
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Electrical and Computer Engineering Faculty 
Research and Publications 

Electrical and Computer Engineering, 
Department of 

3-2019 

Investigation of Fault-Tolerant Capabilities in an Advanced Three-Investigation of Fault-Tolerant Capabilities in an Advanced Three-

Level Active T-Type Converter Level Active T-Type Converter 

Ramin Katebi 
Marquette University 

Jiangbiao He 
General Electric Corporation 

Nathan Weise 
Marquette University, nathan.weise@marquette.edu 

Follow this and additional works at: https://epublications.marquette.edu/electric_fac 

 Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Katebi, Ramin; He, Jiangbiao; and Weise, Nathan, "Investigation of Fault-Tolerant Capabilities in an 
Advanced Three-Level Active T-Type Converter" (2019). Electrical and Computer Engineering Faculty 
Research and Publications. 572. 
https://epublications.marquette.edu/electric_fac/572 

https://epublications.marquette.edu/
https://epublications.marquette.edu/electric_fac
https://epublications.marquette.edu/electric_fac
https://epublications.marquette.edu/electric
https://epublications.marquette.edu/electric
https://epublications.marquette.edu/electric_fac?utm_source=epublications.marquette.edu%2Felectric_fac%2F572&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=epublications.marquette.edu%2Felectric_fac%2F572&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=epublications.marquette.edu%2Felectric_fac%2F572&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/electric_fac/572?utm_source=epublications.marquette.edu%2Felectric_fac%2F572&utm_medium=PDF&utm_campaign=PDFCoverPages


 

Marquette University 

e-Publications@Marquette 
 

Electrical and Computer Engineering Faculty Research and 
Publications/College of Engineering 

 

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The 
published version may be accessed by following the link in the citation below. 

 

IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 7, No. 1 (March 2019): 446-457. 
DOI. This article is © Institute of Electrical and Electronic Engineers (IEEE) and permission has been 
granted for this version to appear in e-Publications@Marquette. Institute of Electrical and Electronic 
Engineers (IEEE) does not grant permission for this article to be further copied/distributed or hosted 
elsewhere without the express permission from Institute of Electrical and Electronic Engineers (IEEE). 

Investigation of Fault-Tolerant Capabilities in 
an Advanced Three-Level Active T-Type 
Converter 
 

Ramin Katebi 
Department of Electrical and Computer Engineering, Marquette University, Milwaukee, WI 
Jiangbiao He 
GE Global Research, Niskayuna, NY 
Nathan Weise 
Department of Electrical and Computer Engineering, Marquette University, Milwaukee, WI 
 

Abstract: 
A novel fault-tolerant three-level power converter topology, named advanced three-level active T-Type (A3L-
ATT) converter, is introduced to increase the reliability of multilevel power converters used in safety-critical 
applications. This new fault-tolerant multilevel power converter is derived from the conventional T-Type 
converter topology. The topology has significantly improved the fault-tolerant capability under any open circuit 
or certain short-circuit faults in the semiconductor devices. In addition, under healthy condition, the redundant 
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phase leg can be utilized to share overload current with other main legs, which enhances the overload capability 
of the converter. The conduction losses in the original outer devices can be reduced by sharing the load current 
with the redundant leg. Moreover, unlike other existing fault-tolerant power converters in the literature, full 
output voltages can be always obtained in this proposed A3L-ATT converter during fault-tolerant operation. A 
13.5-kW ATT-A3L converter prototype was developed and constructed using silicon carbide MOSFETs. Simulation 
and experimental results were obtained to substantiate the theoretical claims of this new fault-tolerant power 
converter. 

SECTION I. Introduction 
In safety-critical applications, fault tolerance and resilience of power electronic converters are paramount. For 
multilevel power converters, the probability of device failures is escalated because of the increased part count 
and system complexity. Although the larger number of switches in a converter leads to a more sophisticated 
control scheme, the application of fault-tolerant power converters can be justified in safety-critical missions 
where the continuous operating availability of power converters is given higher priority. These applications 
include the emerging more electric aircrafts (MEAs), uninterruptible power supplies (UPSs), high-power medical 
instruments, and renewable energy conversion for grid applications, electric vehicle (EV), hybrid vehicle, and the 
like. 

After the introduction of three-level T-Type and I-Type neutral point clamp (NPC) converters in 1981 [1], 
different fault-tolerant solutions and circuit topologies have been introduced in the literature to improve the 
reliability of the three-level converters [2]–[3][4][5][6][7][8][9][10][11]. The fault-tolerant capability of the 
conventional T-Type inverter has been investigated in [2]. However, the output voltage and linear operating 
range have to be significantly reduced during fault-tolerant operation modes such as an open-circuit fault in the 
outer switches. In certain safety-critical applications, such as the aforementioned MEA, EV, and UPS, where the 
rated output power is crucial, the derated output voltage and power may not be allowable. Two other fault-
tolerant T-Type inverter topologies with redundant phase legs were reported in [3] and [4] and can tolerate any 
open-circuit and short-circuit switching faults. However, the redundant leg is not leveraged in normal operation 
and is just reserved for the faulty condition. Furthermore, there are many redundant devices kept constant on 
during normal operation, which obviously causes additional device losses and decreases the converter 
efficiency. Another fault-tolerant three-phase four-leg T-Type converter topology was recently reported in [5]. 
This topology can tolerate any open-circuit and certain short-circuit power semiconductor faults. However, as 
clarified in [5], this converter cannot tolerate a short-circuit fault that could occur in the outer switches of the 
converter. Similar investigations were also carried out on fault-tolerant I-Type NPC converters [6]–[7][8]. One of 
the earliest studies on the fault-tolerant operation of three-level I-Type NPC converters was presented in [6], in 
which the fault-tolerant capability of the converter was implemented based on the inherent redundancy of the 
switching states. This proposed fault-tolerant solution does not require any redundant converter legs or devices. 
However, as pointed out by the authors in [6], this solution requires a significant derating in the output voltages 
of the converter. Reference [7] indicates that the active NPC (ANPC) converter can tolerate any open-circuit 
faults without a fourth leg, but the ANPC converter is still not immune to all short-circuit faults. Moreover, for 
some of the proposed fault-tolerant operation in [7], this ANPC converter has to be operated with a derated 
modulation index resulting in lower maximum output voltage. In [8], a redundant resonant leg is added to a 
three-phase I-Type NPC converter. In normal operation, the resonant leg is used to balance the oscillation of the 
NP voltage and improve the converter efficiency. Under faulty condition, this resonant leg will be used to 
tolerate switching faults in semiconductor devices. However, in addition to the resonant leg, many thyristors 
and contactors are required to obtain fault-tolerant capability, leading to considerable increase in the system 
cost and additional device losses. 



A novel topology based on the conventional T-Type converter was introduced in [12] and is named “Diode-Free 
T-Type Three-Level Converter.” Accordingly, a fault-tolerant power converter topology based on this diode-free 
T-Type converter, was introduced as “Active T-Type Three-Level Converter” in [9]. The topology introduced 
in [9] utilizes two additional active switches and two bidirectional triod thyristors for each phase leg to improve 
the fault-tolerant capability. The ATT converter has fault-tolerant capability against open-circuit faults, while the 
problem with short-circuit faults remains unsolved. 

Another fault-tolerant converter, namely, A3L-ANPC converter, is introduced in [10]. The A3L-ANPC converter has 
the ability to share the load current with the fault tolerant leg to increase the overload capability of the 
converter [11]. The A3L-ANPC converter is superior to the other mentioned topologies in terms of fault tolerance 
and overload capability. 

In this paper, a novel fault-tolerant three-level power converter topology, named “Advanced Three-Level Active 
T-Type (A3L-ATT) Converter,” will be introduced. The contributions of this paper are as follows: a novel fault-
tolerant multilevel converter is introduced, all the open-circuit and certain short-circuit faults are survivable, 
current sharing capability in normal operation increases the overall converter efficiency and overload capability, 
and finally proper pulsewidth modulation (PWM) scheme selection for maximizing the current sharing duration 
is presented. The remaining content of this paper is organized as follows. The operating principle of this 
proposed A3L-ATT converter under normal operation is introduced in Section II. The current sharing capability of 
the proposed A3L-ATT converter under various PWM strategies is discussed in Section III. The fault-tolerant 
operation under open-circuit and short-circuit switching faults will be presented in Sections IV and V, 
respectively. Comprehensive comparison including efficiency, output power, weight, physical volume, and fault-
tolerant capability between the proposed A3L-ATT inverter and the conventional T-Type inverter is simulated 
and discussed in Section VI. Experimental verification based on a 13.5-kW A3L-ATT inverter prototype is 
presented in Section VII. Finally, the conclusions are drawn in Section VIII. 

SECTION II. Normal Operating Principle of the Proposed A3L-ATT Inverter 
The circuit topology of the proposed A3L-ATT converter is shown in Fig. 1. The A3L-ATT converter has a 
redundant leg connected between the virtual NP (VNP) and the NP. The presence of the redundant leg provides 
the A3L-ATT topology the ability to tolerate all the open-circuit and short-circuit faults. The switches of the 
redundant leg are sized to be the same as the three main phase legs. The system is developed to use four 
identical phase modules consisting of three phase legs and one redundant leg, for easy fabrication and 
packaging. 

 
Fig. 1. Proposed three-phase A3L-ATT converter topology. 

All the possible switching states of the A3L-ATT converter are given in Table I. Here, the three switching states, 
“P,” “O,” and “N,” refer to positive voltage, zero voltage, and negative voltage of the output of each inverter 
phase leg. Under normal operation, the redundant leg outputs an O state so that the VNP is always connected to 
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the NP. The current that flows between the VNP and the NP is known as the NP current 𝑖𝑖NP . To reduce the 
conduction losses in the redundant leg, all the middle switching devices (𝑆𝑆𝑟𝑟2 , 𝑆𝑆𝑟𝑟3, 𝑆𝑆𝑟𝑟5, and 𝑆𝑆𝑟𝑟6) in the NP 
current path are turned ON at the O state. The available switching states in normal operation are 𝑃𝑃𝑂𝑂, 𝑂𝑂, 
and 𝑁𝑁𝑂𝑂 and are depicted in Table I (red). Note that in these three states, the VNP is always connected to the NP. 
The converter can be modulated as a regular three-level converter with three voltage levels available per phase 
because the VNP is always connected to the NP. Table I also contains other switching states such as 𝑃𝑃sh, 𝑃𝑃𝑠𝑠, 𝑁𝑁𝑠𝑠, 
and 𝑁𝑁sh, but these are reserved for additional capabilities such as current sharing mode which will be discussed 
in Section III. The signals 𝑃𝑃sh, 𝑃𝑃𝑠𝑠, 𝑃𝑃𝑂𝑂 𝑁𝑁sh, 𝑁𝑁𝑠𝑠, 𝑁𝑁𝑜𝑜, and 𝑂𝑂 are tied to a color scheme. In order to produce an output 
voltage vector at a given time, one can only use switching state types of the same color. That is because of the 
fact that the switching status of the redundant leg will conflict (creating dc bus short-circuit faults) between two 
different colors, if the same coloring scheme is not used. The details of these additional switching combinations 
are discussed in Section III. 

TABLE I Switching States of the A3L-ATT Converter With Color Scheme 

Switching 
State 

 
Type 

Switching 
Status 

           

  Phase Leg (𝑥𝑥 =
𝑎𝑎, 𝑏𝑏, or 𝑐𝑐) 

     Redundant 
Leg 

     

  𝑆𝑆𝑥𝑥1 𝑆𝑆𝑥𝑥2 𝑆𝑆𝑥𝑥3 𝑆𝑆𝑥𝑥4 𝑆𝑆𝑥𝑥5 𝑆𝑆𝑥𝑥6 𝑆𝑆𝑟𝑟1 𝑆𝑆𝑟𝑟2 𝑆𝑆𝑟𝑟3 𝑆𝑆𝑟𝑟4 𝑆𝑆𝑟𝑟5  𝑆𝑆𝑟𝑟6 
p 𝑃𝑃sh 1 1 1 0 1 1 1 0 0 0 0 0 
 𝑃𝑃𝑠𝑠 1 0 1 0 1 0 0 0 0 1 0 0 
 Po 1 0 1 0 1 0 0 1 1 0 1 1 
O 𝑂𝑂 0 1 1 0 1 1 0 1 1 0 1 1 
N 
 

𝑁𝑁sh 0 1 0 1 0 1 0 0 0 1 0 0 

 𝑁𝑁𝑠𝑠 0 1 0 1 0 1 1 0 0 0 0 0 
 𝑁𝑁𝑜𝑜 0 1 0 1 0 1 0 1 1 0 1 1 

 

SECTION III. Current Sharing Capability 
Overload capability is an important factor to be considered during the design of power converters in many 
applications, such as UPS, EV, servo drives, and the like. Thanks to the redundant leg in the proposed A3L-ATT 
converter, the overload current capability can be significantly improved and the conduction losses can be 
reduced. Specifically, the redundant leg can be used to provide parallel conduction paths for the load currents in 
phase legs a, b, and c. For example, Fig. 2(a) is showing a current sharing scenario where the redundant leg is 
sharing the load current with Phase-A leg. The Phase-A leg is producing a P state at the output while 
simultaneously the redundant leg is also producing a P state at the output. The output of the redundant leg is 
connected to the load through phase leg a. Assuming the on-state resistance of the silicon carbide (SiC) 
MOSFETs used in the topology as R, the current sharing paths will provide a parallel path with the on-state 
resistance of 3R. The equivalent resistance between the dc bus and the output will decrease to 0.75R which is a 
25% reduction in conduction losses. The conduction losses can be reduced further by turning ON the second 
sharing path shown in Fig. 2(b) (blue). The equivalent resistance between the dc bus and the output will 
decrease to 0.66R which is a 33% reduction in conduction losses while producing the P or N state at the output. 
The A3L-ATT converter has superior current sharing capability than the A3L-ANPC converter [11] because of the 
total equivalent resistance when outputting P or N state. Current sharing capability cannot be used while any 
one of the phase legs a, b, or c is in the O state, because turning ON 𝑆𝑆𝑟𝑟1 or 𝑆𝑆𝑟𝑟4 will lead to a shoot-through fault 
in the dc bus. 



 
Fig. 2. Proposed current sharing strategy under normal operation. (a) Current sharing with one path. (b) Current 
sharing with two paths. 

The switching states of the converter are categorized with colors as given in Table I. The group of red states 
represents the normal operation mode with no current sharing. The group of blue states enables current sharing 
mode for the phase legs that are outputting a P state. Finally, the group of yellow states implement current 
sharing mode for the phase legs that are outputting an N state. All the phase legs must use a switching state 
from the same color group simultaneously in order to avoid a shoot-though fault in the dc bus. 

As an example, considering a case that the phase leg a is outputting a P state and the phase legs b and c are 
outputting an N state, current sharing is possible if 𝑃𝑃sh is selected for the phase leg a and 𝑁𝑁𝑠𝑠 is chosen for the 
phase legs b and c. Note that the chosen states are from the same color group in Table I. Current sharing 
capability is highly dependant on the modulation scheme which is used to control the converter. In Sections III-
A–III-D the current sharing characteristics of different modulation schemes are discussed. The basic principle of 
the various PWM schemes that are going to be discussed is presented in [13]. 

A. Current Sharing in Sine-PWM-PD Scheme 
Equation (1) shows the three sinusoidal duty ratios for the three-phase inverter with the Sine-PWM-potential 
difference (PD) modulation strategy [13] 

𝑑𝑑𝑎𝑎 = 𝑚𝑚cos (𝜔𝜔𝜔𝜔)
𝑑𝑑𝑏𝑏 = 𝑚𝑚cos (𝜔𝜔𝜔𝜔 − 2𝜋𝜋/3)
𝑑𝑑𝑐𝑐 = 𝑚𝑚cos (𝜔𝜔𝜔𝜔 − 4𝜋𝜋/3).

 (1) 

The modulation index m controls the magnitude of the inverter output voltages and ω sets the output angular 
frequency. Current sharing is only possible when all the three phase legs output either P or N states. In other 
words, none of the phase legs can output an O state during current sharing mode. In order to determine when 
current sharing is possible, one additional duty ratio is calculated and given in (2) 
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𝑑𝑑𝑠𝑠−sine−pd = 𝑚𝑚𝑎𝑎𝑥𝑥(|𝑑𝑑𝑎𝑎|, |𝑑𝑑𝑏𝑏|, |𝑑𝑑𝑐𝑐|) +𝑚𝑚𝑖𝑖𝑚𝑚(|𝑑𝑑𝑎𝑎|, |𝑑𝑑𝑏𝑏|, |𝑑𝑑𝑐𝑐|) − 1. (2) 

Current sharing in the Sine-PWM-PD scheme is possible when 𝑑𝑑s-sine-pd is greater than zero. Fig. 3 shows the 
possible intersections of 𝑑𝑑s-sine-pd (blue) and zero (gray) at different angles and modulation indices. The duty 
ratio 𝑑𝑑s-sine-pd is plotted 10 times starting with a modulation index of 𝑚𝑚 = 0.1 up to a modulation index of 𝑚𝑚 =
1 in steps of 0.1. The line thickness is representative of the value changes of the modulation index. For example, 
starting at 𝑚𝑚 = 0.1, the line is at its thinnest, and as m increases the thickness increases. Note that current 
sharing is not possible for modulation indices below 0.66. According to (3), the current sharing capability of the 
converter is enabled if 𝑑𝑑s-sine-pd is greater than zero and the sharing duration (𝑑𝑑share ) is equal to 𝑑𝑑s-sine-pd. 
Otherwise, if 𝑑𝑑s-sine-pd is less than zero, the converter cannot share current and 𝑑𝑑share will be equal to zero. Note 
that current sharing is not possible for modulation indices below 0.66 because modulation indices below 0.66 
will result in 𝑑𝑑s-sine-pd smaller than zero, as given in (3) 

𝑑𝑑share = {
𝑑𝑑s-sine-pd, if 𝑑𝑑s-sine-pd > 0

0, if 𝑑𝑑s-sine-pd ≤ 0. (3) 

 
Fig. 3. Current sharing duty ratio 𝑑𝑑s-sine-pd (blue) in the Sine-PWM-PD modulation scheme. 

Fig. 4(a) shows the output voltages of each phase leg including the redundant leg. In addition, the triangular 
carrier signals (shown in thin brown traces), duty ratios, and switching combinations are shown. Assuming a 
modulation index 𝑚𝑚 = 0.9 and 𝜔𝜔𝜔𝜔 = 10∘, the duty ratio 𝑑𝑑s-sine-pd is calculated to be 0.1941. Since the duty cycle 
is greater than zero, the current sharing is enabled and 𝑑𝑑share=0.1941 . Accordingly, the selected phase leg can 
share the load current with the redundant leg for a duty ratio of 19.41% of that specific switching cycle. 
Recalling that sharing current with Phase-A leg is associated with the switching states in Table I (blue). Note that 
in Fig. 4(a), the load current in Phase-A leg is shared with the redundant leg and the sharing duration, shown in 
blue, is approximately 19.41%. 
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Fig. 4. Current sharing duration in a switching cycle under various sine pulsewidth modulation (SPWM) 
schemes, 𝑚𝑚 = 0.9 and 𝜃𝜃 = 10∘. (a) Sine-PWM-PD. (b) Sine-PWM-POD. (c) SFO-PWM-PD. (d) SFO-PWM-POD. 

Fig. 5(a) shows the possible current sharing ratios 𝑑𝑑share over a range of modulation indices and 𝜔𝜔𝜔𝜔. The range 
of 𝜔𝜔𝜔𝜔 is from −30° to 30° because it repeats every 60° and the range of the modulation index changes from 0 to 
1. It is observed that sharing is not possible for modulation indices below 0.66. Maximum current sharing duty 
ratio of 50% is obtained at 𝑚𝑚 = 1 and 𝜔𝜔𝜔𝜔 = 0∘. 
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Fig. 5. Current sharing capability of the proposed A3L-ATT inverter for various SPWM strategies. (a) Sine-PWM-
PD. (b) Sine-PWM-POD. (c) SFO-PWM-PD. (d) SFO-PWM-POD. 

It should be noted that the first quarter cycle in Fig. 4(a) is producing 𝑃𝑃𝑂𝑂, 𝑂𝑂, and 𝑂𝑂 states for the three phases 
which belong to one color scheme in Table I. The third time interval in Fig. 4(a) is outputting 𝑃𝑃sh, 𝑁𝑁𝑠𝑠, 
and 𝑁𝑁𝑠𝑠 state which belong to the blue color scheme shown in Table I. 

B. Current Sharing in Sine-PWM-POD Scheme 
The modulation of the Sine-PWM-para-operational device (POD) scheme [13] uses the same three duty ratios as 
the Sine-PWM-PD scheme, but the carrier signal is shifted by 180° as shown in Fig. 4(b) (i.e., the thin brown 
traces). Unlike the Sine-PWM-PD scheme, current sharing is always possible for the Sine-PWM-POD scheme. The 
duty ratio of the current sharing over a switching cycle is shown in (4) 

𝑑𝑑share = 𝑚𝑚𝑖𝑖𝑚𝑚(|𝑑𝑑𝑎𝑎|, |𝑑𝑑𝑏𝑏|, |𝑑𝑑𝑐𝑐|). (4) 

The calculated sharing duty ratio for the modulation index 𝑚𝑚 = 0.9 and the 𝜔𝜔𝜔𝜔 = 10∘ is 0.3078. In other words, 
the load current in any phase leg can be shared with the redundant leg for 30.78% of that specific switching 
cycle. Fig. 5(b) shows the possible current sharing duty ratio over a switching cycle. Obviously, the current 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6245517/8638652/8356009/kateb5abcd-2834367-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6245517/8638652/8356009/kateb5abcd-2834367-large.gif
https://ieeexplore.ieee.org/document/#deqn4
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6245517/8638652/8356009/kateb5abcd-2834367-large.gif


sharing region is possible over the whole range of modulation indices in comparison with the Sine-PWM-PD 
scheme, but the maximum sharing duration cannot exceed 50%. 

C. Current Sharing in SFO-PWM-PD Scheme 
The three duty ratios for the three-phase inverter with the switching frequency optimal (SFO)-PWM-PD 
scheme [13] are given in (5) and (6) 

𝑑𝑑inj = 0.5[𝑚𝑚𝑎𝑎𝑥𝑥(𝑑𝑑𝑎𝑎 ,𝑑𝑑𝑏𝑏 ,𝑑𝑑𝑐𝑐) + 𝑚𝑚𝑖𝑖𝑚𝑚(𝑑𝑑𝑎𝑎 ,𝑑𝑑𝑏𝑏 ,𝑑𝑑𝑐𝑐)]
𝑑𝑑sa = 𝑑𝑑𝑎𝑎 − 𝑑𝑑inj
𝑑𝑑sb = 𝑑𝑑𝑏𝑏 − 𝑑𝑑inj
𝑑𝑑sc = 𝑑𝑑𝑣𝑣 − 𝑑𝑑inj.

 (5) (6) 

Similar to the Sine-PWM-PD switching strategy, the current sharing is possible when 𝑑𝑑𝑠𝑠−sfo-pd is greater than 
zero, as given in (7). The sharing duty ratio (𝑑𝑑share) is equal to 𝑑𝑑𝑠𝑠−sfo-pd when current sharing is possible, as 
shown in (8) 

𝑑𝑑𝑠𝑠−sfo-pd = 𝑚𝑚𝑎𝑎𝑥𝑥(|𝑑𝑑sa|, |𝑑𝑑sb|, |𝑑𝑑sc|) + 𝑚𝑚𝑖𝑖𝑚𝑚(|𝑑𝑑sa|, |𝑑𝑑sb|, |𝑑𝑑sc|)− 1

𝑑𝑑share = �
𝑑𝑑𝑠𝑠−sfo-pd,if 𝑑𝑑𝑠𝑠−sfo-pd > 0

0,if 𝑑𝑑𝑠𝑠−sfo-pd ≤ 0.

 (7) (8) 

Fig. 4(c) illustrates the carrier signals, duty ratios, and the switching combinations used for the SFO-PWM-PD 
scheme. Assuming a modulation index 𝑚𝑚 = 0.9 and 𝜔𝜔𝜔𝜔 = 10∘, the calculated current sharing duty ratio is 
0.1941. This indicates that sharing the load current with the redundant leg is possible for 19.41% of that specific 
switching cycle. Unlike the Sine-PWM-PD scheme, the maximum modulation index is not fixed at 1 and can be 
increased to 1.1547. Assuming the same maximum output voltage for the Sine-PWM-PD and the SFO-PWM-PD 
schemes, the modulation indices are calculated to be 𝑚𝑚 = 0.9 and 𝑚𝑚 = 1.0392, respectively. The calculated 
current sharing duty ratios are 𝑑𝑑share=0.1941 and 𝑑𝑑share=0.3788, respectively. Obviously, for generating the 
same output voltage, the SFO-PWM-PD has larger current sharing duty ratio in comparison with the Sine-PWM-
PD scheme. This means that the SFO-PWM-PD scheme has higher dc bus voltage utilization. Therefore, if both 
modulation schemes were designed such that they had the same maximum output voltage; the SFO-PWM-PD 
scheme would have higher sharing capability. 

Fig. 5(c) shows the current sharing duty ratio for all modulation indices and 𝜔𝜔𝜔𝜔. Note that the maximum current 
sharing duty ratio over a switching cycle is 0.725 in this modulation scheme which happens at 𝑚𝑚 =
1.1547 and 𝜔𝜔𝜔𝜔 = 0∘. 

D. Current Sharing in SFO-PWM-POD Scheme 
In the SFO-PWM-POD modulation scheme, the same three reference voltages are used as the SFO-PWM-PD 
scheme, but the lower carrier signal is shifted by 180°, as shown in Fig. 4(d) (brown traces). In this modulation 
scheme, current sharing is always possible and the current sharing duty ratio is given in (9) 

𝑑𝑑share = 𝑚𝑚𝑖𝑖𝑚𝑚(|𝑑𝑑sa|, |𝑑𝑑sb|, |𝑑𝑑sc|). (9) 

Assuming the modulation index 𝑚𝑚 = 0.9 and 𝜔𝜔𝜔𝜔 = 10∘, the sharing duty ratio is calculated to be 0.4617. The 
load current can be shared for 46.17% of the switching cycle. Considering having the same voltage at the output 
for the Sine-PWM-POD and the SFO-PWM-POD schemes, the modulation indices are calculated to be 𝑚𝑚 =
0.9 and 𝑚𝑚 = 1.0392, respectively. The calculated current sharing duty ratios are 
𝑑𝑑share=0.3078 and 𝑑𝑑share=0.5284, respectively, which verifies the superiority of the SFO-PWM-POD scheme. 

https://ieeexplore.ieee.org/document/#deqn5-6
https://ieeexplore.ieee.org/document/#deqn5-6
https://ieeexplore.ieee.org/document/#deqn7-8
https://ieeexplore.ieee.org/document/#deqn7-8
https://ieeexplore.ieee.org/document/#deqn9


Fig. 5(d) shows the possible current sharing duty ratio over a switching cycle with the SFO-PWM-POD scheme for 
all modulation indices and ωt . Note that the SFO-PWM-POD scheme possesses the best current sharing duty 
ratios for all operating conditions in comparison with the aforementioned three PWM modulation schemes. The 
maximum current sharing duty ratio is 0.8625 and is achieved at 𝑚𝑚 = 1.1547 and 𝜔𝜔𝜔𝜔 = 0∘ in this modulation 
scheme. A comparison between these four modulation schemes in Fig. 5 illustrates that the SFO-PWM-POD 
scheme will provide larger current sharing duty ratio than other modulation schemes, leading to better overall 
performance of the proposed converter. 

SECTION IV. Fault-Tolerant Operation for Open-Circuit Faults 
In this section, the open-circuit faults of the power semiconductors that could occur to the proposed A3L-ATT 
converter are investigated. Since the fault-tolerant strategies for open-circuit faults in Phase-B and C legs will be 
approached the same way as the Phase-A leg, open-circuit faults in the Phase-A leg will only be considered here. 
In addition, open-circuit faults in switches 𝑆𝑆𝑎𝑎4, 𝑆𝑆𝑎𝑎3, and 𝑆𝑆𝑎𝑎6 are the dual of open-circuit faults in switch 𝑆𝑆𝑎𝑎1, 𝑆𝑆𝑎𝑎2, 
and 𝑆𝑆𝑎𝑎5, consequently, open-circuit faults of the latter will not be discussed here. Fault scenarios in the 
redundant leg switches 𝑆𝑆𝑟𝑟4 , 𝑆𝑆𝑟𝑟3 , and 𝑆𝑆𝑟𝑟6 are the same as switches 𝑆𝑆𝑟𝑟1, 𝑆𝑆𝑟𝑟2, and 𝑆𝑆𝑟𝑟5, therefore, they are not 
going to be investigated in this section. In the following subsections, the individual fault scenarios will be 
discussed and appropriate recovery strategies will be introduced. 

A. Open Circuit in 𝑆𝑆𝑎𝑎1 
An open-circuit fault in 𝑆𝑆𝑎𝑎1 will result in losing the P state in the Phase-A leg. To reclaim the P state, the 
switches 𝑆𝑆𝑟𝑟2, 𝑆𝑆𝑟𝑟3, 𝑆𝑆𝑟𝑟5, and 𝑆𝑆𝑟𝑟6 of the redundant leg are turned OFF to disconnect the VNP from NP. Turning ON 
switch 𝑆𝑆𝑟𝑟1 will reconfigure the P state path through the converter as shown in Fig. 6. Although turning ON the 
switch 𝑆𝑆𝑟𝑟1 will recover the lost P state but the converter loses the ability to output an O state. In this case, the 
converter has the ability to output P and N states. Hence, it performs as a two-level converter with full 
modulation index. 

 
Fig. 6. Fault-tolerant operation for an open-circuit switch fault in 𝑆𝑆𝑎𝑎1 at State P. 

B. Open Circuit in 𝑆𝑆𝑎𝑎2 
An open-circuit fault in 𝑆𝑆𝑎𝑎2 will not cause any severe issues in the converter. Due to such a fault, the converter 
loses one of the parallel conduction paths at the O state which will result in a slight increase of conduction 
losses. Therefore, the converter can still operate three-phase three-level output voltages with full modulation 
index. 

C. Open Circuit in 𝑆𝑆𝑎𝑎5 
An open-circuit fault in 𝑆𝑆𝑎𝑎5 causes similar consequences as the open-circuit fault in 𝑆𝑆𝑎𝑎2. The converter losses a 
parallel conduction path for the O state and can still generate three-level voltages with full modulation index. 
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D. Open Circuit in 𝑆𝑆𝑟𝑟1 
An open-circuit fault in 𝑆𝑆𝑟𝑟1 of the redundant leg eliminates the possibility to share current with other main 
phase legs at the P output state. However, the normal operation is unaffected and the converter can still 
produce three-phase three-level voltages at full modulation index. 

E. Open Circuit in 𝑆𝑆𝑟𝑟2 
An open-circuit fault in 𝑆𝑆𝑟𝑟2 results in the loss of a parallel conduction path that connect the VNP to NP. The 
normal operation of the converter is unaffected and the converter experiences slightly more conduction loss in 
the NP current path. 

F. Open Circuit in 𝑆𝑆𝑟𝑟5 
Open-circuit fault in 𝑆𝑆𝑟𝑟5 has the same effect as the open-circuit fault in 𝑆𝑆𝑟𝑟2 . Therefore, the converter can 
maintain the three-level operation and full modulation index at the cost of slightly increased conduction loss. 

SECTION V. Fault-Tolerant Operation for Short-Circuit Faults 
Short-circuit faults of one device at a time are considered in this section. The short-circuit fault scenarios are 
divided up between the three phase legs a, b, and c and the redundant leg. The short-circuit faults that appear in 
Phase-A leg are handled exactly the same as a short-circuit fault in Phase-B and Phase-C legs. Therefore, only the 
short-circuit faults in the Phase-A leg are considered here. Furthermore, short-circuit faults in 𝑆𝑆𝑎𝑎1, 𝑆𝑆𝑎𝑎2, 
and 𝑆𝑆𝑎𝑎5 have dual fault scenarios in switches 𝑆𝑆𝑎𝑎4, 𝑆𝑆𝑎𝑎3, and 𝑆𝑆𝑎𝑎6, and thus the dual fault scenarios are not covered 
here. Finally, in the redundant leg, the short-circuit fault scenarios in switches 𝑆𝑆𝑟𝑟1, 𝑆𝑆𝑟𝑟2, and 𝑆𝑆𝑟𝑟5 are covered. 
Considering the circuit symmetry, these switches have dual-fault scenarios with switches 𝑆𝑆𝑟𝑟4, 𝑆𝑆𝑟𝑟3, and 𝑆𝑆𝑟𝑟6 will 
not be repeated. 

A. Short Circuit in 𝑆𝑆𝑎𝑎1 
Fig. 7(a) shows the A3L-ATT converter with a short-circuit fault in 𝑆𝑆𝑎𝑎1. Turning ON the switches 𝑆𝑆𝑎𝑎2, 𝑆𝑆𝑎𝑎3, 𝑆𝑆𝑎𝑎5, 
and 𝑆𝑆𝑎𝑎6 to output an O state will cause a short circuit of the upper dc bus capacitors. Fig. 7(b) shows the A3L-ATT 
converter with a short-circuit fault in 𝑆𝑆𝑎𝑎1 trying to produce an N state. Turning ON the 𝑆𝑆𝑎𝑎4 to output state N will 
also cause a short circuit of the whole dc bus. The result of the short circuit in switch 𝑆𝑆𝑎𝑎1 is the loss of states O 
and N at the output of Phase-A. The loss of O and N states results in a reduced modulation index and reduced 
output power. 



 
Fig. 7. Demonstration of potential short-circuit paths while having a short-circuit fault in 𝑆𝑆𝑎𝑎1. (a) Short-circuit 
fault in 𝑆𝑆𝑎𝑎1 at State O. (b) Short-circuit fault in 𝑆𝑆𝑎𝑎1 at State N. 

B. Short Circuit in 𝑆𝑆𝑎𝑎2 
Considering that in normal operation, the VNP is connected to NP through the redundant leg, a short-circuit 
fault in 𝑆𝑆𝑎𝑎2 will cause a short circuit of the upper dc bus capacitors if the converter outputs any of the P states. 
As shown in Fig. 8(a), turning ON 𝑆𝑆𝑎𝑎1 in order to have one of the P states will cause a short circuit of the upper 
dc bus capacitors. The solution is to disconnect the VNP from the NP. In this case, the converter regains the 
ability to output a P state in the faulty phase leg, but disconnecting the VNP from the NP makes it impossible to 
have the O state in the phase legs. Therefore, the converter can only output P and N states resulting in two-level 
operation but with full modulation index. 

 
Fig. 8. Demonstration of potential short-circuit paths while having a short-circuit fault in 𝑆𝑆𝑎𝑎2, 𝑆𝑆𝑎𝑎5, or 𝑆𝑆𝑟𝑟1. (a) 
Short-circuit fault in 𝑆𝑆𝑎𝑎2 at State P. (b) Short-circuit fault in 𝑆𝑆𝑎𝑎5 at State N. (c) Short-circuit fault in 𝑆𝑆𝑟𝑟1. 
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C. Short Circuit in 𝑆𝑆𝑎𝑎5 
Considering that in normal operation, the VNP is connected to NP through the redundant leg, short circuit 
in 𝑆𝑆𝑎𝑎5 will cause a short if the converter outputs any of the N states. As shown in Fig. 8(b), turning ON 𝑆𝑆𝑎𝑎4 in 
order to have one of the N states will cause a short circuit of the lower dc bus capacitors. The solution is to 
disconnect the VNP from the NP. In this case, the converter regains the ability to output N in the faulty phase leg 
but disconnecting the VNP from NP makes it impossible to have an O state in the phase legs. Therefore, the 
converter can only output P and N allowing full modulation index but in two-level operation. 

D. Short Circuit in 𝑆𝑆𝑟𝑟1 
Having a short-circuit fault in 𝑆𝑆𝑟𝑟1 while the switches 𝑆𝑆𝑟𝑟2, 𝑆𝑆𝑟𝑟3, 𝑆𝑆𝑟𝑟5, and 𝑆𝑆𝑟𝑟6 are ON will cause a shoot through of 
the upper dc bus capacitors, as shown in Fig. 8(c). The solution is to turn OFF the switches 𝑆𝑆𝑟𝑟2 , 𝑆𝑆𝑟𝑟3, 𝑆𝑆𝑟𝑟5, 
and 𝑆𝑆𝑟𝑟6 and disconnect the NP from VNP. Such action will allow the converter to function as two-level mode 
with full output power and modulation index. 

E. Short Circuit in 𝑆𝑆𝑟𝑟2 
Having a short-circuit fault in switch 𝑆𝑆𝑟𝑟2 will cause a shoot through of the upper dc bus capacitors while trying to 
turn ON the 𝑆𝑆𝑟𝑟1. This fault will prevent the converter from performing current sharing while outputting a P state. 
The solution is to run the converter in normal operation without current sharing at P state. Current sharing with 
the N state is still maintained. 

F. Short Circuit in 𝑆𝑆𝑟𝑟5 
A short-circuit fault in switch 𝑆𝑆𝑟𝑟5 will cause a shoot through of the lower dc bus capacitors while trying to turn 
ON the 𝑆𝑆𝑟𝑟4. This fault will prevent the converter from performing current sharing at output state N. However, 
current sharing at the state P is maintained. The solution is to run the converter in normal operation mode and 
only perform current sharing with the P state. 

SECTION VI. Comprehensive Comparison With the Conventional T-Type 
Inverter 
First, it is necessary to investigate the impact of the redundant leg on the inverter efficiency and compare it to 
the conventional T-Type inverter. To obtain the efficiency profiles of these inverters, thermal modeling of the 
switching devices has been conducted in PLECS simulation software. The simulation is conducted at an ambient 
temperature of 50 °C. In the simulation, the switching frequency of the inverter is set at 10 kHz, and the 
fundamental output frequency is 60 Hz. Also, the dc bus voltage is 600 V, and the rated output current is 18 A 
rms. CREE SiC MOSFETs C2M0025120D (1200 V/60 A) are employed to configure the inverter. The efficiency of 
the conventional three-level three-leg T-Type inverter and the proposed three-level four-leg A3L-ATT inverter is 
simulated and compared at various output power percentages, as shown in Fig. 9(a). It can be seen that there is 
a slight efficiency degradation in the proposed A3L-ATT inverter, compared with the T-Type inverter. For 
instance, at rated load condition (i.e., 100% load), the efficiency of the A3L-ATT inverter is only 0.02% lower than 
the T-Type inverter. It should be noted that efficiency of both the inverters are based on the consideration of 
the total device losses and an assumption of 1% of inherent passive losses, which include filter losses and gate 
driver losses. There are three reasons that A3L-ATT performs efficiently. First, the parallel connection of all the 
bi-directional middle devices produces lower conduction losses, compared to these in the T-Type inverter. 
Second, the middle bidirectional devices (𝑆𝑆𝑟𝑟2, 𝑆𝑆𝑟𝑟3, 𝑆𝑆𝑟𝑟5, and 𝑆𝑆𝑟𝑟6) on the redundant leg are kept constant on to 
access the dc bus middle point, thus there are no switching losses in these devices. The total conduction losses 
of these middle devices are simulated and shown in Fig. 9(b), which shows that the conduction loss is only 8.3 W 
at rated load condition. Third, the conduction losses in the outer devices of the main phase legs of the A3L-ATT 



inverter are reduced due to the current sharing with the redundant leg at healthy condition. Fig. 10(a) shows the 
current sharing between the Phase-A leg and the redundant leg in both the positive and negative cycles at rated 
load condition. It can be seen that the redundant devices 𝑆𝑆𝑟𝑟1 and 𝑆𝑆𝑟𝑟4 share as much as 40% of the load current 
in the positive and negative cycles, respectively. In other words, the conduction losses in outer devices of the 
three main legs will be significantly reduced. Fig. 10(b) demonstrates such loss reduction by using the current 
sharing strategy with the SFO-PWM-POD strategy, compared to the losses in the outer devices in the 
conventional T-Type inverter. It should be noted that the outer devices in the conventional T-Type inverter 
dissipate more losses than the middle devices under the condition of positive power factor high modulation 
index condition. The current sharing capability of this proposed A3L-ATT inverter will significantly relieve such 
thermal unbalance issue. 

 
Fig. 9. Efficiency and device losses investigation in the proposed A3L-ATT inverter (ambient temperature: 50 °C). 
(a) Efficiency of A3L-ATT inverter versus the T-type inverter. (b) Conduction losses in all the middle redundant 
devices. 
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Fig. 10. Simulated current sharing in the proposed A3L-ATT inverter and the related conduction loss reduction in 
its outer devices (ambient temperature: 50 °C). (a) Current sharing in the proposed A3L-ATT inverter. (b) Total 
conduction loss reduction in the outer devices. 

In addition to the efficiency comparison with the conventional T-Type inverter, all other main performance 
evaluation criterion such as device quantity, output power, total weight, total physical volume, fault-tolerant 
capability, and the balancing of loss distribution among devices are all comprehensively compared and shown 
in Table II. Note that the A3L-ATT inverter has more enhanced fault-tolerant capability to both the open-circuit 
and short-circuit switching faults, while the output power and efficiency are similar. The addition of the 
redundant phase leg in the proposed A3L-ATT inverter helps to share the overload current and eventually 
improve the loss distribution among the switching devices, while there is an uneven loss distribution in the 
conventional T-Type inverter which constrains its maximum output power and output frequency. All these 
performance benefits are simply achieved at the cost of adding one symmetrical phase leg. There is a slight 
increase in both the physical volume and weight for the proposed A3L-ATT inverter, due to one additional phase 
leg and the redundant devices. In order to implement the associated fault diagnostic algorithm, one more 
current sensor is required to monitor the variations of the dc bus NP current. For the voltage sensing, similar to 
other three-level inverters in typical industrial applications, both the proposed A3L-ATT inverter and the 
conventional T-Type inverter demand two voltage sensors on the dc side to monitor the balancing of dc bus 
voltages. Finally, it should be noted that this paper is targeted at the powertrain systems of generic EVs, in which 
the reliability and safety have higher priority to the cost. 

TABLE II Comprehensive Comparison Between the Proposed A3L-ATT Inverter and the Conventional T-Type 
Inverter 
 

Evaluation Criterion The Proposed A3L-ATT Inverter The Conventional T-Type Inverter 
Device Quantity 24 MOSFETs 12 MOSFETs 
Output Power (kW) 13.5 13.5 
Total  Weight (kg) 2.15 1.7 
Total Physical Volume (L) 3.31 1.50 
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Efficiency 98.73 98.75 
Sensor Quantity 3 current sensors and 2 voltage 

sensors 
2 current sensors and 2 voltage 
sensors 

Microprocessor TI DSP TMS320F28377D TI DSP TMS320F28377D 
GPIO 31 18 
Tolerance to SC Fault 66.7% No 
Output Power during SC Fault-Tolerant 
Operation 

Rated Derated 

Tolerance to OC Fault 100% 50% 
Output Power during SC Fault-Tolerant 
Operation 

Rated Derated 

Loss Distribution Among Devices Balanced Unbalanced 
 

SECTION VII. Experimental Results 
To verify the functionality of the proposed A3L-ATT converter, a three-phase A3L-ATT inverter prototype was 
designed and implemented in the laboratory, as shown in Fig. 11(a). The power switching devices used in the 
inverter prototype are SiC MOSFETs (Model No.: CREE C2M0025120D, rated at 1200 V/60 A). The 
microprocessor used in this prototype is a Texas Instruments digital signal processor TMS320F28377D. A three-
phase resistive-inductive load in wye configuration, with a resistance per phase of 10 Ω and inductance per 
phase of 900 μH , is used as the load for this inverter. The dc bus voltage is 600 V, and the nominal output 
power in the test is 13.5 kW. The switching frequency is 10 kHz, and the output fundamental frequency and the 
modulation index are 60 Hz and 0.8, respectively. 

 
Fig. 11. Prototype of the customized three-phase SiC A3L-ATT inverter. (a) Experimental prototype of the A3L-ATT 
converter, (A) control board, (B) phase-A leg, (C) laminated dc bus bar. (b) Bus bar assembly. 

There is a four-layer laminated bus bar structure designed to reduce the parasitic inductance of the 
commutation path, since high parasitic inductance will induce large switching voltage overshoots and the 
associated switching losses. The low-inductance bus bar structure is shown in Fig. 11(b). The bus bar assembly 
provides low inductance commutation path from dc-link capacitors to the switching devices. Also, the VNP and 
NP points on the different phase legs and the fault-tolerant leg are connected through the bus bars. Moreover, 
each phase leg has film decoupling capacitors with parasitic inductance of only a few nanohenries on the dc link 
to minimize the commutation loop inductance. 
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A. Short/Open-Circuit Faults 
In the experiments, the A3L-ATT inverter is programed to output three fundamental cycles of line currents and 
line-to-line voltages in normal operation, followed by another three fundamental cycles of faulty operation, and 
finally three fundamental cycles of fault-tolerant operation. This is in order to compare the variations of the 
inverter phase currents and line-to-line voltages under normal operation, faulty operation, and fault-tolerant 
operation. Two different modulation schemes are adopted in the tests, and the associated experimental results 
are acquired. All the fault scenarios presented in Fig. 12 are achieved at the SFO-PWM-PD scheme and all the 
other fault scenarios in Fig. 13 are achieved at the SFO-PWM-POD scheme. 

 
Fig. 12. Experimental results of the fault-tolerant operation of the proposed A3L-ATT converter under various 
switching faults (SFO-PD modulation). (a) Short-circuit fault in 𝑆𝑆𝑎𝑎2. (b) Short-circuit fault in 𝑆𝑆𝑎𝑎5. (c) Open-circuit 
fault in 𝑆𝑆𝑎𝑎1. 
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Fig. 13. Experimental results of the fault-tolerant operation of the proposed A3L-ATT converter under various 
switching faults (SFO-POD modulation). (a) Short-circuit fault in 𝑆𝑆𝑎𝑎2. (b) Short-circuit fault in 𝑆𝑆𝑎𝑎5. (c) Open-circuit 
fault in 𝑆𝑆𝑎𝑎1. 

Fig. 12(a)–(c) illustrate the behavior of the converter under short-circuit fault in 𝑆𝑆𝑎𝑎2 and 𝑆𝑆𝑎𝑎5 and an open-circuit 
fault in 𝑆𝑆𝑎𝑎1, respectively. The converter is using the SFO-PWM-PD modulation scheme. Three-phase load 
currents are shown as 𝑖𝑖𝑎𝑎, 𝑖𝑖𝑏𝑏, and 𝑖𝑖𝑐𝑐. The current flowing through the 𝑆𝑆𝑎𝑎1 is shown with 𝑖𝑖𝑆𝑆𝑎𝑎1 and the line-to-line 
voltage between phase A and phase B is presented as 𝑉𝑉ab. In all cases, the converter is reclaiming the output 
voltage with full modulation index in the two-level mode. Since the open-circuit fault in 𝑆𝑆𝑎𝑎2 has no impact on 
the converter output performance, it is not necessary to demonstrate the related experimental results. 

Fig. 13(a)–(c) depict the behavior of the converter under short-circuit fault in 𝑆𝑆𝑎𝑎2 and 𝑆𝑆𝑎𝑎5 and an open-circuit 
fault in 𝑆𝑆𝑎𝑎1 , respectively. The converter is using the SFO-PWM-POD scheme. In all cases, the converter is 
reclaiming the output voltage with full modulation index in a two-level mode. The dc offset in the 𝑖𝑖𝑆𝑆𝑎𝑎1 presented 
in Figs. 12 and 13 is due to the fact that the Rogowski coils used in the experiments cannot filter the 60 Hz low-
frequency component. The noises in the 𝑖𝑖𝑆𝑆𝑎𝑎1 waveform is caused by charging and discharging of the drain–
source parasitic capacitance of the MOSFET devices. Furthermore, the load current total harmonic distortion 
(THD) for three-level waveform (SFO-PWM-PD scheme) is calculated to be 4.62%. Also, the load current THD for 
the two-level waveform is calculated to be 9.51%. 

It should be noted that the open-circuit fault is implemented by interrupting the PWM pulse from that specific 
switch during experiments. The antiparallel body diodes of the MOSFETs do not pose any adverse effect on the 
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experiments. Handling a short-circuit current in the SiC MOSFETs is more challenging than the conventional Si 
insulated gate bipolar transistors. That is because the short-circuit current in SiC MOSFETs rises faster than that 
in the Si devices. Short-circuit behavior of the SiC MOSFETs are investigated in [14]–[15][16]. In [14], the authors 
explained the design procedure of a SiC MOSFET short-circuit protection that can act under 600 ns. The same 
de-saturation design process has been adopted to contain the short-circuit current in A3L-ATT converter. After a 
short circuit in a switch is detected, the processor prevents the turn ON of any switches that can lead to a shoot-
through fault that causes a waveform distortion in the output current. These cases have been illustrated in Figs. 
7 and 8. This is the reason that there are not any considerable current spikes in the short-circuit output 
waveforms shown in Figs. 12 and 13. Also, showing the faulty mode of the inverter for three fundamental cycles 
(60 Hz) is only for illustration purposes. It is intended to show the distortion in the output current when a fault 
happens. The processor is capable of detecting a short-circuit fault in several microseconds and it can enable the 
inverter to enter the fault-tolerant mode immediately. 

B. Current Sharing 
Experimental waveforms for current sharing are provided in Fig. 14. In these results, current sharing is enabled 
at the 𝑃𝑃sh state. The load current 𝑖𝑖𝑎𝑎  is shown in green, the line-to-line voltage 𝑉𝑉ab is shown in magenta, the 
current through switch 𝑆𝑆𝑎𝑎1 is shown in blue, and the current through switch 𝑆𝑆𝑟𝑟1 is shown in red. Two different 
current sharing paths are available as shown in Fig. 2. Fig. 14(a) depicts the experimental waveforms for current 
sharing using one path as shown in Fig. 2(a). Fig. 14(b) depicts the experimental waveforms for current sharing 
using two paths as shown in Fig. 2(b). Note that with both paths enabled, the current in 𝐼𝐼sh is higher and 𝑖𝑖𝑆𝑆𝑎𝑎1 is 
lower than that with one path enabled. Consequently, more current is being shared and the conduction losses in 
the SiC MOSFETs (𝑆𝑆𝑎𝑎1 , 𝑆𝑆𝑎𝑎2, and 𝑆𝑆𝑎𝑎5) are reduced. 

 
Fig. 14. Experimental results for current sharing between the redundant leg and the Phase-A leg by using one 
neutral path or two neutral paths. (a) Current sharing in 0° (one path). (b) Current sharing in 0° (two paths). 

SECTION VIII. Conclusion 
A novel fault-tolerant three-phase A3L-ATT power converter topology is introduced in this paper. Fault-tolerant 
operation under different fault scenarios has been discussed. The topology can tolerate any open-circuit 
switching faults and most short-circuit switching faults, with the capability to output full voltages and currents 
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under the fault-tolerant operation modes. Furthermore, this new fault-tolerant topology has the ability of 
sharing current between the redundant leg and any of the main legs under normal healthy condition. Such 
current sharing increases the efficiency and the overload thermal capacity of the converter. Different 
modulation schemes for current sharing capability are investigated and the SFO-PWM-POD modulation strategy 
is proven to have the maximum current sharing duty ratio among the various modulation schemes investigated. 
Simulation and experimental results based on a 13.5-kW three-phase SiC A3L-ATT converter prototype are 
provided, which verify all the theoretical expectations of this proposed converter. The introduction and 
development of this A3L-ATT converter provides a promising fault-tolerant solution to power conversion in 
safety-critical applications, where the continuous operating availability of power converters under faulty 
conditions is given a higher priority to the system cost. 
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