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Abstract: 
In distributed computing systems (DCSs) where server nodes can fail permanently with nonzero probability, 
the system performance can be assessed by means of the service reliability, defined as the probability of 
serving all the tasks queued in the DCS before all the nodes fail. This paper presents a rigorous probabilistic 
framework to analytically characterize the service reliability of a DCS in the presence of communication 
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uncertainties and stochastic topological changes due to node deletions. The framework considers a system 
composed of heterogeneous nodes with stochastic service and failure times and a communication network 
imposing random tangible delays. The framework also permits arbitrarily specified, distributed load-
balancing actions to be taken by the individual nodes in order to improve the service reliability. The 
presented analysis is based upon a novel use of the concept of stochastic regeneration, which is exploited 
to derive a system of difference-differential equations characterizing the service reliability. The theory is 
further utilized to optimize certain load-balancing policies for maximal service reliability; the optimization is 
carried out by means of an algorithm that scales linearly with the number of nodes in the system. The 
analytical model is validated using both Monte Carlo simulations and experimental data collected from a 
DCS testbed. 

SECTION 1 Introduction 
A distributed computing system (DCS) allows its users to process large, time-consuming workloads in a 
cooperative fashion. To achieve this goal, each workload has to be divided into smaller and independent 
units, called tasks. Next, these tasks have to be redistributed to appropriate computational elements, 
where they are concurrently processed. Tasks have to be intelligently allocated onto the nodes in order to 
efficiently use the resources available in the system. Such task allocation is referred to in the literature 
as load balancing (LB). LB is of great importance in distributed computing since, as commonly known, the 
performance of a given DCS strongly depends upon the distribution of the tasks in the system [1]. 
Furthermore, the LB problem belongs to a more general class of problems in resource allocation. These 
problems appear not only in distributed computing but also in routing in wireless networks, 
telecommunications, data replication in hard-drive arrays, and other problems in computer science and 
operational research [2], [3], [4], [5], [6]. 

LB policies rely on the effective exchange of load state information among the nodes. This information is 
used to estimate whether nodes are imbalanced or not with respect to other nodes in the DCS. Moreover, 
load state information is utilized to calculate both the appropriate amount of tasks that needs to be 
reallocated to other nodes and the appropriate set of nodes receiving the load. When the communication 
network imposes stochastic, tangible delays, the load state information available to the nodes may be 
severely dated and therefore misleading. Moreover, such delays automatically imply that the effect of task 
reallocation is not instantaneous. Clearly, it is expected that the success of any scheduler to balance the 
workload is degraded by communication limitations [7], [8]. 

The dynamics of DCS becomes further complicated in volatile or harsh environments in which nodes are 
prone to fail permanently (as in scenarios where massive disruptions result from weapons of mass 
destruction). In such cases, messages have to be broadcasted among working nodes in order to detect and 
isolate faulty nodes. Once again, due to network stochastic communication delays, information available to 
each node about the number of the functional nodes in the DCS may not be current; as such, LB policies as 
well as methods for reallocating tasks originally assigned to faulty nodes must be analyzed employing a 
probabilistic framework. 

The role of LB in improving the performance of DCSs has been studied vastly considering a number of 
performance metrics; these include the average response time of an entire workload [1], [8], the 
probability of successfully serving an entire workload [9], [10], [11], [12], [13], [14], [15], the probability of 
serving a workload within a given amount of time [16], the average queue length of a node [17], [18], and 
the total sum of communication and service times [4], [19]. In addition, the problem of LB has been studied 



under both static and dynamic scenarios. In static LB, a centralized entity allocates the tasks offline, that is, 
tasks are allocated prior to their execution in the DCS [10], [11], [17]. In contrast, in dynamic LB, tasks are 
queued at the nodes and LB is triggered online whenever there is an imbalance in the 
DCS [7], [8], [19], [20]. 

LB has been effectively employed to reduce the effect of node failures on the execution of a workload. The 
objective is to maximize the service reliability, while the response time of the workload is simultaneously 
minimized. To date, existing analytical solutions to this problem have been based upon multiobjective 
optimization approaches. Some approaches have assumed deterministic communication 
delays [21], [22], [23], [24] while introducing task and/or hardware redundancy to compensate for the 
delays [25], [26]. Other solutions either exploit a priori information on the network configuration [27] or 
provide computationally fast solutions by using heuristic algorithms such as genetic algorithms [28] and 
simulated annealing [29], [30]. Most relevant to this paper are the recent works by Dai et al. [10], [11]. The 
authors solve the static LB problem by using a centralized entity, which allocates tasks in the DCS in order 
to maximize the service reliability. In these works, the authors have considered random communication 
delays as well as random server failure. Additionally, in an earlier work, we have studied the effect of node 
failure and recovery on the average response time of a workload served by a two-node DCS [9]. 

In this paper, we consider the problem of LB for maximizing the service reliability of a DCS. Unlike Dai et al., 
we address the dynamic LB problem and propose an online decentralized solution. We extend the model 
presented in [15] and characterize the service reliability of DCSs composed of an arbitrary number of 
nodes. Further, in this paper, we characterize the dynamics of the service reliability as a function of the 
balancing instant. Note that due to communication limitations, there is a trade-off between having 
accurate account of the node states prior to LB by means of delaying the LB and immediacy of LB action 
(to prevent wasting time). This new view of reliability offered by our analytical approach enables us to 
optimally select when the balancing action should be taken. Potential applications of this work include 
resilient distributed computing for battlefield management systems (as distributed computing is performed 
in harsh environments where nodes can fail permanently), grid computing (where nodes can leave the DCS 
at any time), and wireless sensor networks in harsh environments. 

This paper is organized as follows. In Section 2, we build the regeneration-based stochastic theory for 
analyzing the reliability of DCSs. In Section 3, we apply the theory to devise LB strategies that maximize the 
reliability of a DCS. In the same section, the analytical model for reliability is validated and the performance 
of the LB strategies is tested, both theoretically and experimentally. Our conclusions are presented 
in Section 4. 

SECTION 2 Theory 
2.1 Problem Statement 
Consider a DCS composed of n nodes communicating over a fully connected network. Consider also that a 
workload comprising 𝑀𝑀 independent, indivisible tasks has to be processed by the system. Suppose that the 
service time of a task at each node is random and suppose also that server nodes can fail permanently at any 
random time. Assume that at 𝑡𝑡 = 0 all the nodes are functioning and tasks are allocated on the nodes so that 

the 𝑗𝑗th node has in its queue 𝑚𝑚𝑗𝑗 tasks, with � 𝑚𝑚𝑗𝑗 = 𝑀𝑀
𝑛𝑛

𝑗𝑗=1
. The problem addressed in this paper is concerned 

with maximizing the service reliability of the workload, i.e., maximizing the probability of serving all the tasks 
before all nodes fail. 



 
In order to maximize the service reliability, LB is performed at time 𝑡𝑡𝑏𝑏 ≥ 0 so that each functional node, the 𝑗𝑗th 
node, say, transfers a positive amount, 𝐿𝐿𝑗𝑗𝑗𝑗, of tasks to the kth node, with 𝑗𝑗 ≠ 𝑘𝑘, which is functioning according 
to the knowledge of the 𝑗𝑗th node. Naturally, these task exchanges over the network take random transfer times. 
Additionally, we have assumed that, at 𝑡𝑡 = 0, each node broadcasts a QI packet that takes a random amount of 
time to reach the destination nodes. 
 
The dynamics of the DCS are governed by the random times associated to the service of tasks, the failure of 
nodes, and the transfer time of both information and tasks in the network. These random times are important in 
our analysis and are defined next. 

2.1.1 Definitions and Assumptions 
Let the random variable 𝑊𝑊𝑘𝑘𝑘𝑘 be the service time of the 𝑖𝑖th task at the 𝑘𝑘th node, and let 𝑋𝑋𝑗𝑗𝑗𝑗

𝑄𝑄  be the transfer time 
of the QI packet sent from the 𝑗𝑗th to the 𝑘𝑘th node, 𝑗𝑗 ≠ 𝑘𝑘. The failure time of the 𝑘𝑘th node is represented by the 
random variable 𝑌𝑌𝑘𝑘, and the transfer time of the failure-notice (FN) packet sent from the 𝑗𝑗th to the 𝑘𝑘th node is 
represented by the random variable 𝑋𝑋𝑗𝑗𝑗𝑗𝐹𝐹 (𝑗𝑗 ≠ 𝑘𝑘). Finally, let the random variable 𝑍𝑍𝑖𝑖𝑖𝑖  be the transfer time of 
the 𝑖𝑖th group of tasks sent to the 𝑘𝑘th node. We require the following assumptions on these random variables: 
Assumption A1 
Assumption A1 Exponential distribution of the random times 
The random variables 𝑊𝑊𝑘𝑘𝑘𝑘 ,𝑋𝑋𝑖𝑖𝑖𝑖

𝑄𝑄 ,𝑌𝑌𝑘𝑘, and 𝑋𝑋𝑗𝑗𝑗𝑗𝐹𝐹  follow exponential distributions with 

rates 𝜆𝜆𝑑𝑑𝑘𝑘 , 𝜆𝜆𝑗𝑗𝑗𝑗
𝑄𝑄 , 𝜆𝜆𝑓𝑓𝑘𝑘and 𝜆𝜆𝑗𝑗𝑗𝑗𝐹𝐹 , respectively. The random variable 𝑍𝑍𝑖𝑖𝑖𝑖  is assumed to follow an exponential 

distribution conditional on the number of tasks transferred to the 𝑘𝑘 th node. 
Assumption A2 
Assumption A2 Independence of the random times 
All the random variables listed in Assumption A1 are mutually independent. 
Assumptions on the exponential distribution of the service and failure times are commonly adopted in the 
literature [1], [10], [17], [29]. Regarding the transfer times, our assumptions are justified according to our prior 
work [8], [9], [15] and the empirical data obtained from the experiments conducted over the distributed 
computing architecture to be discussed in Section 3. In addition, we have assumed that the mean transfer time 
of the 𝑖𝑖th group of tasks being transferred to the 𝑘𝑘th node follows the first-order approximation: E�𝑍𝑍𝑖𝑖,𝑘𝑘� =
𝜆𝜆
~
𝑖𝑖,𝑘𝑘
−1 = 𝑎𝑎𝑗𝑗𝑗𝑗𝑙𝑙𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑗𝑗𝑗𝑗, where 𝑎𝑎𝑗𝑗𝑗𝑗 and 𝑏𝑏𝑗𝑗𝑗𝑗 are positive constants (in seconds per task and seconds, respectively) that 

depend upon the communication channel connecting the 𝑗𝑗th and the 𝑘𝑘th nodes, and 𝑙𝑙𝑖𝑖𝑖𝑖 is the number of tasks 
in the 𝑖𝑖th group. This first-order approximation captures the linear dependence of the mean transfer time on: 1) 
the number of tasks to be transferred; 2) the end-to-end transmission time per task, through the 
parameter 𝑎𝑎𝑗𝑗𝑗𝑗 that is related to the bandwidth; and 3) the combined effects of the absolute minimum end-to-
end propagation time and any delays resulting from queuing (due to congestion), which can be represented by a 
single parameter, 𝑏𝑏𝑗𝑗𝑗𝑗. 
 
Our analysis focuses on characterizing and maximizing the service reliability when the DCS is dedicated to a 
specific user, i.e., we consider the reliability question one workload at a time. To this end, we assume in our 
analysis that there are no future arrivals of external tasks to the DCS after the submission of a workload at 𝑡𝑡 =
0. To tackle the reliability problem in the more general, shared setting, where workloads arrive continuously, the 
analysis presented here must be modified to distinguish between the different workloads in the system, and in 
addition, queuing disciplines (related to workload prioritization) have to be considered. However, the method 
presented here is an upper bound for such a general setting with continuous workload arrivals and it gives 
the maximum reliability that the DCS can guarantee to an individual user. Finally, it must be remarked that the 



theory presented here assumes the existence of a completely reliable fault-tolerance mechanism. When such 
ideal mechanisms are not available, the failure of a node can produce task losses. Consequently, in this new 
setting, the service reliability has to be defined as the probability of serving all the tasks initially allocated to the 
nodes. 
 

2.2 Task Reallocation Policy 
In order to maximize the service reliability of the DCS, each functioning node executes a distributed, albeit 
synchronous, LB policy at 𝑡𝑡 = 𝑡𝑡𝑏𝑏. The execution of the workload can be accomplished successfully only if task 
redundancy is provided by the DCS. Task redundancy is provided here by means of a trivial backup policy that is 
executed only in the event of node failure. The backup policy is asynchronous and it is triggered either at the 
actual failure instant of the nodes or at the reception of tasks by the backup system of a failed node. 
2.2.1 Distributed Load-Balancing Policy 
 
First, since the dynamic LB policy executed by the nodes is distributed, each node must determine 
independently the total amount of tasks to reallocate to other nodes. At the balancing instant, 𝑡𝑡𝑏𝑏 ≥ 0, the 𝑗𝑗th 
functioning node computes its excess load by comparing its local load to the estimated average load in the 

system. Let 𝑄𝑄𝑗𝑗(𝑡𝑡𝑏𝑏)be the number of tasks queued at the 𝑗𝑗th node at time 𝑡𝑡𝑏𝑏. Also, let 𝑄𝑄
^
ℓ,𝑗𝑗(𝑡𝑡𝑏𝑏) be the estimate 

of the number of tasks queued at the ℓth functioning node as perceived by the 𝑗𝑗th node at time 𝑡𝑡𝑏𝑏, with ℓ ≠ 𝑗𝑗. 

Here, we assume that 𝑄𝑄
^
ℓ,𝑗𝑗(𝑡𝑡𝑏𝑏) = 𝑚𝑚ℓif the QI packet has been received by the 𝑗𝑗th node at the 

time 𝑡𝑡𝑏𝑏 and 𝑄𝑄
^
ℓ,𝑗𝑗(𝑡𝑡𝑏𝑏) = 0 otherwise. The excess load of the 𝑗𝑗th node at time 𝑡𝑡𝑏𝑏 is defined as 

𝐿𝐿𝑗𝑗𝑒𝑒𝑒𝑒(𝑡𝑡𝑏𝑏) ≜ 𝑄𝑄𝑗𝑗(𝑡𝑡𝑏𝑏) − Λ𝑗𝑗
∑  ℓ∈𝒲𝒲𝑗𝑗 Λℓ

𝑀𝑀
^
𝑗𝑗(𝑡𝑡𝑏𝑏), (1) 

 

where 𝑀𝑀
^
𝑗𝑗(𝑡𝑡𝑏𝑏) = 𝑄𝑄𝑗𝑗(𝑡𝑡𝑏𝑏) +∑  𝑛𝑛

ℓ=1,ℓ≠𝑗𝑗 𝑄𝑄
^
ℓ,𝑗𝑗(𝑡𝑡𝑏𝑏) is the estimate of the workload in the system as perceived by 

the 𝑗𝑗th node at time 𝑡𝑡 = 𝑡𝑡𝑏𝑏 ,𝒲𝒲𝑗𝑗is the collection of nodes that are functioning as perceived by the 𝑗𝑗th node at 
time 𝑡𝑡 = 𝑡𝑡𝑏𝑏. Note that in order to accurately estimate the initial workload of the system, nodes have to consider 
the queue length information received from all the nodes, not only the information from the functioning nodes. 
Finally, the Λ𝑗𝑗𝐬𝐬 are parameters that can be defined in several ways in order to establish different balancing 
criteria. For example, if the Λ𝑗𝑗𝐬𝐬 are associated with the processing speed, namely, Λ𝑗𝑗 = 𝜆𝜆𝑑𝑑𝑗𝑗, then the imbalance 
in the DCS is determined by the relative computing powers of the nodes. Alternatively, if the Λ𝑗𝑗s are associated 
to the reliability of the nodes, namely, Λ𝑗𝑗 = 𝜆𝜆𝑓𝑓𝑗𝑗

−1, then the reliability of the nodes determines the amount of 
imbalance. Yet another option is to define theΛ𝑗𝑗s so that we simultaneously transfer fewer tasks to the less-
reliable nodes and transfer larger number of tasks to the faster processors. With this criterion in mind, we can 

define Λ𝑗𝑗 = 𝜆𝜆𝑑𝑑𝑗𝑗 �1−
𝜆𝜆𝑓𝑓𝑗𝑗

� 𝜆𝜆𝑓𝑓𝑘𝑘𝑘𝑘∈𝒲𝒲𝑖𝑖

�Note that in the case of an extremely reliable node �𝜆𝜆𝑓𝑓 ≈ 0�, the 

parameter Λ𝑗𝑗 is approximately equal to the processing rate of the node. On the contrary, for an unreliable node, 
the parameter Λ𝑗𝑗 is only a reduced fraction of its processing rate. 

Second, each node has to determine the amount of tasks to reallocate to the remaining nodes in the system. Let 
us define the collection 𝒱𝒱 of overloaded nodes in the DCS as all those nodes that, at the balancing instant, 
perceive themselves as overloaded with respect to their perceived fair share of the total workload of the 
system. Mathematically, we define 𝒱𝒱 ≜ �𝑗𝑗: 𝐿𝐿𝑗𝑗𝑒𝑒𝑒𝑒(𝑡𝑡𝑏𝑏) > 0�. Similarly, for each overloaded node 𝑗𝑗, we define the 
collection 𝒰𝒰𝑗𝑗 of candidate task-receiver nodes as all those nodes that, at time 𝑡𝑡𝑏𝑏, are perceived by the sender 



node as functioning and underloaded with respect to their own perceived fair shares of the total workload; 
namely 𝒰𝒰𝑗𝑗 ≜ �𝑘𝑘: 𝐿𝐿𝑘𝑘,𝑗𝑗

𝑒𝑒𝑒𝑒 (𝑡𝑡𝑏𝑏) < 0,𝑘𝑘 ∈ 𝒲𝒲𝑗𝑗�, where 𝑗𝑗 ∈ 𝒱𝒱and 𝐿𝐿𝑘𝑘,𝑗𝑗
𝑒𝑒𝑒𝑒 (𝑡𝑡𝑏𝑏) is the excess load at the kth functioning node 

as perceived by the 𝑗𝑗th node and is defined as 𝐿𝐿𝑘𝑘,𝑗𝑗
𝑒𝑒𝑒𝑒 (𝑡𝑡𝑏𝑏) ≜ 𝑄𝑄

^
𝑘𝑘,𝑗𝑗(𝑡𝑡𝑏𝑏) − Λ𝑘𝑘𝑀𝑀

^
𝑗𝑗(𝑡𝑡𝑏𝑏)/∑  ℓ∈𝒲𝒲𝑖𝑖 Λℓ. 

 
Third, the 𝑗𝑗th node partitions its excess load among all the candidate task-receiver nodes. For the 𝑘𝑘th candidate 
task-receiver node, the partition 𝑝𝑝𝑗𝑗𝑗𝑗  is defined as 𝑝𝑝𝑗𝑗𝑗𝑗 ≜ 𝐿𝐿𝑘𝑘,𝑗𝑗

𝑒𝑒𝑒𝑒 (𝑡𝑡𝑏𝑏)/∑  ℓ∈𝒰𝒰𝑖𝑖 𝐿𝐿ℓ,𝑗𝑗
𝑒𝑒𝑒𝑒 (𝑡𝑡𝑏𝑏) whenever 𝑘𝑘 ∈ 𝒰𝒰𝑗𝑗. For 

convenience, the partition 𝑝𝑝𝑗𝑗𝑗𝑗 = 0 for all 𝑖𝑖 ∉ 𝒰𝒰𝑗𝑗. Note that in the special case when the task transfer times are 
negligible, the partitions 𝑝𝑝𝑗𝑗𝑗𝑗  will maximize the service reliability under all node-failure rates [8]. This is due to 
the fact that upon the occurrence of a failure, the unserved tasks of the failed node can instantly join the queues 
of other surviving nodes. In general, however, the above partitions 𝑝𝑝𝑗𝑗𝑗𝑗  may not be effective and must be 
adjusted in order to compensate for the effects of the random transfer times. The load to be migrated from 
the 𝑗𝑗th to the 𝑘𝑘th must be adjusted according to what is called the load-balancing gain[8], [9], [15], [20], which 
is denoted as 𝐾𝐾𝑗𝑗𝑗𝑗, yielding 𝐿𝐿𝑗𝑗𝑗𝑗(𝑡𝑡𝑏𝑏) = �𝐾𝐾𝑗𝑗𝑗𝑗𝑝𝑝𝑗𝑗𝑗𝑗𝐿𝐿𝑗𝑗𝑒𝑒𝑒𝑒(𝑡𝑡𝑏𝑏)�. ⌊𝑥𝑥⌋is the greatest integer less than or equal to x.) 
 
Note that at the balancing instant, the excess load at node 𝑗𝑗 as well as the partitions 𝑝𝑝𝑗𝑗𝑗𝑗  are fixed quantities; the 
LB policy is determined by the LB gains. Here, LB gains are regarded as parameters that have to be optimally 
selected in order to maximize the service reliability. Given that the quantity 𝑝𝑝𝑗𝑗𝑗𝑗𝐿𝐿𝑗𝑗𝑒𝑒𝑒𝑒 defines the maximum 
number of tasks to be exchanged from node 𝑗𝑗 to 𝑘𝑘, we have assumed here that the LB gains are rational 
numbers in the interval [0, 1]. Finally, we arrange in matrix form the LB gains with the convention that 𝐾𝐾𝑗𝑗𝑗𝑗 =
0 for all 𝑗𝑗. We denote such matrix by 𝐊𝐊. From this, the LB policy 𝐊𝐊 refers to a task reallocation policy specified by 
the LB gains 𝐾𝐾𝑖𝑖𝑖𝑖 and executed at 𝑡𝑡 = 𝑡𝑡𝑏𝑏. 
 
2.2.2 Task Recovery in the Event of Node Failure 
The reliability problem tackled here can be solved only if the DCS provides task redundancy. Task redundancy is 
provided by means of a backup system that is attached to each node. This mechanism for task redundancy is a 
distributed version of the centralized method described in [12]. It must be noted that the backup system does 
not service any tasks. More specifically, in the event of node failure, the backup system 1) broadcasts an FN 
packet to alert the nodes about the change in the number of functioning nodes; 2) reallocates all the unfinished 
tasks among those nodes perceived to be functioning; and 3) handles the reception of tasks that were in transit 
to the 𝑗𝑗th node before its failure, and next, reallocates the received tasks among the functioning nodes. In 
particular, if the 𝑗𝑗th node has failed, its backup equipment reallocates 𝐿𝐿𝑗𝑗𝑗𝑗𝐹𝐹  tasks to the 𝑘𝑘th node, with 𝑘𝑘 ∈ 𝒲𝒲𝑗𝑗. In 
order to simplify the work of the backup system, the number of tasks 𝐿𝐿𝑗𝑗𝑗𝑗 

𝐹𝐹 is computed using the formula 𝐿𝐿𝑗𝑗𝑗𝑗𝐹𝐹 =
⌊𝑄𝑄𝑗𝑗Λ𝑘𝑘 �∑ Λℓ𝑙𝑙∈𝒲𝒲𝑗𝑗 )−1�. 
 
The remainder of this section focuses on deriving recurrence equations that characterize the service reliability. 
We begin by introducing some necessary definitions of key system variables. 

2.3 State Model for the Service Reliability 
2.3.1 System Queue, System Function, and Network State 
At any time, the configuration of a DCS can be described using the following quantities: 1) the number of tasks 
queued at each node; 2) the functional or dysfunctional state of each node in the system; and 3) the amount of 
tasks in transit over the communication network. In what follows, we formally develop the necessary notation to 
describe the time-varying DCS configuration. 

Recall that 𝑄𝑄𝑖𝑖(𝑡𝑡)denotes the queue length of the 𝑖𝑖th node in the DCS at time 𝑡𝑡. For 𝑖𝑖 ≠ 𝑗𝑗, we use the binary 
variable 𝑞𝑞𝑖𝑖𝑖𝑖(𝑡𝑡) to indicate if the 𝑖𝑖th node is informed (“1”) or not (“0”) about the queue length of the 𝑗𝑗th node. 



That is, the 𝑞𝑞𝑖𝑖𝑖𝑖(𝑡𝑡)variable describes if the QI packet broadcasted by the 𝑗𝑗th node has been received or not by 
the 𝑗𝑗th node. We can arrange the 𝑄𝑄𝑖𝑖(𝑡𝑡)and 𝑞𝑞𝑖𝑖𝑖𝑖(𝑡𝑡) variables in an n-by-n matrix, denoted by 𝐐𝐐(𝑡𝑡) whose 𝑖𝑖th 
diagonal element contains 𝑄𝑄𝑖𝑖(𝑡𝑡) and its 𝑖𝑖𝑖𝑖th off-diagonal element contains the 𝑞𝑞𝑖𝑖𝑖𝑖(𝑡𝑡)variables. We term 
the Q(t) matrix as the system-queue state. For example, in a two-node DCS, the matrix 
 

𝐐𝐐(𝑡𝑡0) = �𝑚𝑚1 0
1 𝑚𝑚2

� 

at time 𝑡𝑡 = 𝑡𝑡0 corresponds to the configuration for which the first node has in its queue 𝑚𝑚1 tasks and is 
uninformed about the queue length of node 2, while node 2 has 𝑚𝑚2 tasks in its queue and is informed about the 
number of tasks queued at node 1 at 𝑡𝑡 = 0. 

Let 𝑓𝑓𝑖𝑖(𝑡𝑡) be a binary variable representing the working (“1”) or failed (“0”) state of the 𝑖𝑖th node at time 𝑡𝑡. 
For 𝑖𝑖 ≠ 𝑗𝑗, we define 𝑓𝑓𝑖𝑖𝑖𝑖(𝑡𝑡) = 1 (correspondingly, 𝑓𝑓𝑖𝑖𝑗𝑗(𝑡𝑡) = 0) to indicate that the 𝑗𝑗th node is functioning 
(correspondingly, faulty) as perceived by the 𝑖𝑖th node at time 𝑡𝑡. As in the case of the system queue state, we 
arrange all these variables in an n-by-−n matrix and introduce the system function state, which is denoted by the 
matrix 𝐅𝐅(𝑡𝑡). Note that as in the case of the queue length information, the random transfer time of FN packets 
introduces uncertainty on the functioning state that a node perceives about the other nodes in the DCS. 
 
In addition, due to stochastic transfer times in the communication network, each group of tasks being migrated 
over the network has a random transfer time. Let the nonnegative integer 𝑔𝑔𝑘𝑘(𝑡𝑡) represent the number of 
different groups of tasks that are in transit, from different nodes, to the 𝑘𝑘th node at time 𝑡𝑡. Let al.o 𝑙𝑙𝑖𝑖𝑖𝑖 be the 
number of tasks in the 𝑖𝑖th group being transferred to the 𝑘𝑘th node. For convenience of notation, we can assign 
the vector 𝐜𝐜𝑘𝑘(𝑡𝑡) to the 𝑘𝑘th node such that the first component of 𝐜𝐜𝑘𝑘(𝑡𝑡) is always set to 𝑔𝑔𝑘𝑘(𝑡𝑡), while its 
remaining components are set to 𝑙𝑙𝑖𝑖𝑖𝑖. More precisely, 𝐜𝐜𝑘𝑘(𝑡𝑡) ≜ �𝑔𝑔𝑘𝑘(𝑡𝑡)𝑙𝑙1𝑘𝑘𝑙𝑙2𝑘𝑘 … 𝑙𝑙𝑔𝑔𝑔𝑔(𝑡𝑡)𝑘𝑘�. We now define 
the network state as the concatenated vector 𝐂𝐂(𝑡𝑡) ≜ �𝐜𝐜1(𝑡𝑡), … , 𝐜𝐜𝑛𝑛(𝑡𝑡)�. For example, in a three-node DCS, the 
vector 𝐂𝐂(𝑡𝑡0) = ([2101], [1 5], [0]) at 𝑡𝑡 = 𝑡𝑡0 corresponds to a network state for which two different groups of 
tasks (10 tasks in the first group and 1 task in the second group) are being transferred to the first 
node (𝐜𝐜1(𝑡𝑡0) = [2101])one group of five tasks is being transferred to the second node (𝐜𝐜2(𝑡𝑡0) = [15]),and 
there are no tasks in transit to the third node (𝐜𝐜3(𝑡𝑡0) = [0]). 
 
2.3.2 Service Reliability 
At this point, we are ready to define formally the service reliability of a DCS. Let 𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) denote the 
random time taken by the DCS to serve its entire workload if the LB denoted by 𝐊𝐊 is performed by all functioning 
nodes at time 𝑡𝑡𝑏𝑏, and the initial system configuration at 𝑡𝑡 = 0 is as specified by 𝐐𝐐0 = 𝐐𝐐(0),𝐅𝐅0 = 𝐅𝐅(0). More 
precisely, we define 𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) ≜ inf {𝑡𝑡 > 0:diag(𝐐𝐐(𝑡𝑡)) = 0 and 𝐂𝐂(𝑡𝑡) = 0}, where diag(𝐐𝐐) is a vector 
formed by all the elements in the diagonal of the 𝐐𝐐 matrix. Note that by construction, the workload completion 
time is infinite when all the nodes have failed and at least one task remains unserved. Note also 
that P{𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) = ∞} > 0 since servers can fail permanently with nonzero probability. Our objective is 
to calculate the service reliability that is defined as the probability that all the tasks can be served before all 
servers fail, that is 𝑅𝑅𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) ≜ P{𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) < ∞}. Note that the service reliability is less than 
unity since P{𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) = ∞} > 0. 
 

2.4 Regeneration Time 
The main idea of our analysis is to introduce a regeneration event, and analyze the queuing system emerging 
immediately after the occurrence of the regeneration event. The key property of the regeneration event is that 
upon its occurrence, a fresh copy of the original stochastic process (from which the random 
variable 𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) is defined) will emerge, nonetheless having a new initial system configuration that 
transpires from the regeneration event. To this end, we introduce the regeneration time, 𝜏𝜏, which is the 



minimum of the following five random variables: the time to the first task service by any node, the time to 
the first occurrence of failure at any node, the time to the first arrival of a QI packet at any node, the time to 
the first arrival of an FN packet at any node, or the time to the first arrival of a group of tasks at any node. More 

precisely, 𝜏𝜏 ≜ min�min
𝑘𝑘

(𝑊𝑊𝑘𝑘1), min
𝑗𝑗≠𝑘𝑘

�𝑋𝑋𝑗𝑗𝑗𝑗
𝑄𝑄 �, min𝑘𝑘(𝑌𝑌𝑘𝑘), min

𝑗𝑗≠𝑘𝑘
�𝑋𝑋𝑗𝑗𝑗𝑗𝐹𝐹 �, min

𝑘𝑘,𝑖𝑖
(𝑍𝑍𝑘𝑘𝑘𝑘)�. 

 
Suppose that the initial system state is described by 𝐐𝐐0,𝐅𝐅0, and 𝐂𝐂0. The occurrence of the regeneration 
event {𝜏𝜏 = 𝑠𝑠} gives birth to a new DCS at 𝜏𝜏 = 𝑠𝑠 whose random times satisfy Assumptions Al and A2 while having 
its own initial system configuration. The new initial system configuration can be either one of the following: 
 

1. a new initial task distribution when the regeneration event is a service to a task at a node; 
2. a new system queue state when the regeneration event is the reception of a QI packet; 
3. a new initial task distribution, a new system function state, and a new network state when the 

regeneration event is a node failure; 
4. a new system queue state and a new system function state when the regeneration event is the 

reception of an FN packet; or 
5. a new initial task distribution and a new network state when the regeneration event is the reception of a 

group of tasks by a node. 
 

2.5 Characterization of the Service Reliability 
Our main results are given in Theorems 1 and 2. Theorem 1 characterizes the service reliability of an n-node DCS 
in the form of a difference-differential equation. Theorem 2provides the initial condition required to 
solve Theorem 1. 

We will introduce necessary notation that will facilitate keeping track of the changes in the initial system 
configuration. While the notation may seem cumbersome, it is extremely effective in allowing us to write 
equations in Theorems 1 and 2 compactly. Let 𝛿𝛿𝑖𝑖𝑖𝑖  denote an n-by-−n matrix with all its entries equal to zero 
except that its 𝑖𝑖𝑖𝑖th element is equal to 1. Let 𝐀𝐀 be a matrix. We denote by 𝐀𝐀𝑖𝑖𝑖𝑖  a matrix that is identical to 𝐀𝐀 but 
with its 𝑖𝑖𝑖𝑖th component set to zero. Also, recall that 𝑓𝑓𝑖𝑖𝑖𝑖 is the 𝑖𝑖th diagonal element of 𝐅𝐅0,𝐿𝐿𝑖𝑖𝑖𝑖𝐹𝐹 is the number of 
tasks reallocated from the 𝑖𝑖th to the 𝑘𝑘th node upon failure of node 𝑖𝑖, 𝑙𝑙𝑗𝑗𝑗𝑗  is the number of tasks in the 𝑗𝑗th group 
in transit to the 𝑖𝑖th node, and 𝐜𝐜𝑘𝑘 ≜ �𝑔𝑔𝑘𝑘𝑙𝑙1𝑘𝑘𝑙𝑙2𝑘𝑘 … 𝑙𝑙𝑔𝑔𝑘𝑘𝑘𝑘� is the vector representing the number of tasks in transit to 

the 𝑘𝑘th node at a certain time 𝑡𝑡. Vectors 𝐂𝐂0
𝑌𝑌𝑖𝑖 and 𝐂𝐂0

𝑍𝑍𝑖𝑖𝑖𝑖  represent the change in the network state when the 𝑖𝑖th 

node fails and when it receives the 𝑗𝑗th group of tasks, respectively. More precisely, vectors 𝐂𝐂0
𝑌𝑌𝑖𝑖 and 𝐂𝐂0

𝑍𝑍𝑗𝑗𝑗𝑗  are 
defined as 𝐂𝐂0

𝑌𝑌𝑖𝑖 ≜ �𝐜𝐜1
𝑌𝑌𝑖𝑖 , … , 𝐜𝐜𝑖𝑖, … , 𝐜𝐜𝑛𝑛

𝑌𝑌𝑖𝑖� with 𝐜𝐜𝑘𝑘
𝑌𝑌𝑖𝑖 = �𝑔𝑔𝑘𝑘 + 𝑢𝑢�𝐿𝐿𝑖𝑖𝑖𝑖𝐹𝐹 �𝑙𝑙1𝑘𝑘 … 𝑙𝑙𝑔𝑔,𝑘𝑘𝐿𝐿𝑖𝑖𝑖𝑖𝐹𝐹 �,𝑢𝑢(⋅) the unit-step function, 

and 𝐂𝐂0
𝑍𝑍𝑗𝑗𝑗𝑗 = �𝐜𝐜1

𝑍𝑍𝑗𝑗𝑗𝑗 , … , 𝐜𝐜𝑖𝑖
𝑍𝑍𝑗𝑗𝑗𝑗 , … , 𝐜𝐜𝑛𝑛

𝑍𝑍𝑗𝑗𝑗𝑗� with 𝐜𝐜𝑖𝑖
𝑍𝑍𝑗𝑗𝑗𝑗 = �𝑞𝑞𝑖𝑖 − 1𝑙𝑙1𝑖𝑖 … 𝑙𝑙(𝑗𝑗−1)𝑖𝑖𝑙𝑙(𝑗𝑗+1)𝑖𝑖 … 𝑙𝑙𝑔𝑔𝑘𝑘𝑖𝑖� and 𝐜𝐜𝑘𝑘

𝑍𝑍𝑗𝑗𝑗𝑗 = �𝑔𝑔𝑘𝑘 +
𝑢𝑢�𝐿𝐿𝑖𝑖𝑖𝑖𝐹𝐹 �𝑙𝑙1𝑘𝑘 … 𝑙𝑙𝑔𝑔𝑘𝑘𝑘𝑘𝐿𝐿𝑖𝑖𝑖𝑖

𝐹𝐹 � for 𝑘𝑘 ≠ 𝑖𝑖. 
 

Theorem 1 
Consider an n-node DCS with an arbitrarily specified initial system configuration 𝐐𝐐0 = 𝐐𝐐(0),𝐅𝐅0 = 𝐅𝐅(0), 𝐂𝐂0 =
𝐂𝐂(0). The service reliability satisfies the difference-differential equation: 
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Proof 
See Appendix. □ 

It must be noted that the characterization for the service reliability is differential in the balancing instant, 
recursive in the number of tasks to be serviced by the DCS, and depends also on the LB policy. 

In order to solve the equation in Theorem 1, not only values of 𝐐𝐐0,𝐅𝐅0, and 𝐂𝐂0 for 𝑚𝑚𝑖𝑖 − 1 are required, but also 
other system configurations, such as when only one of the servers is functioning, when more than one group of 
tasks is in transit to a server, and when no tasks are in transit in the network. Consequently, starting with 𝐐𝐐0,𝐅𝐅0, 
and 𝐂𝐂0 and (2), we have to construct a system of equations that has to be solved following a particular order. 
Equations forming such a system are derived in a straightforward manner using (2) and the new initial 
configurations shown at the right-hand side of (2). Finally, recursions are solved using the initial 
conditions: 𝑅𝑅(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) = 1 when there are no tasks to process in the DCS and 𝑅𝑅(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) = 0 when 
all the nodes have failed and at least one task remains unserviced. 
 
Additionally, to solve the recurrence equation in Theorem 1, we first need to calculate its initial condition 
corresponding to 𝑡𝑡𝑏𝑏 = 0, i.e., 𝑅𝑅𝐊𝐊(0;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0). By exploiting the regenerative theory developed here, we obtain 
the algebraic recursion presented in Theorem 2. 
 

Theorem 2 
Consider an n-node DCS with initial system configuration 𝐐𝐐0,𝐅𝐅0,𝐂𝐂0 at 𝑡𝑡𝑏𝑏 = 0. The service reliability satisfies the 
algebraic recursion: 

https://ieeexplore.ieee.org/document/#deqn2
https://ieeexplore.ieee.org/document/#deqn2
https://ieeexplore.ieee.org/document/#deqn2
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~
0�

𝑛𝑛

𝑖𝑖=1

+∑  𝑛𝑛
𝑖𝑖=1 �

𝜆𝜆𝑖𝑖𝑖𝑖
𝐹𝐹

𝜆𝜆
𝑅𝑅𝐊𝐊�0;𝐐𝐐0, 𝐅𝐅0

𝑗𝑗𝑗𝑗 ,𝐂𝐂0�
𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

+∑  𝑛𝑛
𝑖𝑖=1 � 𝜆𝜆

~
𝑗𝑗,𝑖𝑖

𝜆𝜆
𝑅𝑅𝐊𝐊 �0;𝐐𝐐0 + 𝑓𝑓𝑖𝑖𝑖𝑖𝑙𝑙𝑗𝑗𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖 ,𝐅𝐅0,𝐂𝐂0

𝑍𝑍𝑗𝑗𝑗𝑗�
𝑔𝑔𝑖𝑖

𝑗𝑗=1

+�
𝜆𝜆𝑓𝑓𝑖𝑖
𝜆𝜆
𝑅𝑅𝐊𝐊�0;𝐐𝐐0

𝑖𝑖𝑖𝑖 ,𝐅𝐅0𝑖𝑖𝑖𝑖 ,𝐂𝐂0
𝑌𝑌𝑖𝑖�

𝑛𝑛

𝑖𝑖=1
,

𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝜆𝜆 = ∑  𝑛𝑛
𝑖𝑖=1 �𝜆𝜆𝑑𝑑𝑖𝑖 + 𝜆𝜆𝑓𝑓𝑖𝑖 + � 𝜆𝜆

~
𝑗𝑗,𝑖𝑖

𝑔𝑔𝑖𝑖

𝑗𝑗=1
� + ∑  𝑛𝑛

𝑖𝑖=1 � 𝜆𝜆𝑖𝑖𝑖𝑖𝐹𝐹
𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖
.

(3) 

We omit the proof of Theorem 2 since it is similar to that of Theorem 1. (We refer the reader to [14], [15] for a 
proof in the special case of 𝑛𝑛 = 2 nodes.) 
 

2.6 Optimal LB Policies for Maximal Reliability 
The model for the service reliability given in Theorems 1 and 2 can be used to search for the optimal balancing 
instant, 𝑡𝑡𝑏𝑏∗, and the optimal LB policy, 𝐊𝐊∗, that maximizes the service reliability. Formally, we have 
 

(𝑡𝑡𝑏𝑏∗ ,𝐊𝐊∗) ≜ arg𝑚𝑚𝑚𝑚𝑚𝑚
(𝑡𝑡𝑏𝑏,𝐊𝐊)

𝑅𝑅𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) (4) 

subject to 𝑡𝑡𝑏𝑏 ≥ 0 and 𝐾𝐾𝑖𝑖𝑖𝑖 ∈ [0,1]. 

We can attempt to solve the optimization problem using the n-node characterization for the reliability given 
in Theorems 1 and 2; however, computing the reliability using such characterization is computationally 
expensive for systems with a large number of nodes as the amount of computation grows exponentially with the 
number of nodes. Namely, since the total number of information states for the DCS is 2𝑛𝑛(𝑛𝑛−1), the complexity in 
solving Theorem 1 is bounded by 𝒪𝒪�2𝑛𝑛2�. In addition, the complexity in solving 
 
Theorem 2 is bounded by 𝒪𝒪(𝑛𝑛!), because we must consider all the possible orders of arrival of tasks at the 
underloaded nodes. As an alternative, for DCSs with an arbitrary number of servers, we follow [14], [15] and 
provide a suboptimal algorithm for LB policies that scales linearly with the number of nodes. The key idea is to 
decompose an n-node system into several two-node DCSs and exploit our exact characterization for two-node 
systems. 
 
2.6.1 Algorithm for Devising Optimal LB Policies 
Suppose that the 𝑗𝑗th node is overloaded and recall that 𝒰𝒰𝑗𝑗 is the collection of candidate receiver nodes as 
perceived by the 𝑗𝑗th node. Let 𝐾𝐾𝑗𝑗𝑗𝑗𝑖𝑖  denote the LB gain, calculated at the 𝑖𝑖th iteration of the algorithm, that is 
associated with the load transfer from the 𝑗𝑗th to the 𝑘𝑘th node. Similarly, let 𝑡𝑡𝑏𝑏𝑖𝑖  denote the LB instant calculated 
at the 𝑖𝑖th iteration of the algorithm. Also, let us denote by 𝑈𝑈𝑗𝑗′the set containing all those recipient nodes 𝑘𝑘, for 
which 𝐾𝐾𝑗𝑗𝑗𝑗𝑖𝑖  and 𝑡𝑡𝑏𝑏𝑖𝑖  have been already calculated. In addition, let 𝑈𝑈𝑗𝑗  denote the set of recipient nodes ℓ, for 
which 𝑡𝑡𝑏𝑏𝑖𝑖−1and 𝐾𝐾𝑗𝑗ℓ𝑖𝑖−1have been computed. The algorithm for computing the LB policy is described in the 
following steps: 



 

Initialization 
To start the iterations, the algorithm assumes that 𝑈𝑈𝑗𝑗 = 𝒰𝒰𝑗𝑗,𝑈𝑈𝑗𝑗′ is empty and 𝐾𝐾𝑗𝑗𝑗𝑗0 = 1 for all 𝑘𝑘 ∈ 𝑈𝑈𝑗𝑗. Namely, we 
have assumed that the 𝑗𝑗th overloaded node can send full load partitions to the recipient nodes. 
 

Repeat 
At the 𝑖𝑖th iteration of the algorithm we select a recipient node, say the 𝑘𝑘th node, from the collection 𝑈𝑈𝑗𝑗. The LB 
gain 𝐾𝐾𝑗𝑗𝑗𝑗𝑖𝑖  is obtained by considering a two-node system composed of nodes 𝑗𝑗 and 𝑘𝑘. Thus, upon the execution of 

LB at 𝑡𝑡𝑏𝑏, the 𝑘𝑘th and the 𝑗𝑗th nodes have loads 𝑄𝑄
^
𝑘𝑘,𝑗𝑗(𝑡𝑡𝑏𝑏) and 

 

𝑄𝑄𝑗𝑗(𝑡𝑡𝑏𝑏) − � �𝐾𝐾𝑗𝑗𝑗𝑗𝑖𝑖−1𝑝𝑝𝑗𝑗ℓ𝐿𝐿𝑗𝑗𝑒𝑒𝑒𝑒(𝑡𝑡𝑏𝑏)�
ℓ∈�𝑈𝑈𝑗𝑗∖{𝑘𝑘}�

− ��𝐾𝐾𝑗𝑗ℓ𝑖𝑖 𝑝𝑝𝑗𝑗ℓ𝐿𝐿𝑗𝑗𝑒𝑒𝑒𝑒(𝑡𝑡𝑏𝑏)�
𝑙𝑙∈𝑈𝑈𝑗𝑗

′

−�𝐾𝐾𝑗𝑗𝑗𝑗𝑖𝑖 𝑝𝑝𝑗𝑗𝑗𝑗𝐿𝐿𝑗𝑗𝑒𝑒𝑒𝑒(𝑡𝑡𝑏𝑏)�,
 

respectively, while �𝐾𝐾𝑗𝑗𝑗𝑗𝑖𝑖 𝑝𝑝𝑗𝑗𝑗𝑗𝐿𝐿𝑗𝑗𝑒𝑒𝑒𝑒(𝑡𝑡𝑏𝑏)� tasks are assumed to be in transit from the 𝑗𝑗th to the 𝑘𝑘th node. After 
computing the optimal values 𝑡𝑡𝑏𝑏𝑖𝑖  and 𝐾𝐾𝑗𝑗𝑗𝑗𝑖𝑖 , we update the sets 𝑈𝑈𝑗𝑗  and 𝑈𝑈𝑗𝑗′as follows: 𝑈𝑈𝑗𝑗 ← 𝑈𝑈𝑗𝑗 ∖ {𝑘𝑘} and 𝑈𝑈𝑗𝑗′ ← 𝑈𝑈𝑗𝑗′ ∪
{𝑘𝑘}. These calculations are repeated until LB instants and LB gains of all the nodes in 𝑈𝑈𝑗𝑗  are obtained, i.e., 
after 𝑈𝑈𝑗𝑗  becomes empty. After this, we set 𝑈𝑈𝑗𝑗  to be equal to 𝑈𝑈𝑗𝑗  and 𝑈𝑈𝑗𝑗′be empty. 

Termination Condition 
The 𝑖𝑖th iteration of the algorithm is repeated until either all the LB gains converge to a certain value or an user-
defined maximum number of iterations, 𝑁𝑁, is executed. The announced LB gains are those obtained after either 
one of these two termination conditions are met. The announced 𝑡𝑡𝑏𝑏 is the largest balancing instant computed 
for each pair of nodes at the last iteration of the algorithm. 
 

Algorithm Complexity and Scalability 
Suppose that the 𝑗𝑗th node is overloaded and has to reallocate tasks to 𝜂𝜂 nodes, with 𝜂𝜂 ∈ [0,𝑛𝑛 − 1]. Since the LB 
policy executed by the nodes is distributed, each node has to solve Theorems 1 and 2 individually. For 𝑛𝑛 =
2 nodes, the complexity in solving equations in Theorems 1 and 2 is a function of the number of tasks queued at 
the 𝑗𝑗th node, i.e., 𝒪𝒪 �𝑓𝑓�𝑚𝑚𝑗𝑗��. Since the 𝑗𝑗th node decomposed the DCS in 𝜂𝜂 pairs of DCS, the overloaded node 
has to solve at most 𝜂𝜂 times the optimization problem (4) for 𝑛𝑛 = 2. Further, by construction of the algorithm, 
the 𝑗𝑗th node has to solve no more than 𝑁𝑁 times such optimization problem. From this, we observe that the 
complexity of the algorithm is 𝒪𝒪 �𝑁𝑁(𝑛𝑛 − 1)𝑓𝑓�𝑚𝑚𝑗𝑗��. In addition, if an exhaustive search in the LB gains is 
conducted to solve the optimization problem, then 𝑓𝑓�𝑚𝑚𝑗𝑗�is bounded by 𝑚𝑚𝑗𝑗, because no more than 𝐿𝐿𝑗𝑗𝑒𝑒𝑒𝑒 = ⌊𝑚𝑚𝑗𝑗 −

Λ𝑗𝑗(∑  ℓ∈𝒲𝒲𝑖𝑖 Λℓ)−1𝑀𝑀
^
𝑗𝑗⌋ LB gains have to be evaluated. 

 
We conclude that the proposed algorithm scales linearly in both the number of nodes in the DCS and the 
number of tasks queued at the overloaded node. It must be commented that for 𝑛𝑛 = 2, we have observed in 
our simulations and in our prior works [14], [15] that the service reliability exhibits a concave shape as a function 
of the LB gains. This heuristic can be exploited to search for the optimal LB gains using a bisection algorithm. As 
the complexity of bisection search algorithms is logarithmic, the complexity in solving the regenerative 
equations can be bounded by log�𝑚𝑚𝑗𝑗�. 
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SECTION 3 Results 
3.1 Distributed Computing Architecture 
We have implemented a small-scale DCS testbed to experimentally validate the theoretical achievements shown 
in this paper. The hardware architecture consists of the computing nodes, the backup nodes, and the 
communication network. The set of computing nodes comprises heterogeneous processors, such as Pentium II- 
and Pentium IV-based computers. Some of the computing nodes are dedicated machines, while others are 
serving as lightly loaded Web, mail, and database servers. Given that the occurrence of a failure at any node is 
simulated by software, the set of backup nodes is the same set as the set of working nodes. Upon the 
occurrence of a failure, a computing node is switched from the so-called working state to the failed state. If a 
node is in the failed state, then it cannot process tasks. The communication network employed in our 
architecture is the Internet, where the final links connecting the computing nodes are either wired or wireless. 
On one hand, some communication links connect nodes separated geographically by a large distance; hence, 
they naturally exhibit a notorious communication delay. On the other hand, for those nodes in the DCS 
connected by high-speed links, we have introduced some artificial latency by employing traffic shaper 
applications. Such kind of applications allow us to reduce the actual transfer speed of the network interfaces to 
slow speeds such as 1,024 to 512 Kbps. 

The software architecture of the DCS is divided in three layers: application, task allocation, and communication. 
Layers are implemented in software using POSIX threads. The application layer executes the application selected 
to illustrate the distributed processing: matrix multiplication. We have defined the service of a task as the 
multiplication of one row by a static matrix, which is duplicated in all nodes. To achieve variability in the 
processing speed of the nodes, the randomness is introduced in the size of each row by independently choosing 
its arithmetic precision with an exponential distribution. In addition, the application layer updates the QI of each 
node and determines the failure instants of each node. As part of the latter task, the application layer also 
switches the state of a node from working to failed. The same layer maintains, at each node, two vectors of 𝑛𝑛 −
1 components that track the state of the other nodes in the DCS. The first vector stores the number of tasks 
queued at the other nodes using a long integer representation. The second vector is binary and indicates which 
nodes remain functioning in the system. The task allocation layer executes the LB policy defined for each type of 
experiment conducted. This layer schedules and triggers the LB instants when task exchange is performed. It 
also: 1) determines if a node is overloaded with respect to the other nodes in the system; 2) selects which nodes 
are candidate receiving nodes; and 3) computes the amount of task to transmit to the receiver nodes by solving 
the recursion (3). In addition, when a node is in the backup state, this layer executes the reallocation of tasks to 
all the surviving nodes as described in Section 2. Finally, the communication layer of each node handles the 
transfer of tasks as well as the transfer of QI and FN packets among the nodes. Each node uses the UDP 
transport protocol to transfer either a QI or an FN packet to the other nodes. The TCP transport protocol is used 
to transfer tasks between the nodes. 
 

3.2 Maximizing the Reliability of a Two-Node DCS 
We have conducted experiments using a dedicated (node 1) and a nondedicated computer (node 2). The nodes 
are separated by a large geographic distance and communicate through the Internet. The free parameters of the 
system, namely, the initial workload and the average failure times, were defined to be: 𝑚𝑚1 = 100 tasks 
and 𝑚𝑚2 = 50 tasks, and 𝜆𝜆𝑓𝑓1

−1 = 300s and 𝜆𝜆𝑓𝑓2
−1 = 200s. The remaining system parameters were estimated 

conducting experiments on the two-node DCS: 1) The estimated service rates of each node are 𝜆𝜆𝑑𝑑1 =
0.8285 tasks per second (tps) and 𝜆𝜆𝑑𝑑2 = 1.2453 tps; 2) The mean arrival times of QI packets and FN packets 
are (𝜆𝜆12

𝑄𝑄 )−1 = (𝜆𝜆12𝐹𝐹 )−1 = 1.6134s and (𝜆𝜆21
𝑄𝑄 )−1 = (𝜆𝜆21𝐹𝐹 )−1 = 1.6659s; and 3) The parameters for the first-order 

approximation of the average transfer time of tasks are 𝑎𝑎12 = 0.243s per task, 𝑏𝑏12 = 1.613s, and 𝑎𝑎21 = 0.336s 
per task and b21=1.666s. Fig. 1a shows results of the experiments conducted on our two-node distributed 
computing testbed for the case of the communication channel linking node 2 to node 1. In the figure, dots 

https://ieeexplore.ieee.org/document/#deqn3


represent measurements of the transfer time of a group of tasks between the nodes, while the straight-line 
represents the first-order approximation for the average transfer time of tasks. We observe that, for the amount 
of tasks to be exchanged in the experiments conducted in this paper, a first-order approximation for the average 
transfer time is valid for the communication channel. 
 
Let us first look at the solution of the initial condition 

𝐐𝐐0 = �𝑚𝑚1 0
0 𝑚𝑚2

� ,𝐅𝐅0 = �1 1
1 1�, 

and 𝐂𝐂0 = ([0], [0])at 𝑡𝑡𝑏𝑏 = 0. Note that immediately after the execution of the LB policy, the number of tasks 
remaining queued at the 𝑖𝑖th node is 𝑟𝑟𝑖𝑖 = 𝑚𝑚𝑖𝑖 − 𝐿𝐿𝑖𝑖𝑖𝑖, for 𝑖𝑖 = 1, 2 and 𝑖𝑖 ≠ 𝑗𝑗. Consequently, the initial system 
configuration is modified as follows: 

𝐐𝐐
~
0 = �𝑟𝑟1 0

0 𝑟𝑟2
� , 𝐅𝐅

~
0 = 𝐅𝐅0and𝐂𝐂

~
0 = ([1𝐿𝐿21], [1𝐿𝐿12]) 

and the LB policy executed is 

𝐊𝐊 = � 0 𝐾𝐾12
𝐾𝐾21 0 �. 

 

In order to explore all the possible amounts of tasks to exchange among the nodes, we use the formula 𝐿𝐿𝑗𝑗𝑗𝑗 =
�𝐾𝐾𝑗𝑗𝑗𝑗𝑚𝑚𝑗𝑗�. Note that in a two-node DCS, nodes do not have to partition their excess load because there is only one 
recipient node. 



 
Fig. 1. (a) Dots are realizations of the task transfer time in a two-node DCS. The solid line represents the first-order 
approximation for the average transfer time. (b) Service reliability as a function of the LB gain of the node, 1 when lb is 
executed at 𝑡𝑡 = 0. In the upper plot 𝐾𝐾21 = 0.25 while in the lower plot 𝐾𝐾21 = 0.9. (c) Service reliability as a function of the 
balancing instant for four representative LB gains. 

Now we solve the recursion in Theorem 2 to calculate 𝑅𝑅𝐊𝐊 �0;𝐐𝐐
~
0,𝐅𝐅

~
0,𝐂𝐂

~
0�. In Fig. 1b, the service reliability 

for 𝐾𝐾21 = 0.25 and 𝐾𝐾21 = 0.9 are plotted as a function of 𝐾𝐾12. On one hand, small values for 𝐾𝐾12 imply that 
node 1 remains unbalanced with respect to node 2 and serves most of its workload. As a consequence, the 
second node is underutilized because, on average, node 2 serves its entire workload before it fails. Therefore, 
the time required to serve the workload becomes “large” and the service reliability is “small.” On the other 
hand, when 𝐾𝐾12 approaches 1, the first node transfers most of its initial load to the second node. Hence, almost 
all the tasks are queued and served at the less reliable node until it fails. Upon failure, the remaining tasks are 
transferred back to node 1, if it is functioning; thereby, the service reliability is reduced by an excessive queuing 
of tasks in the communication network. In addition to the theoretical predictions, Fig. 1b shows Monte Carlo 
(MC) simulations as well as experimental results obtained for the LB policy 𝐊𝐊. In our simulations, the service 
reliability is calculated by averaging outcomes (failures or successes) from independent realizations of the policy. 
The values of reliability plotted in Fig. 1b correspond to centers of 95 percent confidence intervals, for which the 
estimated service reliability will not differ from the true value by more than 0.0025. Simulation results strongly 
agree with our theoretical predictions, and remarkably, experiments conducted on the two-node DCS show a 
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fairly good agreement with theoretical curves. In the experiments, the service reliability is calculated by 
averaging the results of 500 independent trials for each policy shown in the Fig. 1b. 
 
In order to assess the accuracy of our model, we compare the reliability predicted by our exponential 
approximation with MC simulations where the distributions of the random times are nonexponential. Using the 
experimental data collected in our testbed, we have fitted Pareto distributions to the transfer and service times. 
For comparison, the mean values of the Pareto distributions are equal to the mean values of their corresponding 
exponential approximations. Via MC simulations, we estimated, with a 95 percent confidence, the service 
reliability of the DCS when the random times follow Pareto laws. The estimated reliability is plotted in Fig. 1b. It 
can be noted from the figure that the exponential model for reliability is very accurate and yields a relative 
approximation error below 4 percent. Further simulations have shown that, as the ratio between the average 
transfer time and the average service time of the nodes increases, the exponential approximation looses its 
accuracy in predicting the reliability. Specifically, approximation errors of 120 percent were found when the 
ratio between the times was five. 

Next, we look at the solution of the equations given in Theorem 1. Fig. 1c shows theoretical predictions, MC 
simulation, and experimental results for the service reliability as a function of the balancing instant, for some 
representative selections of LB gains. After solving the differential equation in Theorem 1, we obtain a maximal 
service reliability of 0.874 that is achieved at 𝑡𝑡𝑏𝑏∗ = 0 by the following four LB policies: 
 

𝐊𝐊1
∗ = �0 0.37

0 0 � ,𝐊𝐊2
∗ = �0 0.38

0 0 � ,𝐊𝐊3
∗ = �0 0.39

0 0 � ,  and

𝐊𝐊4
∗ = � 0 0.39

0.02 0 � .
. 

Fig. 1c shows the service reliability as a function of 𝑡𝑡𝑏𝑏 for the optimal policy 𝐊𝐊1∗ . Note that an improper selection 
of the LB gains can produce a notorious reduction on the service reliability, as is depicted for the case of 
choosing 

𝐊𝐊 = � 0 0.01
0.95 0 �.. 

Note also that, an improper selection of the gains can be compensated by delaying the LB action. 

Let us discuss now the effect of the optimal LB policy on the utilization of the computing resources. The optimal 
policies dictate that 39 percent of the load initially allocated at the first server have to be transferred to the 
second server, while the latter server must keep all its initial load. Note that, on average, server 2 processes its 
initial load in 40 s, and note also that, transferring 39 tasks from server 1 to server 2 takes 11 s. Consequently, 
the optimal task reallocation is perceived by the second server as an instantaneous exchange of load. In 
addition, note that processing 89 tasks at server 2 takes 71 s, on average, while serving the remaining 61 tasks at 
server 1 takes 73 s, on average. Therefore, the optimal policy keeps both servers busy for approximately the 
same amount of time, thereby efficiently using the computing resources of the DCS. 

3.3 Maximizing the Reliability of a Multinode DCS 
In this section, we maximize the service reliability of a multinode DCS utilizing the algorithm presented in Section 
2.6.1. We devise several decentralized LB policies considering different balancing criteria. 

The scenario considered in the following examples comprises a five-node DCS, for which a workload of 𝑀𝑀 =
150 tasks is provided. We have assumed that the average failure times of the nodes are 𝜆𝜆𝑓𝑓1

−1 = 400s,𝜆𝜆𝑓𝑓2
−1 =

10s,𝜆𝜆𝑓𝑓3
−1 = 100s,𝜆𝜆𝑓𝑓4

−1 = 200s, and 𝜆𝜆𝑓𝑓5
−1 = 300s . The service rates, estimated using some training sets of tasks on 



our DCS testbed, are 𝜆𝜆𝑑𝑑1 = 0.16823 tps, 𝜆𝜆𝑑𝑑2 = 0.49784 tps, 𝜆𝜆𝑑𝑑3 = 0.25869 tps, 𝜆𝜆𝑑𝑑4 = 0.25361tps, and 𝜆𝜆𝑑𝑑5 =
0.18356 tps. In this scenario, the nodes dedicated only to compute our tasks are the first, the fourth, and the 
fifth node, while the remaining two are nondedicated nodes. The channel-dependent parameters, also 
estimated from data collected using our testbed, are listed in Table 1. For brevity, we provide only the minimum 
and the maximum values for the estimated mean arrival times of both QI and FN packets, 
namely, min (min

𝑗𝑗,𝑘𝑘
(𝜆𝜆𝑗𝑗𝑗𝑗

𝑄𝑄 )−1, min
𝑗𝑗,𝑘𝑘

(𝜆𝜆𝑗𝑗𝑗𝑗𝐹𝐹 )−1)=0.343s and max (max
𝑗𝑗,𝑘𝑘

(𝜆𝜆𝑗𝑗𝑗𝑗
𝑄𝑄 )−1, max

𝑗𝑗,𝑘𝑘
(𝜆𝜆𝑗𝑗𝑗𝑗𝐹𝐹 )−1)𝐽𝐽 = 1.927s, for 𝑗𝑗,𝑘𝑘 ∈

{1, … ,5}. 
 
We devise and discuss three LB policies that have the same balancing criterion. The balancing criterion utilized 
by the policies is based upon the reliability of the nodes. So, we have set the Λ𝑗𝑗s parameters in (1) to be Λ𝑗𝑗 =
𝜆𝜆𝑓𝑓𝑖𝑖
−1for 𝑗𝑗 = 1, … ,5. The three LB policies investigated are: 1) The Null LB policy, where all the LB gains employed 

by the policy are equal to zero; 2) The Full LB policy, where all the LB gains are equal to 1; and 3) The Maximal-
Service LB policy, where the LB gains employed by the policy are computed using the algorithm presented 
in Section 2.6.1. Note that the Null LB policy determines the service reliability inherently provided by the DCS, 
i.e., it defines the service reliability when LB is not performed by the nodes in the system. Therefore, the Null LB 
policy establishes the minimal service reliability that can be demanded by any effective LB policy acting on the 
DCS. 
 

Table 1 Parameters 𝑎𝑎𝑗𝑗𝑗𝑗 and 𝑏𝑏𝑗𝑗𝑗𝑗 of the first-order approximation of the average task-transfer delay for the case 
of a five-node DCS 
 

𝑎𝑎𝑗𝑗𝑗𝑗 𝑘𝑘 = 1 𝑘𝑘 = 2 𝑘𝑘 = 3 𝑘𝑘 = 4 𝑘𝑘 = 5 
𝑗𝑗 = 1 - 0.898 0.838 0.706 0.751 
𝑗𝑗 = 2 0.336 - 0.335 0.273 0.350 
𝑗𝑗 = 3 0.541 0.665 - 0.677 0.617 
𝑗𝑗 = 4 0.248 0.532 0.408 - 0.273 
𝑗𝑗 = 5 0.219 0.355 0.298 0.234 - 
𝑏𝑏𝑗𝑗𝑗𝑗 𝑘𝑘 = 1 𝑘𝑘 = 2 𝑘𝑘 = 3 𝑘𝑘 = 4 𝑘𝑘 = 5 
𝑗𝑗 = 1 - 1.970 2.219 2.000 2.199 
𝑗𝑗 = 2 1.651 - 1.993 1.876 1.667 
𝑗𝑗 = 3 5.001 4.997 - 5.203 5.557 
𝑗𝑗 = 4 4.131 7.604 5.862 - 7.604 
𝑗𝑗 = 5 3.009 2.887 2.731 2.943 - 

 

The theoretical predictions obtained for the three LB polices under study, and for different initial task 
allocations, are listed in Table 2. The service reliability is obtained for each case by means of MC simulations, 
where the number of tasks to reallocate among the nodes is computed using the algorithm provided in Section 
2.6.1. The values in Table 2 correspond to centers of 95 percent confidence intervals, for which the estimated 
service reliability will not differ from the true value by more than 0.001. In addition, the column labeled as 
“Exp.” presents results obtained after averaging 500 realizations of experiments conducted on our DCS testbed. 

The first five rows of Table 2 list results for cases when the system is totally imbalanced. The sixth row presents 
the case of an initial uniform distribution of tasks. The seventh, eighth, and ninth rows correspond to cases 
where tasks are initially allocated according to the reliability of the nodes, the processing rate of the nodes, and 
a combination of the latter two parameters, respectively. Finally, the last row represents a case of an arbitrary 
task distribution. 
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We can see from Table 2 that the Maximal-Service LB policy outperforms the other two policies in all the cases 
considered. In the first five cases listed in Table 2, the optimal tbis equal to zero, while in the remaining cases, 
the optimal tb is between 2.0 and 2.4 s. Note that such values correspond to cases where all the nodes are, on 
average, informed about the queue-length of the other nodes in the system. We can also note that the Maximal-
Service LB policy effectively increases the inherent service reliability provided by the DCS. Such increment can be 
attributed mainly to two issues: 1) the Maximal-Service LB policy trades off network queuing times and node 
idle times by computing appropriate LB gains and 2) the Maximal-Service LB policy effectively exploits the extra 
balancing action provided by the backup system of a faulty node. To support these statements, we discuss a 
representative case from Example 2. 
 
Consider the case where all the tasks are queued at the fourth node (fourth row in Table 2). If no LB action is 
performed, then, on average, at t=200s, the fourth node fails, while, on average, the following events have 
occurred in the DCS: 1) the second and third nodes have failed; 2) the fourth node has been informed about the 
failures of the second and third nodes; and 3) the fourth node has served 50 tasks. Upon the failure of the fourth 
node, its backup system reallocates the remaining 100 tasks to the first and fifth nodes. So, we clearly note that 
the first and fifth nodes have remained idle for long periods of time, and worst than that, we notice that the 
second and third nodes were never used to serve any task. On the contrary, if the Full LB policy is employed, 
then at tb=0, the fourth node decides to transfer 59, 1, 14, and 44 tasks to the first, second, third, and fifth 
node, respectively, while 32 tasks remain queued at the fourth node. As such, we can deduce from the 
discussion that the Full LB policy is advantageous over the Null LB policy, as evidenced by the reliability shown 
in Table 2. 
 
Table 2 Service reliability under different LB policies 

Initial load (𝑚𝑚1, … ,𝑚𝑚5)   Max-Service  
 Null 

Theo. 
Full 
Theo. 

Theo. Exp. 

(150,0,0 ,0,0) 0.210 0.508 0.509 0.527 
(0,150,0,0,0) 0.552 0.495 0.614 0.595 
(0,0,150,0,0) 0.372 0.510 0.601 0.597 
(0,0,0,150,0) 0.330 0.532 0.583 0.575 
(0,0,0,0,150) 0.255 0.533 0.543 0.559 
(30,30,30,30 ,30) 0.634 0.557 0.634 0.603 
(59,2,4,34,51) 0.534 0.555 0.556 0.539 
(18,55,29,27,21) 0.642 0.563 0.642 0.625 
(26,30,28,38,28) 0.642 0.563 0.642 0.603 

The balancing criterion utilized is based on the reliability of the nodes. 
 

Notably, the Maximal-Service LB policy takes an even better decision at the balancing instant by exploiting one 
extra mechanism. After executing the proposed algorithm, the policy obtains the following LB gains: 𝐾𝐾41∗ =
0.610,𝐾𝐾42∗ = 𝐾𝐾43∗ = 1, and 𝐾𝐾45∗ = 0.886; this implies that the fourth node has to transfer 35, 1, 14, and 38 tasks 
to the first, second, third, and fifth node, respectively. Unlike the Full LB policy, a total of 62 tasks remain 
queued at the fourth node. Note that by sending fewer tasks to the first and fifth nodes, the Maximal-Service LB 
policy reduces the idle time of these nodes as compared to the Full LB policy. In addition, we can note that, on 
average: 1) the fourth node is able to process only 50 tasks before it fails and 2) by the average failure time of 
the fourth node, the first and fifth nodes are still busy serving the tasks reallocated at the balancing instant. 
Therefore, the task reallocation performed upon the failure of the fourth node does not introduce any idle time 
in the receiving nodes. 



It can be observed from Table 2 that caution must be exercised in selecting the amount of tasks to reallocate at 
the balancing time; otherwise, we can devise policies that perform worse than taking no LB action! Consider, for 
instance, the case where all the tasks are queued at the second node. When the Full LB policy is employed, the 
policy determines that 59, 14, 29, and 44 tasks have to be transferred to the first, third, fourth, and fifth nodes. 
The four tasks that remain queued at the second node are, on average, served by the node. In addition, the 
average transfer plus service time of the tasks assigned to the third and fourth nodes is about 60 and 124 s, 
respectively. We now note that the inappropriate task reallocation performed by the Full LB policy forces the 
fourth node to remain idle for 76 s before it fails. If we perform a similar kind of analysis for the case of the Null 
LB policy, we can conclude that, due to the failures of the second and third nodes and the task exchanges 
performed by their backup systems, the fourth node is kept busy until it fails at 𝑡𝑡 = 200𝑠𝑠, and its average idle 
time is only 20 s. Therefore, it can be concluded that the Full LB policy performs worse than the Null LB policy. 
 
Table 3 Service reliability achieved by three LB policies, which have different balancing criteria 

Initial load 
(𝑚𝑚1, … ,𝑚𝑚5) 

Service reliability    
 

Max-Service Proc -Speed Complete Optimum 
(150,0,0,0,0) 0.509 0.511 0.573 0.631 
(0,150,0,0,0) 0.614 0.610 0.617 0.617 
(0,0,150,0,0) 0.601 0.591 0.601 0.601 
(0,0,0,150,0) 0.583 0.533 0.612 0.615 
(0,0,0,0,150) 0.543 0.566 0.613 0.619 
(30,30,30,30,30) 0.634 0.603 0.636 0.657 
(59,2,4,34,51) 0.556 0.608 0.638 0.668 
(18,55,29,27,21) 0.642 0.623 0.640 0.649 
(26,30,28,38,28) 0.642 0.639 0.642 0.642 
(40,15,40,35,20) 0.624 0.610 0.643 0.656 

For comparison purposes, we list the optimal value obtained for each case. 

In light of the previous discussions, we can now comprehend the counterintuitive behavior shown in Table 2. It 
can be noted that, for cases where all the load is queued at a single node and no LB action is taken, the service 
reliability is better when tasks are initially allocated at the less reliable nodes. This situation is justified because, 
by initially allocating the workload at less reliable nodes, we can exploit both the computing power of the 
unreliable servers and the task reallocation action executed by the backup system of the faulty nodes. 

We study now the effect of the selection of various balancing criteria on the service reliability. We have 
considered three LB policies, each one of them having a different balancing criterion but sharing the same 
algorithm to compute the LB gains. The Maximal-Service LB policy balances the DCS according to the reliability 
of the nodes. The Processing Speed LB policy balances the DCS based upon the processing rate of the nodes, 
i.e., Λ𝑗𝑗 = 𝜆𝜆𝑑𝑑 in (1). Finally, the Complete LB policy uses a balancing criterion that combines both processing and 
failure rates, specifically, the Complete LB policy defines Λ𝑗𝑗 = 𝜆𝜆𝑑𝑑𝑗𝑗(1 − 𝜆𝜆𝑓𝑓𝑗𝑗(∑  𝑛𝑛

𝑘𝑘=1 𝜆𝜆𝑓𝑓𝑘𝑘)−1). Additionally, we have 
conducted MC-based exhaustive search, over the LB gains, in order to estimate the optimal service reliability for 
each case considered. The results of our evaluations are listed in Table 3. 
 
Note that the fastest servers in the example are also the less reliable ones. Consequently, the balancing criterion 
employed by the Processing-Speed LB policy appears to be inappropriate in order to maximize the service 
reliability. However, it can be seen from Table 3 that, in most of the cases, the three policies achieve 
approximately the same performance, which shows the strength of our approach. For example, in the case when 
all the tasks are initially queued at the fourth node, the Processing Speed LB policy dictates that 54 tasks have to 
be transferred to the second node. However, the LB gain computed by our algorithm reduces such amount to 
only 11 tasks. From Table 3, we observe that the Complete LB policy outperforms in almost all the cases the 
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other two policies. This is because such a policy trades off reliability and computing speed in both the imbalance 
detection process and the excess workload partitioning. Finally, it can be seen from Table 3 that the service 
reliability achieved by the policies is within 70 percent of the optimal service reliability for each case. In fact, the 
optimum is achieved in some cases. 

SECTION 4 Conclusions 
We have undertaken a novel approach to analyze the stochastic dynamics and the service reliability of DCSs in 
the presence of communication and node uncertainty. We have rigorously modeled the service reliability of a 
DCS, i.e., the probability of successfully serving a collection of tasks queued at the nodes before all of them fail 
permanently. Our model takes into account the heterogeneity in the computing resources, the stochastic 
communication and transfer delays in the network, the uncertainty associated with the number of functional 
nodes in the DCS, and an arbitrary LB policy executed by the nodes. We have introduced in our analysis three 
fundamental stochastic quantities, namely the system queue and the system function matrices as well as the 
network state vector. These quantities track the underlying point processes associated with the dynamics of the 
DCS. At any given time, these matrices store information about task distribution among the nodes, the 
functional or dysfunctional state of the nodes, and the number of tasks queued in the communication network. 
A novel regeneration argument has been established yielding an analytic characterization for the service 
reliability. Our mathematical framework can be easily modified to calculate other performance metrics, such as 
computing speedup, statistics of queue length of servers, and average sojourn time of workloads. 

By using this analytical model for reliability, we have devised optimal dynamic LB strategies for maximizing the 
service reliability of a DCS. We have presented a simple, yet efficient and scalable algorithm for devising these 
optimal dynamic LB strategies. The policies devised using our algorithm dictate when to execute the LB action 
and how to reallocate the tasks among the nodes. We have evaluated the performance of the optimal LB 
policies and noticed that the service reliability can be improved up to 65 percent as compared to the reliability 
provided by a DCS, and up to 22 percent as compared to policies that consider nodes' reliability but disregard 
the communication costs over the network. Moreover, our algorithm to compute the LB strategies achieves a 
service reliability within 70 percent of the optimal service reliability, and in cases achieves the optimal value. 

Our theory enables us to understand the effectiveness of task reallocation in a delay-infested DCS while offering 
an algorithm for generating task reallocation policies that maximize the service reliability. The interplay between 
the task transfer time and the idle time of the nodes has been discussed, and we have noted that the service 
reliability can be improved if the idle times of the nodes are reduced as much as possible. In addition, we have 
discussed the advantages of delaying the balancing action until the nodes have collected information about both 
the queue length and the functioning state of the nodes. 

In general, we have found that the experiments confirm our theoretical predictions as well as our MC 
simulations. Through experimentation, we have also observed that the computational overhead introduced by 
our algorithm, which is mainly due to the calculations associated to the regenerative equations, is negligible as 
compared to the time to serve the tasks. 

Future work will consider relaxing the exponential assumption on the random task transfer and task execution 
times. To this end, we will undertake an age-dependent regeneration-based approach whereby auxiliary “age-
variables” are introduced in the analysis. Another extension we are currently considering is to allow each node 
have an arbitrary number of functionality states instead of a binary (on-off) functionality state as presented 
here. This can be implemented, for example, by assigning a range of possible processing speeds for each node, 
where upon the occurrence of a “failure event,” only one of these possible states is selected. 
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The gist of the proof of Theorem 1 can be found in [14] for the special case of two nodes. Here, we present a 
generalized version of such proof considering a DCS with n nodes. 

For clarity, we first introduce some useful definitions and then present Lemmas 1–6, which will be used in the 
proof of Theorem 1. Recall that the regeneration time is defined as 

𝜏𝜏 ≜ min (min𝑘𝑘(𝑊𝑊𝑘𝑘1), min𝑗𝑗≠𝑘𝑘(𝑋𝑋𝑗𝑗𝑗𝑗
𝑄𝑄 ), min𝑘𝑘(𝑌𝑌𝑘𝑘), min𝑗𝑗≠𝑘𝑘(𝑋𝑋𝑗𝑗𝑗𝑗𝐹𝐹 ),

min𝑘𝑘,𝑖𝑖(𝑍𝑍𝑘𝑘𝑘𝑘)).
 

 

Note that in light of Assumptions A1, A2, and Convention C1, it is straightforward to see that 𝜏𝜏 is an 
exponentially distributed random variable. For the DCS emerging at the regeneration time 𝜏𝜏, let the random 

times (all measured from 𝜏𝜏) 𝑊𝑊𝑘𝑘𝑘𝑘
′ ,𝑌𝑌𝑘𝑘′,𝑋𝑋𝑗𝑗𝑗𝑗

𝑄𝑄′ ,𝑋𝑋𝑗𝑗𝑗𝑗𝐹𝐹
′
, and 𝑍𝑍𝑖𝑖𝑖𝑖′ , respectively, be the service time for the ith task at the 𝑘𝑘th 

node, the failure time of the kth node, the arrival time of the QI packet sent from the jth node to the 𝑘𝑘th node, 
the arrival time of the FN packet sent from the jth node to the 𝑘𝑘th node, and the arrival time of the ith group of 
tasks sent to the kth node. In addition, on {𝜏𝜏 ≤ 𝑡𝑡𝑏𝑏}, we define 𝑇𝑇𝐊𝐊′ (𝑡𝑡𝑏𝑏;𝐐𝐐0′ ,𝐅𝐅0′ ,𝐂𝐂0′ ) as the time taken by the new 
DCS emerging at τ to serve all the tasks in the system if the LB policy 𝐊𝐊 is executed by all functioning nodes at 
time 𝑡𝑡𝑏𝑏 provided that the system condition at 𝑡𝑡 = 𝜏𝜏 is specified by 𝐐𝐐0′ ,𝐅𝐅0′, and 𝐂𝐂0′ . To prove that the DCS is 
regenerated upon the occurrence of {𝜏𝜏 = 𝑠𝑠}, it suffices to show that the conditional distributions 

of 𝑊𝑊𝑘𝑘𝑘𝑘
′ ,𝑋𝑋𝑗𝑗𝑗𝑗

𝑄𝑄′ ,𝑌𝑌𝑘𝑘′,𝑋𝑋𝑗𝑗𝑗𝑗𝐹𝐹
′
, and 𝑍𝑍𝑘𝑘𝑘𝑘′  given that the event {𝜏𝜏 = 𝑠𝑠} has occurred, satisfy assumptions Al and A2. 

Lemma 1 
For 𝑠𝑠 ≤ 𝑡𝑡𝑏𝑏 ,P{𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) < ∞|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1} = P{𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏 − 𝑠𝑠;𝐐𝐐0 − 𝛿𝛿𝑖𝑖𝑖𝑖 , 𝐅𝐅0,𝐂𝐂0) < ∞}. 

Proof 
Note that the regeneration event {𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1} is precisely service to the first task at the ith node before any 
other activity takes place in the DCS. Upon the occurrence of the event {𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1}, the system function 
state and the network state remain the same, i.e., 𝐅𝐅0′ = 𝐅𝐅0 and 𝐂𝐂0′ = 𝐂𝐂0, while 𝑚𝑚𝑖𝑖 − 1 tasks are now queued at 
the 𝑖𝑖th node and 𝑚𝑚𝑗𝑗 remain queued at the 𝑗𝑗th node, 𝑗𝑗 ≠ 𝑖𝑖. In matrix notation, i.e., 𝐐𝐐0′ = 𝐐𝐐0 − 𝛿𝛿𝑖𝑖𝑖𝑖 . Therefore, by 
construction, 

 
P{ 𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) < ∞|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1}

= P{𝜏𝜏 + 𝑇𝑇𝐊𝐊′(𝑡𝑡𝑏𝑏;𝐐𝐐0 − 𝛿𝛿𝑖𝑖𝑖𝑖 ,𝐅𝐅0,𝐂𝐂0) < ∞|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1}. 

The proof is complete once we establish that 



P{ 𝑇𝑇𝐊𝐊′(𝑡𝑡𝑏𝑏;𝐐𝐐0 − 𝛿𝛿𝑖𝑖𝑖𝑖 ,𝐅𝐅0,𝐂𝐂0) < ∞|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑥𝑥1}
= P{𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏 − 𝑠𝑠;𝐐𝐐0 − 𝛿𝛿𝑖𝑖𝑖𝑖 ,𝐅𝐅0,𝐂𝐂0) < ∞}.  

 

Next, by construction, 𝑊𝑊𝑘𝑘1
′ = 𝑊𝑊𝑘𝑘1 − 𝜏𝜏,𝑋𝑋𝑖𝑖𝑖𝑖

𝑄𝑄′ = 𝑋𝑋𝑗𝑗𝑗𝑗 − 𝜏𝜏,𝑌𝑌𝑗𝑗′ = 𝑌𝑌𝑗𝑗 − 𝜏𝜏,𝑋𝑋𝑗𝑗𝑗𝑗𝐹𝐹
′

= 𝑋𝑋𝑗𝑗𝑗𝑗𝐹𝐹 − 𝜏𝜏, and 𝑍𝑍ℓ𝑘𝑘′ = 𝑍𝑍ℓ𝑘𝑘−𝜏𝜏 for 𝑘𝑘 ≠
𝑖𝑖 and 𝑗𝑗 ≠ 𝑘𝑘. Moreover, it is shown below that the conditional distribution of 𝑊𝑊𝑘𝑘1

′  is 

P{𝑊𝑊𝑘𝑘1
′ ≤ 𝑡𝑡|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1} = �1− exp�−𝜆𝜆𝑑𝑑𝑘𝑘𝑡𝑡��𝑢𝑢(𝑡𝑡), (5) 

 

where 𝑢𝑢(⋅) is the unit step function. Similarly, we get 

P �𝑋𝑋𝑗𝑗𝑗𝑗
𝑄𝑄′ ≤ 𝑡𝑡�𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1� = �1 − exp�−𝜆𝜆𝑗𝑗𝑗𝑗

𝑄𝑄 𝑡𝑡��𝑢𝑢(𝑡𝑡),

P{𝑌𝑌𝑘𝑘′ ≤ 𝑡𝑡|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1} = �1 − exp�−𝜆𝜆𝑓𝑓𝑘𝑘𝑡𝑡��𝑢𝑢(𝑡𝑡),

P�𝑋𝑋𝑗𝑗𝑗𝑗𝐹𝐹
′ ≤ 𝑡𝑡�𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1� = �1 − exp�−𝜆𝜆𝑗𝑗𝑗𝑗𝐹𝐹 𝑡𝑡��𝑢𝑢(𝑡𝑡), and

P�𝑍𝑍𝑗𝑗𝑗𝑗′ ≤ 𝑡𝑡�𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1� = �1 − exp �−𝜆𝜆
~
𝑗𝑗,𝑘𝑘𝑡𝑡�� 𝑢𝑢(𝑡𝑡).

 

Therefore, conditional upon the occurrence of {𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1}, all random times of the newly emerging DCS 
satisfy Assumption A1. 

The conditional independence of 𝑊𝑊𝑗𝑗1
′ , with 𝑗𝑗 ≠ 𝑖𝑖, and 𝑌𝑌𝑘𝑘′ is proved below in this Appendix. Similarly, it can also 

be shown that conditional upon the occurrence of {𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1}, the random times 𝑊𝑊𝑘𝑘𝑘𝑘
′ ,𝑋𝑋𝑗𝑗𝑗𝑗

𝑄𝑄′ ,𝑋𝑋𝑗𝑗𝑗𝑗𝐹𝐹
′
, 

and 𝑍𝑍𝑗𝑗𝑗𝑗′  are mutually independent. Therefore, upon the occurrence of {𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1}, all random times of the 
emerging DCS satisfy Assumption A2. 

In summary, we have shown that conditional on the occurrence of {𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1}, the random times 
characterizing the DCS at time s satisfy Assumptions Al and A2. Therefore, by shifting the time origin from 𝑡𝑡 =
0 to 𝑡𝑡 = 𝑠𝑠, we can think of the emergent DCS as the original system but with 𝑚𝑚𝑖𝑖 − 1 tasks in the queue of the ith 
node, while other system initial conditions remain the same. In addition, due to the shift of origin, the LB instant 
is now at 𝑡𝑡𝑏𝑏 − 𝑠𝑠 units of time from the new origin. Hence, we conclude that 

P{ 𝑇𝑇𝐊𝐊′(𝑡𝑡𝑏𝑏;𝐐𝐐0 − 𝛿𝛿𝑖𝑖𝑖𝑖 ,𝐅𝐅0,𝐂𝐂0) < ∞|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1}
= P{𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏 − 𝑠𝑠;𝐐𝐐0 − 𝛿𝛿𝑖𝑖𝑖𝑖 ,𝐅𝐅0,𝐂𝐂0) < ∞},  

which completes the proof of Lemma 1. □ 

Lemmas 2–5 are presented without proof as they follow similar principles as those of Lemma 1. 

Lemma 2 

For 𝑠𝑠 ≤ 𝑡𝑡𝑏𝑏 ,P�𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) < ∞�𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑋𝑋𝑖𝑖𝑖𝑖
𝑄𝑄� = P�𝑇𝑇𝐊𝐊�𝑡𝑡𝑏𝑏 − 𝑠𝑠;𝐐𝐐0 + 𝛿𝛿𝑗𝑗𝑗𝑗 ,𝐅𝐅0,𝐂𝐂0� < ∞�. 

Lemma 3 

For 𝑠𝑠 ≤ 𝑡𝑡𝑏𝑏 ,P{𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) < ∞|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑌𝑌𝑖𝑖} = P�𝑇𝑇𝐊𝐊�𝑡𝑡𝑏𝑏 − 𝑠𝑠;𝐐𝐐0𝑖𝑖𝑖𝑖 , 𝐅𝐅0𝑖𝑖𝑖𝑖 ,𝐂𝐂0
𝑌𝑌𝑖𝑖� < ∞�. 



Lemma 4 

For 𝑠𝑠 ≤ 𝑡𝑡𝑏𝑏 ,P�𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) < ∞�𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑋𝑋𝑖𝑖𝑖𝑖𝐹𝐹� = P�𝑇𝑇𝐊𝐊�𝑡𝑡𝑏𝑏 − 𝑠𝑠;𝐐𝐐0
𝑗𝑗𝑗𝑗 , 𝐅𝐅0

𝑗𝑗𝑗𝑗 ,𝐂𝐂0� < ∞�. 

Lemma 5 

For 𝑠𝑠 ≤ 𝑡𝑡𝑏𝑏 ,P�𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) < ∞�𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑍𝑍𝑗𝑗𝑗𝑗� = P �𝑇𝑇𝐊𝐊 �𝑡𝑡𝑏𝑏 − 𝑠𝑠;𝐐𝐐0 + 𝑓𝑓𝑖𝑖𝑖𝑖𝑙𝑙𝑗𝑗𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖 , 𝐅𝐅0,𝐂𝐂0
𝑍𝑍𝑗𝑗𝑗𝑗� < ∞�. 

Lemma 6 
P{𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0, 𝐅𝐅0,𝐂𝐂0) < ∞|𝜏𝜏 > 𝑡𝑡𝑏𝑏} = P{𝑇𝑇𝐊𝐊(0;𝐐𝐐0, 𝐅𝐅0,𝐂𝐂0) < ∞}. 

Proof 
The occurrence of the event {𝜏𝜏 > 𝑡𝑡𝑏𝑏} implies that the system condition of the DCS at time 𝑡𝑡𝑏𝑏 is exactly the same 
as the initial system condition of the original system. Therefore, for {𝜏𝜏 > 𝑡𝑡𝑏𝑏}, let 𝑇𝑇𝐊𝐊′′(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) be the time 
taken by the new DCS emerging at tb to serve all tasks if the LB policy 𝐊𝐊 is executed by all functioning nodes at 
time 𝑡𝑡𝑏𝑏, and provided that the system condition at 𝑡𝑡 = 𝑡𝑡𝑏𝑏 is specified by 𝐐𝐐0,𝐅𝐅0, and 𝐂𝐂0.  

Therefore, by construction,  

P{𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) < ∞|𝜏𝜏 > 𝑡𝑡𝑏𝑏} = P{𝑡𝑡𝑏𝑏 + 𝑇𝑇𝐊𝐊′′(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) < ∞|𝜏𝜏 > 𝑡𝑡𝑏𝑏}.  

Let the random times characterizing the DCS emerging at 𝑡𝑡𝑏𝑏 be 𝑊𝑊𝑘𝑘𝑘𝑘
′ ,𝑋𝑋𝑗𝑗𝑗𝑗

𝑄𝑄′ ,𝑋𝑋𝑗𝑗𝑗𝑗𝐹𝐹
′
, and 𝑍𝑍𝑗𝑗𝑗𝑗′ , all measured from 𝑡𝑡𝑏𝑏. We 

have that 𝑊𝑊𝑖𝑖1
′′ = 𝑊𝑊𝑖𝑖1 − 𝑡𝑡𝑏𝑏 ,𝑋𝑋𝑗𝑗𝑗𝑗

𝑄𝑄′′ = 𝑋𝑋𝑗𝑗𝑗𝑗
𝑄𝑄 − 𝑡𝑡𝑏𝑏 ,𝑌𝑌𝑘𝑘′′ = 𝑇𝑇𝑘𝑘 − 𝑡𝑡𝑏𝑏 ,𝑋𝑋𝑗𝑗𝑗𝑗𝐹𝐹

′′
= 𝑋𝑋𝑗𝑗𝑗𝑗𝐹𝐹 − 𝑡𝑡𝑏𝑏, and 𝑍𝑍𝑖𝑖𝑖𝑖′′ = 𝑍𝑍𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑏𝑏. Based 

on Assumptions Al and A2, it is straightforward to show that P{𝑊𝑊ℎ𝑖𝑖
′′ ≤ 𝑡𝑡|𝜏𝜏 > 𝑡𝑡𝑏𝑏} = (1 −

exp (−𝜆𝜆𝑑𝑑𝑘𝑘𝑡𝑡))𝑢𝑢(𝑡𝑡) and P{𝑊𝑊𝑘𝑘𝑘𝑘
′′ ≤ 𝑡𝑡1,𝑌𝑌𝑘𝑘′′ ≤ 𝑡𝑡2|𝜏𝜏 > 𝑡𝑡𝑏𝑏} = P{𝑊𝑊𝑘𝑘𝑘𝑘

′′ ≤ 𝑡𝑡1|𝜏𝜏 > 𝑡𝑡𝑏𝑏}P{𝑌𝑌𝑘𝑘′′ ≤ 𝑡𝑡2|𝜏𝜏 > 𝑡𝑡𝑏𝑏}. Similarly, 

conditional on the occurrence of {𝜏𝜏 > 𝑡𝑡𝑏𝑏}, the conditional distributions of 𝑋𝑋𝑗𝑗𝑗𝑗
𝑄𝑄′′ ,𝑌𝑌𝑘𝑘′′,𝑋𝑋𝑗𝑗𝑗𝑗𝐹𝐹

′′
, and 𝑍𝑍𝑘𝑘𝑖𝑖′′  can be shown 

to satisfy Al and A2. Consequently, nothing has changed in the initial condition as well as the statistics of the 
random times characterizing the DCS while 𝑡𝑡𝑏𝑏 units of time have elapsed. Therefore, we can shift the origin 
by 𝑡𝑡𝑏𝑏 units of time, which makes the LB instant at 𝑡𝑡 = 0 for the new DCS. So, P{𝑇𝑇𝐊𝐊′′(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) < ∞|𝜏𝜏 >
𝑡𝑡𝑏𝑏} = P{𝑇𝑇𝐊𝐊(0;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) < ∞}. □ 

Proof of Theorem 1 
First we observe that from Assumptions Al and A2, it is straightforward to show that 𝑓𝑓𝜏𝜏(𝑡𝑡) = 𝜆𝜆exp (−𝜆𝜆𝜆𝜆)𝑢𝑢(𝑡𝑡), 

where 𝜆𝜆 = ∑  𝑛𝑛
𝑖𝑖=1 (𝜆𝜆𝑑𝑑𝑖𝑖 + 𝜆𝜆𝑓𝑓𝑖𝑖 + ∑  𝑔𝑔𝑖𝑖

𝑗𝑗=1 𝜆𝜆
~
𝑗𝑗,𝑖𝑖 + ∑  𝑗𝑗≠𝑘𝑘 (𝜆𝜆𝑗𝑗𝑗𝑗

𝑄𝑄 + 𝜆𝜆𝑗𝑗𝑗𝑗𝐹𝐹 )). Next, we condition the service reliability on the 
regeneration time to obtain 

𝑅𝑅𝐊𝐊 (𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) = P{𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0, 𝐅𝐅0,𝐂𝐂0) < ∞}
= ∫ P{𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0, 𝐅𝐅0,𝐂𝐂0) < ∞|𝜏𝜏 = 𝑠𝑠}𝑓𝑓𝜏𝜏(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡𝑏𝑏

0

+∫ P{𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0, 𝐅𝐅0,𝐂𝐂0) < ∞|𝜏𝜏 = 𝑠𝑠}𝑓𝑓𝜏𝜏(𝑠𝑠)𝑑𝑑𝑑𝑑∞
𝑡𝑡𝑏𝑏

.
 (6) 

Moreover, we can further condition the first integrand at the right side of (6) on all the possible, disjoint 
regeneration events occurring at the time 𝜏𝜏 = 𝑠𝑠 as 
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P{ 𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0, 𝐅𝐅0,𝐂𝐂0) < ∞|𝜏𝜏 = 𝑠𝑠} = ∑  𝑛𝑛
𝑖𝑖=1 P{𝜏𝜏 = 𝑊𝑊𝑖𝑖1|𝜏𝜏 = 𝑠𝑠}

× P{𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0, 𝐅𝐅0,𝐂𝐂0) < ∞|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1}
+ ∑  𝑛𝑛

𝑖𝑖=1 ∑  𝑛𝑛
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 P{𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0, 𝐅𝐅0,𝐂𝐂0) < ∞|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑋𝑋𝑖𝑖𝑖𝑖

𝑄𝑄}
P{𝜏𝜏 = 𝑋𝑋𝑖𝑖𝑖𝑖|𝜏𝜏 = 𝑠𝑠} + ∑  𝑛𝑛

𝑖𝑖=1 P{𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0, 𝐅𝐅0,𝐂𝐂0) < ∞|𝜏𝜏 = 𝑠𝑠,
𝜏𝜏 = 𝑌𝑌𝑖𝑖}P{𝜏𝜏 = 𝑌𝑌𝑖𝑖|𝜏𝜏 = 𝑠𝑠} + ∑  𝑛𝑛

𝑖𝑖=1 ∑  𝑛𝑛
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 P{𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0, 𝐅𝐅0,𝐂𝐂0)

< ∞|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑋𝑋𝑖𝑖𝑖𝑖𝐹𝐹 } × P{𝜏𝜏 = 𝑋𝑋𝑖𝑖𝑖𝑖𝐹𝐹 |𝜏𝜏 = 𝑠𝑠}
+ ∑  𝑛𝑛

𝑖𝑖=1 ∑  𝑔𝑔𝑥𝑥
𝑗𝑗=1 P{𝜏𝜏 = 𝑍𝑍𝑗𝑗𝑗𝑗|𝜏𝜏 = 𝑠𝑠} × P{𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0, 𝐅𝐅0,𝐂𝐂0)

< ∞|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑍𝑍𝑗𝑗𝑗𝑗}.

. (7) 

In addition, note that ∫  ∞
𝑡𝑡𝑏𝑏

P{𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0, 𝐅𝐅0,𝐂𝐂0) < ∞|𝜏𝜏 = 𝑠𝑠}𝑓𝑓𝜏𝜏(𝑠𝑠)𝑑𝑑𝑑𝑑 = P{𝑇𝑇𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) < ∞|𝜏𝜏 >
𝑡𝑡𝑏𝑏}P{𝜏𝜏 > 𝑡𝑡𝑏𝑏}. We now apply Lemma 6 to the later result and Lemmas 1–5 to (7), and substitute those results 
in (6) to obtain: 

𝑅𝑅𝐊𝐊 (𝑡𝑡𝑏𝑏;𝐐𝐐0, 𝐅𝐅0,𝐂𝐂0) = ∫ (∑  𝑛𝑛
𝑖𝑖=1 P{𝜏𝜏 = 𝑊𝑊𝑖𝑖1|𝜏𝜏 = 𝑠𝑠}𝑡𝑡𝑏𝑏

0

× 𝑅𝑅𝐊𝐊(𝑡𝑡𝑏𝑏 − 𝑠𝑠;𝐐𝐐0 − 𝛿𝛿𝑖𝑖𝑖𝑖 , 𝐅𝐅0,𝐂𝐂0) + ∑  𝑛𝑛
𝑖𝑖=1 ∑  𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 P{𝜏𝜏 = 𝑋𝑋𝑖𝑖𝑖𝑖
𝑄𝑄|𝜏𝜏 = 𝑠𝑠}

× 𝑅𝑅𝐊𝐊(𝑡𝑡𝑏𝑏 − 𝑠𝑠;𝐐𝐐0 + 𝛿𝛿𝑗𝑗𝑗𝑗 , 𝐅𝐅0,𝐂𝐂0) + ∑  𝑛𝑛
𝑖𝑖=1 P{𝜏𝜏 = 𝑌𝑌𝑖𝑖|𝜏𝜏 = 𝑠𝑠}

× 𝑅𝑅𝐊𝐊(𝑡𝑡𝑏𝑏 − 𝑠𝑠;𝐐𝐐0𝑖𝑖𝑖𝑖 ,𝐅𝐅0𝑖𝑖𝑖𝑖 ,𝐂𝐂0
𝑌𝑌𝑖𝑖) + ∑  𝑛𝑛

𝑖𝑖=1 ∑  𝑛𝑛
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 P{𝜏𝜏 = 𝑋𝑋𝑖𝑖𝑖𝑖𝐹𝐹 |𝜏𝜏 = 𝑠𝑠}

× 𝑅𝑅𝐊𝐊(𝑡𝑡𝑏𝑏 − 𝑠𝑠;𝐐𝐐0
𝑗𝑗𝑗𝑗 , 𝐅𝐅0

𝑗𝑗𝑗𝑗 ,𝐂𝐂0) + ∑  𝑛𝑛
𝑖𝑖=1 ∑  𝑔𝑔𝑖𝑖

𝑗𝑗=1 P{𝜏𝜏 = 𝑍𝑍𝑗𝑗𝑗𝑗|𝜏𝜏 = 𝑠𝑠}

× 𝑅𝑅𝐊𝐊(𝑡𝑡𝑏𝑏 − 𝑠𝑠;𝐐𝐐0 + 𝑓𝑓𝑖𝑖𝑖𝑖𝑙𝑙𝑗𝑗𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖 , 𝐅𝐅0,𝐂𝐂0
𝑍𝑍𝑗𝑗𝑗𝑗))𝑓𝑓𝜏𝜏(𝑠𝑠)𝑑𝑑𝑑𝑑

+P{𝜏𝜏 > 𝑡𝑡𝑏𝑏}𝑅𝑅𝐊𝐊(0;𝐐𝐐0, 𝐅𝐅0,𝐂𝐂0).

. 

 

Using basic concepts from probability theory, we can show that P{𝜏𝜏 = 𝑊𝑊𝑖𝑖1|𝜏𝜏 = 𝑠𝑠} = 𝜆𝜆𝑑𝑑𝑖𝑖𝜆𝜆
−1,P{𝜏𝜏 = 𝑋𝑋𝑗𝑗𝑗𝑗

𝑄𝑄 |𝜏𝜏 = 𝑠𝑠} =

𝜆𝜆𝑗𝑗𝑗𝑗
𝑄𝑄 𝜆𝜆−1, P{𝜏𝜏 = 𝑌𝑌𝑘𝑘|𝜏𝜏 = 𝑠𝑠} = 𝜆𝜆𝑓𝑓𝑘𝑘𝜆𝜆

−1, P{𝜏𝜏 = 𝑋𝑋𝑗𝑗𝑗𝑗𝐹𝐹 |𝜏𝜏 = 𝑠𝑠} = 𝜆𝜆𝑗𝑗𝑗𝑗𝐹𝐹 𝜆𝜆−1,P{𝜏𝜏 = 𝑍𝑍𝑗𝑗𝑗𝑗|𝜏𝜏 = 𝑠𝑠} = 𝜆𝜆
~
𝑗𝑗𝑗𝑗𝜆𝜆−1, Therefore, the last 

equation becomes 

𝑅𝑅𝐊𝐊(𝑡𝑡𝑏𝑏;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0) = ∫  𝑡𝑡𝑏𝑏
0 exp (−𝜆𝜆𝜆𝜆)

(∑  𝑛𝑛
𝑖𝑖=1 𝜆𝜆𝑑𝑑𝑖𝑖𝑅𝑅𝐊𝐊(𝑡𝑡𝑏𝑏 − 𝑠𝑠,𝐐𝐐0 − 𝛿𝛿𝑖𝑖𝑖𝑖 ,𝐅𝐅0,𝐂𝐂0)

+∑  𝑛𝑛
𝑖𝑖=1 ∑  𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 𝜆𝜆𝑖𝑖𝑖𝑖
𝑄𝑄 𝑅𝑅𝐊𝐊(𝑡𝑡𝑏𝑏 − 𝑠𝑠;𝐐𝐐0 + 𝛿𝛿𝑗𝑗𝑗𝑗 ,𝐅𝐅0,𝐂𝐂0)

+∑  𝑛𝑛
𝑖𝑖=1 𝜆𝜆𝑓𝑓𝑖𝑖𝑅𝑅𝐊𝐊(𝑡𝑡𝑏𝑏 − 𝑠𝑠;𝐐𝐐0

𝑖𝑖𝑖𝑖 ,𝐅𝐅0𝑖𝑖𝑖𝑖 ,𝐂𝐂0
𝑌𝑌𝑖𝑖)

+∑  𝑛𝑛
𝑖𝑖=1 ∑  𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 𝜆𝜆𝑖𝑖𝑖𝑖𝐹𝐹 𝑅𝑅𝐊𝐊(𝑡𝑡𝑏𝑏 − 𝑠𝑠;𝐐𝐐0
𝑗𝑗𝑗𝑗 ,𝐅𝐅0

𝑗𝑗𝑗𝑗 ,𝐂𝐂0)

+∑  𝑛𝑛
𝑖𝑖=1 ∑  𝑔𝑔𝑖𝑖

𝑗𝑗=1 𝜆𝜆
~
𝑗𝑗𝑗𝑗𝑅𝑅𝐊𝐊(𝑡𝑡𝑏𝑏 − 𝑠𝑠;𝐐𝐐0 + 𝑓𝑓𝑖𝑖𝑖𝑖𝑙𝑙𝑗𝑗𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖 ,𝐅𝐅0,𝐂𝐂0

𝑍𝑍𝑗𝑗𝑗𝑗))d𝑠𝑠
+P{𝜏𝜏 > 𝑡𝑡𝑏𝑏}𝑅𝑅𝐊𝐊(0;𝐐𝐐0,𝐅𝐅0,𝐂𝐂0).

 (8) 

 

Finally, by differentiating (8) with respect to 𝑡𝑡𝑏𝑏 and rearranging terms we obtain (2). □ 

https://ieeexplore.ieee.org/document/#deqn7
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Proof of Equation (5) 
Let us look at the conditional distribution of 𝑊𝑊𝑗𝑗1

′ , with 𝑗𝑗 ≠ 𝑖𝑖: 

P{𝑊𝑊𝑗𝑗1
′ ≤ 𝑡𝑡|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1} = P{𝑊𝑊𝑗𝑗1 − 𝜏𝜏 ≤ 𝑡𝑡|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1}

= P{𝑊𝑊𝑗𝑗1 ≤ 𝑡𝑡 + 𝑠𝑠|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1}.  

Note that the event {𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1} is equivalent to 

{𝑊𝑊𝑖𝑖1 = 𝑠𝑠,𝑊𝑊11 > 𝑠𝑠, … ,𝑊𝑊(𝑖𝑖−1)1 > 𝑠𝑠,𝑊𝑊(𝑖𝑖+1)1 > 𝑠𝑠, …𝑊𝑊𝑛𝑛1

> 𝑠𝑠,𝑌𝑌1 > 𝑠𝑠, … ,𝑌𝑌𝑛𝑛 > 𝑠𝑠,𝑋𝑋12
𝑄𝑄 > 𝑠𝑠, … ,𝑋𝑋𝑛𝑛(𝑛𝑛−1)

𝑄𝑄

> 𝑠𝑠,𝑋𝑋12𝐹𝐹 > 𝑠𝑠, … ,𝑋𝑋𝑛𝑛(𝑛𝑛−1)
𝐹𝐹 > 𝑠𝑠,𝑍𝑍11 > 𝑠𝑠, … ,𝑍𝑍𝑛𝑛𝑔𝑔𝑛𝑛 > 𝑠𝑠}.

 

Therefore, the latter equation becomes 

P{𝑊𝑊𝑗𝑗1
′ ≤ 𝑡𝑡|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1} = P{𝑊𝑊𝑗𝑗1 ≤ 𝑡𝑡 + 𝑠𝑠|𝑊𝑊𝑖𝑖1 = 𝑠𝑠,

𝑊𝑊11 > 𝑠𝑠, … ,𝑊𝑊(𝑖𝑖−1)1 > 𝑠𝑠,𝑊𝑊(𝑖𝑖+1)1 > 𝑠𝑠, … ,𝑊𝑊𝑛𝑛1 > 𝑠𝑠,
𝑌𝑌1 > 𝑠𝑠, … ,𝑌𝑌𝑛𝑛 > 𝑠𝑠,𝑋𝑋12

𝑄𝑄 > 𝑠𝑠, … ,𝑋𝑋𝑛𝑛(𝑛𝑛−1)
𝑄𝑄 > 𝑠𝑠,

𝑋𝑋12𝐹𝐹 > 𝑠𝑠, … ,𝑋𝑋𝑛𝑛(𝑛𝑛−1)
𝐹𝐹 > 𝑠𝑠,𝑍𝑍11 > 𝑠𝑠, … ,𝑍𝑍𝑛𝑛𝑔𝑔𝑛𝑛 > 𝑠𝑠}.

 

Exploiting the independence (Assumption A2), we obtain P{𝑊𝑊𝑗𝑗1′ ≤ 𝑡𝑡|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1} = P{𝑊𝑊𝑗𝑗1 ≤ 𝑡𝑡 + 𝑠𝑠|𝑊𝑊𝑗𝑗1 >
𝑠𝑠} = (1 − exp (−𝜆𝜆𝑑𝑑𝑗𝑗𝑡𝑡))𝑢𝑢(𝑡𝑡). □ 

Proof of the conditional independence of 𝑊𝑊𝑗𝑗1
′  and 𝑌𝑌𝑘𝑘′. Recall that 𝑊𝑊𝑗𝑗1

′ = 𝑊𝑊𝑗𝑗1 − 𝜏𝜏 and 𝑌𝑌𝑘𝑘′ = 𝑌𝑌𝑘𝑘 − 𝜏𝜏. Therefore, for 
any real number 𝑡𝑡1 and 𝑡𝑡2, we have 

P{𝑊𝑊𝑗𝑗1
′ ≤ 𝑡𝑡1,𝑌𝑌𝑘𝑘′ ≤ 𝑡𝑡2|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1}

= P {𝑊𝑊𝑗𝑗1 ≤ 𝑡𝑡1 + 𝑠𝑠,𝑌𝑌𝑘𝑘 ≤ 𝑡𝑡2 + 𝑠𝑠|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1}
= P {𝑊𝑊𝑗𝑗1 ≤ 𝑡𝑡1 + 𝑠𝑠,𝑌𝑌1 ≤ 𝑡𝑡2 + 𝑠𝑠|𝑊𝑊𝑖𝑖1 = 𝑠𝑠,𝑊𝑊11 > 𝑠𝑠, … ,

𝑊𝑊(𝑖𝑖−1)1 > 𝑠𝑠,𝑊𝑊(𝑖𝑖+1)1 > 𝑠𝑠, … ,𝑊𝑊𝑛𝑛1 > 𝑠𝑠,𝑌𝑌1 > 𝑠𝑠, … ,
𝑌𝑌𝑛𝑛 > 𝑠𝑠,𝑋𝑋12

𝑄𝑄 > 𝑠𝑠, … ,𝑋𝑋𝑛𝑛(𝑛𝑛−1)
𝑄𝑄 > 𝑠𝑠,𝑋𝑋12𝐹𝐹 > 𝑠𝑠, … ,

𝑋𝑋𝑛𝑛(𝑛𝑛−1)
𝐹𝐹 > 𝑠𝑠,𝑍𝑍11 > 𝑠𝑠, … ,𝑍𝑍𝑛𝑛𝑔𝑔𝑛𝑛 > 𝑠𝑠},

 

since the events conditioning the probability are equivalent. Next, by exploiting Assumption A2, we have 

https://ieeexplore.ieee.org/document/#deqn5


P{ 𝑊𝑊𝑗𝑗1
′ ≤ 𝑡𝑡1,𝑌𝑌𝑘𝑘′ ≤ 𝑡𝑡2|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1}

= P{𝑊𝑊𝑗𝑗1 ≤ 𝑡𝑡1 + 𝑠𝑠,𝑌𝑌𝑘𝑘 ≤ 𝑡𝑡2 + 𝑠𝑠|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1}
= P{𝑊𝑊𝑗𝑗1 ≤ 𝑡𝑡1 + 𝑠𝑠,𝑌𝑌𝑘𝑘 ≤ 𝑡𝑡2 + 𝑠𝑠|𝑊𝑊𝑗𝑗1 > 𝑠𝑠,𝑌𝑌𝑘𝑘 > 𝑠𝑠}

=
P{𝑊𝑊𝑗𝑗1 ≤ 𝑡𝑡1 + 𝑠𝑠,𝑌𝑌𝑘𝑘 ≤ 𝑡𝑡2 + 𝑠𝑠,𝑊𝑊𝑗𝑗1 > 𝑠𝑠,𝑌𝑌𝑘𝑘 > 𝑠𝑠}

P{𝑊𝑊𝑗𝑗1 > 𝑠𝑠,𝑌𝑌𝑘𝑘 > 𝑠𝑠}

=
P{𝑠𝑠 < 𝑊𝑊𝑗𝑗1 ≤ 𝑡𝑡1 + 𝑠𝑠}

P{𝑊𝑊𝑗𝑗1 > 𝑠𝑠}
P{𝑠𝑠 < 𝑌𝑌𝑘𝑘 ≤ 𝑡𝑡2 + 𝑠𝑠}

P{𝑌𝑌𝑘𝑘 > 𝑠𝑠} .

 

Therefore, we get P{𝑊𝑊𝑗𝑗1
′ ≤ 𝑡𝑡1,𝑌𝑌𝑘𝑘′ ≤ 𝑡𝑡2|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1} = P{𝑊𝑊𝑗𝑗1

′ ≤ 𝑡𝑡1|𝑊𝑊𝑗𝑗1 > 𝑠𝑠}P{𝑌𝑌𝑘𝑘′ ≤ 𝑡𝑡2|𝑌𝑌𝑘𝑘 > 𝑠𝑠}, which 
concludes the proof by noting that P{𝑊𝑊𝑗𝑗1

′ ≤ 𝑡𝑡1|𝜏𝜏 = 𝑠𝑠, 𝜏𝜏 = 𝑊𝑊𝑖𝑖1} = P{𝑊𝑊𝑗𝑗1′ ≤ 𝑡𝑡1|𝑊𝑊𝑗𝑗1 > 𝑠𝑠}. □ 
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