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ABSTRACT 
A CRITICAL STUDY OF GEOSPATIAL ALGORITHM USE IN  

CRIME ANALYSIS AND PREDICTIVE POLICING 
 
 

Katherine Weathington 
 

Marquette University, 2020 
 
 

We examine in detail two geospatial analysis algorithms commonly used in 
predictive policing. The k-means clustering algorithm is used to partition input data 
into k clusters, while Kernel Density Estimation algorithms convert geospatial data into 
a 2-dimensional probability distribution function. Both algorithms serve unique roles in 
predictive policing, helping to inform the allocation of limited police resources.  

Through critical analysis of the k-means algorithm, we found that parameter 
choice can greatly impact how crime in a city is clustered, which therefor impacts how 
mental models of crime in the city are developed. Interviews with crime analysts who 
regularly used k-means revealed that parameters are overwhelmingly chosen 
arbitrarily. Similarly, KDE parameters greatly influence the resulting PDF, which are 
visualized in difficult to interpret heatmaps. A mixed method user study with 
participants of varying backgrounds revealed that those with backgrounds in law 
enforcement and/or criminal justice rarely actively chose the parameters used, in part 
due to not fully comprehending the meaning of less obvious parameters. It was also 
found that individuals with different backgrounds tended to interpret heatmaps and 
make resource distribution decisions differently. 

There are several implications from these findings. Primarily, this implies that 
most would-be users lack the training and expertise to reliably implement and interpret 
geospatial crime analysis algorithms. Both within and without crime labs, critical 
thought is rarely given to parameter choice, especially for parameters without a clear, 
easily understandable explanation. These factors illuminate predictive policing being an 
inexact science, despite being taken as reliable and objective. These shortcomings and 
misconceptions, due to their pivotal role at the earliest part of the policing and criminal 
justice system, have long term consequences for denizens of any place being policed at 
behest of an algorithm.  
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1    INTRODUCTION 
 
 

The criminal justice system is the subject of many heated debates and has been 

at the center of many scandals, often with concerns raised over unfair treatment and 

systemic bias. As the impacts on those subjected to the criminal justice system are far 

reaching and entirely capable of ruining careers and personal relationships, small 

choices or overarching policies in the criminal justice system will have long lasting and 

hard to predict ripples. But the criminal justice system does not begin in a courthouse, 

rather, it begins with police actions and, by extension, policing decisions. While there 

are many well-known criticisms of both the attitudes and actions of police, there is a 

lesser known layer that influences the entire shape of policing in a city: predictive 

policing and crime analytics.  

Predictive policing describes the practice of augmenting current knowledge of 

crime trends in an area through the implementation of data analysis tools such as 

clustering algorithms on crime locations and time series analysis of crime rates. In 

many American cities, these efforts are the result of a small crime lab of individuals 

with degrees in criminology, sociology, or public administration with at most a limited 

education in data science techniques.  

Two of the most prevalent geospatial algorithms used in predictive policing are 

k-means clustering and kernel density estimations (KDEs). K-means partitions data into 

k descriptive clusters. KDEs process data points and outputs a probability density 

function. Ideally, these tools would allow analysts to visualize where crimes tend to 

happen in a given area, which would then inform the police on where to allocate car 

and foot patrols. There are several motivations for implementing predictive policing. By 
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allowing policing to become more proactive, you can maximize police workhours in 

order to save cost. Furthermore, the grounding of decisions in data provides a facade of 

fairness and creates a point of accountability beyond individual officer choice. 

However, the criminology theory as well as common sense dictates that higher 

allocation of police to an area would lead to higher rates of arrests being made in that 

area. Therefore, misuse of predictive policing algorithms can easily create a self-

reinforcing data loop leading to more, likely unnecessary and detrimental, police 

presence. This motivates our research questions: how are crime mapping tools being 

implemented, and how well are they being interpreted? This paper will combine the 

findings from two studies to attempt to answer these questions for the most popular 

geospatial crime analysis algorithms, utilizing a mixed methods approach to both 

identify trends and develop a meaningful understanding of the context surrounding the 

findings in the data. 
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2    RELATED WORKS 
 
 
2.1    Algorithmic Crime Mapping 
 
 

Algorithmic crime mapping is the use of modern information processing 

technology to combine GIS data, digital maps, and crime data to facilitate the 

understanding of spreading of crime. According to Mamalian et al., algorithmic crime 

mapping enables law enforcement agencies to analyze and correlate data sources to 

create a detailed snapshot of crime incidents and related factors within a community or 

other geographical area [22]. It is a versatile tool for crime investigation officers to 

understand the spreading of crime [43] and has already been applied to different crime 

types, including drug incidents [66], environmental crimes [18], burglary [18], gang 

violence [48], burglary repeat victimization [46], residential burglaries [2], and serial 

robberies [42]. 

The Bureau of Justice Statistics’ Law Enforcement Management and 

Administrative Statistics (LEMAS) surveys of 1997 and 1999 indicate that crime 

mapping technology was adopted and used by law enforcement agencies after 1999. 

Following LEMAS’s survey of 1997, the national survey conducted by the Crime 

Mapping Research Center (CMRC) of the National Institute of Justice was distributed to 

determine which agencies used GIS, the purpose of usage, and reasons for refusing it 

[58]. A pilot study was conducted to directly examine the adoption of algorithmic crime 

mapping in police agencies by choosing a random sample of 125 police agencies from 

the LEMAS 1999 survey of departments with 100 or more police officers [90]. Two 

additional important findings are, firstly, the existence of a direct link between the use 

of algorithmic crime mapping and hot spot approaches in policing, and second, both 
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basic and applied research about crime places and hot spots played an important role in 

the process of diffusion of algorithmic crime mapping.  

The early adoption of algorithmic crime mapping also happened in several 

countries outside the United States. A browser-based mapping application Map-based 

Analytical Policing System (MAPS) was released on the New Zealand Police network in 

late 2000 [6]. In Rio de Janeiro, Brazil, the space-time monitoring of geographical cells 

Monitora Espacio Temporal (CEMET) was applied across the entire state by using 

ArcGIS and digital maps to identify crime patterns [69]. In addition, Victoria Police 

department in Victoria, Australia, developed a tool to simplify the use of MapInfo GIS 

software by introducing Geographic Intelligence Unit (GIU) and implement crime 

mapping at many locations across the state [59]. 

In practice, the majority of hotspot and place-based predictive policing 

algorithms focus not on arrests, but on crimes predominantly reported to police by the 

public (e.g., robbery, burglary, assault) [3, 61]. Spatial clustering has been investigated 

to detect where crimes concentrate in space and time, e.g. to detect hotspots, or to 

predict future crime location [18, 93]. Spatiotemporal correlations over longer time 

periods have been investigated to further enhance hotspot detection [85]. The most 

common methods are spatial ellipses, thematic mapping of geographical areas, grid 

thematic mapping and Kernel Density Estimation (KDE) [19]. KDE is one of the most 

popular techniques and has proved itself to be very effective in terms of precision and 

prediction [19]. The technique is also known for producing smooth and precise maps 

[18, 28]. Several other approaches include a new crime hotspot mapping tool - Hotspot 

Optimization Tool (HOT), an application of spatial data mining to the field of hotspot 

mapping. The key component of HOT is the Geospatial Discriminative Patterns 
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(GDPatterns) concept, which can capture the differences between two classes in a 

spatial dataset. The pros and cons of utilizing related factors in hotspot mapping are 

discussed. [87]. Other research shows computational co-offending network analysis is 

an effective means for extracting information about criminal organizations from large 

real-life crime datasets, specifically police-reported crime data which is virtually 

impossible to obtain such information by using traditional crime analysis methods [84]. 

However, several concerns have been associated with such tools and 

methodologies. Research has demonstrated that a racial bias exists in policing, 

including the racial profiling of vehicles [11, 13, 44, 88], pedestrian stops [1, 31, 36], 

traffic tickets [27], drug enforcement and arrests [12, 49, 54], use of force [17, 52, 65], 

and even in the decision to shoot white or black criminal suspects while in a training 

simulator [70]. While the mechanisms driving these observed patterns of racial 

disparity (i.e., racial profiling, stereotyping/cognitive bias, deployment, racial 

animus/prejudice) remain difficult to disentangle [89], there is little doubt that racial 

disparities in policing outcomes do exist. Racial bias of predictive policing algorithms 

has been the focus in recent research articles [15, 45]. With regards to place-based 

predictive policing methods that forecast a time and location where a crime may occur, 

the concern is that racially biased police practices may be directed toward some areas 

rather than others. Knowing that they are in a prediction area may heighten the 

awareness of police officers in ways that amplify biases. That is, a minority individual 

observed in a prediction area may be more likely to be subject to biased police actions 

than the same individual observed outside of a prediction area [32]. There are also 

significant privacy concerns with hot spot policing [9, 50]. The dissemination of spatial 

crime data can be problematic when the locations of crimes can be linked to specific 
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addresses and individuals as police reports are public record, and a number of police 

departments offer online crime mapping tools [9]. Lastly, some studies investigated 

factors [55, 73, 74] that affect the use of algorithmic crime technology. This research 

suggests algorithmic crime mapping should be used by law enforcement agencies to 

focus on increasing number of full-time paid employees, providing academy training, 

assigning patrol officers to specific areas/beats, and updating technology frequently to 

support the analysis of community problems [55]. 

2.2    Human Algorithm Interaction 
 
 

For over 20 years, the academic community has proposed numerous guidelines 

and recommendations for how to design for effective human interaction with AI-

infused systems [5]. Early supervised machine learning algorithms have relied on 

reliable expert labels to build predictive models. However, the gates of data generation 

have recently been opened to a wider base of users who started participating 

increasingly with casual labeling, rating, annotating, etc [64]. The increased online 

presence and participation of humans has led not only to a democratization of 

unchecked inputs to algorithms, but also to a wide democratization of the consumption 

of machine learning algorithms' outputs by general users. Hence, these algorithms, 

which are essential building blocks of recommender systems and other information 

filters, started interacting with users at unprecedented rates [75]. The result is machine 

learning algorithms that consume more and more data that is unchecked, or at the very 

least, not fitting conventional assumptions made by various machine learning 

algorithms [20]. 
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Recently, there are findings that highlight opportunities and challenges in 

designing human-centered algorithmic work assignment, information, and evaluation 

and the importance of supporting social sense making around the algorithmic system 

[51]. The potential of rich human computer collaboration via on-the-spot interactions is 

a promising direction for machine learning systems and users to collaboratively share 

intelligence [62,83]. Several methods incorporating study participants into the process 

of data analysis and interpretation have been proposed recently [10,24,29,92]. 

Algorithmic interfaces in socio-technical systems rarely include a clear feedback 

mechanism for users to understand the effects of their own actions on the system. The 

increasing prevalence of these opaque algorithms coupled with their growing power 

raises questions about how knowledgeable users are versus how knowledgeable they 

should be about these algorithms’ "existence", "operation", and the "biases" they might 

introduce to users’ experiences [29]. 

More recent influences on user studies in interactive cartography include the 

related areas of human computer interaction (HCI) and usability engineering (UE) [80]. 

Scientists working in HCI have produced a range of technology-driven research on 

interaction design that is broadly applicable to the cartographic context [57,80]. 

Furthermore, cartographers have borrowed empirical methods commonly used in HCI 

such as interaction logging, task analyses, and think aloud studies to supplement 

psychology and geography-based approaches when digital interactivity is provided. 

Scholars in HCI are increasingly turning their attention to interactive maps 

[23,37,39,67,72,79], pointing to an increased mutual influence as maps become 

interactive and move online or to mobile devices. 
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For many years, interactivity has been touted as the primary way to support 

visual thinking in the context of geographic visualization, with the goal of generating 

new hypotheses in unknown datasets to support scientific exploration [56,60]. 

However, the ubiquity of interactive maps presents emerging opportunities to study 

interaction design beyond exploratory spatial data analysis [34]. Geo-visual analytic 

and “big data” science is one important use case [77]. Future research also needs to 

approach interaction design for a general audience, in which the interactive maps and 

visualizations serve the purpose of communication, personalization, and even 

entertainment. These very different use and user contexts present different 

methodological opportunities and challenges regarding participants, materials, and 

procedures, and the degree to which insights regarding exploratory visualization can be 

transferred to these different contexts currently remains unclear [78]. 

Moreover, questions derived from critical science and technology studies are 

also needed to inform qualitative research on interactive maps and visualizations, 

particularly to understand how interactivity empowers and potentially misleads or 

marginalizes its users [41]. For instance, how does interactivity deferentially impact 

user access to or trust in the information behind the map? [33]. Do interactive maps 

and visualizations that reach marginalized populations disproportionately serve as 

propaganda or surveillance? [21] Do they compromise our privacy, or change the ways 

we construct and negotiate public space? [91] Additional research must be adapted to 

approach such critical questions about new use cases for interactive maps and 

visualizations. 

2.3    Transparency & Criminal Justice Algorithms 
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Algorithms, complex mathematical formulas and procedures through which 

computers process information and solve tasks, have an increasing impact on people’s 

lives [4]. Algorithms are replacing or augmenting human decision making in crucial 

ways. People have become accustomed to algorithms making all manner of 

recommendations, from products to buy, to songs to listen to, to social network 

connections. However, algorithms are not just recommending, they are also being used 

to make big decisions about people’s lives, such as who gets loans, whose resumes are 

reviewed by humans for possible employment, and the length of prison terms [82]. 

As artificial intelligence and algorithmic prediction come quickly to penetrate 

local governance, it would be desirable for the public to know what policy judgments 

the algorithms reflect and how well they perform in achieving the objectives set for 

them. It will be possible to assess a predictive algorithm’s politics, performance, 

fairness, and relationship to governance only with significant transparency about how 

the algorithm works. One such use context of algorithms in which people’s lives 

depend on the outcome is criminal justice algorithms. 

Criminal justice algorithms, sometimes called "risk assessments" or "evidence-

based methods," are controversial tools that purport to predict future behavior of 

defendants and incarcerated persons [7]. These proprietary techniques are used to set 

bail, determine sentences, and even contribute to determinations about guilt or 

innocence. Yet the innerworkings of these tools are largely hidden from public view. As 

criminal justice algorithms have come into greater use at the federal and state levels, 

they have also come under greater scrutiny. Many criminal justice experts have 

denounced "risk assessment" tools as opaque, unreliable, and even unconstitutional 

[16,25]. As many "risk assessment" algorithms take into account personal 
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characteristics like age, sex, geography, family background, and employment status, 

two people accused of the same crime may receive sharply different bail or sentencing 

outcomes based on inputs that are beyond their control and have no avenue to assess or 

challenge the results [47]. In May 2016, ProPublica released an in-depth report about 

COMPAS, suggesting that it was both racially biased and inaccurate. According to 

ProPublica’s analysis, the scores not only proved "remarkably unreliable" in forecasting 

violent crime, but they also contained significant racial disparities—even though the 

formula does not officially take race into account [47]. 

However, even though in Figure 1 we can see "reported and observed crime", 

"investigation" and "arrest" (sky-blue region) are top in the chain of criminal justice 

system events which are usually fed into the future crime prediction algorithm and 

algorithmic crime mapping tools [3,61], very few works [25,50,74] usually focus on the 

hidden bias that might be involved in the tools or the data [1,13,36,44,49,54,88] that fed 

Fig. 1. The sequence of events in the criminal justice system. 
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into it. Because the ways in which these systems reach their conclusions may reflect or 

amplify existing biases, or may not offer explanations that satisfy our accustomed social 

and judicial expectations, there is growing concern that the traditional frameworks for 

implementing transparency and accountability may not suffice as mechanisms of 

governance. 
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3    STUDY ONE: K-MEANS CLUSTERING ALGORITHM 
 
 

The k-means algorithm partitions data into precisely k clusters based on 

distance. For geospatial data, it is often implemented based on latitude and longitude, 

with several possible formulas for measuring distance. K-means, if implemented 

correctly, can be an effective method of revealing natural clusters of events in your 

data. Our study sought to critically examine the inner workings of k-means and its 

parameters as well as gain insight into how it is used by real world crime analysts.  

3.1    Methods 
 
 

We started by interviewing two professional crime analysts to get initial 

insights into algorithmic crime mapping practices. We used publicly available arrest 

data about the city of Milwaukee for 12 years (2005-2016) as an empirical lens of 

investigation. We focused on the k-means algorithm because it is both a commonly 

Fig. 2. Algorithm for Calculating Potential Bias Index 
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used crime mapping tool and its flaws are intuitive to understand for the layperson. We 

restricted our analysis to four common crimes: robbery, simple assault, theft, and motor 

vehicle theft, which are commonly mapped by analysts. We created visualizations of 

potential bias and used publicly available demographic information to create a Potential 

Bias Index (PBI) (Figure 2) that we used as visual aids in the next round of interviews.  

Then, we conducted follow-up interviews of 17 people. Eleven of them were 

professional crime analysts working in the greater Milwaukee and Chicago 

metropolitan area. Six participants were local community organizers working to 

improve opportunities and reduce crime in the inner city. We adopted a grounded 

theory perspective [94] to our work. After multiple iteration of thematic analysis, 

initial high-level themes have emerged from the qualitative data. 

3.2    Results & Discussion 
 
 
3.2.1    Deconstructing k-means for potential biases 
 
 

Examining Lloyd’s algorithm for k-means, we found two inflection points for 

potential human bias [95] to enter the model: (a) the initial selection of clusters and (b) 

Fig. 3. Frequency of Potential Bias Values Based on Number of Clusters 
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the choice of the distance metric. Note that these are the two parameters required by 

the k-means algorithm. Considering the choice of number of clusters, shown in Figure 

3, the potential bias values for both theft and motor vehicle theft ranged from 0 to a 

high of 0.36. The average potential bias for a given k ranged between 0.069 and 0.17 for 

theft and between 0.063 and 0.1706 for motor vehicle theft. In general, values of k 

greater than 4 produced an average bias value greater than or equal to .14, while values 

of k less than 4 produced values less than 0.1.  

For theft, the gold standard of 5 clusters produced a low potential bias value of 

0.0315 and a high value of 0.3099 with a mean of 0.1442 and standard deviation of 

0.0562. Motor Vehicle Theft had a larger range with a low of 0.0180, a high 0.3495, a 

mean of 0.1457, and a standard deviation 0.0665. Theft exhibited lower standard 

deviation than motor vehicle theft, likely due to the higher number of data points (900 

vs 400). But between both, when high potential bias values are produced, the associated 

clustering typically featured two different configurations of the city center, while the 

clusters in the northern and southern ends of the city tended to be similar. This is likely 

due to the sparser nature of points on the city periphery, while the density of points 

toward the center of the city created more "unstable" initializations that result in high 

potential bias scores.  

Considering the parameter of distance metric and looking at a given geodesic 

cluster, dissimilarity can increase in two ways. First, dissimilarity will increase when 

the number of unique Euclidean clusters present increases. Geodesic cluster purity will 

decrease dissimilarity. Second, dissimilarity will increase if a small ratio of Euclidean 

points is found inside the geodesic cluster compared to the number of points in the 

Euclidean cluster. This dissimilarity score can be between 0 and 1. Zero means a 
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geodesic cluster matches perfectly with a Euclidean cluster. If a geodesic cluster 

contains small fractions of many different Euclidean clusters, its score will approach 1. 

A visualization of this effect is presented in Figure 4. 

3.2.2 Default behavior of crime analysts 
 
 

One of the main findings from our interviews is that, in general, crime analysts 

were unclear about the theoretical design and inner workings of the algorithms that 

they were using. Decisions made during data analysis were mostly supplemented with 

prior knowledge and existing mental models of the city. 

All the analysts we interviewed had master’s degrees in criminology, crime 

analysis, sociology or public administration and some had taken a few courses in 

applied statistics, like Matthew. Some participants such as Jill reported complete 

unfamiliarity with statistical distance metrics after we explained how k-means worked 

and displayed our visualizations:  

"I didn’t know what these distance things [metrics] are...I understand 

the Euclidean that...the calculation of the straight line because we 

Fig. 4. Comparison of Euclidean and Geodesic Distance Metrics on Two Sets of Crime Data 
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learnt it in high school but I didn’t know that there were other ways 

to calculate distance. I just point and click [on the GUI based crime 

analysis software that they use developed by a private third party]."     

-Jill 

In this case, Jill does not change the default distance metric (Euclidean) that is 

provided in the software even though other options are present. Others point to a lack 

of transparency and clarity within the choices provided by the software that they use 

and a confusion in selecting appropriate options. This leads them to select default 

options. For instance, 37-year-old male crime analyst John stated:  

"When I go to run the clusters [referring to k-means or other clustering 

methods], there are many other options on the menu but I don’t know 

most of them so I just go with the default options on the menu... we 

were taught a basic idea of clustering but I didn’t know that we could 

have so many different options." -John 

This refers to a general lack of transparency in how this third-party software 

designs and implements the algorithms. When faced with a variegated menu of choices, 

the analysts select the one that is most familiar i.e. the default option. Taken together, 

this type of analysis is rule-based and path-bound [96]. It is natural to be paralyzed by a 

suite of potential options and then choose the most familiar one, however incorrect it 

might be under the given circumstances. However, when asked about how they decide 

to select the initial number of clusters, some participants responded that they depended 

on existing institutional knowledge about crime in Milwaukee. For instance, when 

asked about city-level clustering, Kevin referred to extant institutional knowledge that 

is likely already biased:  
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"When I started the job, I was told that we always divide the city into 

five main divisions. There is the downtown cluster, the northshore 

cluster where all the rich folks live...you have the northwestern and 

southside clusters where there is a lot of gang activity and then the 

west side near the suburbs where a lot of people commute from." -

Kevin 

Any subsequent analysis depends on this initial categorization that is dependent 

on institutional knowledge. Therefore, this type of analysis is based on situated decision 

making [96]. We observe here that while domain knowledge is very important, when 

combined with what we learnt about the statistical (in)appropriateness of the actual 

process, there is a lot of potential for misclassification and untoward policy making. 

Relatively few people request to switch from the default regardless of what the default 

is. Clearly, the default selected by policymakers has important implications. 
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4    STUDY TWO: KERNEL DENSITY ESTIMATIONS 
 
 

Kernel density estimation is an algorithm which converts discrete data points 

into a probability distribution, the shape and size of which depends on user input 

parameters. These calculate probability distributions are summed then normalized in 

order to define a singular probability distribution function which can be used to predict 

areas likely to have future events occur. For geospatial crime analysis, KDEs are 

generalized from the common univariate implementation to a 2-dimensional bivariate 

analysis. The output of a bivariate implementation is often visualized as a heatmap. Our 

study seeks to identify trends in how users with various backgrounds choose parameter 

values, interpret heatmaps, and use this knowledge to make resource allocation 

decisions in the specific context of Milwaukee crime. 

4.1    Methods 
 
 

We conducted a three month long empirical study with participants in 

Milwaukee, USA. A total of 60 participants were individually interviewed to discover 

how people from different educational and professional backgrounds interact with 

crime-mapping algorithms. We developed an online, interactive web application which 

displays a heatmap output of a Bivariate Kernel Density Estimation (also referred to as 

KDE here) based on data parameters and user chosen KDE parameters. We were able to 

analyze the interaction and ability to interpret the crime-mapping algorithm through an 

interactive activity where participants were asked to choose different parameters for 

the KDE algorithm and then to identify hotspots on the map. We were able to find 

participants’ values and needs for such algorithms through a one-on-one interview. The 

interview helped to supply necessary context by providing participants’ current 
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thoughts and concerns on crime analysis tools. This study was approved by the 

Institutional Review Board (IRB) of Marquette University where this study took place. 

4.1.1 Application design 
 
 

Data used in our application was taken from the Wisconsin Incident-Based 

Reporting System (WIBRS), a publicly accessible database organized by the Wisconsin 

Department of Justice [8]. Data had to be accessed by time and was collected starting 

with 2017 (the last full year before this project began) and then worked backwards. We 

were able to cultivate a dataset of crimes in the City of Milwaukee from 2012 to 2017. 

We chose to focus on quality of life crimes, such as robbery, larceny, and motor theft, 

because they are common and tend to have the most effect on an average person’s life. 

Moreover, most people would also be familiar with or have encountered such crime in 

their life. In contrast, crimes such as rape, murder, terrorism, etc. are relatively rare 

events in the grand scheme of things [53]. Street addresses provided in the dataset were 

then cleaned using a manually assembled regex library then geocoded using Google’s 

geocoding service. Data was organized into individual months for each unique type of 

crime. 
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To facilitate our study, we built an online, interactive application, shown in 

Figure 5, which prominently displays the heatmap output of a Bivariate Kernel Density 

Estimation (KDE) based on specified data and KDE parameters. We chose to present 

KDE outputs for two reasons: firstly, we know from prior knowledge of common 

practices by crime labs that KDEs are one of, if not the most, commonly used crime 

mapping algorithm [38], and secondly that we wished to understand the predictive 

capabilities of individuals which are fostered by the PDF outputs of a KDE heatmap. 

Fig. 5. Screenshot of Application Used in Our Study 
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Each parameter dropdown list had a question mark tooltip in order to answer some 

general questions about parameters. The data parameters allow users to choose one 

type of crime from a specific month and year from 2012 to 2017 in the City of 

Milwaukee. KDE parameters and options are outlined in Table 1. 

KDEs attempt to find and represent the underlying probability density function 

that a set of data was taken from. By providing a PDF, the heatmap allows users to 

predict high and low probability areas for future events. KDEs accomplish this by 

smoothing each discrete data point into a two-dimensional probability distribution 

function (PDF) with the original point at the mean, then aggregating the PDFs into a 

singular heatmap for the entire area. The shape of the distribution that data points are 

smoothed into is defined by the kernel parameter, also called interpolation method. The 

shapes provided by these are equivalent to common probability distributions those 

found within standard statistics. The bandwidth, or smoothing, parameter controls the 

width of each distribution. In statistics, this would be analogous to the variance of a 

symmetric distribution. For example, a gaussian kernel with a bandwidth of one will 

result in the standard normal distribution, though you generally want a much smaller 

bandwidth in order to produce meaningful results. Higher values for bandwidth result 

in much smoother outputs, which would lose power but reduce bias from overfitting. 

Our final parameter is distance metric, which controls how distance between points is 

Table 1. List of Parameters, Default Setting, and Other Options 



22 
 

measured. The most commonly used distance metric is Euclidean, or merely a straight 

line between two points on a plane, which is the default setting for distance metric. 

After submitting an initial set of parameters, users are shown the calculated 

heatmap with several interactive features, as well as a bar chart displaying the number 

of events in either each police district or each aldermanic district. Hovering over data 

points in the heatmap will show a pop-up with information about the date, districts, 

and location of the event. 

4.1.2    A Priori Statistical Power Analysis 
 
 

In order to determine how many participants should be recruited, we performed 

a standard a priori statistical power analysis, depicted in Figure 6. Based on our power 

analysis we set a minimum goal of 60 participants, ensuring 0.6 power for low effect 

size. Achieving this number affords us a reasonable ability to discover trends in our 

collected data. 

4.1.3    Participants 
 
 

Fig. 6. A Priori Power Analysis to Determine Number of Participants 
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We decided to recruit participants from the Milwaukee area as many studies 

today have been crowdsourced through Amazon Mechanical Turk. Having Milwaukee 

residents allows us to obtain community feedback from people who already have 

knowledge about the city they live in. Recruitment was performed in the form of 

advertisement flyers posted around the city of Milwaukee in coffee shops, community 

centers, and public libraries as well as various online forums and groups. If an 

individual found interest in the study, they would contact us via email and we would 

then confirm that the individual was at least 18 years of age. Next, we would propose 

specific meeting times for an in-person experiment. If the participant was unavailable 

for any of the initially proposed times, we would propose different session times. After 

a time was accepted by the participant, we would send a confirmation email to the 

participant with the accepted time, the location of the experiment, and mark down the 

time in a master schedule for study organization. 
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The participants were individuals (𝑛=60) from the Milwaukee area with varying 

backgrounds with regards to algorithmic crime analysis. We assigned subjects to one of 

three groups depending on their self-reported background and experience. Group 1 

(𝑛1=39) consists of those with no background relevant to algorithmic crime analysis. 

That is, they have no background in either data analysis nor in criminal justice and law 

enforcement. Group 2 (𝑛2=14) have a technical background involving programming or 

algorithmic analysis. Group 3 (𝑛3=7) consists of law enforcement officers or those 

otherwise professionally involved in criminal justice and civil peacekeeping. A small 

number of members of Group 3 also had technical backgrounds akin to Group 2. Our 

goal of separating participants into three different groups was to analyze the ability to 

Table 2. Demographic Overview of Study Participants 
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interact and interpret crime analysis methods, specifically KDEs, through their different 

uses and needs for the algorithm. An overview of the participants’ demographics can be 

found in Table 2. Each participant was given a specific participant identification 

number such that we may be able to use their data and interview for analysis without 

revealing personally identifiable information.  

4.1.4    Experiment Overview 
 
 

Once the participant arrived for the experiment session at the confirmed time, 

the experiment began by providing the participant with an informed consent form to 

obtain data. After signing the consent form, the experiment would continue by 

administering an interactive activity with our developed web application, moving to a 

two-part online survey consisting of the NASA-TLX scale to review workload of the 

activity and a demographic questionnaire, and concluding the experiment with a 

recorded, oral interview. The developed web application, surveys, and the oral 

interview are further described in detail in the following sections. After finishing the 

oral interview, participants would receive compensation and the experiment would 

conclude. Figure 7 displays a flowchart of the complete study process. 
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In order to gauge their ability to understand, interpret, and actively use 

implemented algorithmic crime analysis, participants were asked to perform a series of 

activities on heatmaps of various complexities. While participants were able to change 

parameters of the KDE to one of several options, data parameters were provided and 

consistent across maps. Therefore, complexity of the underlying data patterns rather 

than a specific heatmap output was considered when choosing exemplar data 

parameters for each complexity. To determine which maps would be shown, we went 

through many different heatmaps as a team and selected those with clearly different 

levels of complexity ranging from distinct hotspots scattered across the map, to 

hotspots that blurred together and were not easy to pinpoint. Map A is the least 

complex, with data points naturally forming relatively distinct clusters. Map B was 

Fig. 7. Flowchart of Experiment Process 
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more complex, with more blurry edges around natural clusters. Map C was the most 

complex, with many of the clusters bleeding together yet still maintaining slight 

variations in density. For each of these maps, we identified and agreed on four values to 

be collected. 

For each map presented, participants were asked to estimate a minimum and 

maximum number of hotspots they see in the heatmap. Next, participants were 

prompted to imagine that the green circles with crosshairs represented the area that 

one police patrol unit could most effectively patrol. Then they were asked to, keeping in 

mind what they represent, provide a minimum and maximum number of green circles 

Fig. 8. Example of Heatmap With User Allocated Circles 
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needed to effectively address crime based on this heatmap. Finally, participants were 

instructed to place 5 of the green circles in locations they believed would be the best 

allocation of resources. A picture of the heatmap with circle allocation and chosen 

parameters was saved, an example of which is depicted in Figure 8.  

After the interactive activity, participants were assessed with NASA-TLX [40] 

for workload of the application and activities. The TLX is a measure of perceived 

workload. Workload, like usability, is a complex construct but essentially means the 

amount of effort people must exert both mentally and physically to use the interface, 

measured using six dimensions: Mental, Physical, and Temporal Demands, Frustration, 

Effort, and Performance. They then answered a survey with questions about their prior 

level of familiarity with algorithmic crime analysis, their understanding of the 

application, feelings towards law enforcement and government, and general 

demographics. Finally, participants were interviewed with a series of pre-written 

questions, though conversation was fostered and often moved away from the prepared 

questions. The conversation began by asking if the participant has ever used or seen a 

system of heatmaps such as in the activity to gauge the participant’s background and 

knowledge of the algorithm. We asked questions about their views on the legality, 

ethicality, and fairness of data, about their willingness to offer personal data to law 

enforcement for algorithm training, and their level of concern about algorithmic crime 

mapping and the factors of which they would consider important to know. Other 

recurring, but not explicitly written, topics included interactions with law enforcement 

and relevant background with either law enforcement or algorithmic data analysis. 

Interviews were transcribed as they were being recorded with an application [68], then 
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were saved and later review by multiple primary investigators. This ensured accuracy 

and consistency in qualitative analysis.  

4.1.5    Analysis 
 
 

In order to statistically confirm the significance of trends found in our 

descriptive figures and our intuitions regarding RQ1, we performed two types of tests. 

Because our data values are discrete and cannot be assumed to come from any well-

defined distribution, we have used non-parametric, or distribution free analogues to the 

Student’s T-Test and Levene’s Test of Variance, the Mann-Whitney U test and Fligner’s 

test respectively. After consideration, the Kruskal-Wallis test, a non-parametric 

equivalent to ANOVA, was found to be inappropriate for the low effect size commonly 

seen in these studies, especially given our sample size [76]. 

The Mann-Whitney U test is signed rank test [86] that can be used as a non-

parametric alternative to the Student’s T-test. By ranking the observations based on 

value, and maintaining their sign, it can indicate whether the median of the population 

the samples were taken from are equal or not. 

Fligner’s test is a squared rank test which tests whether the populations two 

samples are drawn from have equal variance. It acts much like a non-parametric 

analogue to Levene’s Test. Even where measure of central tendency may not be 

significantly different, a difference in variance of the samples and therefore populations 

indicate some level of different capability or motivations. Lower variance indicates 

more precision, even if the overall accuracy, or measure of central tendency, happens to 

be the same. Fligner’s test can use either mean or median as the measure of central 

tendency to use to calculate variance, we have provided results for both. 
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To address RQ2, we compute the probability distribution of sticking with the 

default parameters to understand the default behavior among the groups. We have also 

administrated the NASA TLX survey to assess their mental workload of the tasks 

performed. Administering the TLX involves two steps. First, a participant reflects on 

the task they are being asked to perform and looks at each paired combination of the 

six dimensions to decide which is more related to their personal definition of workload 

as related to the task. This results in a user considering 15 paired comparisons. For 

example, a given participant needs to decide whether Performance or Frustration 

represents the more important contributor to the workload for the specific tasks 

performed. The second step involves participants rating each of the six dimensions on 

scales from Low to High or from Good to Poor. The raw score for each of the six items 

is multiplied by the weight from step 1 to generate the overall workload score per task. 

Our qualitative interviews were transcribed in an online platform - Otter [68]. 

Both the audio recordings and the transcriptions were initially stored in that platform. 

They were then downloaded to safe storage where two principal investigators checked 

the automated transcription by hand to eliminate any discrepancies. The transcripts 

were then analyzed using thematic analysis [14]. After reading through the transcripts 

carefully, we conducted several rounds of iterative coding to identify patterns and 

converge them into appropriate themes. This analysis was re-examined and confirmed 

by a PI with extensive domain knowledge in criminology. Low-level themes were 

created by synthesizing the findings of these steps. Finally, high level themes were 

developed through cross referencing. We adopted Grounded Theory [35] approach to 

qualitative data analysis. 
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4.2    Results 
 
 

We have divided our results in three segments. In our findings, we elaborate on 

how people across different background interpret the crime mapping algorithm, how 

they interact with it, and lastly, what the values and needs required for crime mapping 

algorithm are. 

Fig. 9. Distribution of Hotspot and Circle Estimations Compared to Gold Standard (Solid Line) 

Fig. 10. Statistical Significance of Mann-Whitney U Tests for Difference in Median Values by Group 
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4.2.1    Interpretation of crime mapping algorithm 
 
 

Trends Found Through Quantitative Analysis. Figure 9 shows the distributions of 

minimum and maximum hotspots and circles grouped by background. For our 

statistical analysis, we compared these values to a pre-determined gold standard value 

for each map complexity, which has been included in the graphs in order to see which 

distributions tended to over and underestimate. We see some variations both between 

groups and between the same groups in different complexities. 

We ran Mann-Whitney U tests to determine if there is a difference in 

interpretation between individuals with different backgrounds and whether 

complexities of the heatmap factors in. The results of these tests (Figure 10) indicate 

that medians of each sample are different when estimating both minimum and 

maximum circles across different backgrounds. On average, members of Group 1 

estimated a minimum patrol circles needed to be 15.82, an average of 8.82 greater than 

the relevant gold standards, and a maximum of 24.61, 13.61 more than the gold 

standard. This is much less than the averages of Groups 2 and 3, which estimated a low 

of 22.60 and 20.43 respectively and a high of 32.17 and 29.29. These values are higher 

than the relevant gold standards on average by 15.60, 13.43, 21.17, and 18.29 

respectively. 
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Using Fligner’s test to compare Group 1 to Group 2 for Map B and C, tests for all 

four measurements were found to be significant (Figure 11) , confirming the descriptive 

statistics that Group 2’s estimates tend to be more precise than Group 1’s, especially 

with more complex maps. Similarly, the statistically significant results of Groups 1 vs 3 

at estimating hotspots for each map shows a difference in variance, confirming the 

higher precision of group 3 seen in the descriptive statistics. The lack of significance for 

the tests of estimating circles between Groups 1 and 3, however, indicates that there is 

equal precision at estimating circles. As a group, participants of different backgrounds 

tended to estimate the same median values. However, the different groups tended to 

have significantly different variances, especially in estimating hotspots. Groups 2 and 3 

had much lower variance than Group 1, indicating individuals from Group 1 having less 

individual capability to identify hotspots and, to a lesser extent, estimate circles. 

Members of Group 2 and especially Group 3 were much closer to the gold 

standard than members of Group1 when estimating hotspots. On average, Group 3 

were 2.9048 and 7.7143 from the gold standard for minimum and maximum hotspots 

Fig. 11. Statistical Significance for Results of Fligner's Test for Variance 
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respectively. Similarly, Group 2 estimated 6.9048 and 13.3571 more hotspots than the 

gold standard. Group 1 estimated an average of 24.4017 minimum hotspots and 37.3248 

maximum hotspots, which were on average 17.7350 and 27.6581 hotspots more than the 

gold standard. This indicates that members of Group 1 were worse at estimating 

hotspots than members of Group 2 and Group 3, grossly overestimating the number of 

hotspots present. 

We have noticed several key factors that influences interpretation of heatmaps 

and how users estimated hotspots and patrol needs. Common factors are familiarity or 

lack thereof with crime in Milwaukee and familiarity or lack thereof with crime 

analysis algorithms. 

Familiarity with Crime in Milwaukee. As all participants reside in or around 

Milwaukee, they entered the experiment with some general knowledge or stereotypes 

of the city, which may have impacted their choices. Some members of Group 3 used 

their background knowledge of general high crime areas to inform their decisions. We 

know this was the case for P16, a member of Group 3, who has detailed knowledge 

about the rates and places of drug crimes from her work as part of the judicial system. 

She somewhat ignored the hotspots of the map and placed circles based on her prior 

field knowledge. 

“... So I’m very familiar with drug crimes, the rates of drug crimes, the 

areas of drug crimes. If you were to ask me, such as about, like, 

robberies and stuff, if they’re related to drug crimes, I would know 

roughly [the] rates but not so much other crimes outside of that..” - 

P16 LEA 
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On the other hand some LEAs combined their knowledge and the existing crime 

map they are seeing. Using both field experience and exploratory analysis in the crime 

map, they thoroughly made their decisions. Crime maps are especially useful for 

depicting where crime is, but LEAs must have knowledge of the city and its layout in 

order to properly put an end to the crime. P60 carefully described how he interpreted 

the map and how his prior knowledge influences his decisions on where to allocate 

resources. 

“With property crimes ... burglaries ... [for] things like that, I have to 

take a look at the way the map is as well. I know, for example, if like, 

Fond Du Lac Avenue on northside is a main thoroughfare. If there’s 

robberies that are occurring, for example, in downtown, and we hear 

the broadcast, that’s one thing that I’m really looking at is what’s the 

quickest way to get out of downtown. A lot of our robbery offenders 

do tend to reside either on the north side or south side. And I look at 

the most direct route that would leave the downtown area. That, along 

with pawn shops, where they located or retail stores or strip malls, 

where are they located? Why am I seeing more dots here? Is it because 

of its prior to police work for traffic stops field interviews? Or is it calls 

for service for retail theft? " -P60, LEA 

In this particular case, the participant is combining both his observation of the 

heatmap with knowledge about local roadways and thematic crime hotspots in order to 

place officers both in high crime hotspots and with ample avenues to address outlying 

crimes quickly. These observations pointed to the fact that LEAs have significant field 
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experience which can be combined with the existing analysis to provide better and 

more efficient outcomes. 

Familiarity with Crime Analysis Algorithms. Participants with technical 

backgrounds use their familiarity with the crime analysis algorithms in interpretation. 

This familiarity influences their decision-making process. Most of the participants who 

have seen crime maps before were used to static outputs of the algorithm instead of 

being able to choose their own parameters. While the interactive process was pretty 

new to people across different backgrounds and most, if not all, have little experience in 

interacting with the algorithm, people from technical backgrounds were a little 

surprised with the interactive session such, as P34 expressed. 

“Actually, yeah, not quite where it’s so interactive, and you can like, 

pinpoint things. I’ve seen a little reverse where, like, you have a map, 

and you can click on it, and it’ll tell you the demographics. Like, there 

was a robbery here like June 2016. Okay. And so a little more reverse, 

not quite, where you get to choose what you [want]" - P34, Technical 

This shows some experience in the general topic of crime mapping software, 

though used in a somewhat different manner from our experiment. However, LEAs 

might have little knowledge with interacting the algorithm, but they were able decode 

the map with their familiarity of how crime analysis can be done. They used their 

experience in crime analysis to described why they are seeing such a result in the map. 

Using her experience in this domain, P61 explained the definition of a hotspot as a 

current area of where a patrol officer already is and used that in interpreting the map. 

“So the people, the officers who are the administrators who would be 

doing data analysis or be looking at crime maps, might give directive 
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of having a specialized patrol zone, and to make sure that officers were 

in that patrol zone. So even, even if we got a call for service, and there 

was no other officer available, that call for service, depending on his 

priority, my weight in order to keep an officer a patrol zone, that was 

like a hotspot" -P61, LEA 

So, the interaction with the crime map was influenced by their familiarity with 

the map for participants with different backgrounds and their existing domain 

knowledge for participants with technical and law enforcement backgrounds. This 

provides some insights on how the decision of law enforcement allocation may be 

motivated by having human in the loop in crime mapping algorithms. The algorithm 

can provide meaningful insights to where crime is happening, but having a human in 

the loop to decipher the output allows for added contextual knowledge that the 

algorithm may not have. 

4.2.2    Interaction with crime mapping algorithm 
 
 

Each participant was given the option to choose any of three different 

parameters to tinker with. Participants had the option to adjust the bandwidth, kernel, 

Fig. 12. Interaction Graphs of Rates of Each Group to Change Default Parameter Values 
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and distance metric to different levels within the web application or to continue to use 

the web application with the default parameters. Based on the participant’s selection, 

we extracted how people across different backgrounds tend to interact with the 

algorithm. 

Interaction With Parameter Values: Accepting Defaults. The interpretation plots in 

Figure 12 depict the changing probability of changing parameter defaults for the 

different maps depending on their background. The solid line describes Group 2, the 

dotted line describes Group 3, and the hyphenated line Group 1.  

As the map complexity shifts from maps A to B, the probability that the law 

enforcement agents will keep the default kernel parameter remains constant, whereas 

the non-technical participants are less likely to keep the default kernel parameter. As 

the complexity increases from maps B to C, technical participants are more likely to 

keep the default kernel parameter, whereas the non-technical participants show a 

constant probability. 

As the maps increase in complexity, the law enforcement agents have a constant 

probability; these participants are most likely to not change the bandwidth parameter. 

Furthermore, as the map complexity changes, both the technical and non-technical 

participants show a decreasing probability that these participants will keep the 

bandwidth parameter as the default. As the complexity increases, both the technical and 

non-technical participants are more likely to change the bandwidth parameter from the 

default. Finally, the law enforcement agents show another constant probability that 

these participants will not change the default distance metric parameter. Technical 

participants begin with having a constant probability of keeping the default parameter 

from maps A to B, but lose probability of keeping the default metric parameter from 
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maps B to C. The technical participants are more likely to change the default metric 

parameter as the map complexity increases from medium to hard. Non-technical 

participants show a slight decrease in probability of keeping the default parameter from 

maps A to B; it is only slightly probable the non-technical participants will change the 

default distance metric parameter, where they next have a constant probability of 

keeping the default parameter from maps B to C. 

The reasons behind this behavior can be explained through the qualitative 

analysis of the interviews with our participants. Our qualitative analysis indicates that 

users of different backgrounds tended to have different motivations for changing 

defaults and choosing which parameters to change to. For those with a technical 

background, we see some level of familiarity and a level of curiosity. In cases where a 

participant was somewhat familiar with one of the parameters or kernel options, they 

would try that specific parameter. 

"So I noticed after, when I did it the first time, it was the default 

parameters, and I wanted to see, basically, what sort of difference it 

would make using the other sets. I don’t really know the names. I’ve 

heard of a few of the names of these parameters, but as far as what 

they do is kind of blurry to me. So I figured the best way would just be 

to run it and see what actually happens. So yeah, that’s basically why 

I changed it to see what would actually change on the map." -P70, 

Technical 

For some participants they were becoming accustomed to the application as 

they were playing more with it. Some of them developed better understanding while 

hopping from map to map - for some it was confusing. P47 wanted to go back to the 
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first map she was shown to change her answers after becoming more familiar with the 

application and seeing the second map. 

“I think I forget the details, but after I saw the next map, the first one, 

to me, looked ... like there were more hotspots than I thought based on 

comparing it to the second map. I was trying to figure out, like, what I 

would consider a hotspot whether it was just anything that was 

slightly pink or if a hotspot would be the deeper, red color.” -P47, Non-

technical. 

People with no relevant background appeared to pick parameters randomly, 

with no real understanding or justification for their choices. Not a single person in the 

law enforcement group changed a default. This may be because they have been trained 

or become accustomed to accepting the path of least resistance. 

Assessing Mental Workload of Tasks. During interaction, it was reasonable to find 

how challenging the task (interaction with our algorithm) was for participants. To 

assess participant workload, we adopted the NASA-TLX survey. Among the six factors 

recorded, we have elected to examine only four which would best allow us to evaluate 

psychological demand of interacting with the KDE algorithm in our application. They 

are mental demand, temporal demand, performance, and frustration level. Descriptive 

statistics of the weighted scores for each group is presented in Table 3.  
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To determine if the tasks our participants performed required significant mental 

effort or not, we examined the mental demand, which was a relatively high value [71] 

for all three groups (with mean values of 33.15, 36.21, and 39.14), indicating participants 

had to think critically about the tasks. The second factor considered is temporal 

demand, which evaluates the time pressure felt during the tasks. As participants had to 

decide on what options to choose on the spot, it was important to evaluate whether or 

not they felt any stress due to time limitations. Temporal demand was found to be 

somewhat low for all three groups (mean values of 8.49, 8.29, and 11.57) indicating 

participants did not feel rushed. The third factor we considered is performance which 

indicates to what degree a participant feels they performed their job successfully. 

Group 1 averaged much lower (25.18) than Groups 2 (45.57) and 3 (33.56), indicating a 

higher feeling of failure for non-technical users and, to a lesser degree, LEAs. The 

fourth and final factor we considered is frustration, in order to determine to what 

degree users found these tasks to be frustrating or mentally demeaning. Frustration was 

found to be fairly low (range 0-9 out of 100). 

Table 3. Overview of Weighted NASA-TLX Scores 
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Through this analysis we can fairly say building an interaction model of crime 

mapping algorithm will not put that much of a pressure mentally, which implies it is 

feasible to build such a mental model. During our experiment, our researchers noted 

some of the interactions. Based on such jotted transcriptions, the task was somewhat 

mentally demanding as most participants did not have any knowledge about different 

parameters and settings. Overall, this ignites an important effect in terms of feasibility 

in building an interaction with crime mapping algorithm. 

4.2.3    Values and needs for crime mapping algorithms 
 
 

While analyzing the interviews, we have found distinct patterns of perceptions 

regarding the explainable requirement of algorithmic crime mapping. Depending on 

their background, participants had different values and needs regarding the existing 

system such as the ethical considerations of data collection, what kind of data has been 

used including the potential for flaws within it, and requirements of the current system. 

All the ideas raised by participants represent existing concerns and needs that may be 

necessary to improve an efficient, interactive crime mapping algorithm. 

Tensions around the ethical basis of data collection. Law Enforcement Agents 

sided with non-technical participants on the need for the ability to explain issues of 

how the data has been collected. Law Enforcement Agents briefly mentioned their 

concerns of how crime has been forested, how to forecast that crime, and what kind of 

aspects they consider. Like the members of Group 1, Law Enforcement Agents also 

voiced concerns of their family. Moreover, not only that the explanation will release the 

public frustration around this hidden methodology, they also mentioned sometimes 

knowing what kind of data that was fed into the system might help the analyst or the 
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developers of the algorithm with some improvements. Overall, incorporating field 

knowledge will help the algorithm to be robust. P61 gave insight to some of the data 

being entered and explained how sometimes information can be coded wrongly in the 

reports when the officer meant something else. To these LEAs, it is very important to 

understand how this data has been fed into the system and whether the crime analysis 

algorithm can decipher it. 

“I think the number of crimes or incidents in crime events, the type of 

event that is being reported, the number of them, but I think it’s also 

important to know, not just how that the event is being reported, but 

the actual outcome of it. So, you know, someone may report a robbery, 

but it’s not actually a robbery, but it could be coded as a robbery as an 

initial call. So I think it’s really important to make sure that there is 

attention to the classification of an event and making sure that it was 

what it was actually founded or found to be, as opposed to how it was 

reported." -P61, LEA 

We observed every LEA in our interview wants the data to be collected 

ethically; few of them mentioned real case situations where the information has been 

collected unethically, yet still proved useful and provided safety. LEA participants also 

mentioned proper ethical steps must be included in a document around how far they 

can go with this kind of information collected. LEAs described how unethically 

obtained may be useful but raised the point that there may be need for limitations on 

what kind of data should be collected and used. P13 gave us some insight to how data 

may be collected and used unethically with the steps to avoid it. 
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“Remember, a few years ago, they were having those problems with, 

... mobs of ... 15 year old ... running. They hit ... State Fair, and there’s 

a park in River West, or I think, maybe down at the lakefront, but they 

use that ... cell phone data to kind of more or less like hack whoever 

these kids were, and then the officers... visited their parents and stuff. 

And sounds like that seems pretty effective, but of course there needs 

to be, at some point, there needs to be some kind of a judge involved. 

If if they’re going to be tapping into people’s personal data like that.” 

- P13, LEA 

However, technical participants showed the idea that all data should be 

collected, yet question whether the data has been sourced ethically or not. Sometimes 

"true data" can point to accurate predictions, proving to be a helpful and correct 

standpoint where everything else might result into something incorrect. P42 talked 

about the effectiveness and usefulness of such algorithms. The data might be collected 

unethically, but ultimately it would be used to achieve some greater good. 

“... you can see two ways from it, and that’s why I’m a little confused 

because, obviously, if there’s a corrupt precinct and they’re laying out 

charges left and right for minor infractions or made up infractions, 

obviously, that’s not accurate. But at the same time, the data is still 

predicting it accurately. But at the same time, the data is still predicting 

it accurately because even if it’s still a precinct, even if it’s still a 

corrupt precinct, if you’re in that corrupt precinct, you would still have 

that same chance of being incorrectly charged with something." - P42, 

Technical 
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Technical participants have pointed out the fact that data needs to be collected 

ethically but that will only happen in a perfect world; sometimes sacrifices have to be 

made in a big picture, real life case. The technical participants display more trust in the 

algorithms. Most of their opinions reflect the fact that, to make the algorithm robust 

and to make it work, it does not matter how the data has been collected or that it needs 

to be explained or not - as long as the end result provides "accuracy" or it fits well with 

some gold standard model. Although an algorithm may be highly accurate for a given 

dataset, the algorithm should not be used solely by itself. Data may be recorded for a 

specific person, but that person may not always act the same way in some instances. 

LEAs who work in the field mentioned how important it is to be in touch with the 

algorithm for added "human behavior" when analyzing the output. 

“You can take data from people, but you can’t expect people to always 

behave in a set way. So you have to have an understanding of human 

nature on top of how they interact with the public and how cops 

interact with the public." -P59, LEA 

Finally, we see a tension between the LEAs and technical participants who work 

with the algorithm. LEAs in the field are the ones who are using the algorithm and they 

are the ones who continuously mention the data needs to be collected ethically. 

Participants with technical background mentioned however the data has been collected 

should not be a concern if it leads to a good outcome. If the effectiveness of the 

algorithm is more important, the algorithm might prove to be useful if the rest of the 

system fails. 

Needs for getting rid of false alarms and bias. Even though people with Law 

Enforcement backgrounds have concerns around the ethical basis of data collection, we 
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found other prominent concerns and opinions regarding the existing state of 

algorithmic crime-mapping system. LEAs are in the field and are the ones who actually 

use the information from crime maps the most to maintain the safety of that 

neighborhood. Through their field experience, several LEAs expressed concerns that it 

is becoming very inefficient. From our interviews we found that the crime analysis 

sometimes gives LEAs false alarms or reports. LEAs are being kept far from this 

analysis with little room to learn how the algorithm operates and are instructed to work 

solely on the information that is given to them. Because of this resource constraint, it’s 

very difficult for them if the system gives wrong reports. 

“I never knew the algorithm that was used - that was never shared. 

There were a couple of occasions where we, me and myself, and my 

team would be given a packet of information about a specific crime 

that was occurring in our area of responsibility, and sometimes the 

predictive information that was given to us wasn’t consistent with 

what we knew as law enforcement officers just being in the 

neighborhood. So we would work with our intelligence fusion center, 

and let them know that something was off. And then I think they were 

fine, their algorithm.” -P53, LEA 

Due to limited resources, LEAs expressed that they cannot afford truncated 

information from the system. The algorithm plays a major role in determining 

necessary patrol areas and resource allocation for observation. Because of some faults 

in the system, there can be major problems planning and managing resources. P60 

mentioned the operations and the importance of contextual knowledge of the situation. 

The algorithm may have information about the crime, location, and the time of the 
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incident to dispatch LEAs to the area, but the algorithm may not know the most 

efficient way on how to deploy the patrol officers in that neighborhood. 

“For example, we’ve had one person, in particular for burglaries, two 

occasions, two separate areas. He would specifically target detached 

garages, specifically look at the siding, going through the siding, which 

is normally concealed, but either by tree or other type of inanimate 

object and then burglarized garage, open up the overhead door and 

then load up this car and take off. Not many people would see what 

was going on at all. And we would plot all those locations out trying 

to determine the time of day, that is when this is occurring, and what 

districts are impacted and provide that information, like a one pager 

to district commander so they can make the right choice or make a 

better informed decision as to where to deploy their resources." -P60, 

LEA 

LEAs have to deal with day to day operations around the statistics they are 

given. If they were given results which can be biased either racially or through another 

mean, they are still the ones who must deal with the results of the algorithm. LEAs felt 

it’s really important that this algorithm is properly scrutinized and free of these kinds 

of bias even couple of times they mentioned they want to know some important aspects 

of the algorithms how those suspicious red flags have been generated so that they can 

decide on what they should act and on what they shouldn’t - which we will discuss in 

next section. P50 shared such a story: 

"Well, I think it’s important to know how it all works together, just 

because it is really tricky. I mean, don’t want to get into things like 
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how much of this is racially motivated? Or how are these calls coming 

in? A big part of it for me is how was the call actually generated? Did 

somebody call in and go, hey, there’s this dude over here who’s 

suspicious. And then when you ask them, why they’re suspicious, they 

can’t give you a reason, which usually means walking while black, 

which for PD means you still have to send officers. We have to send 

somebody no matter what. But then it makes the makes the 

department look racist, because we’re going to check it out black 

dudes, because people are calling in and telling us they’re suspicious." 

- P50, LEA 

LEAs are excluded from all information regarding the algorithm’s function. 

From not understanding how reports are generated to dealing with false alarms and 

racially biased results caused by the system’s errors, LEAs have found themselves in a 

very difficult situation. According to them, it is a struggle to manage constrained 

resources, properly plan, and maintain a possible public image. Several occurrences of 

incorrect reports have shed a negative light on those who are on the field by simply 

following the works of the algorithm. LEAs have shown that a predictive crime analysis 

algorithm is very useful, but the LEAs are not able to fully rely on the algorithm’s 

output for allocating resources. 

Needs for algorithmic interpretation and interaction. With the growing concern of 

false alarms and becoming inefficient day by day, Law Enforcement Agents want to be 

able to explain themselves how this algorithm works. They want to know exactly how 

the system operates because many LEAs spoke about how crimes are connected. There 

may be an entry in the system about one specific crime but that can be linked with 



49 
 

another. If crime happens in a specific area, there could be a related follow-up crime in 

that same area. A certain crime may be reported in order to observe a specific crime 

itself, but that area could potentially be prone to other types of similar crime. This is 

where Law Enforcement Agents felt like the system greatly lagged. As the system is 

static and there is no feedback loop in place (and not to mention the LEAs have very 

limited to no understanding of the system), the system’s path to efficiency is greatly 

hindered. From the LEA prospective, it is very clear that they want to know, at least on 

a basic level, the workings of the algorithm. They felt a feedback system should be put 

in motion in order to make the system more efficient. LEAs think that information 

coupled with the knowledge of the officer who is familiar with the area might be very 

effective in deployment. P60 explained how knowing some of the facts behind the 

algorithm would be very useful in planning and decision making. 

“It influences my decision-making process as to where I’m going to 

spend more of my time researching crimes in this area versus another. 

Whether it’s homicides or shootings, and why are they concentrated 

along, let’s say Center Street, for example. Why are we seeing such a 

high increase in crime in gangs? Is it because it’s a border for two 

districts? Is it because we’re not allocating enough resources to that 

area and it’s allowing crime to thrive? Is it the socioeconomic 

background of the citizens that reside there? What is the real root 

cause? " -P60, LEA 

LEAs (in most cases) do not have any technical background. It is not expected 

that they will understand all the technicalities of an algorithm, but from their 

interviews it is very clear that LEAs want to know a few key aspects so that they can 
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relate that information with their field experience, ultimately making the algorithm 

more efficient and effective. LEAs think it is important to know the basics of how to 

read the output. LEAs who have little experience to see how this algorithm works also 

expressed thoughts around the requirement of feedback system. They also mentioned 

how important the field reports are - how algorithms have to go beyond simple 

statistics to be more efficient. 

“Without having well trained investigators drilling down to find out 

why this person was shot. Was it because it was a drug deal? Even 

though some people will not cooperate and say, I don’t know, I just 

was randomly walking, then I got shot. Wow. That’s another example 

of a walkie sniper, you know, taking another shot at somebody. And 

you get those excuses quite frequently and a lot of cases and until we 

can find out a different way to interview the person or those around 

him to figure out what the real sources, I think you’re still going to 

continue to see the same areas pop up as having those serious crimes, 

whether it’s non-fatal shootings or sites occurring." -P60, LEA 

Moreover, LEAs did mention how simple statistics or blindly data mining with a 

given statistic will not help the system in becoming efficient; rather it is very necessary 

to give more information on how the analysis is being done. Most importantly, the 

information must be presented in such a way so that LEAs can interpret. P53 provided 

some information regarding this issue such as how reports without proper information 

for interpretation proved to be unhelpful. 

“It’s important to know how to interpret, you know, the information 

that you receive from the analysis. Simply giving numbers or, I’ve 
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experienced this previously, names of people with no context, no 

interpretation, Is that helpful? So, you know, going beyond just simply 

mining the data and giving raw numbers, put some interpretation that 

goes along with that is helpful." -P53, LEA 

LEAs also pointed out some specific facts on how engaging police departments 

with the algorithmic analysis might improve the system. One of the key aspects they 

mentioned is how someone who builds the algorithm might have zero experience of 

what happens in the field. People with strong technical background might know 

mathematics and logic of an algorithm, but LEAs mentioned numbers cannot tell the 

whole story. Technical people with practical experience must be associated with the 

whole process of algorithmic crime analysis. P59 mentioned about such gap, which is 

concerning. 

“If they didn’t have any background, in working with a police 

department, they can have just the degree in you know, computer 

science or data or whatever, because, I mean, you can learn a lot of 

your crime stuff on the job. And by talking to people that if they just, 

you know, came out of university with zero experience with people 

and you know, police departments and said, Hey, we’re gonna, we’re 

going to do things by the numbers now, I’d be much more concerned." 

- P59, LEA 

Lastly, while interviewing the LEA participants, they also provided some key 

examples of how the system can be improved. The following quote from P60 

summarizes all of the concerns, thoughts, values, and needs of a crime mapping 

algorithm: the necessity of a feedback loop, key information for interpretation of the 
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analysis, explainability of the algorithm so that LEA can understand deeply, and an 

algorithm that has been built beyond mining numbers and statistic. Squads are officers 

are being deployed in high crime areas, they’re going there because there is, For 

example, a heatmap that that particular district commander might have looked at and 

made that informed decision. And then once they’re done with that area in several 

hours, they want to try and disrupt the criminal activity that might be in another 

hotspot and chip resources there. Okay, that’s kind of where it’s not that important, 

because their observations when they make those stops there, everything else is all 

predicated on reasonable suspicion or probable cause. And often that background idea 

the only shows up in the police report is a intro paragraph. And if they do need to 

testify to that portion, they can always refer back to any product that was produced 

that particular commander. Taken together, it seemed like there should be reasonable 

intervention in removing the gap between the algorithm and people in the field. 
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5    DISCUSSION 
 
 

Above results suggest some broader implications around interpretability and 

explainability of an algorithmic decision-making process, how prior mental model 

influences while interacting with an algorithm and lastly several strategies for making 

such systems more accountable to human actors and the challenges associated with it. 

Some of the implications includes the need to define "user control" while building an 

interactive model of crime mapping algorithm, behavioral patterns such as default 

behavior among the users and need for creating contestability in such a system. 

5.1     Challenges of Integrating Control in Explainable AI 
 
 

The goal for explainable artificial intelligence is that every user will be able to 

understand how a machine works. Besides, the machines will come with a high level of 

transparency and accountability. Every machine should be able to explain why certain 

actions need to be taken to its users. It should also explain why that is the best option 

and why other alternatives may not work out for a particular situation. Explainable 

artificial intelligence also aims at making it obvious to users when a particular machine 

has failed on a particular task and when it has succeeded in the task. It will make the 

users be in total control and not the machines. Users should also be able to know when 

to trust the actions of these machines and when to verify further. And if an error is 

noticed, users should be able to fix the error without the intervention of any developer. 

The goal of this human understanding of artificial intelligence is to put humans in total 

control so that no action is taken without human endorsement. Thus, before any 

machine takes any action, regardless of believing it the best course of action, the 

machine still has to seek the user’s permission. 
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While putting this discussion in the front, our model tried to integrate human 

actors in the system where the users can manipulate the algorithm by choosing 

different parameters and put them in the front seat of the decision-making process. But 

due to the lack of statistical knowledge and how that works, most of the users make 

their decisions based on the pre-notion, self-deterministic judgement, and prior mental 

model. While this discussion of implementation of control in algorithmic systems 

seemed very rational but we must also discuss what this control means. In our analysis 

we saw, merely giving them control over the algorithm was not enough. In such a case, 

where the human actors have such great domain knowledge in their respective field but 

little knowledge around complex mathematics of algorithms, what controls over the 

algorithm is being needed need to be discussed. In front of such restraints, researches 

need to be more and more focused on the identification of ways to deal with the 

interpretability of models. 

Although integrating control can facilitate generalization and transfer of ideas 

across fields, the interleaving of human interaction and machine learning algorithms 

makes reductive study of design elements difficult. for example, inappropriately 

attributing success or failure to individual attributes of interactive machine learning 

solutions can be misleading. Therefore, new techniques regarding integrating control in 

algorithmic systems may be necessary to appropriately gauge the effectiveness of new 

interactive machine learning systems. In addition, as our case studies illustrated, some 

interaction techniques may be appropriate for certain scenarios of use but not others. 

Evaluations should therefore be careful not to overgeneralize successes or failures of 

specific interaction techniques. Rather, the scenarios and contexts of use should be 

generalized to better understand when to apply certain techniques over others. 
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For many years, priority has been given to the performance over the 

interpretability leading to huge advancements. However, the crucial questions driven 

by the reluctance to accept AI-based decisions may lead to a whole new dynamic where 

integrating control in such systems may be among the key measures for more accurate 

models but the challenges associated with the question - "what control means" and how 

they are different in diverse range of systems is crucial. Implementing control in such a 

way where the user can contribute from their domain knowledge would be very 

impactful contribution in the conversation of explainable machine learning systems. 

5.2    Behavioral Patterns in Interactive Systems 
 
 

In a context where advances in algorithms are reaching critical areas such as 

criminal justice systems, we have seen cases such as racial biases and false reports 

tending to be more frequent. In fact, there is a growing concern around the acceptance 

of AI agents and trust issues due to their lack of explainability. But at the same time it is 

also important to study the behavioral patterns and issues while implementing a 

interactive system. In an interactive system, users have control over the decision 

making process. In our case, we have extracted several important patterns. 

One of the prominent patterns is that users kept with default parameters. 

Despite being presented with a diverse array of parameters, participants kept leaving 

the default parameters. Even though we saw some learning behavior around our non-

technical participants, LEAs prefer to choose the defaults. This could be for two 

reasons. 1) They are trained to choose defaults, 2) seeing the complex unknown 

parameters of the algorithms, they chose not to tinker with it. The concept of an 

algorithm and its limitations can be difficult to convey to non-experts and are likely to 
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rely on simplified explanations. Users without experience in statistics are unlikely to 

comprehend the implications of working with a given model. Furthermore, this 

decision-making process should be a co-adaptive process in that both the user and 

model will respond to the behavior of the other [26]. Establishing the right level of 

understanding among users and framing the task appropriately is critical and non-

trivial. 

Another behavioral pattern that can be drawn from the analysis is that, even 

though most users were unaware of the complex mathematics of the algorithms and 

they had to choose the decisive parameters while sitting in a close environment in an 

informal time-limit situation, in terms of mental pressure, they act really well. In our 

analysis, we found out they didn’t feel mentally stressed while interacting with the 

algorithm. Emotions like feeling humiliated or neglected weren’t noticed. This brings us 

to an important discussion how this interactive model can be built with the users. The 

placement of a user into an immersive environment can also facilitate more 

mechanisms of discovery and learning. Studies on Interactive Machine Learning [26] 

have shown the potential of full-bodied interaction as part of an algorithmic decision 

making process. A further ancillary benefit is that an enjoyable immersive experience 

may also improve user engagement. The construction of intuitive and informative 

multi-dimensional data representations can be significantly impactful. 

5.3    Design for Contestability 
 
 

Contestability fosters engagement rather than passivity, questioning rather than 

acquiescence. As such, contestability is a particularly important system quality where 

the goal is for predictive algorithms to enhance and support human reasoning, such as 
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decision support systems. Contestability is one way "to enable responsibility in 

knowing" as the production of knowledge is spread across humans and machines [81]. 

Contestability can support critical, generative, and responsible engagement between 

users and algorithms, users and system designers, and ideally between users and those 

subject to decisions (when they are not the users), as well as the public. Efforts to make 

algorithmic systems knowable respond to the individual need to understand the tools 

one uses, as well as the social need to ensure that new tools are fit for purpose. 

Contestability is a design intervention that can contribute to both [30]. 

However, our focus here is on its potential contribution to the creation of 

governance models that support epistemically responsible behavior and support shared 

reasoning [63]. Contestability, the ability to contest decisions, is at the heart of legal 

rights that afford individuals access to personal data and insight into the decision-

making processes used to classify them, [30] and it is one of the interests that 

transparency serves. Our model in algorithmic crime mapping invokes several 

discussions around design implications and contestability issues. 

First, from our discussions with the Law Enforcement Agents, it came out 

several times that it is not reasonable for them to work with information that has been 

presented to them when there’s no explanation on how that has been generated. LEAs 

are the human actors on the ground who, while working with information, receive the 

blame from false or racially biased outcomes. By excluding their voice from such 

decisions, these algorithms are putting them in a complicated situation. Second, from 

our analysis there are several major points around how LEAs as human actors can 

contribute to the system. For example, they may know how a decision has been 

generated from prior contextual knowledge and familiarity with ancillary facets of the 
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data rather than a purely mathematical explanation. They have the information in 

detail how the reports are being generated and it has been mentioned several times how 

they are not the proper representation of whole picture. By adding these explanations 

from the LEAs, it is possible to generate more accurate information which will help the 

algorithm to lead proper and reasonable decisions. Lastly, LEAs have been facing a 

moral dilemma regarding the privacy concerns and ethical basis around these decisions. 

As there is no explanations on how the decisions have been generated, whether or not 

they were developed without violating anyone’s privacy and in a proper manner is very 

important to them. These issues around withholding explainability from the street level 

bureaucrats of such algorithms have been very obstructive and bringing contestability 

to such algorithms seems like a reasonable discussion to have. 

We know, contestability as a design goal, however, is more ambitious and far-

reaching. But a system designed for contestability would protect the ability to contest a 

specific outcome, consistent with privacy and consumer protection law. It would also 

facilitate generative engagement between humans and algorithms throughout the use 

of the algorithmic decision making system and support the interests and rights of a 

broader range of stakeholders, designers, as well as decision subjects in shaping its 

performance. 

5.4    Education and Training in Algorithm Use 
 
 

The role of parameters in an algorithm and the possible choices are rarely 

intuitive. Interviews with LEAs and crime analysts in both studies highlighted a 

concerning trend: practically all professionals who may actually implement algorithms 

for predictive policing purposes lack an educational background that would provide a 
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deep understanding of the statistical models crime mapping software is dependent on 

or a good intuition of the roles and effects of parameter choice. Furthermore, during on 

job training, institutional knowledge is transmitted regardless of actual quality rather 

than attempting to develop a meaningful understanding of the tools used.  

Our second study provided brief explanations of how KDEs work and the roles 

of their parameters in pop-up tooltips. Despite this, many participants still lacked 

confidence in their comprehension of the algorithm and its parameters. This shows that 

brief descriptions are not sufficient to promote understanding, even when examples are 

available. A surface level description and graphic does not replace rigorous training, 

proper education, or an immediate intuition.  

Future work will have to address this dearth of knowledge and develop a 

training regimen for promoting the skills and background knowledge necessary to 

implement fair and transparent policing algorithms for those who may have a 

grounding in criminological theory but lack any technical skills or statistical education. 

This will involve walking the tightrope of simplifying enough to reduce the barrier to 

understanding while maintaining enough details to empower end users to make 

responsible choices. This breakdown could and should be created and trialed for every 

algorithm, geospatial or otherwise, that a crime lab would want to implement to help 

increase the fairness, accuracy, and accountability of predictive policing initiatives.  
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6    CONCLUSION 
 
 

Limitations. There are several important notes with regards to the limitations of 

the studies performed and therefore the conclusions drawn from them. We used 

different datasets in our k-means tool and KDE tool. We chose to use arrest data for k-

means in order to better emulate how crime labs implemented k-means. We chose to 

switch to crime data as court cases for the KDE experiment so that we would be able to 

utilize the judicial outcome (dismissed, guilty, innocent, etc.). Though that did not 

become relevant within the study and analysis contained in this paper, we intend to 

incorporate it in future work with this tool and thus committed to the newer dataset. 

Thus, it is important to note that the timeframe of our datasets are different and how 

crime is recorded has changed within their joint timeframes.  

Our tools incorporated data on several different types of crime, but by no means 

did we use all types of crimes. We chose to focus on what we described as quality of life 

crimes. These were chosen for being both directly harming a person’s quality of life, 

that is, warranting preemptive policing practices, while also being prolific enough that 

they formed a suitably large enough dataset to enable geospatial analysis. The specific 

subsets of data shown to participants in Study Two were chosen in order to create a 

variety of complexity in heatmap outputs rather than for some inherent value of the 

data. 

Finally, our participants were significantly limited. All participants were from 

Milwaukee or nearby Chicagoland. Those from Group 3 of Study 2 were not necessarily 

professional crime analysts, we only required that they have a background pertaining 

to law enforcement or criminal justice. Both studies had regrettably few people who 
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had a background in policing or criminal justice. Therefore, these results should be 

blindly applied to crime labs at large, and must be critically re-examined outside the 

specific context of Milwaukee, Southeast Wisconsin, and the Chicago area.  

We have examined two geospatial algorithms commonly chosen to visualize 

where crime happens. Through two mixed method studies, we found points of entry for 

bias in the selection of parameter values. Furthermore, we uncovered a lack of 

education in the meaning of parameter choice and a severe lack of critical reflection 

when choosing parameters or leaving the default. We identified a number of trends in 

user behavior, such as often leaving default values when they are provided or by blindly 

following preexisting mental models or institutional knowledge when defaults do not 

exist. These factors lead to an underlying trend of unintentional bias in predictive 

policing initiatives which rely on geospatial algorithms. This reinforces more explicit 

biases already extant in the American criminal justice system.  

We found a lack of education and training leading to choosing arbitrary 

parameters or even refusing to make a decision at all. This leaves power in the hands of 

software builders rather than end users. Because of the proprietary black box nature of 

crime analysis software, we cannot affirm that developers have good intentions, have 

put in checks and balances to preserve fairness, or even that they have basic domain 

knowledge inform their design. What options are given to the crime analysts are 

predefined and still limited in understandability. Thus, even when presented with 

options, institutional knowledge, and any baggage associated with it, becomes 

procedure without analysts having the toolset to challenge it.  

This may be suitable if the goal of predictive policing is merely to optimize 

police workload. However, it drastically undermines the entire assumption of an 
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unbiased, perfectly accountable process. Fairness, transparency, and accountability are 

not the focus of these procedures. Because predictive policing practices informs where 

police officers will be and where they will find crime, the oversights we found cast 

doubts upon the validity of police procedure and arrest patterns found in many large 

American cities. The institution of predictive policing warrants a re-examination and 

critical adjustments if it is to continue in a fair and equitable society. Crime analysis 

software developers need to design with transparency and provide thorough yet 

accessible definitions. End users need to be empowered to proactively make ethical 

decisions and have the capability to justify their actions to impacted community 

members, not just their superiors. Even with all these changes, predictive policing 

would still be compromised by using pre-existing crime data, which carries with it 

decades of societal biases. Predictive policing cannot be perfected. No matter the fixes 

suggested, the procedure must be performed critically, without the assumption of 

fairness. Fairness must be proven rather than taken for granted. 
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