
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Mathematics, Statistics and Computer Science 
Faculty Research and Publications 

Mathematics, Statistics and Computer Science, 
Department of (- 2019) 

2012 

Modeling Temporal Pattern and Event Detection using Hidden Modeling Temporal Pattern and Event Detection using Hidden 

Markov Model with Application to a Sludge Bulking Data Markov Model with Application to a Sludge Bulking Data 

Naveen K. Bansal 
Marquette University, naveen.bansal@marquette.edu 

Xin Feng 
Marquette University 

Wenjing Zhang 
Marquette University 

Wutao Wi 
Marquette University 

Yuanhao Zhao 
Marquette University 

Follow this and additional works at: https://epublications.marquette.edu/mscs_fac 

 Part of the Computer Sciences Commons, Mathematics Commons, and the Statistics and Probability 

Commons 

Recommended Citation Recommended Citation 
Bansal, Naveen K.; Feng, Xin; Zhang, Wenjing; Wi, Wutao; and Zhao, Yuanhao, "Modeling Temporal Pattern 
and Event Detection using Hidden Markov Model with Application to a Sludge Bulking Data" (2012). 
Mathematics, Statistics and Computer Science Faculty Research and Publications. 584. 
https://epublications.marquette.edu/mscs_fac/584 

https://epublications.marquette.edu/
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs
https://epublications.marquette.edu/mscs
https://epublications.marquette.edu/mscs_fac?utm_source=epublications.marquette.edu%2Fmscs_fac%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=epublications.marquette.edu%2Fmscs_fac%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=epublications.marquette.edu%2Fmscs_fac%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=epublications.marquette.edu%2Fmscs_fac%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=epublications.marquette.edu%2Fmscs_fac%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/mscs_fac/584?utm_source=epublications.marquette.edu%2Fmscs_fac%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages


 Procedia Computer Science   12  ( 2012 )  218 – 223 

1877-0509 © 2012 Published by Elsevier B.V. Selection and/or peer-review under responsibility of Missouri University of Science and Technology. 
doi: 10.1016/j.procs.2012.09.059 

 

Fig.1 Synthetic seismic time series with temporal pattern p 
and the defined events 

Complex Adaptive Systems, Publication 2 

Cihan H. Dagli, Editor in Chief 

Conference Organized by Missouri University of Science and Technology 

2012- Washington D.C. 

Modeling temporal pattern and event detection using Hidden Markov 
Model with application to a sludge bulking data 

Naveen K. BANSALa, Xin FENGb, Wenjing ZHANGb, Wutao WEIa, and  
Yuanhao ZHAOb 

aDepartment of Math., Stat, and Comp. Sci.,, Marquette University, Milwaukee, Wisconsin, USA 
bDepartment of Electrical & Computer Engineering, Marquette University, Milwaukee, Wisconsin, USA 

 

Abstract 

This paper discusses a method of modeling temporal pattern and event detection based on Hidden Markov Model (HMM) 
for a continuous time series data. We also provide methods for checking model adequacy and predicting future events. These 
methods are applied to a real example of sludge bulking data for detecting sludge bulking for a water plant in Chicago. 

Keywords: Temporal Patterns; Hidden Markov Model; Sludge Bulking 

1.  Introduction  

A temporal pattern is a time-ordered fixed structure in a time 
series data },...,2,1|)({ nttxX . We consider a 

situation, in which this temporal pattern occurs repeatedly and 
may lead to the occurrence of a critical event. The objective is 
to develop a predictive model for predicting an event based 
on this temporal pattern. Fig. 1 shows an example of a sample 
path of a synthetic seismic time series in which pattern occurs 
somewhat randomly, but that leads to an occurrence of an 
event.  Povinelli and Feng (2003) and Feng and Huang (2005) 
used a phase space approach to successfully identify temporal 
pattern and detect event in a non-stationary time series data. 
This approach, however, is deterministic, and does not 
reproduce any probabilistic model. In this paper, we use probabilistic hidden Markov model (HMM) to identify 
pattern and detect events. The details on the model are given in section 2.1. Model estimation and model 
adequacy checking are described in section 2.2 and 2.3 respectively. In section 2.4 we give a formula for 
predicting future observations. In section 3, we use a real data on sludge bulking from a water plant in Chicago, 
US to illustrate statistical methods discussed in section 2.  
 
2. Modeling Temporal Pattern and Event Occurrence 

2.1  Modeling Temporal Pattern and event occurrence 

 We assume that a time series data nttx ,,2,1)(X
 
holds a hidden structure of a temporal 

pattern followed by an event. Suppose that the hidden sequence is { , = 1,2, … , }, where  ={ , , … , , } is a set of all possible states. We call the state  as the normal state, states { , , … , } as 
pattern states, and  as the event state.  

We assume that { , = 1,2, … . } follows a Markov model with the transition probability matrix 
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where  = =  = ).  
To structure the temporal pattern and the event occurrence, we partition the state space set  as ={ , , }, where = ( , , … , } is a sequence of the pattern states. In order to reflect the transition of a 

process from normal to the development of temporal pattern and then to the event, the transition matrix  must 
take a special form:  

       = 1 0 0   1  0 0  1 0 01 0 0                                    (2) 

Note that = ( = | = ) is the probability that at a given time  the state would jump from 
normal to the beginning of the pattern state, but the probability is 0 that it would jump to the second or a higher 
pattern state. Once the state is in a pattern state, it moves to the next pattern state in a stepwise manner or it goes 
back to the normal state without completing the pattern. At the last pattern state, when the process completes the 
pattern, it reaches the event state with probability = ( = | = ). We also assume that once the 
process reaches the event state, it remains in the event state with probability  or it goes back to the normal state. 
The main point here is that the event occurs only when the pattern is completed, and if the pattern breaks down, 
the process goes back to the normal state before the event occurs.   

The probability distribution of the observed sequence  is affected by the hidden sequence { , =1,2,…, . Thus, we assume that the observations , =1,2,…,  are conditionally independent given the state 
sequence { , = 1,2, … , } with probability model 

                      | ~ ( | )t tX Z s f x q= 0 0 0 , 

                      )|(~| 111 xfsZX tt , 

                                         (3) 

                           ),|(~| xfsZX tt  

                      ),|(~| 111 xfsZX tt  

where , , … ,  are the probability densities depending on the unknown parameters , , … , ; for 
example,  can be the Gaussian ( , ) density with = ( , ). Thus, with little misuse of the notation, 
the conditional density of  given the hidden states ( , , … , ) can be written as 
 
                             ( , , … , | , , … , ) = … ,       
 
where  and  are understood to be the appropriate density and parameters respectively corresponding to the 
actual value of . For the Gaussian model, the assumption of conditional independence can be relaxed by 
incorporating, for example, ARIMA or GARCH process. This can be done by writing the conditional model 
for   given =  as =  + , where { , 1} is an ARIMA or GARCH process. In this paper, 
however, we will only consider the conditional independence case.  
 
2.2  Estimating the Model from a Training Set 

Let ( , , … , ) be a training set of data. Baum-Welch (Baum, et al., 1970) method, a method based on 
the EM algorithm, can be used to estimate the parameters of the model. For illustration purpose, we assume that 
the conditional densities (3) are the densities of Gaussian ( , ),  = 0,1, … , + 1 . The unknown 
parameters of the model are = ( , , … , , ), the probabilities vector of the initial states, the unknown 
parameters ( , , … , , ) of the transition matrix, and {( , ), = 0,1, … , + 1} of the Gaussian model. In 
most of the cases, the dimension of the pattern states  may not be known. In such cases, we suggest a phase 
space embedding method to find the dimension of the pattern states (Albano et al., 1987). Another approach is 
to use Akaike Information Criteria (AIC), which is defined as 

              =  2 log +  2 ,          (4) 



220   Naveen K. BANSAL et al.  /  Procedia Computer Science   12  ( 2012 )  218 – 223 

where  is the total number of parameters. Note that as the dimension of the pattern states increases, the number 
of parameters  increases. Thus, the term 2  on the right hand side of (4) reflects a penalty function of increased 
dimension. 

 
2.3  Model Adequacy Checking 

Note that since | =  ~ ( , ) and since conditionally the observations , = 1,2, … ,  are 
independent, it seems reasonable to consider the standardized residuals 

              = , = 1,2, … ,         (5) 

to test the adequacy of the model. To compute the residuals in (5), first the identification of true hidden states 
for each , = 1,2, … ,  is needed. Viterbi algorithm (Rabiner, 1989) can be used to get the most probable 
hidden states = , = 1,2, … , . Thus, an appropriate method of computing the residuals (5) is as follows: 

(i) First apply the Baum-Welch algorithm to get the estimates for = ( , , … , , ), ( , , … , , ) and {( , ), = 0,1, … , + 1}. 
(ii) Using these estimates, obtain the most probable state =  for each , = 1,2, . .  by applying 

Viterbi algorithm. 
(iii) Using the most probable states obtain in (ii), compute the residuals  from (5) by substituting the 

appropriate estimates ( , ). 
These residuals, now, can be used to perform many tasks of residual analysis. Some of the tasks that can be   
performed are as follows: 

(a) Checking Gaussian distribution: A normal probability plot of the residuals can be used to test the 
assumption of Gaussian distribution. 

(b) Detecting Outliers: Assuming the Gaussian model, it would be expected that 3 3. Thus if | | > 3 for a  observation, it can be considered as an outlier. However, note that if | | > 3 for 
too many observations, it would indicate that the proposed Hidden Markov Model is not a good fit. 

(c) Goodness of fit test: A Chi-square goodness of fit statistics =  can be used to test the goodness 
of fit. If this > ( ), then one can conclude that the model is not a good fit. Note that here  is 
the total number of parameters estimated.  

(d) Serial Correlation: A serial correlation can be tested by looking at the autocorrelations of  or by 
fitting an ARIMA model to , = 1,2, … , . 
 

2.4  The Prediction 

An important problem of fitting a time series with temporal patters and event occurrence is predicting future 
observations based on the past observed data. Suppose { , = 1,2, … . } is the process under consideration, and 
suppose observations = ( , , … , ) have been observed up to the current time, then the problem of 
prediction is to predict  based on . Note that 

 ( | ) = ( | = , ) =   
From this,  ( | ) = ( | = , = , ) ( = | = , ) =  

Now, under the assumption of the model, it can be shown that ( | ) = ( | ) = .                                                      (6) 

 The future value  can now be estimated by the mode of the posterior distribution (6) or by the posterior 
mean. The HPD (High posterior density) credible set from (6) would yield most likely values for . Note that 
if prediction for a future observation of m time units ahead is required, then it is easy to see that 
           ( | ) = ( | ) = ,                                                 (7) 

where,  is the ( , )  entry of  matrix. 
 
 If an optimum path of { , 1} with maximum posterior of =  is available, than a practical 
alternatives to (6) and (7) are, respectively, 
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   ( | ) ( )                                                                    (8) 

and 
 ( | ) ( )                                                                   (9) 

 
Here, the index  corresponds to the maximum posterior  = , and estimate ( ) is based on the 
estimate from the data .  
 

3. Example of Sludge Bulking 

In the treatment of sewage, the most commonly used process is an activated sludge process in which air (or 
pure oxygen) is passed through a mixture of sewage and recycled sludge to allow the micro-organisms to break 
down the organic components of the sewage. Sludge is continually drawn off as new sewage enters the aeration 
tank and this sludge must then be settled in sedimentation tanks so that the supernatant can be separated to pass 
on to further stages of treatment. Sludge bulking occurs when the sludge fails to separate out in the 
sedimentation tanks, and it is the most notable cause of activated sludge plant failure (i.e. exceeding discharge 
permit limits) in the U.S. and abroad. 

The Sludge Volume Index (SVI) (Dick and Vesilind, 1969) is an empirical measurement for sludge bulking 
problem. If the sludge bulking occurs, it can generate a high SVI value and very clear supernatant. However, the 
definition of “High SVI” is different for different wastewater treatment plants (WWTPs) and different research 
works. Some WWTPs claim that sludge bulking occurs when SVI is larger than 100, while for other plants it is 
higher than 150, 180, even 200, etc. (Surucu and Soyupak, 1989). A large number of researches have been done 
to predict high SVI (Sludge Bulking Problem). Some are based on Microscopic Examination Methods, which 
uses microscope to observe the quantity and categories of the filamentous organisms that causes sludge bulking. 
Others are based on statistical methods to predict high SVI value. Some of the models considered are 
Benchmark Simulation Model, AR (Autoregressive) model, ARMA (Autoregressive Moving Average) Model, 
Risk Assessment Model, etc. (Dennis and Taper, 1994). However, the results have not been very satisfactory. 

We propose a hidden-Markov-modeling to model SVI index. It can be postulated that, before the sludge 
bulking occurs, the process stays in a normal state; and when the sludge bulking is about to occur, the process 
goes though a sequence of pattern states before the sludge bulking occurs. 

 
3.1. Data and Results 

The Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) owns and operates several 
Water Reclamation Plants (WRPs) in the greater Chicago area and treats roughly 1.4 billion gallons of water 
daily. Frequently, sludge bulking occurs in the plants. The Fig. 2 shows the daily SVI indices for one of the 
plants from 2002 to 2006. A significantly high value (greater than 150) in the SVI index is considered to be an 
indicator of sludge bulking in these plants.  

 
Fig.2. SVI Index Time Series 

A data similar to this has been analyzed using traditional methods of regression and time series modeling in 
the past (Capodaglio et al, 1991). These methods have not been very satisfactory since the data is very chaotic 
and non-stationary. Here, we use HMM approach to model this data. Because the value of SVI cannot be less 
than 0, it is incompatible with the Gaussian assumption. We used the logarithm transformation of SVI to achieve 
the Gaussian distribution.  

Using the AIC criteria, we find that the optimal dimension for the pattern states is = 4.  The initial values 
of the parameters for the Baum-Welch algorithm were as follows: 
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After 68 iterations, the algorithm converged with the following estimates: 

             000001ˆ    

9090.00000910..

1914.00008086.

09991.0000009.

009999.000001.

0009997.00003..

00000776.9224.

P̂                 

      128.90579446.1005975.993003.994780.990191.83ˆ   

In the Fig. 3, the red curves are the patterns we identified, and the red circles are the predicted event points. 
Note that once the event state is reached, the probability is high (0.9090) that process remains in the event state. 
On the other hand, the probability is low (0.1914) that the process transit from the last pattern state to the event 
state meaning that in many occasions before the event (sludge bulking) occurs, the process returns back to the 
normal state.  

 
Fig. 3. SVI Index Patterns and Event Predictions 

The formula (5) was used to compute the residuals. The normal probability plots of the residuals and the 
scatter plot of the residuals are shown in the Fig. 4. The probability plot shows slight heavy tail distribution with 
6 of the standardized residuals of more than 3 in magnitude. The overall goodness of fit statistic =  
yielding the value of 10.22 with  closed to 1, and thus showing a good fit. 

 
 

 

 

 

 

 

         
   

 
         Fig. 4: Normal Probability Plot and Residual Plot  
 

 For the prediction purpose, we carry out the analysis with first 700 days’ data as training set and the next 
250 days’ data as test set. The Fig. 5 shows the predictability of the events for the test data. The red circles show 
the predicted events based on the maximum posterior probabilities. For each prediction, the training set was 
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constantly augmented by new observation  before predicting the next data point  as one would do in the 
real situation. 

               
Fig.5. SVI Index Event Predictions 

 
 We used equation (8) to approximate the predicting distribution of  based on the previous data = ( , , … , ). We then computed ( > 150| ) which is given by  

                 ( > 150| ) (  )                         
A higher value of this probability goes along well with the actual SVI index exceeding 150.  As we discussed 

earlier, this has significance in sludge bulking since SVI index of higher than 150 is considered to be an 
indicator of sludge bulking. 

 
4. Conclusion 

When a process is seemingly chaotic and when none of the standard methods such as ARIMA and GARCH 
models work, the methodology presented in this paper provides an alternative approach through Hidden Markov 
Modeling. This approach seeks for a problem specific hidden structure in the process. For example, in this 
paper, we look at the process in which a pattern develops before an event occurs. We provide a complete 
methodology for this type of problem including model adequacy checking and predicting future values. 
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