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Abstract: 
The dependence of the performance of separate-absorption-multiplication (SAM) single-photon avalanche 
diodes (SPADs) on the width of the multiplication region is theoretically investigated. The theory is applied to 
SAM SPADs with InP homojunction multiplication regions and InAlAs-InP heterojunction multiplication regions. 
In both cases the absorber layer is InGaAs. Two scenarios for the dark counts are considered: (i) low-
temperature operation, when the number of dark carriers is dominated by field-assisted mechanisms of band-
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to-band tunneling and tunneling through defects; and (ii) room-temperature operation, when the number of 
dark carriers in the multiplication region is dominated by the generation/recombination mechanism. The 
analysis utilizes a generalized theory for breakdown probability, which takes into account the random locations 
where dark and photogenerated carriers are produced in each layer. Depending upon the detector temperature, 
as the width of the multiplication region is increased the effects from the reduction in the number of dark 
carriers due to field-assisted generation mechanisms are counteracted by the effects from the elevation in the 
number of generation/recombination dark carriers. Thus, there exists an optimal width of the multiplication 
region that achieves the best performance of the SPAD. 

Keywords 
Diodes, Tunneling, Detectors, Radiative recombination, Electric breakdown, Avalanche photodiodes, Laser 
modes, Silicon, III-V semiconductor materials, Avalanche breakdown 

SECTION I. Introduction 
Single-Photon avalanche photodiodes (SPADs) are very important devices in applications such as satellite laser 
ranging [1], deep-space laser communication [2], time-resolved photon counting [3], quantum key 
distribution [4], quantum imaging [5], and quantum cryptography [6], [7]. While silicon SPADs have already 
shown very good performance in various applications in the 400–900 nm range their performance is degraded 
drastically when they are operated in the range 1.06–1.55 𝜇𝜇m. For applications in the telecommunication 
wavelengths range, i.e., 1.3–1.55 𝜇𝜇m, devices with a narrower bandgap than silicon, mainly III-V compounds, are 
utilized. Nevertheless, the lack of a comprehensive model that relates the device physical parameters and the 
device performance has contributed to the challenge in developing high-performance SPADs in the 1.3–1.55 𝜇𝜇m 
range. 

The performance of a SPAD is primarily measured by its photon detection efficiency (PDE) and its dark count 
rate (DCR). The PDE is the product of the detector quantum efficiency and the avalanche breakdown probability. 
The DCR constitutes false counts and it is a measure of how noisy the detector is. Dark counts originate from 
dark carriers generated in the absence of illumination; the larger the number of dark carriers, the larger the 
dark-count probability is [8]. There are several mechanisms that contribute to the concentration of dark carriers. 
At high electric fields, the dark-carrier concentration is strongly affected by band-to-band tunneling, which 
depends exponentially on the electric field [9], and it constitutes a limiting factor in the low excess-noise and 
fast avalanche photodiodes (APDs) that have thin multiplication regions. Another important mechanism that 
contributes to the number of dark carriers is tunneling through defects. It has been reported that in some 
materials the tunneling currents due to defects concentration is higher than that of band-to-band tunneling [10]. 

Besides the strength of the electric field and the properties of the material, the probability of a carrier triggering 
an avalanche breakdown is determined by the place where it is born [11]. A carrier created in the start of the 
multiplication region has a greater probability of triggering an avalanche event compared to that created close 
to the end of the multiplication region. This is because a primary carrier created early on in the multiplication 
region has a larger distance to travel compared to those created close to the end of the multiplication region. 
For example, for a separate absorption separate multiplication (SAM) APD, a carrier created in the absorption 
layer is more likely to cause an avalanche compared to that created in the multiplication region. More generally, 
the dependence of the breakdown probability on the birth location of a carrier is crucial in determining the 
SPAD's performance when the number of dark carriers inside the absorption and multiplication layers is taken 
into account. As there has been a recent interest in optimizing the width of the multiplication layer for the best 
DCR and PDE performance [10], and since the width of the multiplication layer significantly affects the electric 
field (and hence tunneling current), it is important to have a model that can predict the DCR and PDE required 



for Geiger-mode operation for various SPAD structures and geometries while taking into account the types of 
dark carriers and the randomness in the location where they are generated in the absorption and multiplication 
layers. 

The main focus of this paper is to report theoretical results based on new modeling tools that shed light on the 
dependence of the performance of SAM SPADs on the width of the multiplication region by comparing the 
effects of field-assisted tunneling with temperature-assisted dark carriers as the width is varied. This study also 
reveals the characteristic difference in the performance between low-temperature operation and room-
temperature operation while identifying and quantitatively examining the main factors that govern the 
performance of the SPAD. Moreover, an aspect of importance that had not been explored before, namely, the 
random locations where carriers are born in each layer, is thoroughly analyzed and studied. In particular, we 
assume that photogenerated carriers are generated in the absorber at random locations according to an 
exponential probability density function (pdf). On the other hand, dark carriers are assumed to be generated 
randomly in the multiplication region and the absorber according to a uniform pdf in each layer. To calculate the 
generalized breakdown probability for all the carriers generated in the SPAD we use the recursive dead-space 
multiplication theory (DSMT) according to a field-dependent spatial distribution of carriers [11], [12]. In addition, 
along with the DCR and PDE, the single-photon quantum efficiency (SPQE) is also used as a figure of merit to 
assess the SPAD's performance [8]. The ability of the SPQE to admit an optimal operating overbias makes it a 
very useful metric [12]. The theory developed is applied to SPADs that operate in a short-pulse gated-mode 
regime, in the 1.3–1.55 𝜇𝜇m range, with InP homojunction multiplication regions and InAlAs-InP heterojunction 
multiplication regions. In both cases the absorber layer is InGaAs. 

The remainder of this paper is organized as follows. In Section II, we discuss the theoretical model developed; 
this section includes a review of the different dark-carrier generation mechanisms considered, the calculation of 
the generalized breakdown probability, which makes use of the DSMT, and the metrics of 
performance. Section III is devoted to applying the developed theory to two different device structures: (i) 
InGaAs/InP homojunction SAM SPAD with InGaAs absorber and InP homojunction multiplication region, and (ii) 
InAlAs-InP heterojunction multiplication region. The conclusions are presented in Section IV. 

SECTION II. Model 
In this section we draw upon existing models for dark current [10], [13], breakdown probability [11], [12] and 
SPAD-performance metrics [8], [12] to develop new expressions for distributed breakdown probability for SAM 
SPADs and their performance. 

A. Review of Dark Current Model 
The dominant mechanism of dark-carrier generation in a specific SPAD will depend upon its physical structure 
and operating conditions such as the bias voltage, repetition rate in gated operation, and temperature. In our 
study we have considered dark-carrier generation in both of the absorption and multiplication regions. In both 
regions the mechanisms to be considered are GR, band-to-band tunneling and tunneling through defect states. 
Accordingly, the number of dark carriers generated per second in the absorber is 𝑁𝑁𝑑𝑑,abs = 𝑁𝑁gen,abs +𝑁𝑁def,abs +
𝑁𝑁tun,abs. In the same way, the number of dark carriers generated per second in the multiplication region is given 
by 𝑁𝑁𝑑𝑑,mul = 𝑁𝑁tun,mul + 𝑁𝑁def,mul + 𝑁𝑁gen,mul. 

The GR current density, which is the dominant mechanism of dark-carrier generation at low voltage, is given by 
the expression [13] 

𝐽𝐽gen = 𝑞𝑞𝑛𝑛𝑖𝑖𝑊𝑊
𝜏𝜏eff

(1 − exp (𝑞𝑞𝑞𝑞/2kT)) (1) 



where 𝑊𝑊 is the width of the depletion region, 𝑛𝑛𝑖𝑖 is the intrinsic carrier concentration, 𝑞𝑞 is the applied voltage, 
and 𝜏𝜏eff is the effective carrier lifetime. (The units of 𝐽𝐽gen are Amperes per square meter.) Thus, the number of 
dark carriers due to GR is 𝑁𝑁gen = 𝐽𝐽gen𝐴𝐴/𝑞𝑞, where 𝐴𝐴 is the SPAD's cross-sectional area, and 𝑞𝑞 is the charge of the 
electron. 

At high electric fields, the dominant mechanism of dark-carrier generation is tunneling [13]. Consequently, 
tunneling currents become very important for thin multiplication layers [14]. Generally, tunneling current 
increases exponentially as the electric field increases [9]; more precisely [13] 

𝐽𝐽tun = √2𝑚𝑚∗𝑞𝑞3𝐸𝐸𝑚𝑚𝑉𝑉

4𝜋𝜋2ℏ2𝐸𝐸𝑔𝑔
1/2 exp (−

𝜃𝜃√𝑚𝑚∗𝐸𝐸𝑔𝑔
3/2

𝑞𝑞𝐸𝐸𝑚𝑚ℏ
) (2) 

where 𝐸𝐸𝑚𝑚 is the electric field, 𝑞𝑞 is the voltage across the avalanche region, 𝑚𝑚∗ is the electron effective mass, 
and 𝜃𝜃 is a parameter that depends on the shape of the tunneling barrier. As in the case of 𝑁𝑁gen, the number of 
dark carriers in the avalanche region due to band-to-band tunneling is 𝑁𝑁tun = 𝐽𝐽tun𝐴𝐴/𝑞𝑞. 

Defects in the material also contribute to increase the dark-carrier generation [9], [10], [15]. The tunneling 
current density due to defect states is given by the expression [10] 

𝐽𝐽def =
𝐴𝐴𝑑𝑑𝐸𝐸𝑚𝑚𝑉𝑉𝑁𝑁𝑇𝑇exp (

−(𝐵𝐵1𝐸𝐸𝐵𝐵1
3/2+𝐵𝐵2𝐸𝐸𝐵𝐵2

3/2)
𝐸𝐸𝑚𝑚

)

𝑁𝑁𝑣𝑣exp (
−𝐵𝐵1𝐸𝐸𝐵𝐵1

3/2

𝐸𝐸𝑚𝑚
)+𝑁𝑁𝑐𝑐exp (

−𝐵𝐵2𝐸𝐸𝐵𝐵2
3/2

𝐸𝐸𝑚𝑚
)
 (3) 

where 𝐴𝐴𝑑𝑑 = 𝑞𝑞3�(2𝑚𝑚𝑟𝑟)/(𝐸𝐸𝑔𝑔)/(4𝜋𝜋3ℏ2),𝑚𝑚𝑟𝑟 = (2(𝑚𝑚𝑐𝑐𝑚𝑚𝑙𝑙ℎ))/(𝑚𝑚𝑐𝑐 + 𝑚𝑚𝑙𝑙ℎ) is the reduced effective 
mass, 𝑚𝑚𝑐𝑐 being the conduction band effective mass and 𝑚𝑚lh being the light hole effective mass, 𝐵𝐵1 =
𝜋𝜋(𝑚𝑚lh/2)1/2/(2𝑞𝑞ℏ), and 𝐵𝐵2 = 𝜋𝜋(𝑚𝑚𝑐𝑐/2)1/2/(2𝑞𝑞ℏ). In the above expression, E𝐵𝐵1 is the barrier height of 
tunneling from valence band to trap and is equal to 𝑎𝑎𝐸𝐸𝑔𝑔(𝑎𝑎 < 1), and 𝐸𝐸𝐵𝐵2 is the barrier height of tunneling from 
trap to the conduction and is equal to (1 − 𝑎𝑎)𝐸𝐸𝑔𝑔. The quantities 𝑁𝑁𝑣𝑣 and 𝑁𝑁𝑐𝑐 are the light hole valence and 
conduction band density of states and 𝑁𝑁𝑇𝑇  represents the number of defects per unit volume [10]. The number 
of dark carriers in the avalanche region due to defects states is 𝑁𝑁def = 𝐽𝐽def𝐴𝐴/𝑞𝑞. The average number of dark 
carriers generated in the SPAD is given by 

𝑁𝑁𝑑𝑑 = 𝑁𝑁𝑑𝑑,mul + 𝑁𝑁𝑑𝑑,abs. (4) 

B. Calculation of Breakdown Probability 
In order to apply the DSMT to calculate the generalized breakdown probabilities for all the carriers generated in 
the SPAD illustrated in Fig. 1 [11], [12], we use (i) the nonlocalized ionization coefficients, also called enabled 
ionization coefficients (the ionization coefficient assumed once the carrier travels the dead-space distance), and 
the threshold energies for each material [16], and (ii) the electric-field profile through the device. The non-
localized electron and hole ionization coefficients and threshold energies for InP, InGaAs, and InGaAsP are 
readily available [16]–[17][18]. 



 
Fig. 1. Device structure and electric-field profile of a SAM SPAD with InP multiplication region and InGaAs 
absorber. 

1. Probability Density Function of the Free Path 
We have adopted the following shifted-exponential model for the probability densities of the distance to 
ionization, 𝑦𝑦, measured from the location, 𝑥𝑥, where a carrier is born [11]. For an electron born at location 𝑥𝑥, 
with 𝛼𝛼 being the enabled ionization coefficient, the probability that it impact ionizes at location 𝑦𝑦 and assuming 
that electrons move to the direction of increasing 𝑥𝑥 is [19] 

 

ℎ𝑒𝑒(𝑦𝑦|𝑥𝑥) = 𝛼𝛼(𝑦𝑦)exp (−∫ 𝛼𝛼(𝑢𝑢)𝑑𝑑𝑢𝑢)𝑦𝑦
𝑥𝑥+𝑑𝑑𝑒𝑒(𝑥𝑥) ,

𝑦𝑦 ≥ 𝑥𝑥 + 𝑑𝑑𝑒𝑒(𝑥𝑥)  (5) 

where 𝑑𝑑𝑒𝑒(𝑥𝑥) is the dead space of an electron born at location 𝑥𝑥, and ℎ𝑒𝑒(𝑦𝑦|𝑥𝑥) = 0 when 𝑦𝑦 < 𝑥𝑥 + 𝑑𝑑𝑒𝑒(𝑥𝑥). The 
dead space is the distance a carrier must travel within the SPAD before acquiring the energy threshold needed 
for effecting an impact ionization; 𝑑𝑑𝑒𝑒(𝑥𝑥) satisfies the equation [19] 

𝐸𝐸th,𝑒𝑒�𝑥𝑥 + 𝑑𝑑𝑒𝑒(𝑥𝑥)� = 𝑞𝑞 ∫ 𝐸𝐸(𝑢𝑢)𝑑𝑑𝑢𝑢𝑥𝑥+𝑑𝑑𝑒𝑒(𝑥𝑥)
𝑥𝑥

 (6) 

where 𝐸𝐸th,𝑒𝑒(𝑥𝑥) is the ionization threshold energy for electrons at location 𝑥𝑥 in the SPAD (this energy varies from 
layer to layer). 

There are similar expressions for holes: 

ℎℎ(𝑦𝑦|𝑥𝑥) = 𝛽𝛽(𝑦𝑦)exp (−∫ 𝛽𝛽(𝑢𝑢)𝑑𝑑𝑢𝑢)𝑥𝑥−𝑑𝑑ℎ(𝑥𝑥)
𝑦𝑦 ,

𝑦𝑦 ≤ 𝑥𝑥 − 𝑑𝑑ℎ(𝑥𝑥)  (7) 

where 𝑑𝑑ℎ(𝑥𝑥) is the dead space of a hole born at location 𝑥𝑥, and ℎℎ(𝑦𝑦|𝑥𝑥) = 0 when 𝑦𝑦 > 𝑥𝑥 − 𝑑𝑑ℎ(𝑥𝑥). In the case 
where the field is constant, the position-independent dead space is calculated using 𝑑𝑑 = 𝐸𝐸𝑡𝑡ℎ/𝑞𝑞𝐸𝐸 [16]. The 
equations from (5) to (7) of the DSMT are generalized equations; they constitute a powerful tool that allows us 
to model APDs with any electric-field profile and any structure, like multilayer devices with heterostructure 
multiplication regions to be reviewed next. 

2. Breakdown Probability 
Suppose that we know the total electron and hole population, 𝑍𝑍(𝑥𝑥), resulting from a parent electron born at 𝑥𝑥, 
and the total electron and hole population, 𝑌𝑌(𝑥𝑥), resulting from a parent hole born at 𝑥𝑥, where 0 ≤ 𝑥𝑥 ≤ 𝑤𝑤, 
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and 𝑤𝑤 is the width of the SPAD. We define 𝑃𝑃𝑍𝑍(𝑥𝑥) as the probability that 𝑍𝑍(𝑥𝑥) is finite, and similarly, 𝑃𝑃𝑌𝑌(𝑥𝑥) as the 
probability that 𝑌𝑌(𝑥𝑥) is finite [11]. These quantities reflect the non-breakdown probabilities for carriers 
generated at location 𝑥𝑥 anywhere in the SPAD. Thus, for example 1 − 𝑃𝑃𝑍𝑍(𝑥𝑥) is the probability that 𝑍𝑍(𝑥𝑥) is 
infinite, which is precisely the case when avalanche breakdown occurs. On the other hand, the probability that 
an electron-hole pair born at 𝑥𝑥 collectively triggers an avalanche breakdown is 𝑃𝑃𝑏𝑏(𝑥𝑥) = 1 − 𝑃𝑃𝑍𝑍(𝑥𝑥)𝑃𝑃𝑌𝑌(𝑥𝑥). 
Recursive integral equations describing 𝑃𝑃𝑍𝑍(𝑥𝑥) and 𝑃𝑃𝑌𝑌(𝑥𝑥) are developed elsewhere [11] and are repeated here 
for completeness: 

𝑃𝑃𝑍𝑍(𝑥𝑥) = � ℎ𝑒𝑒(𝜉𝜉|𝑥𝑥)𝑑𝑑𝜉𝜉
∞

𝑤𝑤−𝑥𝑥

+� �𝑃𝑃𝑍𝑍2(𝑥𝑥 + 𝜉𝜉)𝑃𝑃𝑌𝑌(𝑥𝑥 + 𝜉𝜉)�
𝑤𝑤−𝑥𝑥

0
ℎ𝑒𝑒(𝜉𝜉|𝑥𝑥)𝑑𝑑𝜉𝜉

𝑃𝑃𝑌𝑌(𝑥𝑥) = � ℎℎ(𝜉𝜉|𝑥𝑥)𝑑𝑑𝜉𝜉
∞

𝑥𝑥

+� �𝑃𝑃𝑌𝑌2(𝑥𝑥 − 𝜉𝜉)𝑃𝑃𝑍𝑍(𝑥𝑥 − 𝜉𝜉)�
𝑥𝑥

0
ℎℎ(𝜉𝜉|𝑥𝑥)𝑑𝑑𝜉𝜉.

 

(8)(9) 

These integral equations can be solved using a straightforward numerical iterative approach similar to that 
described in [11]. 

Let us assume that the electron-hole pairs are created at random locations in the absorption and multiplication 
regions extending from 𝑥𝑥 = 𝑤𝑤𝑎𝑎𝑖𝑖 to 𝑥𝑥 = 𝑤𝑤𝑚𝑚𝑚𝑚, as shown in Fig. 1. We also assume that holes (electrons) are 
transported in the positive (negative) 𝑥𝑥 direction. Moreover, let 𝑓𝑓(𝑥𝑥) denote the pdf of the birthplace of the 
parent electron-hole pair. Thus, the average probability that an electron-hole pair, randomly generated in the 
interval [𝑤𝑤𝑎𝑎𝑖𝑖,𝑤𝑤𝑚𝑚𝑚𝑚] according to the pdf 𝑓𝑓(𝑥𝑥), triggering an avalanche breakdown is given by 

𝑄𝑄𝑚𝑚 = � 𝑓𝑓(𝑥𝑥)�1 − 𝑃𝑃𝑍𝑍(𝑥𝑥)𝑃𝑃𝑌𝑌(𝑥𝑥)�𝑑𝑑𝑥𝑥
𝑤𝑤𝑚𝑚𝑚𝑚

𝑤𝑤𝑎𝑎𝑖𝑖
. (10) 

The expression for 𝑄𝑄𝑚𝑚 represents the general form of the breakdown probability for any random distribution of 
carriers and it accounts for avalanche breakdown occurring either in the absorption or multiplication regions. 
We can further specialize this expression for two distinct forms of 𝑓𝑓 representing the following physical 
scenarios: (a) the scenario for which the avalanche breakdown is triggered by electron-hole pairs photo-
generated inside the absorption region, in which case we denote 𝑓𝑓 by 𝑓𝑓ph; and (b) the scenario for which the 
avalanche breakdown is initiated by dark carriers randomly generated in either the absorption or the 
multiplication region, in which case we denote 𝑓𝑓 by 𝑓𝑓𝑑𝑑. The use of 𝑓𝑓ph and 𝑓𝑓𝑑𝑑 in (10) will lead to the injected-
carrier breakdown probability, 𝑄𝑄ph, and the distributed-carrier breakdown probability, 𝑄𝑄𝑑𝑑, respectively. The 
former represents the breakdown probability caused by a carrier pair photogenerated in the absorber; on the 
other hand, the latter represents the breakdown probability caused by a dark carrier that is randomly generated 
inside the SPAD, taking into account the dark carriers generated in the multiplication and the absorption 
regions. 

Let us consider first the case where the avalanche breakdown is triggered by dark carriers randomly generated 
in the SPAD. In this case the pdf 𝑓𝑓 is given by, as depicted in Fig. 2, 
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𝑓𝑓𝑑𝑑 = 𝐴𝐴
𝑤𝑤𝑎𝑎𝑚𝑚−𝑤𝑤𝑎𝑎𝑖𝑖

�𝑢𝑢(𝑥𝑥 − 𝑤𝑤𝑎𝑎𝑖𝑖) − 𝑢𝑢�𝑥𝑥 − 𝑤𝑤𝑎𝑎𝑚𝑚��

+ 𝐵𝐵
𝑤𝑤𝑚𝑚𝑚𝑚−𝑤𝑤𝑚𝑚𝑖𝑖

�𝑢𝑢(𝑥𝑥 − 𝑤𝑤𝑚𝑚𝑖𝑖) − 𝑢𝑢�𝑥𝑥 − 𝑤𝑤𝑚𝑚𝑚𝑚��
 (11) 

where 𝐴𝐴 = (𝑁𝑁𝑑𝑑,abs)/(𝑁𝑁𝑑𝑑,abs + 𝑁𝑁𝑑𝑑,mul), 𝐵𝐵 = (𝑁𝑁𝑑𝑑,mul)/(𝑁𝑁𝑑𝑑,abs + 𝑁𝑁𝑑𝑑,mul), and 𝑢𝑢(𝑥𝑥) is the unit step function. 
Note that 𝐴𝐴 (resp. 𝐵𝐵) is the probabilities that an arbitrary dark-carrier pair already generated in the SPAD was 
actually generated in the absorption (resp. multiplication) region. The quantities 𝑤𝑤𝑚𝑚𝑖𝑖 and 𝑤𝑤𝑚𝑚𝑚𝑚 respectively 
represent the start and end of the multiplication region, and 𝑤𝑤𝑎𝑎𝑖𝑖 and 𝑤𝑤𝑎𝑎𝑚𝑚 respectively represent the start and 
end of the absorption region, where we have assumed (𝑤𝑤𝑚𝑚𝑚𝑚 − 𝑤𝑤𝑚𝑚𝑖𝑖) + (𝑤𝑤𝑎𝑎𝑚𝑚 − 𝑤𝑤𝑎𝑎𝑖𝑖) ≈ 𝑤𝑤 (see Fig. 1). (In all our 
calculations we have neglected the effect of the charge layer, which is between the absorber and the 
multiplication region, leading to the approximation 𝑤𝑤𝑎𝑎𝑚𝑚 ≈ 𝑤𝑤𝑚𝑚𝑖𝑖.) Consequently, the probability 𝑄𝑄𝑑𝑑 simplifies to 

𝑄𝑄𝑑𝑑 = 𝑁𝑁𝑑𝑑,abs

𝑁𝑁𝑑𝑑,abs+𝑁𝑁𝑑𝑑,mul

1
𝑤𝑤𝑎𝑎𝑚𝑚−𝑤𝑤𝑎𝑎𝑖𝑖

× ∫ (1 − 𝑃𝑃𝑍𝑍(𝑥𝑥)𝑃𝑃𝑌𝑌(𝑥𝑥))𝑑𝑑𝑥𝑥𝑤𝑤𝑎𝑎𝑚𝑚
𝑤𝑤𝑎𝑎𝑖𝑖

+ 𝑁𝑁𝑑𝑑,mul

𝑁𝑁𝑑𝑑,abs+𝑁𝑁𝑑𝑑,mul

1
𝑤𝑤𝑚𝑚𝑚𝑚−𝑤𝑤𝑚𝑚𝑖𝑖

× ∫ (1 − 𝑃𝑃𝑍𝑍(𝑥𝑥)𝑃𝑃𝑌𝑌(𝑥𝑥))𝑑𝑑𝑥𝑥𝑤𝑤𝑚𝑚𝑚𝑚
𝑤𝑤𝑚𝑚𝑖𝑖

.

  (12) 

 
Fig. 2. Probability density function 𝑓𝑓𝑑𝑑 for the case where the avalanche breakdown is triggered by dark carriers randomly 
generated in the SPAD. 
 

In the case of the injected-carrier breakdown probability, the absorption of photons in the absorption region 
obeys an exponential behavior. Hence, 𝑓𝑓ph will be of the form 𝑓𝑓ph(𝑥𝑥) = 𝐶𝐶1𝑒𝑒−𝐶𝐶2𝑥𝑥, for 𝑤𝑤𝑎𝑎𝑖𝑖 ≤ 𝑥𝑥 ≤ 𝑤𝑤𝑎𝑎𝑚𝑚, and 𝑓𝑓ph =
0 elsewhere. For simplicity, we set 𝑥𝑥 = 𝑤𝑤𝑎𝑎𝑖𝑖 = 0 and therefore 𝑤𝑤𝑎𝑎𝑚𝑚 = 𝑤𝑤abs, which is the width of the absorber 
(see Fig. 1). The constant 𝐶𝐶2 can be determined by equating ∫ 𝐶𝐶2𝑒𝑒−𝐶𝐶2𝑥𝑥𝑑𝑑𝑥𝑥 𝑤𝑤abs

0 to the SPAD's quantum 
efficiency, 𝜂𝜂. This yields 𝐶𝐶2 = −ln (1 − 𝜂𝜂)/𝑤𝑤abs. The constant 𝐶𝐶1, on the other hand, is chosen so that 𝑓𝑓ph has 
unit area, as we would expect from a valid pdf; this yields 𝐶𝐶1 = 𝐶𝐶2/𝜂𝜂. In summary, the injected-carrier 
breakdown probability is given by 

𝑄𝑄ph = −ln (1−𝜂𝜂)
𝜂𝜂𝑤𝑤abs

� exp {ln (1−𝜂𝜂)
𝑤𝑤abs

𝑥𝑥}
𝑤𝑤abs

0
× (1 − 𝑃𝑃𝑍𝑍(𝑥𝑥)𝑃𝑃𝑌𝑌(𝑥𝑥))𝑑𝑑𝑥𝑥.

. (13) 
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C. SPAD Performance 
The traditional performance metrics, photon-detection efficiency and the dark-count rate are respectively 

defined as PDE =Δ 𝜂𝜂𝑄𝑄ph and DCR =Δ 𝑁𝑁𝑑𝑑𝑄𝑄𝑑𝑑. Additionally, the single-photon quantum efficiency is another useful 
metric to assess the SPAD performance [8], [12]. The latter is defined as the probability that a photon triggers an 
avalanche breakdown, given that an optical pulse is present and at least one photon impinges on the SPAD, and 
provided that no dark carrier triggers a breakdown. Mathematically, it is given by 

SPQE = (1−𝑃𝑃𝑑𝑑)𝑃𝑃opt
𝑝𝑝𝑜𝑜

 (14) 

where 𝑃𝑃𝑑𝑑 is the dark count probability, calculated throughout the absorption and the multiplication regions 
altogether. The quantity 𝑃𝑃opt is the probability that at least one photogenerated carrier in the absorber triggers 
the avalanche, and 𝑝𝑝𝑜𝑜 is the probability that one photon impinges on the SPAD during the detection time. The 
dark count probability is given by 

𝑃𝑃𝑑𝑑 = 1 − 𝑒𝑒−𝑁𝑁𝑑𝑑𝑄𝑄𝑑𝑑  (15) 

where 𝑁𝑁𝑑𝑑 is the average number of dark carriers generated in the SPAD (calculated in (4)). Note that in Kang et 
al. [8], the breakdown probability 𝑄𝑄ph is used in place of 𝑄𝑄𝑑𝑑; however, the use of 𝑄𝑄𝑑𝑑, as done here, accounts for 
dark-carrier generation at random locations across the entire device. The quantity 𝑃𝑃opt is calculated using the 
following expression: 

𝑃𝑃opt = 1 − 𝑒𝑒−𝜂𝜂𝑄𝑄ph𝑁𝑁𝑜𝑜  (16) 

where 𝜂𝜂 is the detector quantum efficiency and 𝑁𝑁𝑜𝑜 is the average number of photons per pulse. 

SECTION III. Results 
The theory described in the previous section is applied to SAM SPADs with InP homojunction multiplication 
regions and InAlAs-InP heterojunction multiplication regions. In both cases the absorber layer is InGaAs. In the 
case where GR dark carriers are included the operating temperature is 300 K. The intrinsic carrier 
concentration, 𝑛𝑛𝑖𝑖, for InP used in our simulations is 1.2 × 108 cm−3[20] while the effective carrier lifetime, 𝜏𝜏eff, 
in the InP multiplication region is taken as 320 ns [21]. Moreover, the number of defects per unit volume, 𝑁𝑁𝑇𝑇, is 
chosen as 8 × 10−4 according to [10]. On the other hand, the value of the dimensionless parameter, 𝜃𝜃, is taken 
as 1.26, which is the value of 𝜃𝜃 for InAlAs according to [22]. This approximation is made due to the lack of 
precise knowledge of the value of 𝜃𝜃 for InP. Finally, the position of the trap is set at 0.75 𝐸𝐸𝑔𝑔(𝑎𝑎 = 0.75) above 
the valence band [10]. Fig. 1 illustrates the structure and the electric-field profile of the SPAD with InP 
homojunction multiplication region. A schematic of the electric-field profile across the device is also shown. 

To see the role played by the width of the multiplication region on the performance of the SPAD, we have 
calculated the PDE, DCR and SPQE curves, as the width of the multiplication region is varied, considering two 
scenarios: (i) low-temperature operation, when the dominant dark-carrier-generation mechanism is field-
assisted and (ii) room-temperature operation, when the dominant mechanism of dark-carrier generation is 
temperature assisted. The comparison of the performance of the SPAD under these scenarios will illustrate the 
characteristic difference in the performance between low-temperature operation and room-temperature 
operation and how this attribute varies as the multiplication-region width is changed. 
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A. InGaAs/InP Homojunction SAM Photodiode 
The DCR, PDE, and SPQE for a SAM SPAD with InP homojunction multiplication region of width in the range 500–
2000nm and absorber of 1 𝜇𝜇m were calculated. It is expected that the effect on the number of dark carriers, and 
hence on the DCR, of the temperature-assisted generation of dark carriers is more relevant at lower bias 
voltages since as we increase the bias voltage the dark-carrier generation will be dominated by field-assisted 
mechanisms. Fig. 3 shows the calculated DCR as a function of the normalized excess applied voltage for three 
different widths of the multiplication region. The normalized excess applied voltage is defined as Δ𝑞𝑞/𝑞𝑞BR, 
where Δ𝑞𝑞 = (𝑞𝑞 − 𝑞𝑞BR), 𝑞𝑞BR is the breakdown voltage and 𝑞𝑞 is the voltage across the device. The solid lines 
correspond to the case when field-assisted and temperature-assisted generation of dark carriers are both 
present in the model. For clarity, we also show the case when only field-assisted generation is taking place 
(dashed lines). The figure shows that at higher normalized excess bias voltages the DCR curve is almost 
completely dictated by tunneling effects for all the widths of the multiplication region. It is also noticed that the 
effect of temperature-assisted dark carrier generation on the DCR is more important in devices with thick 
multiplication regions, e.g., >800 nm. On the other hand, for devices with thin multiplication regions the DCR 
curve is dominated, over almost the whole range of normalized excess voltages, by field-assisted mechanisms. 

 
Fig. 3. DCR versus normalized excess voltage for 500 nm, 900 nm, and 2000 nm multiplication region widths. Dashed lines 
correspond to the case when GR dark carriers are absent and solid lines correspond to the case when both field-assisted 
and GR dark carriers are present. 
 

Fig. 4 shows the calculated PDE versus DCR for InP multiplication regions of 700, 900, 1200 and 2000 nm, and an 
InGaAs absorption layer of 1 𝜇𝜇m. There are two groups of curves generated according to the different 
mechanisms for dark-carrier generation; in the figure these two groups are labeled by their respective ellipses. 
The lower group of curves corresponds to the cases for which both field-assisted and temperature-assisted 
generation of dark carriers are included. On the other hand, in the upper group of curves we consider field-
assisted generation of dark carriers only. It can be seen that the PDE versus DCR behavior varies as we include 
temperature-assisted dark carriers along with field-assisted dark carriers. In the case when only field-assisted 
dark-carrier generation is considered (upper group), the calculated PDE, for a given DCR, is higher as the 
multiplication region becomes wider. On the other hand, in the case for which both mechanisms of dark-carrier 
generation are considered (lower group) we observe two distinct behaviors as the width of the multiplication 
region increases. First, for the low values of the DCR (< 1011 Hz/cm2), we see an improvement in PDE as the 
width of the multiplication region is increased. However, for larger DCR values, the PDE degrades as the 
multiplication region becomes wider. Hence, the calculated results illustrated in Fig. 4 suggest that in cooled 
devices, the performance will improve as we increase the width of the multiplication region. However, for 
devices working at room temperature the increment in PDE, due to a wider multiplication region, is 
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counteracted by an increment in DCR and the performance will be degraded as the multiplication region 
becomes wider. The improvement in the PDE versus DCR characteristics at low temperatures is attributable to 
fact that as the width of the multiplication region increases the tunneling current decreases due to the lower 
electric field. It should be pointed out that the maximum value of the PDE versus DCR curve is determined by the 
quantum efficiency 𝜂𝜂, which in this case is 0.5. 

 
Fig. 4. PDE versus DCR for InP multiplication regions of 700, 900, 1200, and 2000 nm. The absorber is a 1 𝜇𝜇m layer of 
InGaAs. The maximum value of the PDE versus DCR curve is determined by the quantum efficiency 𝜂𝜂, which in this case is 
0.5. 
 

Our calculations of the SPQE, as a function of the applied bias, indicate a similar trend to that suggested by the 
PDE versus DCR curves. Moreover, the SPQE curves provide further insight by suggesting an optimal thickness of 
the multiplication region that achieves the highest SPQE at the appropriate applied voltage. Fig. 5 (solid lines) 
shows that the peak value of each SPQE curve increases as the width of the multiplication region increases, 
reaching a maximum value (between 1200–1400 nm) beyond which it starts to decrease. Nonetheless, for a 
scenario dominated by field-assisted dark-current generation both the peak SPQE and the FWHM (full-width-at-
half-maximum) of each curve increase as the width of the multiplication region increases (dashed lines). The 
existence of an optimal peak SPQE at room temperature is a result of the competing effects of the field- and 
temperature-assisted generation of dark carriers. 

 
Fig. 5. SPQE versus applied voltage for several widths of the multiplication region. The maximum achievable value of the 
SPQE curve is determined by the quantum efficiency 𝜂𝜂, which in this case is 0.5. 
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B. InAlAs-InP Heterojunction Multiplication Regions 
Thin heterojunction multiplication regions have proven to be beneficial in reducing the excess noise factor due 
to the strong effect of the dead space in devices with thin multiplication region [23]–[24][25]. However, their 
desirable characteristics decrease in devices with thick multiplication regions due to the reduced importance of 
dead space in these devices. Additionally, in an earlier theoretical work [12] we had shown that the fractional 
width of the In0.52Al0.48As layer in an In0.52Al0.48As-InP heterojunction multiplication region can be optimized to 
attain a maximum SPQE that is greater than that offered by a homojunction InP multiplication region. 
(The fractional width of the In0.52Al0.48As layer in an In0.52Al0.48As-InP heterojunction multiplication region is 
defined as the ratio between the width of the In0.52Al0.48As energy buildup layer to the total width of the 
heterojunction multiplication region comprising the In0.52Al0.48As and InP layers.) It was also shown that this 
effect became more pronounced in thin multiplication regions as a result of the increased significance of dead 
space. Therefore, it would be of interest to further investigate the performance of SPADs with heterojunction 
multiplication regions. It should be pointed out that in our simulations of the InAlAs-InP heterojunction we have 
used the values of the parameters 𝜏𝜏eff,𝑁𝑁𝑇𝑇 and a corresponding to InP throughout the entire multiplication 
region due to lack of precise knowledge of the values of these parameters for InAlAs. 

Fig. 6 shows the DCR as a function of the normalized excess voltage for four different widths of the 
multiplication region. By comparing Fig. 6 with Fig. 3, we observe that the curves show a similar trend in the DCR 
as the width of the multiplication region is varied. Similarly to the case of a homojunction multiplication region 
and in accord with our understanding of the dominance of field-assisted effects over GR effects in high-fields, 
the change in the DCR, as the role of GR is varied (for a certain width of the multiplication region), is only 
noticeable in thicker multiplication regions. 

 
Fig. 6. DCR versus normalized excess voltage for 200 nm, 300 nm, 400 nm, and 500 nm multiplication region widths. Dashed 
lines correspond to the case when GR dark carriers are absent and solid lines correspond to the case when both field-
assisted and GR dark carriers are present. 
 

The SPQE curves, on the other hand, give us a slightly more informative account of things. As a function of the 
applied voltage, the SPQE exhibits a different behavior in the cases of a homojunction and heterojunction 
multiplication regions. Fig. 7 shows the calculated SPQE versus the applied voltage for the homojunction and 
heterojunction multiplication regions for several widths of the multiplication region. For a given width of the 
multiplication region, the calculated SPQE of the heterojunction multiplication region is higher than that for the 
homojunction case. Moreover, this enhancement in the SQPE, as we move from a homojunction to a 
heterojunction, becomes more pronounced as the width of the multiplication region is reduced. This is 
attributed to the fact that for a given width of the multiplication region, the electric field required to achieve a 
certain breakdown probability is smaller in the heterojunction multiplication-region case than that in a 
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homojunction multiplication-region case [12], which, in turn, results in a reduction in the number of dark 
carriers generated through field-assisted mechanisms. The improvement in breakdown characteristics in 
properly designed heterojunction multiplication layers is a result of the so-called initial-energy effect, which 
takes advantage of injecting “hot” carriers from a high bandgap layer (InAlAs in our case) of the multiplication 
region to the lower bandgap layer (InP) [12], [19]. It is to be noted, however, that this conclusion does not take 
into account the possibility of an increase in hole trapping in a heterojunction multiplication region, which may 
aggravate after-pulsing. 

 
Fig. 7. SPQE versus applied voltage for InP homojunction and InAlAs-InP heterojunction multiplication region. 
 

The effect of afterpulsing was neglected in our study primarily due to the lack of precise knowledge of the 
dependence of the carrier-release time on the field. For example, increasing the multiplication-region width 
results in an increase in the number of traps while lowering the field results in an increase in the carrier-release 
time. Both of these factors may lead to a stronger afterpulsing. 

As a final remark we note that electron-phonon coupling (not included in our study) gives rise to thermally 
assisted tunneling [26]–[27][28]. In phonon-assisted tunneling the electron absorbs thermal energy from the 
lattice and then tunnels through the barrier at a higher energy [27]. This effect increases the number of dark 
carriers created through tunneling. As this effect has a field dependence that is of similar form to that for band-
to-band tunneling, we do not expect it to impact the trends predicted by our study. For example, our 
calculations (graphs not included) show that doubling the number of dark carriers created through tunneling 
in Fig. 5 will not alter the predicted trend in the peaks of the SPQE. 

SECTION IV. Conclusion 
Our theoretical study shows that the thickness of the multiplication region plays a different role in the 
performance of a SPAD depending upon what mechanism of dark-carrier generation is dominant. At low 
temperatures, for which field-assisted mechanisms are dominant, an increment in the thickness of the 
multiplication region will result in an improved PDE versus DCR characteristics. The same behavior is seen in the 
SPQE curve at low temperatures. At room temperatures, on the other hand, the PDE versus DCR characteristics 
show a weaker performance as the width of the multiplication region is increased. However, the SPQE curves 
show a maximum achievable peak SPQE at an optimal overbias and an optimal multiplication-region width. It is 
important to note that the behavior of an APD as a function of the multiplication-region width in the linear 
mode, where excess noise factor decreases as the multiplication-region width is decreased, is characteristically 
different from that of a SPAD. 
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