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ABSTRACT 

RNA-SEQ ANALYSIS OF WILDTYPE CAENORHABDITIS ELEGANS 

GERMLINES UNDER DIFFERENT TEMPERATURE CONDITIONS 

 

 

Chong Li 

Marquette University, 2020 

 

 

Quantitative analysis is very important for researchers to understand the molecular 

physiology underlying differential gene expression. High-throughput mRNA sequencing 

(RNA-seq) has become a standard method, which can be used in a wide variety of species 

and biological conditions to discover new genes and transcripts or measure levels 

transcript expression. The nematode Caenorhabditis elegans is an important model for 

the study of germ cell biology. For this thesis, RNA-Seq was performed on dissected 

germlines of Caenorhabditis elegans that were grown at either 20°C (ideal conditions) or 

27°C (stress conditions) from two wildtype strains: JU1171 (thermotolerant) and LKC34 

(thermosensitive). The goals of this research were to uncover four expression patterns 

that are different between these two strains under two different temperature conditions, 

which could potentially underlie the phenotypic difference when Caenorhabditis elegans 

are stressed.  I performed and compared five different RNA-Seq pipelines, which include 

Cuffdiff, DESeq2, edgeR, limma, DESeq, starting with 16 raw sequencing fastq files, 

including experimental design, quality control, read alignment, expression quantification, 

differential gene expression, and enrichment analysis. My research resulted in both 

differential expression data and analyzed patterns of differentially expressed genes. I also 

did the enrichment analysis on the functions of genes under each pattern to uncover the 

different expression patterns between the two strains and two temperatures. From the 

result, we predict that increased apoptosis at elevated temperatures is protective for 

fertility. In the end, I discussed the drawbacks in the analysis that can be improved and 

mentioned additional analysis which can be added to the outcomes in the future.
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INTRODUCTION 

Quantifying genes that are differentially expressed between different strains and 

conditions in a cell, tissue or organism is a crucial approach for researchers to investigate 

the molecular mechanisms underlying phenotypes differences (Ji and Sadreyev 2018). 

RNA-Seq analysis, which is based on next-generation sequencing data, is a recently 

emerged approach for the analysis of differential gene expression, especially at the whole 

transcriptome level. Typically, an RNA-Seq workflow includes experimental design, 

quality control of the raw sequence data, read mapping, expression quantification, 

differential expression testing, functional interpretation and several biological insights 

and hypothesis. The workflow described above mainly requires the installation of Unix or 

Linux and R command-line interfaces, such as RStudio (RStudio Team 2015). In the 

bioinformatics research area, multiple different methods have been developed to identify 

differentially expressed genes from various RNA-Seq data, however, there is no 

consensus exists on which of these methods perform best. 

The nematode Caenorhabditis elegans is an important laboratory model in 

biomedical research due to its genetic manipulability, a fully described developmental 

system, a well-characterized genome, a short and productive life cycle, and also a small 

body size (Leung et al. 2008). The most suitable growth temperature for C. elegans in the 

lab is about 20°C (Brenner 1974). Between 15°C to 25°C is considered to be the 

physiological ideal; however, temperature conditions beyond this range are considered 

stressful and can result in the development or physiology of worms being compromised 

(Gómez-Orte et al. 2018). Extreme temperature conditions are known to have a primary 
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negative influence on the physiological parameters of the worm, such as fertility or 

longevity. While previous studies showed that the standard growth and maintenance 

temperature for C.elegans is 20°C, and that temperatures ranging from 15°C to 25°C are 

considered physiological conditions, the effect of these conditions on the worm 

transcriptome had not been well characterized (Gómez-Orte et al. 2018). According to 

Gómez-Orte et al. (2018), they compared the global gene expression profile for the 

reference C. elegans strain (N2) which was grown at 15°C, 20°C, and 25°C on two 

different diets, Escherichia coli and Bacillus subtilis. Their results showed that C. 

elegans undergo significant metabolic and defense response changes when the 

maintenance temperature fluctuates within the physiological range. Harvey and Viney 

(2007) state that temperature affects the lifetime fecundity and the reproductive timing of 

C. elegans. They additionally found that there is a genotype by environment interaction, 

with different wildtype isolates varying in how lifetime fecundity changes with 

temperature. They found that a reduction in the number of functional sperm was 

primarily causing the lower lifetime fecundity observed at higher temperatures up to 

25°C. According to the Prasad et al. (2010) investigation of the temperature’s effects on 

the fecundity of self-fertilizing nematodes of the species Caenorhabditis briggsae, they 

found that isogenic strains from a Tropical phylogeographic clade have greater lifetime 

fecundity when reared at extremely high temperatures and lower lifetime fecundity at 

extremely low temperatures than do strains from a Temperate phylogeographic clade, 

which is consistent with adaptation to local temperature regimes. Petrella (2014) showed 

that there were significant temperature, genotype and temperature × genotype effects on 

fertility of C. elegans. For most isolates, 100% of the population maintained fertility from 
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20°C to 26°C, but there was a steep drop in the percentage of fertile hermaphrodites at 

27°C (Petrella 2014). Also, in the Poullet et al. (2015) paper, they found that temperature 

variation modulates spermatogenesis, oogenesis and germ cell progenitor pools, which is 

consistent with evolutionary variation in upper thermal limits of hermaphrodite fertility. 

High temperature significantly perturbs oogenesis, germline integrity, and mitosis–

meiosis progression, even though defective sperm function is a major contributor to heat-

induced fertility breakdown (Poullet et al. 2015). These studies showed that temperature 

will influence the lifetime fertility and functional differential gene expression of C. 

elegans. However, there has not been a study of the changes in gene expression that may 

underlie the differences between the different wild type strains C. elegans strains in 

fertility under different temperature conditions. In my thesis, RNA-Seq analysis was 

applied to further define the biological processes that change under stress conditions. 

In this thesis, the most frequently used RNA-sequencing methods were applied 

and compared on dissected germlines of Caenorhabditis elegans to ultimately come to 

the lists of differentially expressed genes of four potential expression patterns between 

the two strains under the two temperature conditions. It was found that there were 

significantly genotype × environment differences such that some strains are much more 

thermal tolerant, and others are much more thermal sensitive. Two wild type strains were 

used in my thesis research: JU1171, which is thermotolerant, and LKC34, which is 

thermosensitive. There are a significantly higher number of JU1171 fertile 

hermaphrodites and higher brood size compared to LKC34 at 27°C (Petrella 2014). For 

each genotype under both 20°C and 27°C, there were four biological replicates dissected 

from germline and sent for RNA-sequencing. Thus, a totally16 raw sequencing fastq files 
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data were analyzed. The goals of this thesis research were to find the molecular 

differences which could potentially underlie the reasons the JU1171 strain maintained a 

higher level of fertility at 27°C compared to LKC34. I applied and compared several 

RNA-Seq analysis pipelines, Cuffdiff, DESeq2, edgeR, limma and DESeq, to define four 

expression patterns and did additional analysis of the types of genes within these four 

pattern groups to allow for further definition of the biological processes that change 

under stress conditions, such as enrichment analysis of functional gene categories and 

Gene Ontology analysis. Particularly, two different read alignment tools, TopHat2 and 

HISAT2, were compared and chosen by both the alignment rate and mapping time. Two 

read counting tools, HTSeq-Count and featureCounts, were both used for different 

purposes of downstream analyses and visualization. The detailed description of the 

parameter settings of the methods and software are introduced in the Methods and 

Materials section.  

To summarize, my thesis highlights the main C. elegans transcriptomic response 

differences when two different strains (thermotolerant and thermosensitive) are cultivated 

at two different temperature conditions (ideal condition and stress condition). In 

particular, four potential expression patterns were mainly analyzed and several 

similarities and dissimilarities within the four RNA-Seq analysis methods were mainly 

compared. Gene expression differences reflected the different physiologically 

mechanisms and phenotypic of worms in response to a higher temperature. Based on the 

analysis of pattern 1, we have a prediction that increased apoptosis at elevated 

temperatures is protective for fertility. I end with some discussions and improvements for 

further research.  
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2. MATERIALS AND METHODS 

2.1 C. elegans Strains and Temperature Treatments 

Two wild type strains were used in my thesis research: JU1171, which is 

thermotolerant, and LKC34, which is thermosensitive (Petrella 2014). Worms were 

cultured using standard conditions (Brenner 1974) at 20°C unless otherwise noted. For 

the 20°C experiment, worms were continuously maintained at 20°C. For the 27°C 

experiment, P0 hermaphrodites were upshifted from 20°C to 27°C at the L4 stage and F1 

animals maintained continuously at 27°C. 

 

2.2 Gonad Dissection and RNA Isolation 

Gonads were dissected from young adult animals approximately 24 hours after the L4 

stage in 1X egg buffer (25 mM HEPES, 120 mM NaCl, 2 mM MgCl2, 2 mM CaCl2, 50 

mM KCl). Gonads were cut between the last oocyte and the spermatheca and were placed 

directly into 100µl Trizol (Invitrogen, cat#15596026). Four biological replicates were 

done per genotype per temperature. Between 52 to 108 gonads were used per RNA 

sample isolated. Each sample was ground with a pestle and then 200µl Trizol added. 

Then total RNA was isolated using the Zymo Direct-Zol miniprep kit using the 

manufacturer’s instructions including on-column DNase Ⅰ digestion. Elution was done 

using 25µl DNase free water. Total RNA was stored frozen at ≤ -80°C until sequencing 

was done.  
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2.3 Library Preparation and Sequencing 

The University of Wisconsin-Madison Biotechnology Center Gene Expression 

Center prepared libraries for each sample. RNA samples were thawed on ice and each 

sample assayed on the NanoDrop2000 (quantification) and Agilent RNA PicoChip 

(quality). cDNA sequencing libraries from four biological replicates were prepared from 

total RNA from each strain (JU1171 and LKC34) of each condition (20°C and 27°C) by 

following the standard protocol from Illumina Stranded TruSeq RNA Library Preparation 

Kit v2 to poly-A enrichment and fragment mRNA. Raw sequence reads were obtained 

from the Illumina HiSeq2000. Library concentration was assessed, and each library 

assayed in a singlet with a 1:100 dilution before high throughput sequencing.  

  

2.4 Quality-control Checkpoints 

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to 

perform quality control analyses on Illumina reads (Conesa et al. 2016) from the 

command line or as a graphical application on the fastq file from the sequencer. Software 

tools such as Trim_Galore can be used to discard low-quality reads, trim adaptor 

sequences, and eliminate poor-quality bases. Trim_Galore was run from the command 

line and was a wrapper around another program called Cutadapt using default options 

and adapters that were detected were removed. Trim_Galore produced a trimming report 

which I can have a look through to see details of any trimming that was carried out. 
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2.5 Read Alignment 

Raw sequence reads were obtained from the Illumina HiSeq2000 and processed as 

single-end reads using two different pipelines. First, TopHat2 was used to align reads to 

the C. elegans reference genome (WBcel235.96.fa) and gene annotations 

(WBcel235.96.gtf) in NCBI and WormBase WS271. TopHat2 (v2.1.1) used Bowtie as an 

alignment engine and broke up reads that Bowtie cannot align on its own into smaller 

pieces called segments. By processing each initially unmappable read, TopHat2 built up 

an index of splice sites in the transcriptome (Trapnell et al. 2012). Second, HISAT2 was 

used to perform the read alignment, which was designed as a successor to TopHat and 

TopHat2 (Pertea et al. 2016). Default parameters were used in most instances, with the 

following exceptions: --read-mismatches; --read-gap-length and --read-edit-dist 

arguments were specified in the TopHat2 protocol; --mp and --rdg arguments were used 

in the HISAT2 command which I will discuss more in the results part. Finally, HISAT2 

output a SAM file, then Samtools was used to compress the raw SAM format output into 

the more compact sorted BAM format.  

 

2.6 Differential Expression Testing 

2.6.1 Counting reads in feature with HTSeq-Count and featureCounts  

After running Samtools, the resulting sorted BAM files were provided to HTSeq, 

which is a Python package that calculates the number of mapped reads to each gene. 

HTSeq-Count files are available in a tab-delimited format with one Ensembl gene ID 

column and one mapped reads column for each gene (Anders and Huber 2014). In order 

to get a normalized read count, specifically FPKM (fragment/reads per kilobase of 
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transcript per million mapped reads) value, which is not an output, I chose to use 

featureCounts (Liao et al. 2014).  featureCounts is another reliable reads counting 

software and performs about 20 times quicker than HTSeq-Count (Yang et al. 2014). The 

output of the featureCounts program includes a count table and a summary of counting 

results which are saved into two-delimited files. One of the files is the table that includes 

the read counts and contains ‘Geneid’, ‘Chr’, ‘Start’, ‘End’, ‘Strand’ and ‘Length’ five 

annotation columns. The other one contains the summary of counting results which is 

named of reads counts file added with ‘. summary’ (Liao et al. 2019). 

 

2.6.2 Analyzing RNA-Seq data with DESeq2 

The package DEseq2 provides methods to test for differential gene expression (Love 

et al. 2014). As input, the DESeq2 package requires count data to be input in the form of 

a matrix of integer values (Anders et al. 2010). The count data output from the HTSeq-

Count was used. The value in the x-th row and the y-th column of the matrix tells us how 

many reads can be assigned to gene x in sample y. The values in the matrix should be un-

normalized counts or estimated counts of sequencing reads for single-end RNA-Seq or 

fragments for paired-end RNA-Seq and the DESeq2 model internally corrects for library 

size, so transformed or normalized values such as counts scaled by library size should not 

be used as input. Then the function DESeqDataSetFromMatrix was used. A minimal pre-

filtering was performed to keep only rows that have at least 1 read in total. The function 

results were used to generate the results table with log2 fold changes, p-values and 

adjusted p-values that using the “BH” method of Benjamini and Hochberg that controls 

the false discovery rate (Benjamini and Hochberg 1995). Then the adjusted p-value (q-
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value) of 0.05 and fold changes of 1.5 were used as the criteria to get the differential 

expressed gene lists. Since the output of the featureCounts gives us the length of each 

gene, I performed an fpkm() function in DESeq2 with the length value and then used the 

ggplot2 package to get several scatter plots among the different replicates in the same 

genotype under the same condition and also output the scatter plots among the different 

replicates in the same genotype under different condition. 

 

2.6.3 Analyzing RNA-Seq data with edgeR  

edgeR (Robinson et al. 2010) is the short name of Empirical Analysis of Digital Gene 

Expression Data in R. It is a package for the differential expression analysis of digital 

gene expression data. As with DESeq2, edgeR also works on a table of integer reads 

counts, which I got from HTSeq-Count. After reading the counts tables, edgeR stores data 

in a simple list-based data object called a DGEList and then added a grouping factor that 

includes our 16 sample names for short. CPM (count-per-million) was used to filter out 

lowly expressed genes. The function calcNormFactors was used to do the normalization 

by finding a set of scaling factors for the library sizes (Robinson et al. 2010). The 

function model.matrix was used to construct the design matrix. edgeR uses a special 

method called quantile-adjusted conditional maximum likelihood (qCML) for 

experiments with a single factor. The qCML common dispersion was estimated using the 

estimateDisp function on the DGEList object (Chen et al. 2014). Since the quasi-

likelihood (QL) F-test is preferred as it reflects the uncertainty in estimating the 

dispersion for each gene, functions glmQLFit and glmQLFTest were used to perform the 

QL dispersion estimation and hypothesis testing (Lun et al. 2016). 
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2.6.4 Analyzing RNA-Seq data with limma 

limma, which is Linear Models for Microarray and RNA-Seq Data for short, is a 

package for the analysis of gene expression data arising from microarray or RNA-Seq 

technologies (Ritchie et al. 2015). I used the same filtered and normalized gene lists as 

the edgeR method used. Then, read counts were converted to log2-counts-per-million 

(logCPM) in the limma-trend approach using edgeR’s cpm function (Law et al. 2014). 

Estimated the fold changes and standard error by fitting a linear model for each gene 

using the lmFit function and applied empirical Bayes smoothing to the standard errors by 

using the eBayes function (Phipson et al. 2016). The function topTable was used to 

display the results of the top genes. In the end, I used the same criteria of fold changes 

and q-value as the previous two methods used to filter the higher expressed gene in each 

comparable group by using the subset function. 

 

2.6.5 Analyzing RNA-Seq data with DESeq 

In addition to DESeq2, edgeR, and limma, which are the most popular three methods 

of deferential expression analysis, many research papers also applied DESeq as their 

main method. In this thesis, the same RNA-sequencing and analysis protocols were run 

as described in Campbell and Updike (2015): TopHat2 (v.2.0.8b) was run to map the 

reads, HTSeq was used to count reads number per gene per sample and DESeq was then 

run with default parameters to test the differential gene expression. As previously 

described, HISAT2 was eventually chosen for use in my thesis after the comparison of 

several aspects between TopHat2. Thus, TopHat2 was also run combined with the DESeq 
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to test if there was any big difference between these two protocols. The detailed 

description of this comparison was shown in the following results section.  

 

2.7 Analysis of Gene Set 

2.7.1 Pattern analysis 

In this thesis, four different patterns were defined based on differential gene 

expression results from DESeq2. Pattern 1 was defined as those genes that were up-

regulated in JU1171 at 27°C compared to JU1171 at 20°C but were not up-regulated in 

LKC34 at 27°C compared to LKC34 at 20°C. Pattern 2 was defined as those genes that 

were down-regulated in JU1171 at 27°C compared to JU1171 at 20°C but were not 

down-regulated in LKC34 at 27°C compared to LKC34 at 20°C. Pattern 3 was defined as 

genes that were expressed higher in JU1171 compared to LKC34 at both temperatures. 

Pattern 4 was defined as genes that were expressed higher in LKC34 compared to 

JU1171 at both temperatures. I counted the number of genes in each pattern by filtering 

the TURE of FALSE values for the corresponding columns and got the gene ID lists for 

each pattern to do the following enrichment analysis.  

 

2.7.2 Enrichment analysis 

2.7.2.1 Gene set analysis 

The hypergeometric test is a statistical test which uses the hypergeometric 

distribution to calculate the statistical significance to identify which sub-populations are 

over-represented or under-represented in a specific sample (Rivals et al. 2017). In my 

thesis research, the hypergeometric test was used to ask if genes normally expressed in 
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the following gene sets: Germline enriched genes (2464 genes) (Reinke et al. 2004), 

Germline enriched gender neutral (908 genes) (Reinke et al., 2004), Soma enriched genes 

(327 genes) (Reinke et al. 2004), Neuron enriched genes (1324 genes) (Watson et al. 

2008), Spermatogenesis enriched genes (754 genes) (Reinke et al. 2004), 

Spermatogenesis enriched genes (2221 genes) (Ortiz et al. 2014), List of genes encoding 

spermatogenesis proteins (103 genes) (Chu et al. 2006), Oocyte enriched genes (809 

genes) (Reinke et al. 2004), Oocyte enriched genes (1512 genes) (Ortiz et al. 2014), List 

of the significantly up-regulated genes altered in response to the “hsf-1(+);+Heat-Shock 

vs control” condition (673 genes) (Brunquell et al. 2016) and List of the significantly 

down-regulated genes altered in response to the “hsf-1(+);+Heat-Shock vs control” 

condition (357 genes) (Brunquell et al. 2016), were enriched for or depleted from genes 

that are represented by the four defined patterns. The cut-off p-value was set as 0.01. 

 

2.7.2.2 Gene ontology (GO) analysis 

Two different enrichment analyses were used for Gene Ontology Analysis: 

PANTHER Overrepresentation Test (http://geneontology.org/) and gProfiler 

(https://biit.cs.ut.ee/gprofiler/gost). The genes from each of the four defined patterns were 

uploaded to both the enrichment analysis tools and significantly enriched gene ontology 

terms, their associated q-value and other statistics values were obtained along.  

 

 

 

 

 

http://geneontology.org/
https://biit.cs.ut.ee/gprofiler/gost
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3. RESULTS 

  

My thesis was done using data 16 RNA-Seq datasets. These represent the sequencing 

of mRNA from dissected germlines of two different wild type strains of C. elegans, 

JU1171 and LKC34 with four biological replicates from two temperature treatments 

20°C and 27°C. The goal of analyzing these data sets was to find the molecular 

differences which could potentially underlie the higher level of fertility in JU1171 than 

LKC34 at the higher temperature. By checking the FastQC Reports for each of the 

samples, we found that all of our data had high quality and there was no need for 

trimming before alignment, which allowed us to directly use the data to do the following 

analysis.  

 

3.1 HISAT2 Performs Better than TopHat2 for Read Alignment 

RNA-Seq analysis begins by mapping reads against a reference genome to identify 

their genomic position (Trapnell et al. 2012). It is a major step in the analysis pipelines 

for RNA-seq. Sequence alignment itself is a classic problem in computer science and 

appears frequently in the bioinformatics area. Therefore, many read alignment programs 

have been developed within the last few years. One of the most popular RNA-Seq 

mappers, TopHat, follows a two-step strategy in which unspliced reads are first mapped 

to locate exons, then unmapped reads are split and aligned independently to identify exon 

junctions (Conesa et al. 2016). TopHat2 (v2.1.1), which uses Bowtie as an alignment 

engine and breaks up reads that Bowtie cannot align on its own into smaller pieces called 



- 14 - 
 

segments. By processing each initially unmappable read, TopHat2 can build up an index 

of splice sites in the transcriptome (Trapnell et al. 2012). 

RNA-Seq mappers need to solve an additional problem that is not encountered in 

DNA-only alignment: many RNA-Seq reads will span introns. HISAT2 uses two types of 

indexes for alignment: a global whole-genome index and tens of thousands of small local 

indexes. Both these two types of the index are constructed using the same BWT/FM 

index as Bowtie2, and the HISAT2 system even uses some of the Bowtie2 code. Because 

HISAT2 uses these efficient data structures and algorithms, it generates spliced 

alignments several times faster than Bowtie and BWA while using only about twice as 

much memory (Pertea et al. 2016). HISAT2 was designed as a successor to TopHat and 

TopHat2, it runs about 50 times faster than TopHat2 and gives higher alignment rate 

results (Table1 and Table2). 

We wanted to test the optimal parameters for each of these two methods and chose to 

use the second replicate of LKC34 at 27°C as a test sample. Default parameters were kept 

in most instances while I focused modulating two parameters of HISAT2: “--mp” and “--

rdg”, and three parameters of TopHat2: “--read-mismatches”, “--read-gap-length” and “-

-read-edit-dist”. All of these parameters have the primary influence on the final 

alignment rate, where a higher alignment rate is generally considered better. “--mp” 

represents maximum (mx) and minimum (mn) mismatch penalties. “--rdg” represents the 

read gap open and extend penalties. “--read-mismatches” represents that final read 

alignment having more than these many mismatches are discarded. “--read-gap-length” 

represents that final read alignment having more than these many total lengths of gaps are 

discarded. “--read-edit-dist” represents those final read alignments having more than 
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these many edit distance are discarded. For HISAT2, I set 10 different groups of values 

for the two parameters to compare each of its alignment rates and also set 19 different 

groups of values for the three parameters of TopHat2 to find the highest final mapped 

rate and shortest overall time cost (Table 1 and Table 2). To conclude, for HISAT2, lower 

mismatch penalties and gap penalties can get higher alignment rates. For ToHat2, 

allowing higher mismatches and gaps will get higher mapped rates and after 50 

mismatches, gaps and edit-length, the mapped rate will keep as 98.9% which is the 

highest mapped rate we can get so far. Eventually, we chose to use HISAT2 protocol 

where “--mp 5,2” and “--rdg 4,3” were specified in the command to align all of our 16 

sequences data because these parameters setting gave us the highest alignment rate 

compared with other (we do not want the minimum and extend penalties to be 1, which is 

too small). We also added “--dta-cufflinks” option to report alignments tailored 

specifically for Cufflinks. Ideally, all of the samples had exactly one-time alignment rates 

that were higher than 94%, which represents that more than 94% reads were uniquely 

aligned. For the 16 RNA-seq datasets there were no overall alignment rates that were 

below 96% (Table 3). 
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   Table 1. Parameter setting comparisons for HISAT2 

 --mp --rdg 
Alignment 

rate 

Aligned exactly one 

time 

1 
6,2 

(default) 

5,3 

(default) 
97.10% 95.32% 

2 7,2 6,3 97.03% 95.26% 

3 5,2 4,3 97.16% 95.38% 

4 3,1 2,1 97.38% 95.60% 

5 2,1 2,1 97.73% 95.92% 

6 2,1 3,1 97.73% 95.92% 

7 2,1 5,1 97.73% 95.91% 

8 2,1 9,1 97.71% 95.90% 

9 9,5 8,4 96.71% 94.96% 

10 9,1 2,1 96.96% 95.20% 

“--mp” is maximum (mx) and minimum (mn) mismatch penalties. “--rdg” is the read 

gap open and extend penalties. “Alignment rate” represents the overall alignment rate. 

The numbers in bold are the best parameter values we confirmed.  

 
 Table 2. Parameter setting comparisons for TopHat2 

 Mismatch Gap Edit-length Mapped rate Time 

1 1 1 2 (default) 89.80% 0:44:07 

2 2 (default) 2 (default) 2 (default) 92.60% 0:32:45 

3 3 3 3 93.90% 0:36:24 

4 5 5 5 95.30% 0:31:54 

5 6 6 6 87.50% 0:39:21 

6 7 7 7 95.90% 0:46:44 

7 8 8 8 96.10% 0:45:06 

8 9 9 9 96.40% 0:45:35 

9 10 10 10 97.00% 0:43:57 

10 20 20 20 98.20% 0:37:38 

11 30 30 30 98.60% 0:38:19 

12 40 40 40 98.70% 0:41:17 

13 45 45 45 98.70% 0:43:38 

14 47 47 47 98.70% 0:43:21 

15 48 48 48 98.70% 1:05:28 

16 49 49 49 98.70% 0:44:37 

17 50 50 50 98.80% 0:44:54 

18 100 100 100 98.80% 0:46:07 

19 200 200 200 98.80% 0:49:08 

“Mismatch” represents that final read alignment having more than these many 

mismatches are discarded. “Gap” represents that final read alignment having more than 

these many total lengths of gaps are discarded. “Edit-length” represents those final read 

alignments having more than these many edit distance are discarded. “Mapped rates” 

represents the overall alignment rate. “Time” represents that overall time cost. 
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     Table 3. Alignment results for HISAT2 

Sequences 

Total 

reads 

Aligned 

0 times 

Aligned 

exactly 1 time 

Aligned 

>1 time 

Overall 

alignment rate 

JU1171_rep1_27 20287168 
556150 

(2.74%) 

19372823 

(95.49%) 

358195 

(1.77%) 
97.26% 

JU1171_rep2_27 18686161 
633756 

(3.39%) 

17738620 

(94.93%) 

313785 

(1.68%) 
96.61% 

JU1171_rep3_27 18597563 
470902 

(2.53%) 

17823398 

(95.84%) 

303263 

(1.63%) 
97.47% 

JU1171_rep4_27 20220260 
502758 

(2.49%) 

19399045 

(95.94%) 

318457 

(1.57%) 
97.51% 

JU1171_rep1_20 17144213 
626050 

(3.65%) 

16202150 

(94.51%) 

316013 

(1.84%) 
96.35% 

JU1171_rep2_20 20131550 
492881 

(2.45%) 

19334884 

(96.04%) 

303785 

(1.51%) 
97.55% 

JU1171_rep3_20 18359690 
489360 

(2.67%) 

17561932 

(95.65%) 

308398 

(1.68%) 
97.33% 

JU1171_rep4_20 17328898 
529413 

(3.06%) 

16547190 

(95.49%) 

252295 

(1.46%) 
96.94% 

LKC34_rep1_27 19235721 
527068 

(2.74%) 

18391023 

(95.61%) 

317630 

(1.65%) 
97.26% 

LKC34_rep2_27 16726217 
489605 

(2.93%) 

15939935 

(95.30%) 

296677 

(1.77%) 
97.07% 

LKC34_rep3_27 17818884 
524827 

(2.95%) 

16995287 

(95.38%) 

298770 

(1.68%) 
97.05% 

LKC34_rep4_27 16684730 
458508 

(2.75%) 

15953915 

(95.62%) 

272307 

(1.63%) 
97.25% 

LKC34_rep1_20 18604822 
505709 

(2.72%) 

17795223 

(95.65%) 

303890 

(1.63%) 
97.28% 

LKC34_rep2_20 17614169 

623736 

(3.54%

） 

16684200 

(94.72%) 

306233 

(1.74%) 
96.46% 

LKC34_rep3_20 20167606 
509309 

(2.53%) 

19359382 

(95.99%) 

298915 

(1.48%) 
97.47% 

LKC34_rep4_20 18686760 
529277 

(2.83%) 

17852202 

(95.53%) 

305281 

(1.63%) 
97.17% 

“Sequences” represents each sample of our 16 RNA-Seq data and the total reads corresponding to 

each of the samples. “Aligned 0 times” indicates the reads that were filed to aligned. “Aligned 

exactly 1 time” represents uniquely aligned reads while “Aligned >1 time” represents multi-

mapped reads. The last column showed the over alignment rate for each sample. 
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3.2 Scatter Plots of the Gene Expression of Replicates among Samples 

We wanted to detect any abnormalities present in our data by investigating the 

distribution of read counts for each sample and replicate. Ideally, all of the samples or 

replicates would display similar overall distributions. Scatter plots can be used to 

visualize the comparison of expression levels between two samples or two treatment 

groups, where each dot represents a single gene. Scatter plots usually use normalized 

expression values rather than raw counts to compare the expression levels. Normalized 

expression values are often in the form of FPKM (fragment/reads per kilobase of 

transcript per million mapped reads) (McDermaid et al. 2019). 

In this thesis, for each strain under each condition, there were four biological 

replicates that analyzed. In total, 24 scatter plots were created to compare the gene 

expression of each replicate among the same genotype under the same temperature 

condition (Figure 1, Appendix 1) and also 32 scatter plots were created to compare the 

gene expression of each replicate of the same genotype under the different temperature 

condition (Figure 2, Appendix 2). All of these scatter plots were generated by applying 

ggplot() function in R (R core team 2019), which is a programming language and free 

software environment for statistical computing and graphics supported by the R 

Foundation for Statistical Computing. 

All of the plots (Appendix 1 and Appendix 2) demonstrated that whatever under 

the same condition or not, each replicate within the same genotype had highly similar 

expression patterns across all genes, where it can be seen that a closer clustering of all 

dots lies exactly at the diagonal line. To compare figure 1 and 2, all of the plots in figure 

1 looks tighter than the plots in figure 2. This is consistent with our hypothesis that under 
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the same temperature condition, the gene expression was highly similar, while there were 

some differences between the gene expression level when they were under the different 

temperature conditions. To conclude, there is not much of an effect of the different 

replicates within the same genotype under the same or different conditions. 

 

 

 
Figure 1. Scatter plots were created to compare the gene expression of each replicate for JU1171 

at 20°C (full plots can be found in Appendix 1). The red dashed lines are the regression lines. X-

axis and Y-axis are the FPKM values of the gene in the two replicates respectively. Axes were 

rendered on the log10 scale.  
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Figure 2. Scatter plots were created to compare the gene expression of each replicate among the 

JU1171 at 20°C versus 27°C (full plots can be found in Appendix 2). The red dashed lines are the 

regression lines. X-axis and Y-axis are the FPKM values of the gene in the two replicates 

respectively. Axes were rendered on the log10 scale.  
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3.3 Transcript Assembly and FPKM Normalization with Cufflinks and Cuffmerge 

Accurately quantifying the expression level of a gene from RNA-Seq reads 

requires accurately identifying which isoform of a given gene produced each read, which 

depends on knowing all of the isoforms of that gene. Attempting to quantify gene and 

transcript expression by using an incomplete or incorrect transcriptome annotation leads 

to inaccurate expression values. Cufflinks assembles individual transcripts from RNA-Seq 

reads that have been aligned to the genome. Since a sample might contain reads from 

multiple splice variants for a given gene, Cufflinks must be able to infer the splicing 

structure of each gene. However, sometimes the gene has multiple alternative splicing 

events so that there may be many possible reconstructions of the gene model to explain 

the sequencing data. The truth is that usually, it is not obvious how many splice variants 

of the gene may be present.  

The most common application of RNA-Seq is to estimate gene and transcript 

expression. This application is primarily based on the number of reads that map to each 

transcript sequence. The simplest approach to quantification is to aggregate raw counts of 

mapped reads. Raw read counts alone are not sufficient to compare expression levels 

among samples because these values are affected by factors such as transcript length, the 

total number of reads, and sequencing biases. The measure FPKM (Fragments Per 

Kilobase of transcript per Million mapped reads) is a within-sample normalization 

method that will remove the feature-length and library-size effects (Conesa et al. 2016).  

I used the Cufflinks to assemble for each sample with the default parameters to 

run all the resulting 16 different .bam files that were transformed from 16 .sam files by 

using the samtools. Cufflinks uses FPKM values to report transcript abundances (16 
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gene.fpkm_trancking files), which reflect the normalization of our RNA-Seq data for 

depth (average number of reads from a sample that align to the reference genome) and 

gene length. The counts need to be normalized for the length of a gene to compare the 

expression levels between genes due to the reason that genes have different lengths 

(Amrit et al. 2017). In this thesis, there were four biological replicates for each genotype 

under each condition that analyzed. The four replicates were combined together as one 

genotype by condition set and these four sets were compared in six ways (Figure 3). For 

each of the six comparisons, .txt files were created, where each of the files listed eight 

assembly files for two comparisons between groups made up of four replicates. All the 

assemblies were then merged together along with the reference genome by using the next 

tool Cuffmerge to generate one final assembly containing all transcripts identified across 

all samples for each of the six comparisons.  

 

Figure 3. Six comparisons between groups each made up of four biological replicates: LKC34 at 

20°C vs. LKC34 at 27°C, JU1171 at 20°C vs. JU1171 at 27°C, LKC34 at 27°C vs. JU1171 at 

27°C, LKC34 at 20°C vs. JU1171 at 20°C, LKC34 at 20°C vs. JU1171 at 27°C, LKC34 at 27°C 

vs. JU1171 at 20°C.  
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3.4 Differential Expression Testing with Cuffdiff and Visualization with R 

Cufflinks includes a separate program, Cuffdiff, which calculates expression in 

two or more samples and tests the statistical significance of each observed change in 

expression between them. With multiple replicates, Cuffdiff can learn how read counts 

vary for each gene across the replicates and used these variance estimates to calculate the 

significance of observed changes in expression. The reads and the merged assembly were 

fed to Cuffdiff. Cuffdiff allows people to supply multiple technical or biological replicate 

sequencing libraries per condition and provides analyses of differential expression and 

regulation at the gene and transcript levels.  

But browsing these files is not very easy and straightforward, so the 

CummeRbund package for R/Bioconductor was used, which can help people manage, 

visualize and integrate all of the data produced by a Cuffdiff analysis (Trapnell 2012). We 

can create publication-ready plots with a single command (Trapnell et al. 2012). R is a 

programming language and free software environment for statistical computing and 

graphics. The R language is widely used among statisticians and data miners for 

developing statistical software and data analysis (Fox 2005).  

I ran Cuffdiff with the default parameters for the six comparisons between groups. 

It reported many output files containing the results of its differential analysis of the 

samples which were reported in a set of tab-delimited text files that can be opened with 

any spreadsheet application, such as Microsoft Excel (Trapnell et al. 2012). I mainly used 

gene_exp.diff which contained familiar statistics such as fold change in log2 scale, p-

values, q-values (FDR adjusted p-value) and gene-related and transcript-related attributes 

such as common name and location in the genome. I generated six scatter plots to 
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compare the expression of each gene for each comparison (Figure 4) and also six volcano 

plots were created to inspect differentially expressed genes (Figure 5).  

 

 

Figure 4. Scatter plots of differentially expressed genes in the six comparable groups. The red 

dashed lines are the regression lines. X-axis and Y-axis are the FPKM values of the gene in the 

two conditions respectively. Axes were rendered on the log10 scale.  
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Figure 5. Volcano plots of differentially expressed genes in the six comparable groups generated 

by Cuffdiff. The horizontal lines represent the value of -log10 FDR where FDR = 0.05. The left 

vertical lines represent the value of log2 FoldChange where Fold Change = 1.5. The right vertical 

lines represent the value of log2 FoldChange where Fold Change = 1/1.5.  

 

I manually made the six gene_exp.diff have the same gene IDs and in the same 

order and found that under the gene ID column, there were 869 cells that showed more 
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than one gene ID in one cell where it should just have one single gene ID in one cell. I 

did some research and found this case is due to the reason that these genes’ positions are 

so close, they had some overlap so the Cuffdiff software cannot accurately detect which 

gene was represented by the reads. The C.elegans genome is very compact with often less 

than one kilobase between genes. In my thesis, I set a q-value cutoff of <0.05 for 

significant differential expression. After calling significantly differential expressed genes, 

there were still 616 cells that had more than one gene ID assigned it at least one of the six 

files. Because Cuffdiff had problems separating these genes, I moved on to other methods 

of differential gene expression analysis for my data. 

 

3.5 Comparisons between DESeq2, edgeR and limma 

Recently, the rapid output of high-throughput sequencing technologies for 

molecular genomic studies has led to an urgent need for statistical methods to quantify 

the differences between experiments for understanding the molecular basis of phenotype 

variation in biology. One of the most important aims is analyzing the RNA-Seq data to 

find the genes which are differentially expressed across multiple groups of samples 

between conditions. A number of statistical methods have been developed for RNA-Seq 

data based on Poisson and negative binomial distributions to detect the differential 

expressed genes (Park et al. 2016). According to Xiong et al. (2014), edgeR, DESeq2, 

limma-based methods, and Cuffdiff are among the most widely used tools for differential 

expression analysis. (NEW TABLE WOULD GO HERE – See note above) 
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           Table 4. Comparisons between DESeq2, edgeR and limma 

Method Normalization Read count distribution 

assumption 

Differential 

expression test 

DESeq2 DESeq 

sizeFactors 

Negative Binomial 

distribution 
Exact test 

edgeR trimmed mean of 

M values (TMM) 

Negative Binomial 

distribution 
Exact test 

limma trimmed mean of 

M values (TMM) 

Voom transformation  

of counts 

Empirical Bayes 

method 

 

The first tool which was applied to our data is DESeq2. Love et.al (2014) presents 

DESeq2, which is a method for differential expression analysis of count data. It improved 

the stability and interpretability of estimates by using shrinkage estimators for dispersions 

and fold changes to enable more quantitative analysis. The DESeq2 method detects and 

modifies low dispersion estimates by modeling the dependence of dispersion on average 

expression intensity in all samples. The package DESeq2 provides methods to test for 

differential gene expression by using negative binomial generalized linear models (GLM) 

and uses local regression between mean and variance to estimate overdispersion. After 

GLMs were fitted for each gene, we used a Wald test in DESeq2 for significant testing, 

where we used the estimated standard error of a log2 fold change to test if it was equal to 

zero. Besides, the likelihood ratio test (LRT) is also available as another option in 

DESeq2. With our data, we chose a cutoff of the adjusted p-value (q-value) of 0.05 and 

fold changes of 1.5 to call significantly differentially expressed gene lists. For 

visualization, six volcano plots were created to inspect differentially expressed genes 

generated by DESeq2 (Figure 6) 
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Figure 6. Volcano plots of differentially expressed genes in the six comparisons between groups 

generated by DESeq2. The horizontal lines represent the value of -log10 FDR where FDR = 0.05. 

The left vertical lines represent the value of log2 FoldChange where Fold Change = 1.5. The right 

vertical lines represent the value of log2 FoldChange where Fold Change = 1/1.5. 
 

In addition, I used edgeR and compared it with the results with those of DESeq2. 

edgeR (empirical analysis of DGE in R) is a Bioconductor software package for 

examining the differential expression of replicated count data (Robinson et al. 2010). It is 

also based on the negative binomial generalized linear model and allows different 

sequencing depth by applying the Trimmed Mean of M values (TMM) normalization 

method. Empirical Bayes procedure was used to adjust for over-dispersion across genes 

(Park et al. 2016). For general experiments, once dispersion estimates were obtained and 
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negative binomial generalized linear models were fitted, the differential expression was 

assessed for each gene using the quasi-likelihood (QL) F-test. 

limma is also an R/Bioconductor software package that was originally designed 

for analyzing microarray data. To date, it has been extended to RNA-Seq data. limma is 

based on the gene-wise linear model and also uses TMM normalization for the 

adjustment of different sequencing depth. By using the empirical Bayes method, limma 

can deliver powerful inferences for differential expression analysis (Ritchie et al. 2015). 

I applied DESeq2, edgeR and limma respectively, and then compared the results 

of these three methods which all use the same cutoff criteria of the adjusted p-value (q-

value) of 0.05 and fold changes of 1.5 to call significantly differentially expressed gene 

lists. Venn-diagrams generated from BioVenn (http://www.biovenn.nl/) were used to 

display the overlap results between DESeq2, edgeR and limma (Figure 7 and Appendix 

3). Take the genes that had higher expression in JU1171 at 20°C than in LKC34 at 20°C 

as an example, DESeq2, edgeR and limma identified 375, 412 and 418 genes as 

differentially expressed genes after FDR correction, separately. Among these, 304 genes 

were commonly detected in all of these three methods and 96 additional genes were 

commonly detected in both edgeR and limma methods (Appendix 3).  

 

http://www.biovenn.nl/
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Figure 7. The Venn-diagrams were used to display the overlap among genes that were found to be 

significantly higher expressed under each condition by using the three differential expression 

testing tools: DESeq2, edgeR and limma. Only part of the diagram was shown, and the full part 

can be found in Appendix 3.  

 

3.6 Comparisons between DESeq2 and DESeq 

In looking at the Volcano plot for our DESeq2, there are many genes that have a 

q-value of < 0.05 but do not have a significant fold change (Figure 6). This is a pattern 

that differs from some previously published RNA-Seq data from C.elegans dissected 

germlines (Campbell and Updike 2015). However, these other published data sets were 

analyzed using the DESeq pipeline instead of DESeq2. In order to determine if the large 

number of genes with a q-value of < 0.05 was due to the input data or the DESeq2 
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pipeline. I ran both a previously published data set (Campbell and Updike 2015) and my 

own data through both the DESeq and DESeq2 pipelines.  

Compared with DESeq2, which shrinks the gene-wise dispersion estimates 

towards the fitted values to obtain the final dispersion values, DESeq (Anders and Huber, 

2010) adopts a more conservative approach using the maximum of the fitted value and 

the gene-wise estimate. The DESeq approach to test for the differential expression is very 

similar to the edgeR classic method, which uses an exact test for differences between two 

negative binomial variables. First, Campbell’s raw mRNA-Seq data (Campbell and 

Updike 2015) were downloaded at the GEO database under the accession number 

GSE67954. The data from Campbell and Updike was from RNA isolated C.elegans 

germlines that were either wild type or depleted for the csr-1 gene. I then ran the same 

mRNA-sequencing and analysis protocols as described in their paper, which included 

using TopHat2 for alignment and DESeq for differential gene expression analysis. In 

addition, I used the mRNA-Seq analysis protocols as I used on my own data including 

HISAT2 for alignment and DESeq2 for differential gene expression analysis. Finally, I 

also ran HISAT2 for alignment with DESeq for differential gene expression analysis. It 

can be seen from the volcano plots (Figure 8) that there was no big difference between 

TopHat2 and HISAT2. The volcano plots for both pipelines using DESeq are similar to 

the published volcano plots with very few genes with an FDR of <0.05 that do not also 

have a >1.5 fold change in expression. However, the use of DESeq2 resulted in an 

increase in the total number of up-regulated and down-regulated genes than HISAT2 

combined with DESeq (Figure 8). The use of DESeq2 also resulted in a large number of 

genes with an FDR of <0.05 but not a >1.5 fold change.  
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Figure 8. Volcano plots of differentially expressed genes with different protocols on partial of 

Campbell’s mRNA-Seq data (Campbell and Updike 2015). (A). TopHat2 + htseq-count + DESeq. 

(B). Hisat2 + htseq-count + DESeq. (C). Hisat2 + htseq-count + DESeq2. The horizontal lines 

represent the value of -log10 FDR where FDR = 0.05. The left vertical lines represent the value 

of log2 FoldChange where Fold Change = 1.5. The right vertical lines represent the value of log2 

FoldChange where Fold Change = 1/1.5.     

 

I next compared four differential gene expression pipelines on my own data: 

DESeq, DESeq2, edgeR and limma using a single comparison of JU1171 versus LKC34 
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at 20°C. For all four of these pipelines, I used HISAT2 for alignment. In general, DESeq2, 

edgeR and limma detected more differential expression genes than DESeq. Volcano plots 

were generated in R to visually present the differentially expressed genes (Figure 9). 

Venn-diagrams were used to display the overlap results between DESeq and DESeq2 

(Figure 10 and Appendix 4). Take the genes that are higher expressed in JU1171 at 20°C 

than in LKC34 at 20°C as an example, DESeq and DESeq2 identified 268 and 375 genes 

as differentially expressed after FDR correction, respectively. Among these, 254 genes 

were commonly detected in both these two methods. While with all four methods, there 

was a high overlap of genes called as differentially expressed, the very different shapes of 

the volcano plots between methods points towards the differences in how the pipelines 

deal with determining both fold changes and FDR.  Finally, all three newer methods 

(DESeq2, edgeR, and limma) all result in many more genes that have a <0.05 FDR 

without a significant fold change.  These comparisons underscore the importance of 

taking the differential expression pipeline into account when comparing RNA-Seq 

experiments to previously published data which may have used a different pipeline. 
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Figure 9. Volcano plots of differentially expressed genes with different protocols on partial of our 

data (JU20 versus LKC34 at 20°C). (A). Hisat2 + htseq-count + DESeq. (B). Hisat2 + htseq-

count + DESeq2. (C). Hisat2 + htseq-count + edgeR. (D). Hisat2 + htseq-count + limma. The 

horizontal lines represent the value of -log10 FDR where FDR = 0.05. The left vertical lines 

represent the value of log2 FoldChange where Fold Change = 1.5. The right vertical lines 

represent the value of log2 FoldChange where Fold Change = 1/1.5.    
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Figure 10. The Venn-diagrams were used to display the overlap among genes that were found to 

be significantly higher expressed under each condition by using the two differential expression 

testing tools: DESeq and DESeq2. Only part of the diagram was shown, and the full part can be 

found in Appendix 4. 

 

3.7 Four Potential Patterns Analysis 

The goal of analyzing these data sets was to find the molecular differences which 

could potentially underlie the reasons that JU1171 is more fertile than LK34 under the 

higher temperature condition. We propose that this difference in phenotype could be due 

to one of two scenarios: 1) there is a set of genes that change their expression with 

response to stress in JU1171 but not in LKC34, and/or 2) there is a set of genes with a 

baseline difference in expression between JU1171 and LKC34. Thus, I defined four 

different gene expression patterns in my thesis for these two scenarios (Figure 11). 
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Pattern 1 is those genes that are up-regulated in JU1171 at 27°C compared to 20°C but 

are not up-regulated in LKC34 at 27°C compared to 20°C (genes whose expressing in 

activated with elevated temperature in JU1171, but not in LKC34). Pattern 2 is those 

genes that are down-regulated in JU1171 at 27°C compared to 20°C but are not down-

regulated in LKC34 at 27°C compared to 20°C (genes whose expression is down-

regulated with elevated temperature in JU1171, but not in LKC34). Pattern 3 expressed 

higher in JU1171 compared to LKC34 at both temperatures and genes that are expressed 

higher in LKC34 compared to JU1171 at both temperatures (genes that always have a 

higher level of expression in JU1171 compared to LKC34). And Pattern 4 genes that are 

expressed higher in LKC34 compared to JU1171 at both temperatures (genes that always 

have a lower level of expression in JU1171 compared to LKC34). I determined the 

number of genes in each pattern by filtering the TURE of FALSE values for the 

corresponding columns in the results generated from DESeq2 and got the gene ID lists for 

each pattern to do the following enrichment analysis. In total, there were 968 genes in 

Pattern 1, 305 genes in Pattern 2, 214 genes in Pattern 3 and 313 genes in Pattern 4. 
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Figure 11. The line charts illustrate four different patterns based on different expression levels 

between LKC34 and JU1171 under different temperature conditions. 

 

3.8 Gene Set Enrichment Analysis via the Hypergeometric Test 

Gene set enrichment analysis is a method to find common characteristics of a set 

of genes of interests and it uses a statistical test to identify significantly enriched or 

depleted groups of genes (Subramanian et al., 2005). The hypergeometric test is a 

statistical test which uses the hypergeometric distribution to calculate the statistical 

significance to identify which sub-populations are over-represented or under-represented 

in a specific sample (Rivals et al. 2017). We wanted to test if there were any particular 

pathways or tissues for the genes based in our four patterns, which may be related to the 

potential reasons that JU1171 is more fertile at the higher temperature.  

In my thesis research, I asked if there was enrichment for a specific tissue 

expression pattern in the four patterns by looking at the overlap of those genes with 

specific tissue expression pattern including genes whose expression is germline enriched 



- 39 - 
 

(Reinke et al. 2004), germline enriched gender neutral (Reinke et al. 2004), soma 

enriched (Reinke et al. 2004), neuron enriched (Watson et al. 2008), three different sets 

of spermatogenesis enriched genes (Reinke et al. 2004, Ortiz et al. 2014, Chu et al. 2006), 

and two sets of oocyte enriched genes (Reinke et al. 2004, Ortiz et al. 2014).  

p-values for each gene set were calculated in R by applying the phyper() function 

and recorded in Table S1. Genes that had a p-value less than a given alpha are considered 

significant (Figure 12). Our default setting is an alpha of 0.01. Pattern 1 genes were 

significantly enriched for three gene sets, Spermatogenesis enriched genes (Reinke et al. 

2004), Spermatogenesis enriched genes (Ortiz et al. 2014), and List of genes encoding 

spermatogenesis proteins (Chu et al. 2006) (Figure 12A). This can be interpreted that 

there were more genes among the 968 genes in Pattern 1 that were expressed in the sperm 

than expected. We also found that Pattern 1 genes were significantly under-represented in 

Germline enriched gender neutral (Reinke et al. 2004), Oocyte enriched genes (Reinke et 

al. 2004) and Oocyte enriched genes (Ortiz et al. 2014). This can be explained that there 

were fewer genes among the 968 genes in Pattern 1 that were expressed in oocyte than 

expected. This shift towards a spermatogenic pattern of expression away from an oogenic 

pattern of expression may reflect a difference in the stages of germline development in 

JU1171 versus LKC34.  Under normal circumstances, the L4 stage of C. elegans makes 

sperm, while adult C. elegans make oocytes.  Perhaps this transition occurs latter in 

JU1171, which allows them to make more sperm and be more fertile. 

For Pattern 2, genes were significantly enriched for Oocyte enriched genes (Ortiz 

et al. 2014), which can be interpreted that there were more genes among the 305 genes in 

Pattern 2 that were expressed in the oocyte than expected (Figure 12B). In addition, 
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Pattern 2 genes were significantly under-represented in Germline enriched genes (Reinke 

et al. 2004), Spermatogenesis enriched genes (Reinke et al. 2004), Spermatogenesis 

enriched genes (Ortiz et al., 2014) and Oocyte enriched genes (Reinke et al. 2004). It can 

be explained that there were fewer genes among the 305 genes in Pattern 2 that were 

expressed in germline and sperm than expected.  

In addition, Patter 4 genes were significantly enriched in Germline enriched 

gender neutral gene set (Reinke et al. 2004) and Oocyte enriched gene set (Ortiz et al. 

2014). It can be interpreted that there were fewer genes among the 313 genes in Pattern 4 

that were expressed in germlines and oocyte than expected. Interestingly, we got no 

significant p-value in Pattern 3 among all the public gene sets. The full table can be found 

in Appendix 5. 
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Figure 12. The bar charts illustrate the hypergeometric test results of four potential patterns. The 

X-axis is the abbreviation of eleven published gene sets' names. From left to right: germline 

enriched genes (Reinke et al. 2004), Germline enriched gender neutral (Reinke et al. 2004), Soma 

enriched genes (Reinke et al. 2004), Neuron enriched genes (Watson et al. 2008), 

Spermatogenesis enriched genes (Reinke et al. 2004), Spermatogenesis enriched genes (Ortiz et 

al. 2014), List of genes encoding spermatogenesis proteins (Chu et al. 2006), Oocyte enriched 

genes from (Reinke et al. 2004), Oocyte enriched genes from (Ortiz et al. 2014), List of the 

significantly up-regulated genes altered in response to the “hsf-1(+);+HS vs control” condition 

(Brunquell et al. 2016) and list of the significantly down-regulated genes altered in response to 

the “hsf-1(+);+HS vs control” condition (Brunquell et al. 2016). Y-axis is the number of expected 

and observed genes of each pattern. *P < 0.01. The black asterisk represents the genes that were 

significantly enriched in each dataset, while the red asterisk represents the genes that were 

significantly under-represented in each dataset.  

 

We now know that organisms have evolved an ancient heat shock response (HSR) 

to protect cells at elevated temperatures (Schreine et.al 2019). This response was driven 

by the heat shock transcription factor (HSF1). The HSF1 homolog HSF-1 in C. elegans is 

an important protein that is required to activate a stress-dependent response (Brunquell 

et.al 2016). We wanted to test if there was enrichment for HSF-1 responsive genes in the 

four patterns, which would indicate that in JU1171 HSR is activated so that it can be 

more fertile at the higher temperature. We looked at the overlap of the genes in the four 
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patterns with a list of the significantly up-regulated genes altered in response to the “hsf-

1(+);+Heat-Shock vs control” condition (Brunquell et al. 2016) and a list of the 

significantly down-regulated genes altered in response to the “hsf-1(+);+Heat-Shock vs 

control” condition (Brunquell et al. 2016). There is no significant p-value in all of the 

four defined patterns among these two gene sets. 

 

3.9 Gene Ontology (GO) Analysis 

One of the main uses of the GO is to perform enrichment analysis on gene sets 

(Ashburner et al. 2000). For instance, given four sets of genes based on our four patterns, 

an enrichment analysis will find which GO terms are over-represented (or under-

represented) using annotations for those gene sets. The gene ID lists were used to do the 

enrichment analysis on the functions of genes under each pattern to uncover the 

expression patterns that are different between the two strains and two temperatures 

deeply. The Gene Ontology (GO) knowledgebase is the world’s largest source of 

information on the functions of genes. This knowledge is both human-readable and 

machine-readable, and is a foundation for computational analysis of large-scale 

molecular biology and genetics experiments in biomedical research. The results page of 

using the PANTHER Overrepresentation Test displayed a table that lists significant 

enriched GO terms (or parents of GO terms) used to describe the set of genes that we 

entered on the previous page.  

Further analysis using PANTHER Overrepresentation Test resulted in 46 

overrepresented Gene Ontology (GO) biological process terms (Table S2) for Pattern 1. 

The five most enriched GO terms were neuron migration (GO:0001764), positive 
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regulation of neurogenesis (GO:0050769), positive regulation of nervous system 

development (GO:0051962), neuron projection development (GO:0031175), and molting 

cycle (GO:0042303). There are no statistically significant results for the other three 

patterns.  
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4. DISCUSSION 

 

4.1 Read Alignment Rates and Processing Time Indicate that HISAT2 Works Better than 

TopHat2  

My study did several comparisons between TopHat2 and HISAT2 with different 

parameter settings to come to an optimal one. I tested 10 groups for HISAT2 and 19 

groups for TopHat2 and selected the most optimal one based on both the alignment rate 

and the running time. However, there were two biases in my test. First, I only ran these 

comparisons using a single test file and not on the full 16 datasets, in order to choose the 

one I eventually chose was the best. But this parameter setting may not be the optimal 

one and may not be applicable for other datasets. Second, HISAT2 has a unique option, “-

-dta-cufflinks”, which can report alignments tailored specifically for Cufflinks. I did add 

this option when I run the Cuffdiff pipeline. However, when I first started to look for the 

best parameters, I did not add this option. Thus, there could be some slight differences in 

the alignment rates between the test results and the final results of the HISAT2 used for 

Cuffdiff protocol. We gave up using TopHat2 not only because of its lower alignment 

rates and long runtimes compared to the HISAT2, but also because it has entered a low 

maintenance, low support stage as it is now superseded by HISAT2 more accurately and 

efficiently. 

 

4.2 No Method among Cuffdiff, DESeq2, edgeR, limma and DESeq is Optimal under All 

Circumstances 

 

In this master thesis, I compared several methods for calling differential gene 

expression analysis based on RNA-Seq data. I applied Cuffdiff and also the most widely 
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used methods that are available in R or Bioconductor, which are DESeq2, edgeR, limma 

and DESeq. My key purpose was to come to a sound recommendation on which methods 

performed better than others and could give us the most conservative result for our 16 

samples. In my thesis, just a brief summary of these software packages that I compared 

was given. For a more detailed description of the packages and the introduction of the 

statistical methods they apply, people can refer to their original publication works of 

literature and websites. When applying these methods, I followed the instructions and 

used the recommended approach that an average user is likely to use, which includes the 

common parameters and default normalization methods (Seyednasrollah et.al 2015).  

I did more theory comparisons among those methods but not more parameter settings 

or detailed results comparisons, such as run times and the effect of normalization on the 

detections. I compared their final results by seeing their overlaps using Venn-diagrams 

and most of the figures showed that edgeR and limma gave us the most similar results, 

while with DESeq2 there were more uniquely called differentially expressed genes. It 

might because I took the recommendation from the limma user guide to use TMM 

normalization of the edgeR package. DESeq2 internally corrects for library size by 

estimating the size factors for each sample using DESeq() function. The reason why I 

finally chose the results from DESeq2 is not only because most of the literature about 

RNA-Seq analysis for C.elegans used DESeq or DESeq2 as the main tool, such as 

Campbell’s paper (Campbell and Updike 2015), but also because DESeq2 has been 

developed to deal with the analysis of experiments with a small number of replicates and 

even work with experiments without any biological replicates (Seyednasrollah et.al 

2015). Moreover, DESeq2 enables the shrinkage of effect size by introducing lfcShrink() 
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function, which performs log2 fold change shrinkage and is useful for visualization and 

ranking of genes. Overall, from what I have seen in my own testing, the DESeq2, edgeR, 

limma and DESeq typically report a high percentage of overlapping sets of differentially 

expressed genes and have similar performance for the differential expression testing on 

our 16 samples. 

 

4.3 Gaps in How the Genes were Changed at Elevated Temperature 

The temperature has long been thought to regulate lifespan by globally affecting 

biological processes and chemical reactions. Generally, it is believed that lower 

temperatures prolong lifespan while higher temperatures shorten it. However, recent 

work demonstrated that germline function is more buffered in JU1171 and LKC34 at 

higher temperature conditions (Petrella 2014). Our studies have uncovered some genes 

that may play an active role in temperature modulation of C.elegans germline function. 

GO analysis gave us the results that several particular related pathways and tissues in our 

four patterns of genes that may help JU1171 survive at the higher temperature, such as 

the regulation of neurogenesis, nervous system development and molting cycle.  

With pattern 1 analysis, there was both an over-enrichment of genes associated 

with spermatogenesis (tissue expression comparison results) and an over-enrichment of 

genes associated with neurons (GO analysis results). Both of these two categories are the 

categories that are over-enriched with genes that are up-regulated in germlines when P-

granules are lost (Knutson et al. 2017; Campbell and Updike 2015). Therefore, there may 

be a link between decreased P-granules and the better fertility in JU1171 at higher 

temperatures. Interestingly, there is increased germline apoptosis when P-granules are 
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lost (Min et al. 2016). Previous research has shown that there is an increase in germline 

apoptosis at 26.5°C (Poullet et al. 2015). Based on those findings, we predicted that the 

strains that are better able to increase germline apoptosis may be able to protect oocyte 

quality, thus leading to increased fertility. If there is a bigger issue with P-granules in 

JU1171, it may lead to more apoptosis which might explain why JU1171 is more fertile 

under the higher temperature condition. 

We now know that all of the biological processes mentioned above may assist 

JU1171 survive at the higher temperature. But we still do not know exactly how these 

genes were changed in those biological processes. For future work, more wet-lab 

experiments should be done to investigate these differentially expressed genes and focus 

more on the relevant pathways when we see that in other analyses. Involving more gene 

expression results of extra worms may also significantly improve the accuracy of our 

analysis. 
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6. APPENDIX 

Appendix 1.  
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Scatter plots were created to compare the gene expression of each replicate for JU1171 at 

20°C, JU1171 at 27°C, LKC34 at 20°C and LKC34 at 27°C. The red dashed lines are the 

regression lines. X-axis and Y-axis are the FPKM values of the gene in the two replicates 

respectively. Axes were rendered on the log10 scale. 
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Appendix 2.  
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Scatter plots were created to compare the gene expression of each replicate among the 

JU1171 at 20°C versus 27°C, LKC34 at 20°C versus 27°C. The red dashed lines are the 

regression lines. X-axis and Y-axis are the FPKM values of the gene in the two replicates 

respectively. Axes were rendered on the log10 scale.  
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The Venn-diagrams were used to display the overlap among genes that were found to be 

significantly higher expressed under each condition by using the three differential 

expression testing tools: DESeq2, edgeR and limma.  

 

Appendix 4. 
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The Venn-diagrams were used to display the overlap among genes that were found to be 

significantly higher expressed under each condition by using the two differential 

expression testing tools: DESeq and DESeq2. 
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