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Abstract: 
The main focus of this paper is a rigorous development and validation of a novel canonical correlation feature- 
selection (CCFS) algorithm that is particularly well suited for spectral sensors with overlapping and noisy bands. 
The proposed approach combines a generalized canonical correlation analysis framework and a minimum mean-
square-error criterion for the selection of feature subspaces. The latter induces ranking of the best linear 
combinations of the noisy overlapping bands and, in doing so, guarantees a minimal generalized distance 
between the centers of classes and their respective reconstructions in the space spanned by sensor bands. To 
demonstrate the efficacy and the scope of the proposed approach, two different applications are considered. 
The first one is separability and classification analysis of rock species using laboratory spectral data and a 
quantum-dot infrared photodetector (QDIP) sensor. The second application deals with supervised classification 
and spectral unmixing, and abundance estimation of hyperspectral imagery obtained from the Airborne 
Hyperspectral Imager sensor. Since QDIP bands exhibit significant spectral overlap, the first study validates the 
new algorithm in this important application context. The results demonstrate that proper postprocessing can 
facilitate the emergence of QDIP-based sensors as a promising technology for midwave- and longwave-infrared 
remote sensing and spectral imaging. In particular, the proposed CCFS algorithm makes it possible to exploit the 
unique advantage offered by QDIPs with a dot-in-a-well configuration, comprising their bias-dependent spectral 
response, which is attributable to the quantum Stark effect. The main objective of the second study is to assert 
that the scope of the new CCFS approach also extends to more traditional spectral sensors. 

Keywords 
Hyperspectral sensors, Hyperspectral imaging, Quantum dots, Image sensors, Sensor phenomena and 
characterization, Focusing, Image reconstruction, Laboratories, Infrared sensors, Infrared spectra 

SECTION I. Introduction 
In the past two decades, infrared spectral imaging in the wavelength range of 4–18 μm has found many 
applications in night vision, battlefield imaging, missile tracking and recognition, mine detection, and remote 
sensing, to name a few. Examples of spectral imagers operating in the 8–12-μm atmospheric windows include 
the Airborne Hyperspectral Imager (AHI) and the Spatially Enhanced Broadband Array Spectrograph System, 
which contain, respectively, 256 and 128 narrowband channels. However, the price of offering such 
sophisticated spectral imaging is enormous due to the complexity of the optical systems that render the detailed 
spectral information. Recently, efforts have been made to develop two-color and even multicolor focal-plane 
arrays (FPAs) for longwave (LW) applications [1], [2]; these sensors can electronically be tuned to two or more 
regions of the spectrum. Clearly, such tunable sensors offer greater optical simplicity as the spectral response is 
controlled electronically rather than optically. However, most existing multicolor sensors are limited in that the 
spectral sensitivity can only be electronically switched but not continuously tuned. 

More recently, a new technology has emerged for continuously tunable midwave-infrared (MWIR) and LW-
infrared (LWIR) sensing that utilizes intersubband transition in nanoscale self-assembled systems; these devices 
are termed quantum-dot infrared photodetectors (QDIPs). QDIP-based sensors promise a less expensive 
alternative to the traditional hyperspectral and multispectral sensors while offering more tuning flexibility and 
continuity compared to multicolor sensors [2]. QDIPs are based on a mature GaAs-based processing, and they 
are sensitive to normally incident radiation and have lower dark currents compared to their quantum-well 
counterparts [3], [4]. Unfortunately, QDIPs have low quantum efficiency, and much effort is currently underway 
to enhance that efficiency through increasing the number of quantum dots (QD) layers as well as using new 
supporting structures such as photonic crystals [5], [6]. Additionally, QDIPs with a dot-in-a-well configuration 
exhibit a bias-dependent spectral response, which is attributable to the quantum Stark effect, whereby the 



detector's responsivity can be altered in shape and central wavelength by varying the applied bias. Fig. 1 shows 
the bias-dependant spectral responses of the QDIP device used in this paper, measured with a broadband 
source and a Fourier transform infrared spectrophotometer at a temperature of 30 K.1 Bias voltages in the range 
of −4.2 to −1 and 1 to 2.6 V, in steps of 0.2 V, were applied to this device. As shown in Fig. 1, the central 
wavelength and the shape of the detector's responsivity continuously change with the applied bias voltage. 
Therefore, a single QDIP can be exploited as a multispectral infrared sensor; photocurrents of a single QDIP, 
driven by different operational biases, can be viewed as outputs of different spectrally broad and overlapping 
bands. While the broad spectral coverage is advantageous for broadband forward-looking infrared imaging, it is 
disadvantageous for applications that require narrow spectral resolution, such as chemical agent detection. 
Postprocessing strategies that exploit the spectral overlap in the QDIP's bands have recently been developed for 
continuous spectral tuning [7]–[8][9]. The inherent and often significant spectral overlap in the bands of a QDIP 
sensor produces a high level of redundancy in the output photocurrents of these bands. This redundancy, which 
is similar to the redundancy present in the outputs of the cones of the human eye, necessitates the 
development of lower-dimensional uncorrelated representations of the sensed data. 

 
Fig. 1. Normalized spectral responses of QDIP 1780 used in this paper. The left cluster of spectral responsivities corresponds 
to the range of negative bias voltages between −4.2 and −1 V. The right cluster of spectral responsivities corresponds to the 
range of positive bias voltages between 1 and 2.6 V. 
 

The presence of noise in the photocurrents (i.e., dark current and Johnson noise) further complicates the 
extraction of reliable spectral information from the highly overlapping and broad spectral bands of QDIP devices. 
Johnson noise results from the random motion of electrons in resistive elements and occurs regardless of any 
applied voltage [10]. On the other hand, current resulting from the generation and recombination process 
within the photoconductor will cause fluctuation in the carrier concentration and, hence, fluctuation in the 
conductivity of the semiconductor [10]. Generation and recombination noise, or so-called shot noise, becomes 
important in small bandgap semiconductors, in which the Johnson noise can also be high. Finally, at very low 
frequencies (e.g., less than 1 kHz), the flicker noise, also known as 1/f noise, also becomes an issue; it arises 
from surface and interface defects, and traps in the bulk of the semiconductor. However, for integration times 
of 1 ms or smaller, this noise is not important. Noise in QDIP detectors is dominated by the Johnson noise at 
temperatures less than 40 K and by the shot noise at higher temperatures (e.g., 77 K or above). 

It is well known that in the presence of noise, the existing feature-reduction techniques may not always yield 
reliable information compression. It was shown in [11] that in the principal component analysis (PCA) approach, 
the variance of the multispectral/hyperspectral data does not always reflect the actual signal-to-noise ratio 
(SNR) due to the unequal noise variances in different spectral bands. Therefore, it is possible that a band with a 
low variance may have a higher SNR than a band with a high variance. As a result, modified approaches such as 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/36/4637921/4637967/4637967-fig-1-source-large.gif
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the maximal noise fraction (MNF) transform were developed [11] based on maximizing the SNR; this method 
first whitens the noise covariance and then performs PCA. Other techniques include “higher-order methods” 
such as projection pursuit (PP) and independent component analysis (ICA) [12]–[13][14]; these methods search 
for “interesting” projection directions generating features that maximally deviate from “Gaussianity” or 
directions that maximize a certain projection index. Following the idea of the MNF transform [11], Lennon and 
Mercier in [15] proposed to adjust both PP and ICA to the noise in such a way that the SNRs of the noise-
adjusted components are significantly increased compared to the SNRs of the components determined by the 
original algorithms. 

In an earlier work [16], we proposed a mathematical theory for spectrally adaptive feature-selection approach 
for a general class of sensors with overlapping and noisy spectral bands. This theory builds upon the geometrical 
sensing model developed by Wang et al. [17], [18], in which the sensing process is viewed as a projection of 
the scene space, defined as the space of all spectral patterns of interest, onto a space spanned by the sensor 
bands, termed the sensor space. The main contributions of this paper are as follows. First, it provides a rigorous 
derivation of the heuristics that we reported earlier in [16], thereby providing a precise formulation of a 
canonical correlation feature-selection (CCFS) algorithm. The paper also provides new insights into the optimal 
feature-selection criterion for a class of sensors with overlapping and noisy bands. More precisely, for a specific 
pattern (or subspace of patterns) representing a class, a set of weights is derived that forms an optimal 
superposition (in the minimum mean-square-error (MMSE) sense) of the sensor bands, which we term 
a superposition band. The spectral pattern is then projected onto the direction defined by the superposition 
band. Thus, the superposition band can be thought of as the most informative direction for a specific pattern in 
the space spanned by the sensor bands in the presence of noise. Moreover, this process of selecting a 
superposition band is repeated in a hierarchical fashion to yield a canonical set of superposition bands that will 
generate, in turn, the best set of features for classes of patterns. 

The rigorous validation of the proposed feature-selection algorithm in two different application contexts is 
another important contribution of this paper. The first application is separability and classification of rock 
species using laboratory spectral data and a QDIP sensor. This paper extends the preliminary results from [16] to 
a systematic analysis of the performance of the new CCFS algorithm for different SNR values. The results 
demonstrate that proper postprocessing can facilitate the emergence of QDIP-based sensors as a promising 
technology for MWIR and LWIR remote sensing and spectral imaging. The second, a completely new application 
of the CCFS algorithm, additionally validates our proposed approach in the context of spectral unmixing and 
abundance estimation of hyperspectral imagery obtained from the AHI sensor. For both applications, 
comparison with the noise-adjusted PP shows that the CCFS can have a performance edge. 

This paper is organized as follows. In Section II, we develop the theory for the proposed feature-selection 
technique for sensors with noisy and spectrally overlapping bands. In Section III, the theory is used to develop 
the CCFS algorithm for pattern classification problems. In Section IV, we study the performance of the CCFS 
algorithm in the two applications described above. Our conclusions are summarized in Section V. 

SECTION II. Mathematical Model for Spectral Sensing 
A. Preliminaries 
We start by reviewing germane aspects and concepts in spectral sensing drawing freely from our earlier 
work [16]–[17][18]. The spectral characteristics of bands are represented by a finite set of real-valued square-

integrable spectral filters, or simply bands, {𝑓𝑓𝑖𝑖
^

(𝜆𝜆)}𝑖𝑖=1𝑘𝑘 , where the variable 𝜆𝜆 represents wavelength. The spectral 

response of the 𝑖𝑖th band is given by 𝑓𝑓𝑖𝑖
^

(𝜆𝜆) = 𝑅𝑅0𝑓𝑓𝑖𝑖(𝜆𝜆), where the unit of 𝑓𝑓𝑖𝑖
^

(𝜆𝜆) is the response per watt of power 



incident on the detector. The scalar 𝑅𝑅0 can be thought of as the peak responsivity and will assume the units 

required by 𝑓𝑓𝑖𝑖
^

(𝜆𝜆), whereas the functions {𝑓𝑓𝑖𝑖(𝜆𝜆)}𝑖𝑖=1𝑘𝑘  will be treated as dimensionless functions. Similarly, the 
emitted spectra of the materials of interest can be described by another set of square-integrable functions of 

wavelength {𝑝𝑝𝑖𝑖
^

(𝜆𝜆)}𝑖𝑖=1𝑚𝑚 . The emitted spectra of the 𝑖𝑖th-type material can be represented by 𝑝𝑝𝑖𝑖
^

(𝜆𝜆) = 𝑃𝑃0𝑝𝑝𝑖𝑖(𝜆𝜆), 
where 𝑃𝑃0 is another constant that carries the units of the emitted radiance [W/cm2/sr/𝜇𝜇m]. As a result, 
the spectral pattern 𝑝𝑝𝑖𝑖(𝜆𝜆) can be assumed dimensionless. We define the universal linear space containing all the 
spectral patterns of interest and all spectral responses as the spectral space Φ. For example, Φ can be the 
Hilbert space 𝐿𝐿2([0,∞)) of all real-valued square-integrable functions. The subspaces spanned by the spectral 
bands {𝑓𝑓𝑖𝑖(𝜆𝜆)}𝑖𝑖=1𝑘𝑘  and the spectral patterns {𝑝𝑝𝑖𝑖(𝜆𝜆)}𝑖𝑖=1𝑚𝑚  are termed, respectively, the sensor space ℱ and 
the pattern space 𝒫𝒫. 

Ideally, the process of sensing a pattern with a spectral sensor can mathematically be represented as an inner 
product between the pattern and each one of the sensor bands 

⟨𝑝𝑝,𝑓𝑓𝑖𝑖⟩ =
Δ
∫ 𝑝𝑝(𝜆𝜆)𝑓𝑓𝑖𝑖(𝜆𝜆)𝑑𝑑𝑑𝑑∞
−∞

 (1) 

producing a set of photocurrents, one for each band. In actuality, however, the photocurrents are perturbed by 
noise, yielding the noisy photocurrent 𝐼𝐼𝑖𝑖 for the 𝑖𝑖th band sensing the pattern 𝑝𝑝 

𝐼𝐼𝑖𝑖 = ∫ 𝑝𝑝(𝜆𝜆)𝑓𝑓𝑖𝑖(𝜆𝜆)𝑑𝑑𝑑𝑑 + 𝑁𝑁𝑖𝑖
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

 (2) 

where 𝑁𝑁𝑖𝑖  represents the additive pattern-independent noise associated with the 𝑖𝑖th band, and the 
interval [𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚,𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚] represents the common spectral support. Conceivably, different bands yield different noise 
levels (e.g., due to different bias voltages in the case of a QDIP). For a given spectral pattern, the output 
corresponding to a single spectral band constitutes the feature of that pattern with respect to the band. 
A spectral signature is then defined as a 𝑘𝑘-dimensional vector in IR𝑘𝑘, whose coordinates are the measured 
photocurrents (features) associated with each spectral band. 

B. Problem-Specific Feature Selection 
We now develop the key building block for our canonical feature-selection algorithm. Specifically, we will seek 
to optimally replace the 𝑘𝑘-dimensional spectral signature in IR𝑘𝑘 with a single spectral feature. This transformed 

feature 𝐼𝐼
~

 for the pattern 𝑝𝑝 is defined as the weighted linear combination of all features, i.e., 𝐼𝐼
~

= ∑ 𝑎𝑎𝑖𝑖𝐼𝐼𝑖𝑖𝑘𝑘
𝑖𝑖=1 , 

where the weights 𝑎𝑎𝑖𝑖  are to be optimized for each pattern 𝑝𝑝. We term such a feature 𝐼𝐼
~

 as the superposition 
current. By using (2), the superposition current can then be expressed in the following form: 

𝐼𝐼
~

= ∑ 𝑎𝑎𝑖𝑖𝑘𝑘
𝑖𝑖=1 (⟨𝑝𝑝,𝑓𝑓𝑖𝑖⟩ + 𝑁𝑁𝑖𝑖) = �𝑝𝑝,∑ 𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑘𝑘

𝑖𝑖=1 � + ∑ 𝑎𝑎𝑖𝑖𝑁𝑁𝑖𝑖𝑘𝑘
𝑖𝑖=1 . (3) 

From (3), we can deduce a useful analogy for the superposition current. Comparing this equation with (2), we 
see that the superposition current can be viewed as the output of an imaginary band 𝑓𝑓 = ∑ 𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑘𝑘

𝑖𝑖=1 . We will 
term the band 𝑓𝑓 a superposition band since it is a weighted superposition of the sensor's bands, and it is also 
associated with the superposition current. Hitherto, the problem of determining the best superposition 

current 𝐼𝐼
~

 for a given spectral pattern can be thought of as the problem of determining the optimal superposition 
band 𝑓𝑓 in ℱ that offers the best approximation of 𝑝𝑝. Note that for a given superposition band 𝑓𝑓 in ℱ, the 
approximation (or representation) of 𝑝𝑝 rendered by this band is 

https://ieeexplore.ieee.org/abstract/document/#deqn2
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𝑝𝑝𝑓𝑓 =
Δ
��𝑝𝑝,∑ 𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑘𝑘

𝑖𝑖=1 � + ∑ 𝑎𝑎𝑖𝑖𝑁𝑁𝑖𝑖𝑘𝑘
𝑖𝑖=1 �𝑓𝑓 (4) 

which is a vector in ℱ that is along the direction of 𝑓𝑓 but whose length is random due to noise. 

Accordingly, one suitable criterion for the selection of a superposition band is to minimize the distance between 
the spectral pattern and its representation according to the superposition band. More precisely, we would select 
a set of coefficients 𝑎𝑎1, … ,𝑎𝑎𝑘𝑘 so that the 𝐿𝐿2 norm of the error vector ‖𝑝𝑝 − 𝑝𝑝𝑓𝑓‖ is minimized. Noting that 𝑓𝑓 =
∑ 𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑘𝑘
𝑖𝑖=1 , we have 

 

𝑝𝑝𝑓𝑓 = �  
𝑘𝑘

𝑖𝑖=1

�𝑎𝑎𝑖𝑖𝑎𝑎𝑗𝑗(⟨𝑝𝑝, 𝑓𝑓𝑖𝑖⟩ + 𝑁𝑁𝑖𝑖)𝑓𝑓𝑗𝑗

𝑘𝑘

𝑗𝑗=1

. 

Hence, for a given pattern 𝑝𝑝, we propose an optimal superposition band, represented by the vector 𝐚𝐚∗, as 

𝐚𝐚∗ =Δ arg𝑚𝑚𝑚𝑚𝑚𝑚
𝐚𝐚∈IR𝑘𝑘,‖𝑓𝑓‖=1

𝖤𝖤 ��𝑝𝑝 − ∑  𝑘𝑘
𝑖𝑖=1 ∑  𝑘𝑘

𝑗𝑗=1 𝑎𝑎𝑖𝑖𝑎𝑎𝑗𝑗(⟨𝑝𝑝,𝑓𝑓𝑖𝑖⟩ + 𝑁𝑁𝑖𝑖)𝑓𝑓𝑗𝑗�
2� (5) 

where 𝐚𝐚 = (𝑎𝑎1, … , 𝑎𝑎𝑘𝑘)𝑇𝑇  is a weight vector associated with the superposition band 𝑓𝑓. 

To provide a better insight into the criterion in (5) (and particularly the constraint ‖𝑓𝑓‖ = 1), let us assume for 
the moment that the noise is absent. In this case, one can show that the minimization of the noiseless versions 
of the criterion (5) is equivalent to computing the projection 𝑝𝑝ℱ of 𝑝𝑝 onto ℱ. More precisely, let 𝑝𝑝ℱ be the 
orthogonal projection of 𝑝𝑝 onto the subspace ℱ. By the minimum-distance property of the projection 𝑝𝑝ℱ (in [19, 
Th. 4.11]) 𝑖𝑖𝑖𝑖𝑖𝑖

𝑔𝑔∈ℱ
‖𝑝𝑝 − 𝑔𝑔‖ = ‖𝑝𝑝 − 𝑝𝑝ℱ‖. The following lemma shows that 𝑝𝑝ℱ can be obtained (up to a sign 

difference) by projecting 𝑝𝑝 onto unit-norm vectors in ℱ and then selecting the vector that yields the minimum 
error between the projection along that unit vector and 𝑝𝑝. 

Lemma 1 

Define 𝑓𝑓𝑝𝑝 =Δ± (𝑝𝑝ℱ/‖𝑝𝑝ℱ‖). Then 

𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓∈ℱ

‖𝑝𝑝 − ⟨𝑝𝑝,𝑓𝑓⟩𝑓𝑓‖ = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓∈ℱ,‖𝑓𝑓‖=1

‖𝑝𝑝 − ⟨𝑝𝑝,𝑓𝑓⟩𝑓𝑓‖

= ‖𝑝𝑝 − ⟨𝑝𝑝,𝑓𝑓𝑝𝑝⟩𝑓𝑓𝑝𝑝‖ = ‖𝑝𝑝 − 𝑝𝑝ℱ‖.
 (6)(7) 

The proof of this lemma is deferred to the Appendix. With this interpretation of 𝑝𝑝ℱ and by realizing that the 
inner product associated with a superposition band represented by the weight vector 𝐚𝐚 is corrupted by the 
additive noise ∑ 𝑎𝑎𝑖𝑖𝑁𝑁𝑖𝑖𝑘𝑘

𝑖𝑖=1 , as shown in (3), we arrive at the optimization criterion stated in (5). This justifies our 
selection of (5) as a criterion in the noiseless case and motivates its use as a meaningful criterion in the general 
case when the photocurrents are corrupted by additive noise. 

The following lemma characterizes the minimization in (5). 

Lemma 2 

Put 𝑓𝑓 = ∑ 𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑘𝑘
𝑖𝑖=1 , 𝐚𝐚 = (𝑎𝑎1, … ,𝑎𝑎𝑘𝑘)𝑇𝑇, and consider 𝑝𝑝𝑓𝑓 given by (4). Without loss of generality, assume that ‖𝑝𝑝‖ =

1, and further assume that the noise components in (4), 𝑁𝑁1, … ,𝑁𝑁𝑘𝑘, are zero-mean and independent random 
variables with variances 𝜎𝜎𝑖𝑖2, 𝑖𝑖 = 1, … , 𝑘𝑘. Then 
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arg𝑚𝑚𝑚𝑚𝑚𝑚
𝐚𝐚∈IR𝑘𝑘,‖𝑓𝑓‖=1

 𝖤𝖤�‖𝑝𝑝𝑓𝑓 − 𝑝𝑝‖2� = arg𝑚𝑚𝑎𝑎𝑥𝑥
𝐚𝐚∈IR𝑘𝑘,‖𝑓𝑓‖=1

 �⟨𝑝𝑝, 𝑓𝑓⟩2 −� 𝑎𝑎𝑖𝑖2𝜎𝜎𝑖𝑖2
𝑘𝑘
𝑖𝑖=1 � . (8) 

Lemma 2 provides useful information about the structure of the mean square error (MSE) in (8). The proof is 
deferred again to the Appendix. 

If we define the SNR associated with the superposition band 𝑓𝑓 represented by 𝐚𝐚 as 

SNR𝐚𝐚 = ⟨𝑝𝑝,𝑓𝑓⟩2

� 𝑎𝑎𝑖𝑖
2𝜎𝜎𝑖𝑖

2𝑘𝑘
𝑖𝑖=1

 (9) 

the criterion (8) can be written in terms of SNR𝐚𝐚 as 

arg𝑚𝑚𝑚𝑚𝑚𝑚
𝐚𝐚∈IR𝑘𝑘,‖𝑓𝑓‖=1

𝖤𝖤�‖𝑝𝑝 − 𝑝𝑝𝑓𝑓‖2� = arg𝑚𝑚𝑚𝑚𝑚𝑚
𝐚𝐚∈IR𝑘𝑘,‖𝑓𝑓‖=1

�(SNR𝐚𝐚 − 1)�𝑎𝑎𝑖𝑖2𝜎𝜎𝑖𝑖2
𝑘𝑘

𝑖𝑖=1

�. 

The quantity ⟨𝑓𝑓,𝑝𝑝⟩2 in (9) reflects how much energy from the scene is preserved during the spectral sensing 
process and relates this energy to the mutual position (i.e., angle) between the pattern 𝑝𝑝 and any sensor 
band 𝑓𝑓𝑖𝑖 that contributes to the superposition band. More precisely, defining the interior angle 𝜃𝜃𝑝𝑝,𝑓𝑓𝑖𝑖  between the 
spectral pattern 𝑝𝑝 and any sensor band 𝑓𝑓𝑖𝑖 as 

𝜃𝜃𝑝𝑝,𝑓𝑓𝑖𝑖 = cos−1 �
⟨𝑝𝑝,𝑓𝑓𝑖𝑖⟩
‖𝑝𝑝‖‖𝑓𝑓𝑖𝑖‖

� 

if a given pattern 𝑝𝑝 is “almost collinear” to any of the sensor bands {𝑓𝑓𝑖𝑖}𝑖𝑖=1𝑘𝑘 , then 𝜃𝜃𝑝𝑝,𝑓𝑓𝑖𝑖  will nearly be zero, and the 
quantity ⟨𝑝𝑝,𝑓𝑓𝑖𝑖⟩ will attain its maximum value. In such cases, the contribution of that spectral band to the 
direction of the superposition band needs to be maximized to maximize the SNR for the superposition band. 
If 𝒫𝒫 ⊂ ℱ, then the angle between 𝑝𝑝 and any 𝑓𝑓𝑖𝑖 will be zero, meaning that the pattern space will completely be 
captured by the sensor space. On the other hand, if the angle between a given pattern 𝑝𝑝 ∈ 𝒫𝒫 and a spectral 
band 𝑓𝑓𝑖𝑖 ∈ ℱ is close to 𝜋𝜋/2, then this indicates the lack of correlation between the spectral pattern and the 
spectral band. In such a case, the pattern cannot reliably be sensed by that particular band, and the contribution 
of that band in the superposition band needs to be minimized. 

In the presence of noise, due to the superposition process, the noise variance corresponding to the 
superposition band will accumulate, resulting in lower SNR and, therefore, higher approximation error. As a 
result, the optimal superposition band in a noisy environment may not coincide with the direction of projection 
of the pattern onto the sensor space, and the amount of deviation will depend upon the SNR for the individual 
bands. 

In the next section, we use and extend the principle of optimal superposition band presented in this section to 
derive a canonical feature-selection algorithm. The algorithm allows us to search for a collection of weight 
vectors that yield the “best” collection of “sensing directions” minimizing the MSE in sensing classes of patterns. 

SECTION III. Ccfs 
We begin by reviewing germane aspects of the canonical correlation (CC) analysis [20]–[21][22] of two Euclidean 
subspaces. In essence, based on a computed sequence of principal angles 𝜃𝜃𝑘𝑘 between any two finite-
dimensional Euclidean spaces 𝒰𝒰 and 𝒱𝒱, CC analysis yields the so-called CCs 𝜌𝜌𝑘𝑘 = cos (𝜃𝜃𝑘𝑘) between the two 
spaces. The first CC coefficient 𝜌𝜌1 is computed as 𝜌𝜌1 = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖,𝑗𝑗
𝐮𝐮𝑖𝑖𝑇𝑇𝐯𝐯𝑗𝑗, where the vectors 𝐮𝐮𝑖𝑖(𝑖𝑖 = 1, … ,𝑚𝑚) and 𝐯𝐯𝑗𝑗(𝑖𝑖 =
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1, … ,𝑛𝑛) are unit length vectors that span 𝒰𝒰 and 𝒱𝒱, respectively. The two vectors for which the maximum is 
attained are then removed, and 𝜌𝜌2 is computed from the reduced sets of bases. This process is repeated until 
one of the remaining subspaces becomes null. 

The CC analysis approach, however, is not applicable to cases for which the inner products between vectors are 
accompanied by additive noise, as in the case of the photocurrents shown in (2). In this case, a stochastic version 
of “principal angle” must be introduced and used. This new criterion was precisely introduced in Lemma 2. Thus, 
in our approach, we will follow the general principle of CC analysis while embracing the minimization stated 
in (8) as a criterion for maximal correlation. 

In our formulation of the CCFS algorithm, we will restrict the attention to finite-dimensional spaces. Let us 
assume that all the spectral patterns and the sensor's bands belong to an n-dimensional subspace of the Hilbert 
space Φ. Thus, without loss of generality, we can think of the Hilbert space Φ as IR𝑛𝑛 and the functions 𝑝𝑝 ∈
𝒫𝒫 and 𝑓𝑓 ∈ ℱ as Euclidean vectors 𝐩𝐩 and 𝐟𝐟 in IR𝑛𝑛, where 𝐩𝐩 and 𝐟𝐟 are the coordinate vectors of 𝑓𝑓 and 𝑝𝑝, 
respectively. Furthermore, the inner product ⟨𝑝𝑝, 𝑓𝑓⟩ can be represented by the dot product 𝐩𝐩𝑇𝑇𝐟𝐟. 

Further assume that ℱ is the span of 𝑘𝑘(𝑘𝑘 ≤ 𝑛𝑛) linearly independent spectral bands represented by the columns 
of a matrix 𝐅𝐅 = [𝐟𝐟1|, … , |𝐟𝐟𝑘𝑘]. We term 𝐅𝐅 as the filter matrix. Let 𝒫𝒫 denote the span of a set of 𝑚𝑚 linearly 
independent patterns {𝐩𝐩𝑖𝑖}𝑖𝑖=1𝑚𝑚  representing the means of each one of 𝑚𝑚 classes of interest. The matrix 𝐏𝐏 =
[𝐩𝐩1|, … , |𝐩𝐩𝑚𝑚] is termed the pattern matrix. We will further assume that 𝑚𝑚 < 𝑘𝑘. 

The CCFS algorithm begins the search for the first canonical band by determining 𝑚𝑚 weight vectors 𝐚𝐚𝑖𝑖, 𝑖𝑖 =
1, … ,𝑚𝑚, one for each class of interest. In particular, for the mean of the 𝑙𝑙th class, we determine a vector of 
weights 𝐚𝐚𝑙𝑙 = (𝑎𝑎𝑙𝑙,1, … ,𝑎𝑎𝑙𝑙,𝑘𝑘)𝑇𝑇 as 

𝐚𝐚𝑙𝑙 = arg𝑚𝑚𝑚𝑚𝑚𝑚
𝐚𝐚𝑖𝑖∈IR𝑘𝑘,‖𝐅𝐅𝐚𝐚𝑖𝑖‖=1

 𝖤𝖤[‖𝐩𝐩𝑙𝑙 − (𝐩𝐩𝑙𝑙𝑇𝑇𝐅𝐅𝐚𝐚𝑖𝑖 + 𝐧𝐧𝑇𝑇𝐚𝐚𝑖𝑖)𝐅𝐅𝐚𝐚𝑖𝑖‖2] (10) 

where each component 𝑎𝑎𝑖𝑖,𝑗𝑗 weights the corresponding sensor band 𝐟𝐟𝑗𝑗, 𝑗𝑗 = 1, … ,𝑘𝑘. Note that (10) is the 
equivalent matrix representation of (5), where 𝐧𝐧 = (𝑁𝑁1, … ,𝑁𝑁𝑘𝑘)𝑇𝑇 is a random vector whose components 𝑁𝑁𝑖𝑖  are 
independent zero-mean random variables with variance 𝜎𝜎𝑖𝑖2. We reiterate our earlier assertion in Section II that 

for each pattern 𝐩𝐩𝑖𝑖, minimizing (10) is equivalent to selecting a direction � 𝑎𝑎𝑖𝑖,𝑗𝑗𝐟𝐟𝑗𝑗
𝑘𝑘

𝑗𝑗=1
 in ℱ that satisfies (8) and 

exhibits minimal combined noise variance and angle between the pattern and the direction. 

The minimization process outlined in (10) is repeated 𝑚𝑚 times as determined by the number of classes of 
interest, where each class is represented by its mean 𝐩𝐩𝑖𝑖, 𝑖𝑖 = 1, … ,𝑚𝑚. This process yields a set 
of 𝑚𝑚 superposition bands, or sensing directions, 𝐟𝐟1 = 𝐅𝐅𝐅𝐅1, … , 𝐟𝐟𝑚𝑚 = 𝐅𝐅𝐅𝐅𝑚𝑚, each one optimized with respect to 
the mean of each class. If the feature-selection algorithm stops here, and the so the determined set of 𝑚𝑚 
superposition bands is used, it can be the case that these bands span a very small subspace of the sensor space 
since collinear patterns will determine collinear directions. The algorithm continues by selecting from this 
optimized set of superposition bands the one that is the most “collinear” with its corresponding mean, i.e., the 
superposition band that gives the minimum MSE for a particular class 

𝐟𝐟
~
1 = arg𝑚𝑚𝑚𝑚𝑚𝑚

𝐟𝐟𝑖𝑖;𝑖𝑖=1,…,𝑚𝑚
 𝖤𝖤�‖𝐩𝐩𝑖𝑖 − (𝐩𝐩𝑖𝑖𝑇𝑇𝐟𝐟𝑖𝑖 + 𝐧𝐧𝑇𝑇𝐚𝐚𝑖𝑖)𝐟𝐟𝑖𝑖‖2�

= arg𝑚𝑚𝑚𝑚𝑚𝑚
𝐟𝐟𝑖𝑖;𝑖𝑖=1,…,𝑚𝑚

 ��(𝐩𝐩𝑖𝑖
𝑇𝑇𝐟𝐟𝑖𝑖)2

𝐚𝐚𝑖𝑖
𝑇𝑇Σ𝐍𝐍𝐚𝐚𝑖𝑖

− 1�𝐚𝐚𝑖𝑖𝑇𝑇Σ𝑁𝑁𝐚𝐚𝑖𝑖�
 (11) 
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where the last equality follows from Lemma 2. We term the superposition band 𝐟𝐟
~
1 as the first canonical band. 

To ensure complete cover of the scene space within the filter space, the search for the second canonical 

band 𝐟𝐟
~
2 is conducted in the orthogonal complement of 𝐟𝐟

~
1, and it is with respect to the means of the remaining 

classes. More precisely, if 𝐟𝐟
~
1 = 𝐟𝐟ℓ1, for some ℓ1 = 1, … ,𝑚𝑚, then the ℓ1th class is excluded from the search 

for 𝐟𝐟
~
2. 

In general, if 𝐟𝐟
~
𝑗𝑗 is the 𝑗𝑗th optimal superposition band, then 𝐟𝐟

~
𝑗𝑗+1 is selected by searching in the orthogonal 

complement of 𝐟𝐟
~
1, … , 𝐟𝐟

~
𝑗𝑗 and over all classes less the ℓ1, … , ℓ𝑗𝑗th classes, where ℓ𝑖𝑖 is defined through 𝐟𝐟

~
𝑖𝑖 = 𝐟𝐟ℓ𝑖𝑖. 

We continue in this fashion until we obtain a set of 𝑚𝑚 canonical bands 𝐟𝐟
~
1, … , 𝐟𝐟

~
𝑚𝑚. Note that the canonical order 

of the superposition bands does not depend on the presentation order of the classes of interest, since at the 
end of each optimization cycle, when decision is made, the algorithm always selects among all pairs 
(superposition band center of a class) the pair that yields the smallest estimation error. Each one of these 
canonical bands can be applied to the data to yield the so-called CC features. 

The CCFS algorithm can be implemented in Matlab using the Optimization toolbox. 

1. QR Factorization 
Since the spectral bands 𝐟𝐟𝑖𝑖, 𝑖𝑖 = 1, … ,𝑘𝑘, are highly correlated, they provide a numerically ill-conditioned basis set 
for ℱ. Instead of directly solving (10), we may replace this problem by an equivalent one for which the 
minimization is carried out with respect to an orthonormal basis set for ℱ. This replacement will also speed up 
the numerical implementation of the optimization. More precisely, put 𝐅𝐅 = 𝐐𝐐𝐐𝐐 as the reduced QR factorization 
of the matrix 𝐅𝐅. Then, the minimization problem 

arg𝑚𝑚𝑚𝑚𝑚𝑚
𝐚𝐚∈IR𝑘𝑘,‖𝐐𝐐𝐐𝐐𝐐𝐐‖=1

 𝖤𝖤[‖𝐩𝐩𝑖𝑖 − (𝐩𝐩𝑖𝑖𝑇𝑇𝐐𝐐𝐐𝐐𝐐𝐐 + 𝐧𝐧𝑇𝑇𝐚𝐚)𝐐𝐐𝐐𝐐𝐐𝐐‖2] (12) 

is equivalent to that shown in (10). Moreover, the optimization criterion in (12) can be recast in the equivalent 
form 

arg𝑚𝑚𝑚𝑚𝑚𝑚𝐛𝐛∈IR𝑘𝑘,‖𝐐𝐐𝐐𝐐‖=1 𝖤𝖤 ��𝐩𝐩𝑖𝑖 − 𝐩𝐩𝑖𝑖𝑇𝑇𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝐐− 𝐧𝐧𝑇𝑇𝐑𝐑−1𝐛𝐛𝐛𝐛𝐛𝐛�
2�

= arg𝑚𝑚𝑚𝑚𝑚𝑚𝐛𝐛∈IR𝑘𝑘,‖𝐐𝐐𝐐𝐐‖=1  [1 − �𝐩𝐩𝑖𝑖𝑇𝑇𝐐𝐐𝐐𝐐�
2 + (𝐑𝐑−1𝐛𝐛)𝑇𝑇Σ𝐍𝐍𝐑𝐑−1𝐛𝐛]

 

whereas 𝐛𝐛 = 𝐑𝐑𝐑𝐑 is the set of weights for the 𝑖𝑖th class mean derived with respect to the orthonormal basis 
set {𝐪𝐪𝑖𝑖}𝑖𝑖=1𝑘𝑘  for ℱ, where 𝐪𝐪𝑖𝑖 is the 𝑖𝑖th column of 𝐐𝐐. 

SECTION IV. Applications 
In this section, we will describe two different applications of the CCFS algorithm. In the first application, the 
CCFS algorithm is applied to the spectral responses of the QDIP sensor and laboratory spectral data for the 
purpose of separability and classification analysis of seven classes of rocks [16], [23]. The second application is to 
AHI hyperspectral imagery in the context of supervised classification as well as spectral unmixing and fractional 
abundance estimation. 

We will assume throughout this section that the noise components 𝑁𝑁𝑖𝑖  are zero-mean normally distributed 
random variables. This follows from the fact that amplitude distributions for both thermal and shot noise 
converge to normal distributions by the central limit theorem. For the large number of electrons generating the 
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thermal noise, the amplitude distribution of the thermal noise converges to zero-mean normal distribution. On 
the other hand, the actual numbers of generation-recombination events underlying the shot noise will exhibit a 
Poisson distribution [10]. However, this number will become approximately normally distributed for a large 
average number of generation-recombination events [24]. Therefore, the amplitude distribution of the total 
noise will also be normal with mean equal to the mean of the shot noise and a variance equal to the sum of the 
variances of the two types of noise. Since the mean of the shot noise is deterministic and known (being equal to 
the dc value of the measured dark current), it can be subtracted from the noise without having any ramifications 
on the analysis or algorithm development. 

 

A. Rock Type Classification 
In the last few decades, the LWIR wavelengths have successfully been used to distinguish a number of primary 
silicates (feldspars, quartz, opaline silica) that are spectrally bland or have features that are nonunique at 
shorter wavelengths [25]. Thus, the thermal-infrared region of the spectrum is excellent for examining pure 
samples as well as mineralogically complex geologic materials (i.e., rocks) and is gaining popularity as a remote-
sensing wavelength range for geologic applications [26], [27]. Our previous investigation of the rock type 
classification problem, using a Multispectral Thermal Imager (MTI) that operates in the shortwave and MWIR 
portions of the spectrum, has shown inadequacy of the simple minimum-distance classifier to accurately 
discriminate among the rock classes [23]. However, the MTI sensor in conjunction with the supervised Bayesian 
classifier offers much higher discrimination accuracy among the different rock types; hence, the MTI 
performance would serve as a good benchmark in this paper [16], [23]. (MTI was designed to be a satellite-
based system for terrestrial observation with emphasis on obtaining qualitative information of the surface 
temperature. Currently, MTI operates with set of 15 bands, covering the broad range from 0.45 to 10.7 μm.) 

 
1. Definition of Training and Testing Sets 
Generally, rocks can be divided into three main geological groups: igneous, metamorphic, and sedimentary, 
which correspond to the different geological processes involved in the rock's formation. Geologists have further 
divided these three main rock categories into seven generic classes, which we adopted in this paper. To create 
the training and testing data sets, we selected a number of spectra of common rock samples in different grain 
sizes from the Advanced Spaceborne Thermal Emission and Reflection Radiometer hyperspectral 
database. Table I describes the rock classes and the endmembers included in the training set [16]. 

Table I Rock Type Groups and Their Representative Endmembers 
Group Endmembers 
Hornfelsic hornfels (fine, coarse) 
Granoblastic pink quartzite, marble (fine, coarse) and gray quartzite (coarse) 
Schistose gray slate, chlorite schistose (fine, coarse) and chlorite 
Semischistose felsitic gneiss (fine, coarse) 
Igneous andesite, basalt, diorite, gabbro, granite, rhyolite (fine, coarse), tan rhyolite and tuff 

(cup 8, 9) 
Clastic Sedimentary shale, siltstone, fossiliferous limestone and red sandstone (fine, coarse) 
Chemical 
Sedimentary 

limestone (fine, coarse) and dolomite 

 

The limited number of endmembers (see Table I), however, prevented direct application of the Bayesian 
classifier. This fact forced us to increase the size of the training set by perturbing the endmembers in each rock 
class with different mixing materials. To create the perturbations, we used a simple two-component linear 



mixing model, where each mixture was considered as a linear combination of a representative endmember and 
a mixing endmember, weighted by the correspondent abundance function 𝛽𝛽. For the abundance function, we 
used five randomly chosen values of 𝛽𝛽 between 1% and 10% for the mixing endmembers and (100-𝛽𝛽)% for the 
representative endmembers. Using the above mixing model, we created spectral mixtures of the representative 
endmembers with minerals, vegetation, soil, and water [23]. We also created mixtures between fine- and 
coarse-size rocks, and between coarse- and fine-size rocks, according to their geological properties that make 
such mixtures realistic. All mixing endmembers used to enlarge the training set are presented in Table II. 

Table II Mixing Endmembers Used to Create Random Perturbations of the Representative Endmembers Listed in 
Table I 

Minerals andradite, anorthite, dolomite, quartz and topaz 
Rocks basaltic andesite, diorite gneiss, limestone and siltstone (fine, coarse) 
Water, soil distilled water, see water, dark brown loam, fine sandy loam and brown to dark brown sand 
Vegetation conifer and grass (green), spruce cellulose, citrus pectin, white peppermint, CA buckwheat, 

brown sycamore and brown leaf (dry) 
 

Fig. 2 shows the spectral signatures of the endmembers for the class hornfelsic, fine, and coarse size, as well as 
their mixtures with rocks, minerals, soils, and vegetation. We created two testing sets where the mixing 
endmembers used to create these sets are shown in Table III. In Set-1, the representative endmembers 
in Table I were perturbed with the rocks listed in Table III. For the abundance function, we used five randomly 
chosen values within the range of 1% to 10%. Set-2 is an enlargement of Set-1 with the addition of mixtures of 
the representative endmembers (see Table I) with soils, minerals, and vegetation listed in Table III. 

 
Fig. 2. Reflectivity of the hornfels showing fine (top group) and coarse size (bottom group) as well as their 
perturbations [16]. 

Table III Mixing Endmembers Used to Create Random Perturbations of the Representative Endmembers Listed 
in Table I to Create Test Set-1 and Test Set-2 

Minerals andradite, antigorite, erionite, fluorite, quartz and spodumene 
Rocks basalt, pink marble and black shale (fine, coarse) 
Water, soil distilled water, see water, dark brown loam, fine sandy loam and brown to dark brown sand 
Vegetation conifer and grass (green), spruce cellulose, citrus pectin, white peppermint, CA buckwheat, 

brown sycamore and brown leaf (dry) 
 

The addition of all the mixtures helped to increase the rank of covariance matrix to 13 in the case of QDIP and 
11 in the case of MTI, which still failed short of full rank for 26-dimensional data in the case of QDIP and 13-
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dimensional data in the case of MTI. To mitigate this problem, we selected a subset of 13 arbitrary QDIP bands. 
The performance of this subset was averaged over different arbitrarily selected subsets of 13 bands. In the case 
of MTI, we were able to identify high correlation for bands C and L with their adjacent spectral bands, so they 
were removed without loosing relevant information. A supervised Bayesian classifier was employed with the 
assumptions for normal class populations and equal priors [28]. The second assumption is reasonable as the 
training set was defined by geologists in accordance with the geological properties of rocks; thus, the number of 
samples in the training set for a certain group does not represent the frequency of occurrence of the rocks in 
nature. Instead, the number of samples per class reflects the rock diversity within a given class. 

B. Separability and Classification Results 
To set a benchmark for the performance of the CCFS algorithm, we begin by presenting the separability and 
classification results in the ideal case when noise is absent and without using the proposed CCFS algorithm [16]. 

We first compare separability and classification performance for QDIP and MTI sensors. Four sets of separability 
and classification results are summarized in Fig. 3(left). The first set of results corresponds to using 11 out of 15 
MTI bands (bands A–E, G, I, O, J, K and M) [29]. The second set corresponds to the case of 13 arbitrary bands out 
of the 26 QDIP bands. The third set of results is based on 7 MTI bands (bands G, I, O, J, K, M and N) selected to 
approximate the spectral range of the QDIP bands. The final fourth set is based on a subset of 7 arbitrary 
selected QDIP bands, shown in Fig. 4. The results presented in Fig. 3 (left) suggest that the MTI and QDIP bands 
yield comparable performance in the absence of noise [16]. 

 
Fig. 3. (Left) Comparison in rock type separation and classification between QDIP and MTI sensors in the absence of 
noise [16]. (Right) Comparison in rock type separation for the training set for CCFS, DCCFS, noise-adjusted PP, seven QDIP 
bands, and seven MTI bands in the presence of noise with average SNR values of 10, 20, 30, and 60 dB. 

 
Fig. 4. Seven QDIP bands used in the rock type classification. 
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1. Effect of Noise 
In this section, we consider the presence of noise and compare the separability and classification results for the 
CCFS algorithm with four different cases, each using seven bands and for four different SNR values. The results 
are averaged over 100 independent noise realizations for each SNR value. Here, the number of selected 
superposition bands is determined by number of classes of interest, i.e., seven. The first case is 
termed deterministic CCFS (DCCFS), and it employs the proposed CC feature selection but without accounting for 
the photocurrent noise during the selection process. In the second case, termed noise-adjustedPP [15], [30], we 
use seven features extracted using the noise-adjusted PP algorithm. Finally, the last two cases correspond to the 
classifiers used in Fig. 3 (left) applied to noisy data; these cases are termed QD IP-7 bands and MTI-7 
bands. Figs. 3 (right) and 5 compare the separability and classification performances, respectively, for the 
aforementioned five cases. 

 
Fig. 5. Comparison in rock type classification for CCFS, DCCFS, noise-adjusted PP, QDIP bands, and MTI bands in the 
presence of noise with average SNR values of 10, 20, 30, and 60 dB. (Left) Test Set-1. (Right) Test Set-2. 
 

The first observation made is that embedding the noise statistics in the canonical feature selection leads to a 
significant improvement in the classification. As we can see from the results presented in Figs. 3 (right) and 5, for 
the first three SNR cases (average SNR of 10, 20, and 30 dB), the CCFS algorithm performs almost twice as good 
as the DCCFS algorithm. In the limiting case of a very high SNR, the performance of the CCFS and DCCFS 
algorithms becomes almost identical, as expected, and the classification error drops to 10%–15%. 

We next compare the CCFS algorithm with the arbitrary selection of seven QDIP bands. For the average SNR of 
10 dB [see Fig. 3 (right)], the separability error from the latter case is 63%, compared to 41% in the CCFS case. 
This result underscores the higher sensitivity of QDIP bands to significant noise levels compared to the canonical 
superposition bands. Notably, by using the CCFS algorithm, we were able to achieve a significant improvement 
in the classification performance (approximately 20%). As expected, when the average SNR increases, the 
performances of the two cases become comparable. 

The separability and classification results also indicate that the CCFS approach offers classification capabilities 
comparable to those offered by the MTI bands when high levels of noise are present (10 dB). When the SNR 
increases to 30 dB (see Fig. 5), the classification results corresponding to the MTI bands almost reach the 
noiseless case classification error [see Fig. 3 (left)]; however, this trend is much slower in the case of CCFS. The 
results suggest that the bands designed via the CCFS approach are still more susceptible to noise compared to 
the MTI bands. Such a conclusion should not be surprising in view of the fact that the MTI sensor contains well-
separated spectral bands with almost nonoverlapping finite supports and distinct spectral characteristics. As a 
result, even for high noise levels, the photocurrents obtained with MTI bands are often well separated. 
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2. Comparison with the PP Approach 
We also compare the proposed CCFS algorithm with the noise-adjusted version of the PP feature-selection 
algorithm [12], [13], [31]. In this paper, we adopted the so-called fast ICA for the implementation of the PP 
algorithm and its noise-adjusted version [14], [30]. 

For low average SNRs of 10 dB, the separability and classification accuracy achieved with the CCFS algorithm is 
approximately 10% better than the one obtained with the noise-adjusted PP. As the SNR increases, the 
performance of the two algorithms becomes very similar, yielding almost identical separability and classification 
accuracy in the cases of average SNR of 20 dB (see Figs. 3 (right) and 5). However, when the SNR reaches 
extremely high values (see Figs. 3 (right) and 5), the CCFS algorithm once again outperforms the noise-adjusted 
PP approach, yielding a 10% classification error compared to the 20% error by the noise-adjusted PP for the 
training set and testing Set-1. 

C. Application to AHI Hyperspectral Imagery 
AHI is an LWIR pushbroom hyperspectral imager with a 256-by-256 element Rockwell TCM2250 HgCdTe FPA 
mechanically cooled to 56 K [32]. The AHI sensor contains 256 spectral bands in the range of 7–11.5 μm with 
0.1-μm spectral resolution for each spectral band. Further details on the AHI system and related data acquisition 
and calibration issues can be found in [32]. 

Here, we consider two types of problems with the CCFS used as a feature-selection algorithm: supervised 
Bayesian classification of three spectral classes, and spectral unmixing and abundance estimation for three 
endmembers. The AHI scene used in the first problem consists of roads, vegetation, and building roofs. The size 
of the image is 4451 by 256 pixels with 256 spectral bands. To perform supervised classification, we selected by 
visual examination three representative areas for each of the three classes of interest and used the spectral 
signatures corresponding to these areas as training sets for the classifier. We created test sets by selecting three 
areas that represent different spatial locations of the same image but visually correspond to the same classes. 
The training and testing sets contain 1250 pixels each, 450 pixels per class. The three sections of the scene, 
shown in Fig. 6 for 𝜆𝜆 = 10.0967𝜇𝜇m, represent the three classes of interest; these regions are used to extract the 
training (left) and testing (right) sets. 

 
Fig. 6. (Left) Training and (right) testing areas (snapshot at 10.0967 μm) selected from AHI test flight image of an urban 
area. The rectangular boxes indicate the approximate areas used to select the training and testing sets for the 
endmembers. 
 

After the training and testing spectral sets were determined, Bayesian classification, in conjunction with CCFS, 
was applied to both sets, and separability and classification errors were calculated for different SNR cases. The 
AHI spectral bands were uniformly approximated by triangular pulses with peaks at the central frequencies and 
base widths of 0.1 μm. As we did earlier in the rock type classification problem, four average SNR values were 
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considered in the range of 10 to 60 dB. After the three superposition bands for each SNR case were determined, 
they were applied to the spectral content of each pixel in the training and testing regions shown in Fig. 6. 

We also considered an application of CCFS to spectral unmixing and abundance estimation. The scene used for 
this application is a different AHI test-flight image, sections of which are shown in Fig. 7, which represent a 
snapshot of an urban area at 𝜆𝜆 = 7.8267𝜇𝜇m. The scene contains buildings, roads, vegetation, parking lots, and 
cars. 

 
Fig. 7. Segments of AHI test-flight image of an urban area at 7.8267 μm. 
 

Spectral unmixing consists of three main stages: feature extraction, endmembers determination followed by 
unmixing, and fractional abundance estimation. Unmixing methods can generally be classified by the 
endmember determination process as automatic and interactive; the automatic methods estimate the number 
of endmembers, their spectral signatures, and abundance patterns using only the mixed data, the mixing model 
with no a priori information about the ground materials, and any human intervention [33]–[34][35]. In 
interactive unmixing, an analyst or expert chooses the “pure pixels” from the image or the endmember spectra 
from the spectral library and then estimates the fractional abundance patterns of the component materials in 
the image. In this paper, we used the interactive method while following the three stages described above. 

First, by means of visual inspection, three main endmember categories, i.e., buildings, roads, and vegetation, 
were identified in the scene area part of which is captured in the image in Fig. 7. The representative spectral 
signatures were determined by calculating the mean of each region corresponding to the designated 
endmember category. Endmember determination was followed by spectral feature extraction where the CCFS 
was applied to determine the three most informative directions in the AHI spectral space with respect to the 
three endmembers in the presence of noise. The extraction of the three superposition features, one for each 
endmember, follows the same approach as done in the supervised classification problem described earlier. 

The last step was to estimate the abundance fraction of each endmember in every pixel from the tested area. 
Assuming a linear mixing model, the fractions of the endmembers can be determined by solving the problem of 
minimizing 

𝑒𝑒 = ‖𝐱𝐱 − 𝐒𝐒𝐒𝐒‖2 

where 𝐒𝐒 is the 3 ×  3 matrix when the CCFS approach is applied to the data, whose three columns correspond 
to the endmembers and three rows are the superposition features, 𝐱𝐱 represents the mixed spectrum, and 𝐛𝐛 is 
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the 3 ×  1 fractional abundance vector. Considering the physical meaning of the mixing model, the elements of 
the abundance vector 𝐛𝐛 can be subject to two constrains: 𝑏𝑏𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, 2, 3, and ∑ 𝑏𝑏𝑖𝑖 = 13

𝑖𝑖=1 . 

1. Results and Discussion 
To set a benchmark for the performance of the CCFS approach in the supervised classification and abundance 
estimation problems, we first discuss the results in the absence of noise. The Bayesian classification results for 
the three classes of interests (buildings, roads, and vegetation) for five randomly selected subsets of the AHI 
spectral bands show perfect separability and classification. As for the problem of spectral unmixing and 
abundance estimation, Fig. 8 presents the abundance maps of the three endmembers (buildings, vegetation, 
and roads) when using three uniformly separated AHI spectral bands in the range of 7.7 to 8.6 μm. The size of 
the tested subimage used here is 500 by 256 pixels. Fig. 8 shows that each map is able to correctly estimate the 
fraction of abundance of the corresponding endmember. 

 
Fig. 8. (Left to right) Abundance estimation maps for endmebers building, vegetation, and road, respectively, using three 
uniformly spaced AHI spectral bands in the range of 7.7 to 8.6 μm. 
 

Next, we consider the effect of noise and compare the performance of the CCFS approach (in supervised 
classification and spectral unmixing) to that obtained using the noise-adjusted PP. As in the rock type 
classification example, four different SNR values are considered in the range of 10 to 60 dB. The search for the 
three optimal directions in the supervised classification problem for both CCFS and noise-adjusted PP was 
performed over two different subsets of the AHI bands. The first subset consists of 40 consecutive AHI bands in 
the range of 7.7 to 8.6 μm, and the second set consists of 21 uniformly spaced bands in the range of 7.7 to 
11.2 μm. 

The average separability and classification results for the supervised classification of road, roof, and vegetation 
classes, averaged over 50 noise realizations, are presented in Fig. 9 for both CCFS and noise-adjusted PP 
approaches. The performance of CCFS in this application is consistent with that corresponding to the rock type 
classification problem, and it demonstrates good classification in modest SNR scenarios of 10–30 dB. Feature 
selection from 21 uniformly spaced AHI bands (for both CCFS and noise-adjusted PP) gives improved separability 
and classification than feature selection from 40 consecutive AHI bands. This result can be explained by the fact 
that the 40 consecutive AHI bands exhibit higher spectral correlation compared to the 21 uniformly separated 
bands, and thus, they are potentially more sensitive to the presence of noise. The noise-adjusted PP shows 
comparable performance to the CCFS algorithm; however, in this application the CCFS gives improved 
separability and classification compared to the noise-adjusted PP for all SNR cases. We point out that for these 
applications, we have observed a very high sensitivity of the performance of the fast ICA implementation of the 
PP to the initial guess for the projection matrix. In some cases, the classification and separability errors were 
low; however, in other cases, they were much higher than the averaged errors presented in the tables. One 
possible explanation is that the initialization of the projection matrix by random numbers may not necessarily 
yield a good initial guess for the hyperspectral data involved. 
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Fig. 9. (Left) Separability and (right) classification results for two subsets of AHI bands and when CCFS and noise-adjusted PP 
are used. 
 

Fig. 10(a)–(c) shows three groups of fractional abundance maps for SNR values of 20, 30, and 60 dB, respectively, 
and when the CCFS is applied to 50 consecutive AHI bands in the range of 7.7 to 8.6 μm. The corresponding 
results for the noise-adjusted PP approach are shown in Fig. 11(a)–(b). The size of the subimage used for this 
problem is 250 by 256 pixels, and it represents a subsection of the image shown in Fig. 8. It is seen that the CCFS 
approach once again shows good performance. The CCFS and the noise-adjusted PP similarly perform for the 
SNR value of 10 dB (results not shown). Figs. 10(a) and 11(a) compare the abundance maps created using the 
three CCFS features and three noise-adjusted PP features, respectively, for the SNR value of 20 dB. The maps 
show improved performance of the CCFS compared to the noise-adjusted PP, which was not able to clearly 
discriminate between the endmembers of vegetation and road in this SNR case. As expected, the results for 
both CCFS and noise-adjusted PP improve as the SNR is increased, as shown in Figs. 10(b) and 11(b). For the high 
SNR case of 60 dB, we compare the performance of CCFS described by the abundance maps in Fig. 10(c) to the 
AHI image in Fig. 7 and to the abundance maps presented in Fig. 8, representing the noiseless case when three 
AHI bands are used. The results show that at high SNR values, the performance of the CCFS approaches the 
noiseless limit. 

 
Fig. 10. (Left to right) Abundance maps for building, vegetation, and road endmembers using three superposition features 
selected by the CCFS algorithm from a subset of 50 bands in the range of 7.7 to 8.6 μm and for SNR levels of (a) 20 dB, (b) 
30 dB, and (c) 60 dB. 
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Fig. 11. (Left to right) Abundance maps for building, vegetation, and road endmembers using three spectral features 
selected by the noise-adjusted PP from a subset of 50 bands in the range of 7.7 to 8.6 μm and for an SNR level of (a) 20 dB 
and (b) 30 dB. 
 

We end this section by concluding that the examples considered suggest that the proposed CCFS method offers 
a noticeable improvement over the noise-adjusted PP algorithm in the cases of low and high SNR. Of course, 
these improvements come at a price of using numerical optimization procedures to compute the CCFS weights, 
which is the most expensive step in the CCFS algorithm. However, the cost of the optimization step can 
significantly be reduced by a judicious choice of the initial guess for the CCFS weights. Our implementation takes 
advantage of the fact that in the absence of noise, the optimization algorithm essentially computes the standard 
orthogonal projection; we, therefore, choose the coefficients of this projection as an initial guess for the 
optimization algorithm. In our calculations, we have observed that this choice of the initial guess results in 
substantial reduction in the number of optimization steps needed for convergence. 

SECTION V. Conclusion 
We have developed a problem-specific feature-selection algorithm that is appropriate for the general class of 
sensors whose bands are both noisy and spectrally overlapping. Our approach is based upon statistical 
projection-like concepts in Hilbert spaces in conjunction with CC analysis. For a given class of patterns, the 
algorithm seeks for a set of weights that are used to determine the optimal superposition band or sensing 
direction. The obtained sensing direction is optimal in the sense that it provides the best MMSE estimate of the 
mean of a class in the sensor space. In particular, the superposition band yields the best sensing direction, taking 
into account both information content and noise. The superposition-band selection procedure is sequentially 
repeated as many times as the number of the classes of interest, producing a canonical set of superposition 
bands. At each stage, the algorithm excludes from the search for the optimal direction the class that has been 
selected in the prior stage; moreover, every superposition band is selected from a subspace of the sensor space 
that is in the orthogonal complement of the previous sensing direction. 

The feature-selection algorithm was applied to a QDIP LWIR sensor as a realistic representative of the class of 
sensors with highly overlapping and noisy spectral bands and to the AHI sensor. As demonstrated by the 
separability and classification results for both applications, in the presence of noise, the proposed CCFS 
algorithm can effectively reduce the sensor-space dimensionality while maintaining good separability and 
classification results. Moreover, the CCFS method provides accurate abundance fraction estimation of the 
endmembers in the spectral unmixing problem of the AHI hyperspectral image data. The proposed algorithm 
outperforms the noise-adjusted PP technique in the cases of low and high SNR. The proposed CCFS algorithm 
promises robustness to the photocurrent noise by yielding sensing directions with maximal information content 
and minimized cumulative noise associated with each direction. 
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Appendix A Proof of Lemma 1 
By using the fact that (𝑝𝑝 − 𝑝𝑝ℱ) is orthogonal to 𝑝𝑝ℱ (in [19, Th. 4.11]), we obtain 

⟨𝑝𝑝, 𝑓𝑓𝑝𝑝⟩𝑓𝑓𝑝𝑝 = ⟨(𝑝𝑝−𝑝𝑝ℱ)+𝑝𝑝ℱ ,𝑝𝑝ℱ⟩
⟨𝑝𝑝ℱ ,𝑝𝑝ℱ⟩

𝑝𝑝ℱ = 𝑝𝑝ℱ . (13) 

Therefore 

‖𝑝𝑝 − ⟨𝑝𝑝,𝑓𝑓𝑝𝑝⟩𝑓𝑓𝑝𝑝‖ = ‖𝑝𝑝 − 𝑝𝑝ℱ‖. (14) 

Hence, since 𝑖𝑖𝑖𝑖𝑖𝑖
𝑔𝑔∈ℱ

‖𝑝𝑝 − 𝑔𝑔‖ = ‖𝑝𝑝 − 𝑝𝑝ℱ‖, (14) along with the fact that ‖𝑓𝑓𝑝𝑝‖ = 1 together imply 

𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓∈ℱ,‖𝑓𝑓‖=1

‖𝑝𝑝 − ⟨𝑝𝑝,𝑓𝑓⟩𝑓𝑓‖ = ‖𝑝𝑝 − ⟨𝑝𝑝, 𝑓𝑓𝑝𝑝⟩𝑓𝑓𝑝𝑝‖. (15) 

Thus, we have proved that the infimum in (15) is achieved at 𝑓𝑓 = 𝑓𝑓𝑝𝑝 or 

𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓∈ℱ,‖𝑓𝑓‖=1

‖𝑝𝑝 − ⟨𝑝𝑝,𝑓𝑓⟩𝑓𝑓‖ = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓∈ℱ,‖𝑓𝑓‖=1

‖𝑝𝑝 − ⟨𝑝𝑝,𝑓𝑓⟩𝑓𝑓‖

= ‖𝑝𝑝 − ⟨𝑝𝑝,𝑓𝑓𝑝𝑝⟩𝑓𝑓𝑝𝑝‖.
 

Appendix B Proof of Lemma 2 
Note that 

𝖤𝖤[‖𝑝𝑝 − 𝑝𝑝𝑓𝑓‖2] = ‖𝑝𝑝‖2 − 2∑  𝑘𝑘
𝑖𝑖=1 � 𝑎𝑎𝑖𝑖𝑎𝑎𝑗𝑗⟨𝑝𝑝,𝑓𝑓𝑖𝑖⟩�𝑝𝑝, 𝑓𝑓𝑗𝑗�

𝑘𝑘

𝑗𝑗=1

+∑  𝑘𝑘
𝑖𝑖=1 � 𝑎𝑎𝑖𝑖𝑎𝑎𝑗𝑗⟨𝑝𝑝,𝑓𝑓𝑖𝑖⟩⟨𝑝𝑝,𝑓𝑓𝑗𝑗⟩‖𝑓𝑓‖2

𝑘𝑘

𝑗𝑗=1

+∑  𝑘𝑘
𝑖𝑖=1 � 𝑎𝑎𝑖𝑖𝑎𝑎𝑗𝑗𝖤𝖤[𝑁𝑁𝑖𝑖𝑁𝑁𝑗𝑗]‖𝑓𝑓‖2

𝑘𝑘

𝑗𝑗=1

−2∑  𝑘𝑘
𝑖𝑖=1 � 𝑎𝑎𝑖𝑖𝑎𝑎𝑗𝑗𝖤𝖤[𝑁𝑁𝑖𝑖]�𝑝𝑝,𝑓𝑓𝑗𝑗�

𝑘𝑘

𝑗𝑗=1

+2∑  𝑘𝑘
𝑖𝑖=1 � 𝑎𝑎𝑖𝑖𝑎𝑎𝑗𝑗𝖤𝖤[𝑁𝑁𝑖𝑖]⟨𝑝𝑝, 𝑓𝑓𝑗𝑗⟩‖𝑓𝑓‖2

𝑘𝑘

𝑗𝑗=1
.

 (16) 

Using the stated assumptions on noise statistics and the norm of 𝑝𝑝, we obtain 

https://ieeexplore.ieee.org/abstract/document/#deqn14
https://ieeexplore.ieee.org/abstract/document/#deqn15


arg𝑚𝑚𝑚𝑚𝑚𝑚
𝐚𝐚∈IR𝑘𝑘,‖𝑓𝑓‖=1

 𝖤𝖤[‖𝑝𝑝 − 𝑝𝑝𝑓𝑓‖2] = arg𝑚𝑚𝑚𝑚𝑚𝑚
𝐚𝐚∈IR𝑘𝑘,‖𝑓𝑓‖=1

�1 − ⟨𝑝𝑝,𝑓𝑓⟩2 + � 𝑎𝑎𝑖𝑖2𝜎𝜎𝑖𝑖2
𝑘𝑘
𝑖𝑖=1 �

= arg𝑚𝑚𝑚𝑚𝑚𝑚
𝐚𝐚∈IR𝑘𝑘,‖𝑓𝑓‖=1

�⟨𝑝𝑝,𝑓𝑓⟩2 −� 𝑎𝑎𝑖𝑖2𝜎𝜎𝑖𝑖2
𝑘𝑘
𝑖𝑖=1 � .  (17) 
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Footnotes 
1. This QDIP was fabricated by Professor Krishna's group at the Center for High Technology Materials, 

University of New Mexico. Device details will be reported elsewhere. 
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