastic abstract-state evolution (SASE) 
model. The state-dependent transition rates of the SASE model are formulated in terms of the operating 
characteristics of the power grid including power-grid loading level, transmission-capacity estimation error, and 
the constraints in implementing load shedding. 

The SASE model offers two major contributions beyond existing stochastic models for cascading failures. First, it 
enables the prediction of the evolution of the blackout probability in terms of key power-grid operating 
characteristics, which is an expansion of our earlier work [6]. Second, and more importantly, it enables an 
asymptotic analysis that leads to the analytical characterization of the probability mass function of the blackout 
size as well as the severity of cascading failures in terms of the key power-grid operating characteristics. We 
emphasize that the proposed concept of reducing the space of the detailed power-grid states is key in the 
scalability and analytical tractability of the SASE model. 

SECTION II. Related Work 
In the last two decades, a great volume of work has been devoted to understanding and analyzing cascading 
failures in power grids (see [8] for a review). Efforts in modeling cascading failures in power grids can be 
categorized into three classes: analysis of cascading failures using power-system simulations [1], [9], 
deterministic analytical models [10], and probabilistic analytical models [2], [4]–[5][6][7]. Here, we review the 
probabilistic analytical models for cascading failures. 

The work by Brummitt et al. [4] and the CASCADE model by Dobson et al. [2] model cascading failures triggered 
by initial load increments on certain components of the system. In both models, failures occur due to 
overloaded components and the cascading failure develops as a result of redistribution of loads among the 
remaining components. However, the redistribution of loads are based upon simple assumptions; for example, 
the CASCADE model assumes loads will be added equally to the components of the system as a result of failures. 
The probabilistic analytical models based upon branching processes [5], [11], [12] have also emerged, providing 
an analytical framework to study the statistical properties of cascading failures such as the probability 
distribution of blackout size. Reported branching-process approaches model cascading failures by considering 
generations of failures, whereby each failure in each generation independently produces a random number of 
subsequent failures in the next generation, and so on. In [11] and [12], the authors estimate the failure 
generation parameter of the branching process model for cascading failures using historical outage datasets. 
Notably, in [12] the authors account for varying failure generation parameter as the cascade progresses instead 
of a fixed parameter as in [11]. However, different from the work presented in the current paper, the work 
in [12] assumes that all line outages are homogeneous in their type. 

Recently, we developed a scalable probabilistic approach [6], based upon regeneration theory and a reduced 
state space of the power grid, to model the dynamics of cascading failures in time. The transition rates among 
the states of the model are defined to be state- and age-dependent, and they are calculated empirically from 
power-system simulations. This renewal-based approach can collapse to a Markov process; however, it can also 
capture the stochastic events when the underlying events are non-Markovian. The independent and concurrent 
work by Wang et al. [7] provides a Markov-transition model for cascading failures. The transition probabilities 
among states are derived from a stochastic model for line overloading using a stochastic flow redistribution 
model based upon dc power-flow equations. This model enables simulating the progression of cascading failures 
and its time span. However, due to the analytical complexity of the time-varying transition probabilities the 
analytical and asymptotic characterization of probabilistic metrics such as the blackout probability and 



distribution of the blackout size is not possible. In this paper, we present a scalable probabilistic model for the 
stochastic dynamics of cascading failures based upon a continuous-time Markov chain framework that captures 
key physical attributes of the power grid through its parameters and the novel definition of its reduced state 
space. 

SECTION III. Abstract State Space of Power Grids 
Our power-system simulations [6], as well as available historical blackout data [13]–[14][15], all suggest that the 
functionality status of transmission lines and their power-flow capacities [16] are key physical attributes that 
should be considered in modeling cascading failures. The importance of these attributes are clear as line failures 
have always been a part of historical large blackouts and the capacity of transmission lines determine the 
power-delivery capacity of the grid. For simplicity, we term the nonfunctional lines (e.g., lines that are tripped by 
protection relays, overheated, or physically failed) the failed lines. Even in the case where only the functionality 
status of the mtransmission lines of the system are considered, the size of the state space of the power grid is 
exponential in m. 

We consider three aggregate state variables to represent the power-grid state. The first variable is the number 
of failed lines, 𝐹𝐹, which has been commonly considered in the probabilistic modeling of cascading failures to 
represent power-grid states [1], [5], [7], [12]. Next, we consider the maximum of the capacities of all of the 
failed lines, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚. Our simulations presented in [6] have shown that 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 dominates the effect of the capacity 
of the failed lines in cascading failures. Finally, our simulations presented in [6] have shown that certain power-
grid states are cascade-stable, defined as a state for which once entered no further failures occur in the system. 
Accordingly, we define a new aggregate state variable, termed cascade-stability, which collectively captures 
many other physical attributes of the power grid (as the physical attributes specify whether a power-grid state is 
cascade-stable or not). We represent the cascade-stability by a binary state variable 𝐼𝐼, where 𝐼𝐼 = 1 indicates a 
cascade-stable state and 𝐼𝐼 = 0 indicates otherwise. 

Here, we employ an expanded notion of equivalence classes of power-grid states compared to what we 
originally proposed in [6]. By utilizing the three introduced state variables as the descriptors of power-grid 
states, we partition the space of all detailed power-grid states into a collection of equivalence classes, denoted 
by 𝒮𝒮. Such coarse partitioning of the state space of the power grid implies that detailed power-grid states with 
the same aggregate state-variable values (i.e., the same value of 𝐹𝐹, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐼𝐼) will belong to one class and will 
be indistinguishable as far as the reduced abstraction is concerned. We term each class of the power-grid states 
an abstract power-grid state or in short an abstract state, and label each as 𝑆𝑆𝑖𝑖 = (𝐹𝐹𝑖𝑖,𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, 𝐼𝐼𝑖𝑖), where 𝑆𝑆𝑖𝑖 ∈ 𝒮𝒮. 

The notion of power-grid states, abstract states, and transition between the abstract states is sketched in Fig. 1. 
Each large circle represents an abstract state and each of the four topological graphs inside each large circle 
represents a detailed power-grid state, albeit with common values for 𝐹𝐹, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐼𝐼. We assume that the 
power-flow capacity of the lines can be quantized into a discrete and finite set of capacity values, i.e., 𝒞𝒞 =
{𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝐾𝐾}. Thus, the cardinality of the abstract-state space 𝒮𝒮 is 𝑁𝑁 = 2𝐾𝐾𝐾𝐾. Therefore, the equivalence-class 
approach reduces the complexity associated with tracking the stochastic dynamics of the power grid from 
exponential to linear in 𝑚𝑚. 



 
Fig. 1. Power-grid states, abstract states, and transitions between the abstract states. 
 

Next, we provide two real scenarios of cascading failures from the historical blackout data that support the 
dependency of the cascading behavior on 𝐹𝐹 and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚. The time evolution of the cumulative line failures for the 
blackouts in July 1996 and August 1996 in the Western Interconnection [13] are shown in Fig. 2(a). The number 
of initial and final transmission-line failures are very close in these two blackouts. However, the approximate 
average line-failure rate in the July 1996 blackout is 1.6 failures per minute during the escalation phase of the 
cascading failures, while it is 4 failures per minute in the August 1996 blackout. Most notably, the initial 
disturbance of the blackouts were two 345-KV transmission-line failures in the July 1996 blackout and two 500-
KV transmission-line failures in the August 1996 blackout. Next, the time evolution of the cumulative line failures 
for the blackout in the August 2003 in Eastern Interconnection [15] is shown in Fig. 2(b). Based upon the data, 
the average line-failure rate is approximately 1.4 failures per minute at the beginning phase while it is 18 failures 
per minute at the escalation phase of cascading failures. This can be described by the larger number of failures 
in the grid in the second phase as well as failure of some critical lines with high capacities. In summary, the 
aforementioned observations extracted from historical data and our simulations both support the selection of 
the capacity of the failed lines and the number of failures as key players in the formulation of the abstract state 
space. 

 
Fig. 2. Cumulative line failures in the (a) July 1996 WSCC blackout (solid line), August 1996 WSCC blackout 
(dashed line), and (b) August 2003 blackout [13], [15]. The time of the initial failure is set to zero. The figures are 
reproduced in the same way as in [5]. 
 

SECTION IV. SASE Cascading-Failure Model 
The SASE model describes the stochastic dynamics of cascading failures using a finite state continuous-time 
Markov chain whose state space is defined by the abstract states 𝑆𝑆𝑖𝑖 = (𝐹𝐹𝑖𝑖,𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, 𝐼𝐼𝑖𝑖) for 𝑖𝑖 = 1,2, … ,𝑁𝑁. Recall 
that the state variable 𝐼𝐼 indicates whether a state is cascade-stable or not; hence, it is utilized to specify the 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/59/6835113/6714578/6714578-fig-1-source-large.gif
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absorbing (𝐼𝐼 = 1) and nonabsorbing (𝐼𝐼 = 0) states of the Markov chain. We term the nonabsorbing states as 
transitory states. 

We consider two types of state transitions in the SASE model. The first type is termed as cascade-stop transition, 
which is from a transitory state, say 𝑆𝑆𝑖𝑖, to an absorbing state, say 𝑆𝑆𝑗𝑗, (i.e., 𝐼𝐼𝑖𝑖 = 0 and 𝐼𝐼𝑗𝑗 = 1) such that 𝐹𝐹𝑗𝑗 =
𝐹𝐹𝑖𝑖 and 𝐶𝐶𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚. The cascade-stop transition leads to the end of the chain of failures, which in real systems 
can occur as a result of the implementation of successful control actions, formation of operating islands in the 
power grid, or occurrence of a large blackout. The second type of transitions is termed a cascade-continue 
transition. We assume that the cascade-continue transition occurs as a result of a single line failure in the 
system. The single-failure-per-transition approximation is based upon the assumption that time is divided into 
sufficiently small intervals such that each interval can allow only a single failure event. By cascade-continue 
transition we mean transition from a transitory state, say 𝑆𝑆𝑖𝑖, to another transitory state, say 𝑆𝑆𝑗𝑗 (i.e., 𝐼𝐼𝑖𝑖 = 𝐼𝐼𝑗𝑗 = 0) 
such that 𝐹𝐹𝑗𝑗 = 𝐹𝐹𝑖𝑖 + 1 and 𝐶𝐶𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚. To this end, the cascading failure can be described as a sequence of 
Markovian transitions among transitory states with a final transition to some absorbing state. 

We represent the state of the system at time 𝑡𝑡 ≥ 0 by 𝑋𝑋(𝑡𝑡), an 𝒮𝒮-valued, continuous-time Markov chain. The 
transition probability matrix of the chain 𝑋𝑋(𝑡𝑡) is denoted by 𝐏𝐏(𝑡𝑡), where its 𝑖𝑖𝑖𝑖th element is 𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝖯𝖯{𝑋𝑋(𝜏𝜏 +
𝑡𝑡) = 𝑆𝑆𝑗𝑗|𝑋𝑋(𝜏𝜏) = 𝑆𝑆𝑖𝑖}, 𝑡𝑡 ≥ 0. Note that the notation 𝖯𝖯 is used to represent probability measure defined on the 
collection (𝜎𝜎-algebra) ℱ of all events (subsets of the sample space Ω) generated by the random variables defined 
in this paper. 

Let 𝑞𝑞𝑖𝑖𝑖𝑖 for 𝑖𝑖 ≠ 𝑗𝑗 represent the probability rate of transition from state 𝑆𝑆𝑖𝑖 to state 𝑆𝑆𝑗𝑗, which depends upon the 
origin and destination states of the transition. This dependency allows for cascading behavior and will be 
explained in details in Section VI. The 𝑞𝑞𝑖𝑖𝑖𝑖 is defined as 

𝑞𝑞𝑖𝑖𝑖𝑖 = �
𝑙𝑙𝑙𝑙𝑙𝑙
ℎ→0+

𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)
ℎ

, 𝑖𝑖 ≠ 𝑗𝑗

− 𝑙𝑙𝑙𝑙𝑙𝑙
ℎ→0+

1−𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)
ℎ

, for 𝑖𝑖 = 𝑗𝑗
 (1) 

where 𝑞𝑞𝑖𝑖𝑖𝑖 satisfies 𝑞𝑞𝑖𝑖𝑖𝑖 = −∑𝑁𝑁𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 𝑞𝑞𝑖𝑖𝑖𝑖 [17]. A Markov chain 𝑋𝑋(𝑡𝑡) is completely determined by the transition 
rate matrix 𝐐𝐐 with 𝑞𝑞𝑖𝑖𝑖𝑖 as its 𝑖𝑖𝑖𝑖th element. 

We formulate the transition rates of the SASE model based upon the transition probabilities of its embedded 
Markov chain (EMC). We denote the state of the EMC at discrete time instant ℓ by 𝑋𝑋(ℓ). The one-step transition 
probability matrix of the EMC is denoted by 𝐏𝐏EMC. According to the definition of the SASE model, the elements 
of 𝐏𝐏EMC has the form given in (2), shown at the bottom of the page, 

𝑝𝑝𝑖𝑖𝑖𝑖EMC = �
0, 𝐹𝐹𝑗𝑗 < 𝐹𝐹𝑖𝑖  or 𝐹𝐹𝑗𝑗 − 𝐹𝐹𝑖𝑖 > 1 or 𝐶𝐶𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 < 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚or(𝐼𝐼𝑖𝑖 = 1 and 𝑗𝑗 ≠ 𝑖𝑖)
1, 𝐼𝐼𝑖𝑖 = 1 and 𝑗𝑗 = 𝑖𝑖
𝑃𝑃trans(𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑗𝑗), otherwise

 (2) 

where 𝑃𝑃trans(𝑆𝑆𝑖𝑖,𝑆𝑆𝑗𝑗) represents the probability that the system transits from a transitory state, say 𝑆𝑆𝑖𝑖, to 
state 𝑆𝑆𝑗𝑗 for which the value of 𝐹𝐹𝑗𝑗 and 𝐶𝐶𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 does not violate the transition rules in (2). In Section VI, we will 
parametrically characterize 𝑃𝑃trans(𝑆𝑆𝑖𝑖,𝑆𝑆𝑗𝑗) based upon our observations from simulations. 

We approximate 𝑞𝑞𝑖𝑖𝑖𝑖 based upon (1) and for a small 𝛥𝛥𝛥𝛥 as 𝑞𝑞𝑖𝑖𝑖𝑖 ≈ (𝑝𝑝𝑖𝑖𝑖𝑖EMC)/(Δ𝑡𝑡) for 𝑖𝑖 ≠ 𝑗𝑗. We consider 𝛥𝛥𝛥𝛥 as (the 
small) unit of time approximating the average time between failures during the rapid escalation phase of the 
cascading behavior, which is relatively small compared with the total duration of cascading failures. We estimate 

https://ieeexplore.ieee.org/abstract/document/#deqn2
https://ieeexplore.ieee.org/abstract/document/#deqn1


such 𝛥𝛥𝛥𝛥 using the historical blackout data provided in [5] and [13]. However, note that, based upon the 
individual blackout events, 𝛥𝛥𝛥𝛥 may vary depending on the power system and its operating characteristics. For 
example, historical data suggests approximately 18 transmission-line failures per minute on average during the 
rapid escalation phase of the cascading failure for the August 2003 Eastern Interconnection blackout (Δ𝑡𝑡 ≈
0.055 min) [13] while this number is 4 failures per minute for the August 1996 Western Interconnection blackout 
(𝛥𝛥𝛥𝛥 ≈ 0.25 min) [5]. In our calculations we have selected an intermediate value of Δ𝑡𝑡 ≈ 0.25 min. We emphasize 
that, while we consider a fixed 𝛥𝛥𝛥𝛥 for the system, it is the state-dependent nature of the transition 
probabilities 𝑝𝑝𝑖𝑖𝑖𝑖EMC that inherently adjusts the transition rates to accommodate all phases of cascading failures, 
such as the precursor and escalation phases. 

In Section V, we introduce our simulation methodology, which will be used in the parametric formulation 
of 𝑝𝑝𝑖𝑖𝑖𝑖EMC. 

SECTION V. Cascading-Failure Simulation 
A. Overloading and Failure Mechanism 
Here, we introduce our approach for simulating cascading failures resulting from line overloading. Our 
simulations are based upon the dc power-flow equations as described in [18]. 

A transmission line has a power-flow capacity that can be governed by the thermal limit, the voltage drop limit, 
or the steady-state stability limit of the line [16]. We denote the power-flow capacity of a transmission line, say 
the 𝑘𝑘th line, by 𝐶𝐶𝑘𝑘

opt. The 𝐶𝐶𝑘𝑘
opt values of the transmission lines are used by the control center of the power grid 

as constraints in the power-flow optimization framework (presented in Section V-C). 

Similarly to the approach presented in [1], we consider a threshold 𝛼𝛼𝑘𝑘 for the power flow through the kth line 
above which the protection relay (e.g., circuit breaker or impedance protective relay) trips the line. Various 
factors and mechanisms in the power grid may affect the threshold α for transmission lines. For example, the 
line overloading may lead to smaller measured impedance than relay settings [19], the thermal power-flow 
capacity of a transmission line may vary due to changes in the surrounding temperature and ambient weather 
conditions [20], or communication/control system problems may lead to inaccurate 𝐶𝐶𝑘𝑘

opt assumption in the 
control center. In all of these examples, the protection relay may trip the line when the power flow exceeds the 
threshold 𝛼𝛼𝑘𝑘. Now, one may interpret the discrepancy between the threshold value 𝛼𝛼𝑘𝑘, which represents the 
true capacity of the line, and the nominal capacity 𝐶𝐶𝑘𝑘

opt as an error by the control center in its estimation of the 
true capacity of the lines. By adopting this point of view, in this paper, we term 𝐶𝐶𝑘𝑘

opt − 𝛼𝛼𝑘𝑘  the capacity 
estimation error. While the approach presented in [1] considers a fixed threshold, in this paper we assume 
varying threshold to capture the effects of various parameters on the threshold and consequently on the 
cascading behavior. In our simulations, we quantify Coptk−αk by a fraction of 𝐶𝐶𝑘𝑘

opt, i.e., 𝐶𝐶𝑘𝑘
opt − 𝛼𝛼𝑘𝑘 =

𝑒𝑒𝐶𝐶𝑘𝑘
opt for 𝑒𝑒 ∈ [0,0.5]. Therefore, we assume a line is overloaded when the power flow through the line 

exceeds (1 − 𝑒𝑒)𝐶𝐶𝑘𝑘
opt. As such, the parameter e controls the capacity estimation error. Moreover, we categorize 

all of the transmission lines in the power grid based upon their capacity values into five categories with values 
from the set 𝒞𝒞 = {20 MW, 80 MW, 200 MW, 500 MW, 800 MW} [16]. Similarly to the work presented in [21], in 
our simulations, we allow only one line trip at a time by randomly (according to the size of overload) tripping 
one of the overloaded lines. 

Studies of major blackouts have shown that incorrect operation of protection relays contributes to cascading 
failures [13]. To capture this effect in our simulations, we have considered a small probability (0.04) for mis-
operation of protection relays. Due to space constraints, we will not investigate the effects of the mis-operation 



of the protection relays on cascading behavior further. A study of such effects is presented in [22]. Finally, the 
simulations in this paper use the IEEE 118-bus system. However, we also refer to our simulations of IEEE 300-bus 
system for certain results to confirm the consistency of the observed trends. 

B. Operating Characteristics of the Power Grid 
In studying the cascading failures, we consider three power-grid operating characteristics as described below. 

5.2.1 Capacity Estimation Error 
Recall that in the previous subsection we introduced the parameter 𝑒𝑒, which captures the effects of various 
factors and mechanisms that may lead to failure of transmission lines when their power flow is within a certain 
range of the maximum (nominal) capacity assumed by the control center. We use the parameter 𝑒𝑒 to control the 
capacity estimation error (as described in the previous subsection). 

5.2.2 Power-Grid Loading Level 
We denote the power-grid loading level by 𝑟𝑟, which is defined as the ratio of the total demand to generation-
capacity of the power grid. The parameter 𝑟𝑟 represents the level of stress over the grid in terms of the loading 
level of its components. Note that the N-1 security is ensured in all loading levels of the power grid. 

5.2.3 Load-Shedding Constraint Level 
Load shedding is a critical control action when the system must be reconfigured to accommodate the 
disturbances on the power grid. In our earlier work [23], we have shown that the efficiency of the load shedding 
in responding to cascading failures depends upon the constraints in implementing the load shedding in the 
system. The constraint level is governed, for example, by control and marketing policies, regulations, physical 
constraints, and communication limitations. The ratio of the uncontrollable loads (loads that do not participate 
in load shedding) to the total load in the power grid is termed the load-shedding constraint, denoted by 𝜃𝜃 ∈
[0,1], where 𝜃𝜃 = 1 means load shedding cannot be implemented and 𝜃𝜃 = 0 means there is no constraint in 
implementing the load shedding. The value of 𝜃𝜃 controls the level of controllability of the load shedding in our 
simulations. 

The effects of these parameters on the power-flow distributions are embedded in the power-flow optimization 
framework as described in Section V-C. 

C. Power-Flow Optimization Framework 
For completeness, we summarize the power-flow optimization framework, introduced in our earlier 
work [3], [23]. 

Consider the transmission system of a power grid with 𝒱𝒱 nodes (substations) interconnected by 𝑚𝑚 transmission 
lines. The sets ℒ and 𝒢𝒢 are the set of load buses and the set of generator buses, respectively. The 
notation 𝐿𝐿𝑖𝑖 represents the demand at the load bus 𝑖𝑖. The dc power-flow equations [18] can be summarized as 

𝐹𝐹
~

= 𝐴𝐴𝑃𝑃
~ (3) 

where 𝑃𝑃
~

 is a power vector whose components are the input power of nodes in the grid (except the reference 

generator), 𝐹𝐹
~

 is a vector whose 𝑚𝑚 components are the power flow through the transmission lines, and 𝐴𝐴 is a 
matrix whose elements can be calculated in terms of the connectivity of transmission lines in the power grid and 
the impedance of the lines. This system of equations does not have a unique solution. Therefore, to find the 
solution to this system, we use, as done in [1], a standard optimization approach with the objective of 
minimizing the simple cost function that follows: 



Cost = ∑ 𝑤𝑤𝑔𝑔
𝑖𝑖𝑔𝑔𝑖𝑖𝑖𝑖∈𝒢𝒢 + � 𝑤𝑤ℓ

𝑗𝑗ℓ𝑗𝑗
𝑗𝑗∈ℒ

. (4) 

A solution to this optimization problem is the pair 𝑔𝑔𝑖𝑖 and ℓ𝑗𝑗 that minimizes the cost function in (4). Note 
that ℓ𝑗𝑗 = 𝜃𝜃𝑗𝑗𝐿𝐿𝑗𝑗 + 𝑏𝑏𝑗𝑗, where 𝑏𝑏𝑗𝑗 will be determined by the optimization solution. In this cost 
function, 𝑤𝑤𝑔𝑔

𝑖𝑖 and 𝑤𝑤ℓ
𝑗𝑗 are positive values representing the generation cost for every node 𝑖𝑖 ∈ 𝒢𝒢 and the load-

shedding price for every node 𝑗𝑗 ∈ ℒ, respectively. We assume a high price for load shedding so that a load is to 
be curtailed only when there is generation inadequacy or transmission capacity limitations. The constraints for 
this optimization problem are listed here. 

1. DC power flow equations: 𝐹𝐹
~

= 𝐴𝐴𝑃𝑃
~

. 
2. Limits on the generators' power: 0 ≤ 𝑔𝑔𝑖𝑖 ≤ 𝐺𝐺𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, 𝑖𝑖 ∈ 𝒢𝒢. 
3. Limits on the controllable loads: (1 − 𝜃𝜃𝑗𝑗)𝐿𝐿𝑗𝑗 ≤ 𝑏𝑏𝑗𝑗 ≤ 0, 𝑗𝑗 ∈ ℒ. 

4. Limits on the power flow through the lines: |𝐹𝐹
~
𝑘𝑘| ≤ 𝐶𝐶𝑘𝑘

opt for 𝑘𝑘 ∈ {1, … ,𝑚𝑚}. 
5. Power balance constraints (power generated and consumed must be balanced): ∑𝑖𝑖∈𝒢𝒢 𝑔𝑔𝑖𝑖 +

� ℓ𝑗𝑗 = 0
𝑗𝑗∈ℒ

. 

 

Note that, in the above formulation, the quantities ℓ𝑗𝑗 are negative and the 𝑔𝑔𝑖𝑖's are positive (by definition). The 
operating parameter 𝑟𝑟 affects the initial load on the system, i.e., the 𝐿𝐿𝑗𝑗's. The solution to this optimization 
problem determines the amount of load shed, generation, and the power flow through the lines. If failures occur 
in the power grid, we assume that the control center redistributes the power in the grid by solving the above 
optimization problem. If the new power-flow distribution overloads lines (based on the overload definition 
in Section V.A), more failures will occur in the power grid. This process iterates until no more failures occur in 
the system. 

We use MATPOWER [24], which is a package of MATLAB m-files, for solving the optimal power flow and 
simulating cascading failures. The quasi-static approaches that employ a power-flow distribution framework 
together with a method to identify overloaded lines and individual failures to model cascading failures have 
been used in several works in the literature such as [19], [21], and [25]. In Section VI, we will use simulations to 
study the effects of the three introduced power-system operating characteristics on cascading failures and use 
this understanding to parametrically formulate 𝑝𝑝𝑖𝑖𝑖𝑖EMC. 

SECTION VI. Transition Probabilities 
Here, we parametrically model 𝑃𝑃trans(𝑆𝑆𝑖𝑖, 𝑆𝑆𝑗𝑗) introduced in (2). In order to simplify the formulation of 
the 𝑃𝑃trans(𝑆𝑆𝑖𝑖, 𝑆𝑆𝑗𝑗), we consider the probability components depicted in Fig. 3. We will introduce the components 
represented in Fig. 3 as we go through this section and refer to this figure as necessary. 

https://ieeexplore.ieee.org/abstract/document/#deqn4
https://ieeexplore.ieee.org/abstract/document/#deqn2


 
Fig. 3. Components of 𝑃𝑃trans(𝑆𝑆𝑖𝑖, 𝑆𝑆𝑗𝑗). First, transition from a transitory state 𝑆𝑆𝑖𝑖 is divided into two categories: 
transition to an absorbing state 𝑆𝑆𝑖𝑖∗ and transition to a transitory state (states in the dashed circles are transitory 
states). Next, the transition to a transitory state is also divided into two categories: transition to a state 𝑆𝑆𝑖𝑖∗∗ with 
the same 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 values as that of 𝑆𝑆𝑖𝑖, and transition to a state whose maximum capacity of the failed lines is larger 
than 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 associated with the state 𝑆𝑆𝑖𝑖.  
 

Note that, for every transitory state, say 𝑆𝑆𝑖𝑖 ∈ 𝒮𝒮, there is a single associated absorbing state, which we denote 
by 𝑆𝑆𝑖𝑖∗ (see Fig. 3). Note that state 𝑆𝑆𝑖𝑖∗ has the same 𝐹𝐹 and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 values as those for 𝑆𝑆𝑖𝑖 but it has 𝐼𝐼𝑖𝑖∗ = 1 (where 
as 𝐼𝐼𝑖𝑖 = 0). Based upon whether the next state of the transition is an absorbing state or not, we decompose the 
transition probability as follows: 

𝑃𝑃trans�𝑆𝑆𝑖𝑖, 𝑆𝑆𝑗𝑗�
= 𝖯𝖯�𝑋𝑋(ℓ+1) = 𝑆𝑆𝑗𝑗|𝑋𝑋(ℓ) = 𝑆𝑆𝑖𝑖 ,𝑋𝑋(ℓ+1) = 𝑆𝑆𝑖𝑖∗�
× 𝖯𝖯�𝑋𝑋(ℓ+1) = 𝑆𝑆𝑖𝑖∗|𝑋𝑋(ℓ) = 𝑆𝑆𝑖𝑖�
+𝖯𝖯�𝑋𝑋(ℓ+1) = 𝑆𝑆𝑗𝑗|𝑋𝑋(ℓ) = 𝑆𝑆𝑖𝑖 ,𝑋𝑋(ℓ+1) ≠ 𝑆𝑆𝑖𝑖∗�
× 𝖯𝖯�𝑋𝑋(ℓ+1) ≠ 𝑆𝑆𝑖𝑖∗|𝑋𝑋(ℓ) = 𝑆𝑆𝑖𝑖�.

 (5) 

Note that 𝑋𝑋(ℓ+1) = 𝑆𝑆𝑖𝑖∗ implies that cascading failure ends in the system. As such, we define the probability of 

cascade-stop transition as 𝑃𝑃stop(𝑆𝑆𝑖𝑖) =△ 𝖯𝖯{𝑋𝑋(ℓ+1) = 𝑆𝑆𝑖𝑖∗|𝑋𝑋(ℓ) = 𝑆𝑆𝑖𝑖}. Clearly, 𝖯𝖯{𝑋𝑋(ℓ+1) = 𝑆𝑆𝑗𝑗|𝑋𝑋(ℓ) = 𝑆𝑆𝑖𝑖,𝑋𝑋(ℓ+1) =
𝑆𝑆𝑖𝑖∗} = 𝛿𝛿𝑆𝑆𝑖𝑖∗,𝑆𝑆𝑗𝑗, where 𝛿𝛿𝑆𝑆𝑖𝑖∗,𝑆𝑆𝑗𝑗 = 1 when 𝑆𝑆𝑗𝑗 is equal to 𝑆𝑆𝑖𝑖∗ and 𝛿𝛿𝑆𝑆𝑖𝑖∗,𝑆𝑆𝑗𝑗 = 0 otherwise. Moreover, we define 𝖯𝖯{𝑋𝑋(ℓ+1) =

𝑆𝑆𝑗𝑗|𝑋𝑋(ℓ) = 𝑆𝑆𝑖𝑖,𝑋𝑋(ℓ+1) ≠ 𝑆𝑆𝑖𝑖∗} =△ (1 − 𝛿𝛿𝑆𝑆𝑖𝑖∗,𝑆𝑆𝑗𝑗)𝑃𝑃cont(𝑆𝑆𝑖𝑖, 𝑆𝑆𝑗𝑗), where 𝑃𝑃cont(𝑆𝑆𝑖𝑖, 𝑆𝑆𝑗𝑗) is the conditional cascade-continue 
transition probability. Thus, we rewrite (5) as 

𝑃𝑃trans(𝑆𝑆𝑖𝑖 ,𝑆𝑆𝑗𝑗) = 𝛿𝛿𝑆𝑆𝑖𝑖∗,𝑆𝑆𝑗𝑗𝑃𝑃stop(𝑆𝑆𝑖𝑖)
+(1 − 𝛿𝛿𝑆𝑆𝑖𝑖∗,𝑆𝑆𝑗𝑗)𝑃𝑃cont(𝑆𝑆𝑖𝑖 ,𝑆𝑆𝑗𝑗)(1 − 𝑃𝑃stop(𝑆𝑆𝑖𝑖)) (6) 

for 𝑆𝑆𝑖𝑖, 𝑆𝑆𝑖𝑖∗,𝑆𝑆𝑗𝑗 ∈ 𝒮𝒮. Note that � 𝑃𝑃trans(𝑆𝑆𝑖𝑖, 𝑆𝑆𝑗𝑗) = 1
𝑁𝑁

𝑗𝑗=1
. 

The rest of this section is devoted to the parametric representation of 𝑃𝑃stop(𝑆𝑆𝑖𝑖) and 𝑃𝑃cont(𝑆𝑆𝑖𝑖,𝑆𝑆𝑗𝑗), and therefore, 
the parametric formulation of 𝑃𝑃trans(𝑆𝑆𝑖𝑖,𝑆𝑆𝑗𝑗) due to (6). 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/59/6835113/6714578/6714578-fig-3-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/59/6835113/6714578/6714578-fig-3-source-large.gif
https://ieeexplore.ieee.org/abstract/document/#deqn5
https://ieeexplore.ieee.org/abstract/document/#deqn6


SECTION A. Cascade-Stop Probability 
Here, we will present simulation results that show the dependency of 𝑃𝑃stop(𝑆𝑆𝑖𝑖) on 𝐹𝐹𝑖𝑖 and 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚. To simplify the 
observation of the effects of 𝐹𝐹𝑖𝑖 and 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 on 𝑃𝑃stop(𝑆𝑆𝑖𝑖), we have studied 𝑃𝑃stop(𝑆𝑆𝑖𝑖)as a function 

of 𝐹𝐹𝑖𝑖 and 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 individually represented, respectively, by 𝑃𝑃stop
(1) (𝐹𝐹𝑖𝑖) and 𝑃𝑃stop

(2) (𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚). In Appendix A, we present 
a simple approach similar to the approach presented in [26] in conjunction with certain reasonable assumptions 
(originated from the simulations of the power grid and power grid characteristics) to approximately 
represent 𝑃𝑃stop(𝑆𝑆𝑖𝑖) in terms of a weighted superposition of 𝑃𝑃stop

(1) (𝐹𝐹𝑖𝑖) and 𝑃𝑃stop
(2) (𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) as 

𝑃𝑃stop(𝑆𝑆𝑖𝑖) = 𝑤𝑤𝑃𝑃stop
(1) (𝐹𝐹𝑖𝑖) + (1 −𝑤𝑤)𝑃𝑃stop

(2) (𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) (7) 

where, in our formulation, we simply set 𝑤𝑤 = 0.5. 

Fig. 4(a) and (b) shows the simulation results of 𝑃𝑃stop
(1) (𝐹𝐹𝑖𝑖) and 𝑃𝑃stop

(2) (𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚), respectively, for the IEEE 118-bus 
and the IEEE 300-bus systems. The IEEE 118-bus system has 186 transmission lines and the IEEE 300-bus systems 
has 409 transmission lines. Note that 𝑃𝑃stop

(1) (𝐹𝐹𝑖𝑖) and 𝑃𝑃stop
(2) (𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) exhibit the same general behavior in both grids. 

Due to the space constraints, we will limit our presentation to the IEEE 118-bus system with the knowledge that 
a similar approach for the parametric modeling of transmission rates can be applied to larger scale grids by 
adjusting the parameters of the model. 

 
Fig. 4. (a) 𝑃𝑃stop

(1) (𝐹𝐹𝑖𝑖) and (b) 𝑃𝑃stop
(2) (𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) for the IEEE 118-bus system and the IEEE 300-bus system for 𝑟𝑟 =

0.7,𝑒𝑒 = 0.1, and 𝜃𝜃 = 0. 
 

Figs. 5 and 6 show the simulation results of 𝑃𝑃stop
(1) (𝐹𝐹𝑖𝑖) and 𝑃𝑃stop

(2) (𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) for the IEEE 118-bus system, respectively, 
for different operating settings of the grid. The results of our simulations are obtained using 1000 scenarios of 
random initial disturbances with two or three random line failures. We considered three different values of load-
shedding constraint level 𝜃𝜃 in order to show that operating characteristics of the power grid affect the stability 
probabilities while the value of 𝑟𝑟 and 𝑒𝑒 are fixed to be 0.7 and 0.1, respectively (the effects of 𝑟𝑟, and 𝑒𝑒 are 
discussed in Section VI-C). 

 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/59/6835113/6714578/6714578-fig-4-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/59/6835113/6714578/6714578-fig-4-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/59/6835113/6714578/6714578-fig-5-source-large.gif


 

Fig. 5. Simulation results of 𝑃𝑃stop
(1) (𝐹𝐹𝑖𝑖) for 𝑟𝑟 = 0.7,𝑒𝑒 = 0.1 and three values of 𝜃𝜃. The solid line is the parametric 

approximated function when 𝜃𝜃 = 0. 

 
Fig. 6. Simulation results of 𝑃𝑃stop

(2) (𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) for 𝑟𝑟 = 0.7, 𝑒𝑒 = 0.1 and three values of 𝜃𝜃. The solid line is the 
parametric approximated function when 𝜃𝜃 = 0. 
 

From Fig. 5, we observe that 𝑃𝑃stop
(1) (𝐹𝐹𝑖𝑖) is bowl-shaped, with three identifiable phases, which are described in 

detail below. The importance of the bowl-shape form is that it reflects the general cascading behavior as failures 
accumulate. A similar three-phase behavior can be observed in the historical cascading-failure data presented 
in Fig. 2. 

6.1.1 First Phase 
This phase represents the regime when the likelihood of an additional failure increases substantially as a 
function of the number of failures. A qualitatively similar increase in the failure propagation probability has also 
been observed by Dobson [12]. This phase starts at 𝐹𝐹𝑖𝑖 = 2 (due to N-1 security). To this end, we define the 
parameter 𝑎𝑎1 as 𝑃𝑃stop

(1) (2), which represents, intuitively speaking, the reliability of the power grid to initial 

disturbances with two failures. Also in the first phase, 𝑃𝑃stop
(1) (𝐹𝐹𝑖𝑖) decreases from 𝑎𝑎1 to a 

small 𝑃𝑃stop
(1) (𝐹𝐹𝑖𝑖) value, 𝜖𝜖 (our results suggest 𝜖𝜖 = 0.05), as the number of failures increases and reaches a 

critical 𝐹𝐹𝑖𝑖 = 𝑎𝑎2𝑚𝑚 value. 

6.1.2 Second Phase 
This phase represents the escalated phase of cascading failures. During this phase 𝑃𝑃stop

(1) (𝐹𝐹𝑖𝑖) is small (we 

assume 𝑃𝑃stop
(1) (𝐹𝐹𝑖𝑖) = 𝜖𝜖 during this phase) and the power grid is highly vulnerable. This phase starts at 𝐹𝐹𝑖𝑖 = 𝑎𝑎2𝑚𝑚, 

which represents the number of failures in the power grid after which the cascading failure enters the escalated 
phase. As expected, our results show that, during this phase, the efficiency of the control action (represented 
by 𝜃𝜃) hardly affects 𝑃𝑃stop

(1) (𝐹𝐹𝑖𝑖). 

6.1.3 Third Phase 
As 𝐹𝐹𝑖𝑖 increases further, the probability of having an additional failure decreases as cascading-failure behavior 
begins to phase out. This behavior can be attributed to the finite size of the power grid or the fact that as more 
failures occur “functional islands” may form in the grid, leading to the termination of cascading failures. 
Therefore, in this phase, the value of 𝑃𝑃stop

(1) (𝐹𝐹𝑖𝑖) rises, and, finally, 𝑃𝑃stop
(1) (𝑚𝑚) = 1. Note that, in this paper, we 
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simply consider a fixed parametric model for the third phase of 𝑃𝑃stop
(1) (𝐹𝐹𝑖𝑖), which only roughly approximates the 

average scenario of various operating settings. 

We propose the following parametric model to capture the three aforementioned phases in 𝑃𝑃stop
(1) (𝐹𝐹𝑖𝑖): 

𝑃𝑃stop
(1) (𝐹𝐹𝑖𝑖)

=

⎩
⎨

⎧𝑎𝑎1(𝑎𝑎2𝑚𝑚−𝐹𝐹𝑖𝑖
𝑎𝑎2𝑚𝑚

)4 + 𝜖𝜖, 2 ≤ 𝐹𝐹𝑖𝑖 ≤ 𝑎𝑎2𝑚𝑚
𝜖𝜖, 𝑎𝑎2𝑚𝑚 < 𝐹𝐹𝑖𝑖 ≤ 0.6𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚{(𝐹𝐹𝑖𝑖−0.6𝑚𝑚

𝑚𝑚−0.6𝑚𝑚
)4 + 𝜖𝜖, 1}, 0.6𝑚𝑚 < 𝐹𝐹𝑖𝑖 ≤ 𝑚𝑚.

 (8) 

The parametric 𝑃𝑃stop
(1) (𝐹𝐹𝑖𝑖) is shown in Fig. 5 for 𝜃𝜃 = 0. Recall that we have judiciously selected a common 

parametric model for the third phase of the bowl-shaped function across various operating settings. 
Consequently, the parametric function 𝑃𝑃stop

(1) (𝐹𝐹𝑖𝑖) shown in Fig. 5 does not accurately match the simulation 
results for 𝜃𝜃 = 0 scenario in the third phase. 

The empirically calculated 𝑃𝑃stop
(2) (𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) is shown in Fig. 6. The value of 𝑃𝑃stop

(2) (𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) indicates, intuitively 
speaking, the reliability of the power grid when the maximum capacity of the failed lines in the grid is Cmaxi. 
Note that 𝑃𝑃stop

(2) (𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) decreases as 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 increases, which means that the power grid is more vulnerable to 
additional failures when it has lost at least a line with a large capacity value. We also observe 
that 𝑃𝑃stop

(2) (𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) decreases for all 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 values as 𝜃𝜃 increases; however, the effect of θ on the reliability is larger 
when 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 is smaller. This is because control actions are most effective when they are implemented in the 
beginning phase of cascading failures where 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is more likely to be small. 

The 𝑃𝑃stop
(2) (𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) is formulated parametrically as 

𝑃𝑃stop
(2) (𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑎𝑎3 �

𝐶𝐶𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚{𝒞𝒞}
𝑚𝑚𝑚𝑚𝑚𝑚{𝒞𝒞}

�
4

,𝑎𝑎4� (9) 

where 𝑎𝑎3 ≜ 𝑃𝑃stop
(2) (𝑚𝑚𝑚𝑚𝑚𝑚{𝒞𝒞}) and 𝑎𝑎4 ≜ 𝑃𝑃stop

(2) (𝑚𝑚𝑚𝑚𝑚𝑚{𝒞𝒞}). The parametric function of 𝑃𝑃stop
(2) (𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) is also shown (by 

the solid line) in Fig. 6. This completes the parametric modeling of 𝑃𝑃stop(𝑆𝑆𝑖𝑖) based on (7). In Section VI-C, we 
show that the value of 𝑎𝑎1, … , 𝑎𝑎4 are affected by 𝑟𝑟, 𝑒𝑒, and 𝜃𝜃. In the SASE model, we will perceive the 
parameters 𝑎𝑎1, … ,𝑎𝑎4 beyond abstract model parameters but as parameters that govern the cascading behavior 
while maintaining a physical connection to the operating characteristics of the system. 

SECTION B. Cascade-Continue Probability 
Recall that, for every transitory state 𝑆𝑆𝑖𝑖, there is only one transitory state with the same 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 as that of 
state 𝑆𝑆𝑖𝑖 and exactly one more failure than that for state 𝑆𝑆𝑖𝑖. We denote such state by 𝑆𝑆𝑖𝑖∗∗ (see Fig. 3). Failure of a 
line with capacity smaller than or equal to 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 results in transitioning from state 𝑆𝑆𝑖𝑖 to state 𝑆𝑆𝑖𝑖∗∗. Similarly 
to (5), depending on whether the next line failure has larger capacity than 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 or not, we can write the 
conditional cascade-continue transition probability by conditioning on 𝑆𝑆𝑖𝑖∗∗ as 

𝑃𝑃cont(𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑗𝑗) = (1 − 𝑃𝑃hc(𝑆𝑆𝑖𝑖))𝛿𝛿𝑆𝑆𝑖𝑖∗∗,𝑆𝑆𝑗𝑗

+(1 − 𝛿𝛿𝑆𝑆𝑖𝑖∗∗,𝑆𝑆𝑗𝑗)𝑃𝑃𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆𝑖𝑖, 𝑆𝑆𝑗𝑗)𝑃𝑃hc(𝑆𝑆𝑖𝑖)
 (10) 
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for 𝑆𝑆𝑖𝑖, 𝑆𝑆𝑖𝑖∗∗, 𝑆𝑆𝑗𝑗 ∈ 𝒮𝒮 and 𝐼𝐼𝑗𝑗 = 0, where 𝑃𝑃hc is defined as the probability of having a line failure that results in a 

higher capacity of the failed lines than 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚. In (10), 𝑃𝑃hc(𝑆𝑆𝑖𝑖) =△ 𝖯𝖯{𝑋𝑋(ℓ+1) ≠ 𝑆𝑆𝑖𝑖∗∗|𝑋𝑋(ℓ) = 𝑆𝑆𝑖𝑖,𝑋𝑋(ℓ+1) ≠
𝑆𝑆𝑖𝑖∗} and (1 − 𝛿𝛿𝑆𝑆𝑖𝑖∗∗,𝑆𝑆𝑗𝑗)𝑃𝑃𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆𝑖𝑖, 𝑆𝑆𝑗𝑗) =△ 𝖯𝖯{𝑋𝑋(ℓ+1) = 𝑆𝑆𝑗𝑗|𝑋𝑋(ℓ) = 𝑆𝑆𝑖𝑖,𝑋𝑋(ℓ+1) ≠ 𝑆𝑆𝑖𝑖∗∗,𝑋𝑋(ℓ+1) ≠ 𝑆𝑆𝑖𝑖∗}. 

The empirically calculated 𝑃𝑃hc(𝑆𝑆𝑖𝑖)as a function of 𝐹𝐹𝑖𝑖 and 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 is shown in Fig. 7 with the same simulation 
settings as that of the previous subsection. Our simulation results show strong evidence 
that 𝐹𝐹𝑖𝑖 and 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 affect 𝑃𝑃hc(𝑆𝑆𝑖𝑖). Results suggest that regardless of the 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 value of the power-grid state, 
as Fi increases the probability that a line with capacity larger than 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 fails increases. This is meaningful 
because, as the number of failures increases the power grid becomes vulnerable and hence large transmission 
lines may be affected by contingencies. Moreover, the ratio of the number of transmission lines with capacity 
larger than 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 to the total number of functional lines increases with 𝐹𝐹𝑖𝑖. The next general observation 
from Fig. 7 is that for the same 𝐹𝐹𝑖𝑖 value, as 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 increases the probability that a line with capacity larger 
than 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 fails decreases. This is mainly due to decrease in the number of lines with capacity value larger 
than 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 (as 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 increases). Furthermore, it is less likely to have states with 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 value after 𝐹𝐹𝑖𝑖 reaches a 
certain threshold denoted by Γ𝑖𝑖  (the value of Γ𝑖𝑖  increases as 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 increases). This means that 
as Fi approaches Γ𝑖𝑖, line failures with capacity larger than 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 become highly likely. 

 
Fig. 7. Simulation results of Phc(𝑆𝑆𝑖𝑖) as a function of Fi and 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑟𝑟 = 0.7,𝑒𝑒 = 0.1 and 𝜃𝜃 = 0.1. 

Based upon our simulations, the role of 𝜃𝜃, 𝑟𝑟 and 𝑒𝑒 in 𝑃𝑃hc(𝑆𝑆𝑖𝑖)is subtle. Therefore, in this paper, we 
approximate 𝑃𝑃hc(𝑆𝑆𝑖𝑖) for different operating characteristics of the power grid with a fixed function. The above 
trends in 𝑃𝑃hc(𝑆𝑆𝑖𝑖) are captured by 

𝑃𝑃hc(𝑆𝑆𝑖𝑖) = �𝛼𝛼(𝐹𝐹𝑖𝑖 + 𝛽𝛽)3, 2 ≤ 𝐹𝐹𝑖𝑖 ≤ Γ𝑖𝑖
1, Γ𝑖𝑖 < 𝐹𝐹𝑖𝑖

 (11) 

for 𝑆𝑆𝑖𝑖 ∈ 𝒮𝒮, where 𝛼𝛼 = 6 × 10−7 and 𝛽𝛽 is 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 dependent. The parametric 𝑃𝑃hc(𝑆𝑆𝑖𝑖)'s are shown in Fig. 7. Note 
that the overestimation of the curves in Fig. 7 is due to employing a common parametric model for various 
operating settings as well as the introduced parameter Γ𝑖𝑖  (there are no simulation data when 𝐹𝐹𝑖𝑖 is beyond Γ𝑖𝑖.) 

Next, we find the parametric formulation for 𝑃𝑃𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆𝑖𝑖, 𝑆𝑆𝑗𝑗). Our simulation results suggest 
that 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐶𝐶𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 play key roles in determining 𝑃𝑃𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆𝑖𝑖, 𝑆𝑆𝑗𝑗). Fig. 8 shows the empirically 
calculated 𝑃𝑃𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆𝑖𝑖, 𝑆𝑆𝑗𝑗) as a function of 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐶𝐶𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚. From Fig. 8, we observe that, conditional on the 
occurrence of an additional failure with capacity larger than 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, the probability of transitioning to 
state 𝑆𝑆𝑗𝑗 decreases as 𝐶𝐶𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 increases. The results suggest that lines with capacity value close to 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 have a 
higher probability of failure than those with much larger capacities than 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚. We also observe that the 
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probability of transitioning to state Sj increases as 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 increases. This is because the power grid becomes more 
vulnerable when 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 is large. By comparing the simulation results corresponding to two values of 𝜃𝜃 in Fig. 8, 
we conclude that the role of 𝜃𝜃 in 𝑃𝑃𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆𝑖𝑖, 𝑆𝑆𝑗𝑗) is also subtle and, similarly to 𝑃𝑃hc(𝑆𝑆𝑖𝑖), the effect of operating 
characteristics on 𝑃𝑃𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆𝑖𝑖, 𝑆𝑆𝑗𝑗) is not considered. To capture the described trends, 𝑃𝑃𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆𝑖𝑖, 𝑆𝑆𝑗𝑗) is modeled 
parametrically as 

𝑃𝑃𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆𝑖𝑖 ,𝑆𝑆𝑗𝑗) =
𝑤𝑤(𝐶𝐶𝑗𝑗

𝑚𝑚𝑚𝑚𝑚𝑚)

∑𝑘𝑘:𝐶𝐶𝑘𝑘>𝐶𝐶𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤(𝐶𝐶𝑘𝑘) (12) 

where 𝑤𝑤(𝐶𝐶𝑘𝑘) is what we term the weight of transition to a state with the maximum capacity of the failed line 
equal to 𝐶𝐶𝑘𝑘. We have assigned these weights such that they approximate the simulation results presented 
in Fig. 8 using (12). Here, the value of the weights are set to 𝑤𝑤(80MW) = 2.2, 𝑤𝑤(200MW) =
1.5,𝑤𝑤(500MW) = 0.5, and 𝑤𝑤(1500MW) = 0.01. This completes the modeling of 𝑝𝑝𝑖𝑖𝑖𝑖EMC presented in (2). 

 
Fig. 8. Simulation results of 𝑃𝑃𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆𝑖𝑖, 𝑆𝑆𝑗𝑗) as a function of 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐶𝐶𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑟𝑟 = 0.7 and 𝑒𝑒 = 0.1 and two 
values of 𝜃𝜃. The parametric approximations are represented by solid lines. 
 

SECTION C. Effects of Operating Characteristics on SASE Parameters 
The SASE model parameters 𝑎𝑎1, … ,𝑎𝑎4 determine different cascading behaviors. These parameters may vary 
under different operating conditions and also across different power grids due to different connectivity pattern 
and components characteristics. Recall that we made the general observation that the power grid is more 
reliable when a1,…,a4 are larger. To illustrate the effects of operating characteristics on 𝑎𝑎1, … ,𝑎𝑎4, the values of 
these parameters (obtained based upon simulation results) are shown in Figs. 9 and 10 for 
different 𝜃𝜃, 𝑟𝑟 and 𝑒𝑒 values. Our simulation results suggest that the power grid is more reliable (𝑎𝑎1, … ,𝑎𝑎4 are 
larger) when 𝑟𝑟, 𝑒𝑒, and 𝜃𝜃 are small. We observe that when any of the 𝑟𝑟, 𝑒𝑒, and 𝜃𝜃 parameter increase they add 
more stress to the system and the effect of contingencies becomes larger. Therefore, the probability of an 
additional failure in the system increases (𝑎𝑎1,𝑎𝑎3, and 𝑎𝑎4 decrease). We also observe that when any of 𝑟𝑟, 𝑒𝑒, 
or 𝜃𝜃 increase, the cascading failure enters the rapid escalation phase with smaller number of failures 
(𝑎𝑎2 decreases). 
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Fig. 9. SASE-model parameters (a) 𝑎𝑎1, (b) 𝑎𝑎2, (c) 𝑎𝑎3, and (d) 𝑎𝑎4 as a function of 𝑟𝑟 parameterized by 𝑒𝑒. 

 
Fig. 10. SASE-model parameters (a) 𝑎𝑎1, (b) 𝑎𝑎2, (c) 𝑎𝑎3, and (d) 𝑎𝑎4 as a function of 𝑒𝑒 parameterized by 𝜃𝜃. 

SECTION VII. Analysis of the SASE Model 
Here, we analyze the SASE model by understanding the properties of the transition probability matrix 𝐏𝐏(𝑡𝑡). To 
simplify the analysis, we first rearrange the indices of states in 𝒮𝒮 by following three simple rules so 
that 𝐐𝐐 becomes upper diagonal matrix denoted by 𝐐𝐐𝑑𝑑. The three rules pertain the indices of states in 𝐐𝐐𝑑𝑑 such 
that: 1) 𝑖𝑖 < 𝑗𝑗 if 𝐹𝐹𝑖𝑖 < 𝐹𝐹𝑗𝑗; 2) 𝑖𝑖 < 𝑗𝑗 if 𝐹𝐹𝑖𝑖 = 𝐹𝐹𝑗𝑗 but 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 < 𝐶𝐶𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚; and 3) 𝑗𝑗 = 𝑖𝑖 + 1 if 𝐹𝐹𝑖𝑖 = 𝐹𝐹𝑗𝑗 and 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐶𝐶𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚, 
but 𝐼𝐼𝑖𝑖 = 0 and 𝐼𝐼𝑗𝑗 = 1. Note that the SASE Markov chain is not irreducible (and hence not ergodic) because 𝐐𝐐𝑑𝑑 is 
upper diagonal. This further implies that there is no stationary distribution for the SASE model and the canonical 
limit theorems of ergodic Markov chains are not applicable. Regardless, 𝐏𝐏(𝑡𝑡) is governed by 

𝐏𝐏′(𝑡𝑡) = 𝐐𝐐𝑑𝑑𝐏𝐏(𝑡𝑡) (13) 

where 𝐏𝐏′(𝑡𝑡) denotes the matrix whose elements are time derivative of 𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡) [17]. In principle, the solution 

of (13) is given by 𝐏𝐏(𝑡𝑡) = 𝑒𝑒𝐐𝐐𝑑𝑑𝑡𝑡𝐏𝐏(0). While the numerical solutions of 𝐏𝐏(𝑡𝑡) can be easily obtained, to have better 
insight we pursue an analytical approach which can result in the asymptotic solution of 𝐏𝐏(𝑡𝑡). To do so, the 
eigenvalues 𝜆𝜆1,𝜆𝜆2, … , 𝜆𝜆𝑁𝑁 of 𝐐𝐐𝑑𝑑 and a complete system of associated right eigenvectors 𝐮𝐮𝟏𝟏,𝐮𝐮𝟐𝟐, … ,𝐮𝐮𝑵𝑵 need to be 
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determined. Then, 𝐏𝐏(𝑡𝑡) can be represented as 𝐏𝐏(𝑡𝑡) = 𝑒𝑒𝐐𝐐𝑑𝑑𝑡𝑡 = 𝐔𝐔Λ(𝑡𝑡)𝐕𝐕, where 𝐔𝐔 is the matrix whose column 
vectors are 𝐮𝐮𝟏𝟏,𝐮𝐮𝟐𝟐, … ,𝐮𝐮𝑵𝑵 and 𝐕𝐕 = 𝐔𝐔−1. The matrix Λ(𝑡𝑡) is diagonal with 𝑒𝑒𝜆𝜆𝑖𝑖𝑡𝑡 as its 𝑖𝑖th diagonal element. 

Due to the upper diagonal form of 𝐐𝐐𝑑𝑑 and by carrying out simple matrix manipulations, we can express 𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡) as 

𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝛽𝛽𝑖𝑖𝑖𝑖 + � 𝛼𝛼𝑖𝑖𝑖𝑖𝑒𝑒𝜆𝜆𝑘𝑘𝑡𝑡𝑖𝑖<𝑘𝑘<𝑗𝑗  (14) 

where 𝛽𝛽𝑖𝑖𝑖𝑖 =△ 𝐔𝐔(𝑖𝑖, 𝑗𝑗)𝐕𝐕(𝑗𝑗, 𝑗𝑗) and 𝛼𝛼𝑖𝑖𝑖𝑖 =△ 𝐔𝐔(𝑖𝑖,𝑘𝑘)𝐕𝐕(𝑖𝑖,𝑘𝑘). Notice that 𝐕𝐕(𝑗𝑗, 𝑗𝑗) = 1/𝐔𝐔(𝑗𝑗, 𝑗𝑗) for 𝑗𝑗 = 1,2, … ,𝑁𝑁. Since 𝐐𝐐𝑑𝑑 is 
upper diagonal 𝜆𝜆𝑘𝑘 is negative for all 𝑘𝑘, and hence 𝑙𝑙𝑙𝑙𝑙𝑙

𝑡𝑡→∞
𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝛽𝛽𝑖𝑖𝑖𝑖. 

Now, let 𝐵𝐵(𝑡𝑡,𝑀𝑀|𝑆𝑆𝑖𝑖) be the conditional probability of reaching a state with 𝑀𝑀 or more failures by time 𝑡𝑡 starting 
from an initial state 𝑆𝑆𝑖𝑖. The 𝐵𝐵(𝑡𝑡,𝑀𝑀|𝑆𝑆𝑖𝑖) can be obtained as follows: 

𝐵𝐵(𝑡𝑡,𝑀𝑀|𝑆𝑆𝑖𝑖) = ∑  𝑚𝑚
𝑛𝑛=𝑀𝑀 ∑  𝑗𝑗∈𝒥𝒥𝑛𝑛 𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡) (15) 

where 𝒥𝒥𝑛𝑛 represents the set of indices of states with 𝑛𝑛 failures, i.e., 𝒥𝒥𝑛𝑛 =△ {𝑗𝑗:𝐹𝐹𝑗𝑗 = 𝑛𝑛}. The 𝐵𝐵(𝑡𝑡,𝑀𝑀|𝑆𝑆𝑖𝑖) estimates 
the evolution of the risk of cascading failures in time. 

Further, using the asymptotic analysis, we can derive the conditional probability that a power grid eventually 
reaches a state with 𝑛𝑛 failures from an initial state 𝑆𝑆𝑖𝑖 defined as 

𝐷𝐷(𝑛𝑛|𝑆𝑆𝑖𝑖) =△ ∑  𝑗𝑗∈𝒥𝒥𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙
𝑡𝑡→∞

𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡) = ∑  𝑗𝑗∈𝒥𝒥𝑛𝑛 𝛽𝛽𝑖𝑖𝑖𝑖 . (16) 

Hence, the probability mass function (PMF) of the blackout size, conditional on the initial state, can be 
computed by calculating 𝐷𝐷(𝑛𝑛|𝑆𝑆𝑖𝑖) for 𝑛𝑛 = 𝐹𝐹𝑖𝑖 , … ,𝑚𝑚. 

SECTION VIII. Results 
Here, we present results obtained from the SASE model applied to IEEE-118 bus system. 

A. Conditional Blackout Probability 
The PMF of the blackout size conditional on the initial state 𝐷𝐷(𝑛𝑛|𝑆𝑆𝑖𝑖) is calculated using (16) and shown 
in Fig. 11 for a fixed initial state with 𝐹𝐹𝑖𝑖 = 2 and 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 20 MW. Fig. 11 also shows the effects of the operating 
characteristics of the power grid on 𝐷𝐷(𝑛𝑛|𝑆𝑆𝑖𝑖). The results suggest that, when the power grid operates under a 
reliable operating configuration (small values of 𝑟𝑟, 𝑒𝑒 and 𝜃𝜃) the PMF of the blackout size has an exponential 
decay, which has also been observed empirically by Dobson (see Figs. 1, 2 in [12]) using real outage 
datasets [14]. On the other hand, when the power grid is stressed (large values of 𝑟𝑟, 𝑒𝑒 and 𝜃𝜃) the probability of 
large blackouts increases and a hump appears near the tail of the PMF. These conclusions from the analytical 
SASE model are confirmed by power-system simulation results as shown in Fig. 12. Note that the set of 
simulation results used to validate these conditional probabilities are different from the set of results used to 
identify the model parameters. All in all, these results validate that the SASE model with its low-dimensional, 
abstract state space is effective in capturing the dynamics of cascading failures in the power grid. 
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Fig. 11. Conditional PMF of the blackout size for four operating-characteristic settings and 𝐹𝐹𝑖𝑖 = 2 and 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 =20 
MW. 

 
Fig. 12. Analytical and empirical conditional PMF of the blackout size (a) without stress, i.e., 𝑟𝑟 = 0.7, 𝑒𝑒 = 0.25 
and 𝜃𝜃 = 0, and (b) with stress, i.e., 𝑟𝑟 = 0.7, 𝑒𝑒 = 0.35 and 𝜃𝜃 = 0.2, for the initial state with 𝐹𝐹𝑖𝑖 = 2 and 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 =
20 MW. 
 

Note that the average size of cascading failures is approximately four in the scenario without stress [Fig. 12(a)] 
while this number is approximately 61 in the scenario with stress [Fig. 12(b)]. Therefore, one could use the SASE 
model to characterize the conditions for occurrence of large blackouts by identifying the operating 
characteristics that result in a hump in the tail of the PMF. 

Next, consider the conditional probability of reaching a blackout state with at least 𝑀𝑀 failures from an initial 

state 𝑆𝑆𝑖𝑖 denoted by 𝜌𝜌𝑖𝑖(𝑀𝑀) =△ ∑𝑚𝑚𝑛𝑛=𝑀𝑀 𝐷𝐷(𝑛𝑛|𝑆𝑆𝑖𝑖). For a fixed 𝑀𝑀 and 𝐹𝐹𝑖𝑖 = 2 and 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 20 MW, the dependence 
of 𝜌𝜌𝑖𝑖(𝑀𝑀) on 𝑟𝑟 and 𝑒𝑒 is shown in Fig. 13(a) and on 𝑒𝑒 and 𝜃𝜃 in Fig. 13(b). As expected, 𝜌𝜌𝑖𝑖(𝑀𝑀) increases with 𝑟𝑟, 𝑒𝑒, 
and 𝜃𝜃. The results also suggest that at certain settings of the operating characteristics, a phase transition occurs 
in the blackout probability. This represents the critical operating settings for which the power grid becomes 
highly vulnerable to cascading failures. 

 
Fig. 13. Conditional blackout probability 𝜌𝜌𝑖𝑖(𝑀𝑀) for 𝑀𝑀 = 40 as a function of (a) 𝑟𝑟 parameterized by 𝑒𝑒 and 
(b) eparameterized by 𝜃𝜃 for the initial state with 𝐹𝐹𝑖𝑖 = 2 and 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 20 MW. 
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B. Conditional Blackout Probability as a Function of Time 
The numerical results of the conditional blackout probability 𝐵𝐵(𝑡𝑡,𝑀𝑀|𝑆𝑆𝑖𝑖) are calculated using (13)and (15). As a 
representative example, we have calculated 𝐵𝐵(𝑡𝑡, 30|𝑆𝑆𝑖𝑖) for 𝑟𝑟 = 0.7, 𝑒𝑒 = 0.2 and 𝜃𝜃 = 0.1 for different initial 
states, 𝑆𝑆𝑖𝑖, as shown in Fig. 14. As the results show, the values of 𝐹𝐹𝑖𝑖 and 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 associated with the initial state 
affect the evolution of the blackout probability. In particular, both the probability of reaching a power-grid state 
with 𝑀𝑀 or more failures and its rate of change during escalation phase increase with 𝐹𝐹𝑖𝑖 and 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚. We reiterate 
that while we have assumed a single-line failure at a time in our model, the escalation phase in the cascading 
failure occurs as a result of shorter time between failures due to higher transition rates for such states (as the 
transition rates are state dependent). Also, note that 𝐵𝐵(𝑡𝑡,𝑀𝑀|𝑆𝑆𝑖𝑖) exhibits three phases. Interestingly, the three-
phase theme of cascading failures were also seen in the behavior of the cascade-stop probability as well as the 
evolution of the accumulative number of failures. 

 
Fig. 14. Probability of reaching a blackout, 𝐵𝐵(𝑡𝑡,𝑀𝑀|𝑆𝑆𝑖𝑖), with 𝑀𝑀 = 30 or more failures for 𝑟𝑟 = 0.7, 𝑒𝑒 = 0.2, 𝜃𝜃 =
0.1, and initial states (a) with 𝐹𝐹𝑖𝑖 = 3 and (b) with 𝐹𝐹𝑖𝑖 = 6, and different values of 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚. 

C. Failure Evolution 
Fig. 15 shows four realizations of the cascading-failure scenarios in terms of the evolution of the cumulative 
number of failures obtained using the SASE Markov chain. The initial state of the power grid in all the four 
realizations has two line failures with 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 80 MW. Note that, in the realization with 163 eventual failures, 
the number of failures increases relatively gently at the beginning; however, failure of a line with large capacity 
at 𝑡𝑡 = 10 min results in rapid increase in the number of failures in the power grid. In contrast, the number of 
failures in other realizations increases rapidly right from the beginning but they transit to stable state earlier as 
the value of 𝑃𝑃stop(𝑆𝑆𝑖𝑖) in these cases is larger. Note that, from Fig. 15, we observe similar forms to those shown 
in Fig. 2 for the historical blackouts. 

 
Fig. 15. Realizations of the evolution of the cumulative line failures using the SASE model for 𝑟𝑟 = 0.7, 𝑒𝑒 =
0.2,𝜃𝜃 = 0.1,𝐹𝐹𝑖𝑖 = 2, and 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 80 MW. 
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D. Size of the Cascading Failures 
To assess the severity of cascading failures, we consider the number of subsequent failures induced by each 

initial failure. For a given initial state 𝑆𝑆𝑖𝑖 with 𝐹𝐹𝑖𝑖 initial failures, we define 𝑅𝑅𝑆𝑆𝑖𝑖 =△ (𝐹𝐹𝑖𝑖 − 𝐹𝐹𝑖𝑖end)/𝐹𝐹𝑖𝑖, where 𝐹𝐹𝑖𝑖end is the 
random variable for the final number of failures in the power grid after cascading failure ends. Here, we study 
the mean of 𝑅𝑅𝑆𝑆𝑖𝑖  as a metric representing the severity of cascading failures, which can be calculated as 𝖤𝖤[𝑅𝑅𝑆𝑆𝑖𝑖] =
∑  𝑁𝑁
𝑗𝑗=1 𝑙𝑙𝑙𝑙𝑙𝑙

𝑡𝑡→∞
𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)(𝐹𝐹𝑗𝑗 − 𝐹𝐹𝑖𝑖)/𝐹𝐹𝑖𝑖. (For this metric to be meaningful, the initial number of failures 𝐹𝐹𝑖𝑖 must be small, 

which in general is met in most real scenarios.) Figs. 16 and 17 show that 𝖤𝖤[𝑅𝑅𝑆𝑆𝑖𝑖] (for 𝐹𝐹𝑖𝑖 = 3) increases 
with 𝑟𝑟, 𝑒𝑒 and 𝜃𝜃. From results in Fig. 16, we observe that there is a critical value of load-shedding constraint level 
(approximately 𝜃𝜃 = 0.2) above which strong cascading behavior is observed. Furthermore, this trend becomes 
more evident and aggressive as the capacity estimation error 𝑒𝑒 increases. Similarly, the results in Fig. 17 suggests 
that there is a critical loading level (approximately 𝑟𝑟 = 0.8) for which the rate of change in E[RSi] increases 
abruptly for all values of e. We reiterate that the N-1 security has been ensured in all loading levels of the power 
grid; therefore, the initial contingency is assumed to have at least two initial failures. 

 
Fig. 16. 𝖤𝖤[𝑅𝑅𝑆𝑆𝑖𝑖] for the IEEE 118-bus system as a function of load-shedding constraint level 𝜃𝜃 and the capacity 
estimation error 𝑒𝑒 for 𝑟𝑟 = 0.7 and the initial state with 𝐹𝐹𝑖𝑖 = 3 and 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 20 MW. 
 

 
Fig. 17. 𝖤𝖤[𝑅𝑅𝑆𝑆𝑖𝑖] for the IEEE 118-bus system as a function of the power-grid loading level 𝑟𝑟 and the capacity 
estimation error 𝑒𝑒 for 𝜃𝜃 = 0 and the initial state with 𝐹𝐹𝑖𝑖 = 3 and 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 20 MW. 
 

SECTION IX. Conclusion 
We have developed a scalable and analytically tractable probabilistic model, termed the stochastic abstract-
state evolution model, which describes the dynamics of cascading failures based upon Markov chains. The state 
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space of the SASE model is defined by a reduced, abstract state space that retains key physical attributes of the 
power grid. We have formulated the state-dependent transition rates associated with the SASE model in terms 
of key operating characteristics of the power grid including the power-grid loading level, transmission-capacity 
estimation error, and constraints in implementing load shedding. The temporal analysis of the SASE model and 
its asymptotic behavior together enable determining the probability mass function of the blackout size, the 
evolution of the blackout probability from a specific initial state, as well as assessing the severity of the 
cascading behavior as a function of various operating settings of the power grid. The SASE model also enables 
the identification of critical regions of the space of key power-grid operating characteristics for which severe 
cascading behavior may occur. 

Appendix Derivation of (7) 
We start by defining the following events: 1) 𝐸𝐸stop, which is the event that cascade-stop transition occurs; 2) 𝐸𝐸𝐹𝐹𝑖𝑖, 
which is the event that the power grid has 𝐹𝐹𝑖𝑖 failures; and 3) 𝐸𝐸𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 , which is the event that the maximum 
capacity of the failed lines in the power grid is 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚. Note that 𝑃𝑃stop(𝑆𝑆𝑖𝑖) is the conditional 

probability 𝖯𝖯 �𝐸𝐸stop�𝐸𝐸𝐹𝐹𝑖𝑖 ∩ 𝐸𝐸𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚�. Next, we use the simple approach used in [26], in conjunction with certain 

reasonable assumptions to approximately represent 𝖯𝖯 �𝐸𝐸stop�𝐸𝐸𝐹𝐹𝑖𝑖 ∩ 𝐸𝐸𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚�in terms of a weighted superposition 

of 𝖯𝖯�𝐸𝐸stop�𝐸𝐸𝐹𝐹𝑖𝑖� and 𝖯𝖯{𝐸𝐸stop|𝐸𝐸𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚}. We begin by noting that multiple application of Bayes rule yields 

𝖯𝖯{𝐸𝐸stop|𝐸𝐸𝐹𝐹𝑖𝑖 ∩ 𝐸𝐸𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚}

=
𝖯𝖯{𝐸𝐸stop∩𝐸𝐸𝐹𝐹𝑖𝑖}𝖯𝖯{𝐸𝐸𝐶𝐶𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚|𝐸𝐸stop∩𝐸𝐸𝐹𝐹𝑖𝑖}

𝖯𝖯{𝐸𝐸𝐹𝐹𝑖𝑖∩𝐸𝐸𝐶𝐶𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚}

.
  (17) 

Using the representation in (17), we can write 

𝖯𝖯{𝐸𝐸stop|𝐸𝐸𝐹𝐹𝑖𝑖 ∩ 𝐸𝐸𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚}

= 𝖯𝖯{𝐸𝐸stop|𝐸𝐸𝐹𝐹𝑖𝑖}
𝖯𝖯{𝐸𝐸𝐶𝐶𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚|𝐸𝐸stop∩𝐸𝐸𝐹𝐹𝑖𝑖}

𝖯𝖯{𝐸𝐸𝐶𝐶𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚|𝐸𝐸𝐹𝐹𝑖𝑖)}

.
 (18) 

With a similar approach, we can also write 

𝖯𝖯{𝐸𝐸stop|𝐸𝐸𝐹𝐹𝑖𝑖 ∩ 𝐸𝐸𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚}

= 𝖯𝖯{𝐸𝐸stop|𝐸𝐸𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚}
𝖯𝖯{𝐸𝐸𝐹𝐹𝑖𝑖|𝐸𝐸stop∩𝐸𝐸𝐶𝐶𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚}

𝑃𝑃(𝐸𝐸𝐹𝐹𝑖𝑖|𝐸𝐸𝐶𝐶𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚}

. (19) 

Now, using (18) and (19), we can write 

𝖯𝖯{𝐸𝐸stop|𝐸𝐸𝐹𝐹𝑖𝑖 ∩ 𝐸𝐸𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚}

= 𝑤𝑤𝖯𝖯{𝐸𝐸stop|𝐸𝐸𝐹𝐹𝑖𝑖}
𝖯𝖯{𝐸𝐸𝐶𝐶𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚|𝐸𝐸stop∩𝐸𝐸𝐹𝐹𝑖𝑖}

𝖯𝖯{𝐸𝐸𝐶𝐶𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚|𝐸𝐸𝐹𝐹𝑖𝑖}

+(1 −𝑤𝑤)𝖯𝖯{𝐸𝐸stop|𝐸𝐸𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚}
𝖯𝖯{𝐸𝐸𝐹𝐹𝑖𝑖|𝐸𝐸stop∩𝐸𝐸𝐶𝐶𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚}

𝑃𝑃(𝐸𝐸𝐹𝐹𝑖𝑖|𝐸𝐸𝐶𝐶𝑖𝑖
𝑚𝑚𝑚𝑚𝑥𝑥}

 (20) 

https://ieeexplore.ieee.org/abstract/document/#deqn7
https://ieeexplore.ieee.org/abstract/document/#deqn17
https://ieeexplore.ieee.org/abstract/document/#deqn18
https://ieeexplore.ieee.org/abstract/document/#deqn19


where 𝑤𝑤 ∈ [0,1]. In this paper, 𝖯𝖯{𝐸𝐸stop|𝐸𝐸𝐹𝐹𝑖𝑖} and 𝖯𝖯{𝐸𝐸stop|𝐸𝐸𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚} are denoted by 𝑃𝑃stop
(1) (𝐹𝐹𝑖𝑖) and 𝑃𝑃stop

(2) (𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚), 
respectively. 

Next, we assume that the dependence of the event 𝐸𝐸𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  on the event 𝐸𝐸stop is weaker than the dependence of 

the event 𝐸𝐸𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  on the event 𝐸𝐸𝐹𝐹𝑖𝑖, which implies that 𝖯𝖯{𝐸𝐸𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚|𝐸𝐸stop ∩ 𝐸𝐸𝐹𝐹𝑖𝑖} ≈ 𝖯𝖯 �𝐸𝐸𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚�𝐸𝐸𝐹𝐹𝑖𝑖�. This simplifying 
assumption can be justified from the physical characteristics of power grids. Based on our simulation results, we 
know that given that 𝐹𝐹𝑖𝑖 is large, there is a high probability that 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 is also large; on the other hand, when Fi is 
small then the probability of having large 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 is small. For example, when 𝐹𝐹𝑖𝑖 is large the probability of high 
capacity line failures increases due to high stress on the system and the large ratio of the number of high 
capacity lines to the total number of lines in the system. Therefore, although the knowledge of event 𝐸𝐸stop adds 
information about the occurrence of the event 𝐸𝐸𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  we assume that it does not significantly alter the 
probability distribution of the event 𝐸𝐸𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  given 𝐸𝐸𝐹𝐹𝑖𝑖. Similarly to the previous assumption, we assume that the 
dependence of the event EFi on the event 𝐸𝐸stop is weaker than the dependence of the event 𝐸𝐸𝐹𝐹𝑖𝑖 on the 
event 𝐸𝐸𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 . Hence, when 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 is small then the probability of Fi being large is small and 𝐸𝐸stop does not alter 
this probability significantly. These assumptions enable us to approximate (20) by (7). 
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