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Abstract 

 
A new approach is reported to detect and quantify the members of a group of small-aromatic-molecule target 
analytes: benzene, toluene, ethylbenzene, and xylenes (BTEX), dissolved in water, in the presence of 
interferents, using only the data collected from a single polymer-coated SH-SAW (shear horizontal surface 
acoustic wave) device and a two-stage adaptive estimation scheme. This technique is composed of exponentially 
weighted recursive least-squares estimation (EW-RLSE) and a bank of Kalman filters (BKFs) and does not require 
any prior knowledge of the initial concentration range of the target analytes. The proposed approach utilizes the 
transient sensor response to sorption and/or desorption of the analytes as well as the error range associated 
with the response time constants to provide more information about the analyte-specific interactions with the 
polymer film. The approach assumes that the sensor response to contaminated groundwater is a linear 
combination of the responses to the single target analytes, the interferents that interact with the selected 
polymer sensor coatings, and measurement noise. The proposed technique was tested using actual sensor 
responses to contaminated groundwater samples containing multiple BTEX compounds with concentrations 
ranging from 10 to 2000 parts per billion, as well as common interferents including ethanol, 1,2,4-
trimethylbenzene, naphthalene, n-heptane, and MTBE (methyl tert-butyl ether). Estimated concentration 
values, accurate to ±10% for benzene/toluene and ±15% for ethylbenzene/xylenes, are obtained in near-real 
time. The utilization of sorption and/or desorption data enables detection and quantification of BTEX 
compounds with improved accuracy, high tolerance to measurement noise, and improved chemical selectivity. 

KEYWORDS: 
deconvolution of sensor response,  chemical sensor selectivity,  adaptive estimation,  SH-SAW sensors,  sensor 
signal processing 

The current applicability of many chemical sensors is limited due to the lack of adequate selectivity to enable 
real-world applications. In many chemical sensing applications, the chemically sensitive element of the sensor is 
only partially selective to any specific target analyte, potentially giving rise to errors in analyte identification and 
quantification.(1,2) Lack of adequate selectivity further increases the challenge in identifying and quantifying 
target analytes in a mixture. This is often due to the chemical similarity within a group of target analytes, as well 
as the presence of nontarget interferents. In such cases, enhanced selectivity can be achieved by using an array 
of appropriately chosen partially selective chemical sensors.(1,2) All sensors in the array respond to most if not 
all analytes, but the pattern of responses provides a unique fingerprint for each single target species or target 
mixture. This approach, however, often works well only for single compounds or predefined mixtures. Additional 
drawbacks of using a sensor array include the challenge of identifying and developing the processing method for 
each of several different chemically sensitive interfaces, as well as increased signal- and data-processing time 
and potential misclassification. Data dimensionality and complexity also increase with the number of sensors in 
the array. If the chemical diversity and/or partial selectivity of the sensor coatings are inadequate, the 
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probability of misclassification will increase. In many cases, only one sensing parameter is used per sensor for 
analyte classification, which may worsen the problem.(2) Using multiple sensor response parameters for 
classification will improve the selectivity and also help to reduce the number of sensors needed for a sensor 
array; it may even be possible to use a single sensor device.(3) More reliable sensor signal processing also 
diminishes error due to misclassification. 

One such real-world application which demands selective chemical sensors involves in situ monitoring of 
groundwater near underground storage tanks (USTs), pipelines, petrochemical processing facilities, and military 
sites for accidental releases of petroleum hydrocarbons. The groundwater near USTs is subject to legal 
monitoring requirements for accidental releases of fuel and oil.(4) Contaminated groundwater samples often 
contain many chemically similar organic compounds, complicating target detection and quantification. In this 
application, the volatile, low-molecular-weight organic compounds (VOCs) benzene, toluene, ethylbenzene, and 
xylenes (BTEX) are the target analytes of interest because they can be found in crude oil and its refined 
products, and are therefore used as indicators of gasoline releases.(5,6) The presence of BTEX compounds in 
groundwater is a major concern due to their hazard potential and relatively high solubility in 
water.(6−9) Specifically, detection of benzene in water is of importance due to its 
carcinogenicity.(3,9,10) Maximum permitted contaminant levels of BTEX compounds in drinking water are in the 
low ppb (μg/L) to low ppm (mg/L) range.(8) Thus, it is imperative to monitor the presence of BTEX compounds in 
groundwater at critical sites regularly so that remediation actions can be carried out swiftly if leaks are detected. 
The detection and quantification of BTEX analytes in groundwater is challenging due to the chemical similarity of 
the BTEX compounds to one another and the presence of other nontarget interferents such as dissolved salts, 
aliphatic hydrocarbons, dissolved gases, and so forth. 

Currently, USTs are only monitored in two-to-three-year intervals due to the high cost and labor-intensive 
process involved in sample collection at the monitoring well and shipping to an ex situ laboratory for manual 
analysis.(11) Because of the long monitoring intervals, leakage can go unnoticed for long periods of time. 
Therefore, for rapid assessment of the contamination of groundwater and surface water with petroleum 
products, an in situ sensor system with high sensitivity to dissolved BTEX compounds is needed, especially for 
sites that include multiple interferents; such a system should be capable of more accurate, inexpensive, and 
near-real-time long-term monitoring of groundwater. 

The conventional techniques used to detect and quantify BTEX compounds involve either spectroscopy or gas 
chromatography.(12,13) Examples include infrared evanescent field spectroscopy(12−14) and Raman 
spectroscopy.(15) Estimation of BTEX in groundwater using a combination of gas chromatography and mass 
spectrometry was also reported.(16) Although these methods are capable of accurately quantifying BTEX 
compounds, there are several drawbacks associated with these techniques. For instance, while Raman 
spectroscopy(15) can be made field-deployable, its portable version lacks the necessary detection limits for BTEX 
compounds (i.e., BTEX detection limits are relatively high on the order of several ppm). Other techniques such as 
infrared evanescent field spectroscopy(12−14) are relatively impractical for use as a field-deployed system due 
to their total size and complexity in sample preparation procedures.(12) 

Chemical sensor arrays based on various sensing platform technologies such as optical fibers, chemiresistors, 
and SAW (surface acoustic wave) sensors have been investigated for the detection and quantification of BTEX 
compounds in water and soil.(17−22) The detection based on sensor arrays usually requires the use of linear-
discriminant analysis, principal-component analysis, k-nearest-neighbor algorithms or other methods of pattern 
recognition. 

Previously, we reported a sensor system for the detection and quantification of BTEX compounds that makes 
use of a polymer-coated shear-horizontal surface acoustic wave (SH-SAW) device and a signal-processing 
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technique based on a bank of extended Kalman filters (EKFs).(23) To extend the applicability of that approach, a 
more systematic treatment of the contribution of interferents in the model of the sensor response is still needed 
to achieve more accurate detection and estimation of analyte concentrations. For a given set of environments of 
interest, it is critical to account for all probable interferents to which the selected polymer coating responds. In 
addition, rigorous tests on the sensor system reveal several drawbacks with the signal processing technique 
based on a bank of EKFs. The EKF is not an optimal filter in this context because it is based on linearization of a 
nonlinear model of the system. Thus, the convergence of EKF analysis depends on the initial value of the state 
estimate, the error covariance, and the values of process and measurement noise.(24) Therefore, this approach 
only works well if the approximate initial concentration range of the BTEX analytes is known a priori. 

In this work, we present a new approach for the detection and quantification of n analytes (here, the six BTEX 
compounds, including the three isomers of xylene) in aqueous liquids and in the presence of interferents using 
only the data collected from a single polymer-coated SH-SAW device and an estimation-theory-based technique 
comprising an exponentially weighted recursive least-squares estimation (EW-RLSE) and a bank of Kalman filters 
(BKFs). This approach is based on a linear sensor response model and does not require any prior knowledge of 
the initial concentration range of the analytes in the sample in order to accurately estimate their concentrations. 
The linear sensor response model is formulated by assuming that the response of a single polymer-coated SH-
SAW device to contaminated groundwater is a linear combination of the responses to the single target analytes, 
the interferents that interact with the selected polymer coatings, and measurement noise. For a number of 
contaminated groundwater samples collected in the field, it has been found empirically that the response to 
1,2,4-trimethylbenzene dominates the response due to the interferents for the selected coating. Thus, the 
contribution of this interferent (as well as other analytes) to the sensor response is treated individually as one 
analyte, provided that the sensitivity and response time are non-negligible. The ultimate purpose of the sensor 
signal-processing technique is to facilitate the detection and accurate quantification of the target analytes in the 
presence of noise and interferents. By using both sorption and desorption transient response data, obtained as 
the flow across the sensor is switched from pure water to the analyte stream, and subsequently back again to 
pure water, more information is provided about the analyte-specific interactions with the polymer film. This 
enables detection and quantification of target analytes with improved accuracy, high tolerance to measurement 
noise, and improved selectivity. Using extensive experimental data from various mixture compositions, 
compared to previous work,(23) the proposed approach produces more accurate concentration estimates with 
greater reliability, high tolerance to measurement noise, improved chemical selectivity, and near-real-time data 
processing. 

Modeling the Sensor Response 
The use of estimation-theory-based technique to analyze sensor data for the detection and quantification of 
target analytes in the presence of interferents requires a relatively accurate analytical model that describes the 
response of the SH-SAW sensor to the response transients generated by exposure to samples. Based on 
empirical data, a general multianalyte sensor response model was developed. The general multianalyte model 
was then adapted for the detection and quantification of target analytes in the presence of interferents. 

A. General Model of the Multiple-Analyte Sensor Response 
For the sensor response to multiple analyte samples, two important assumptions were made. First, it was 
assumed that sorption of the mixture by the polymer obeys Henry’s law, namely, that the concentration of the 
various mixture components in the coating at any time t is the sum of the concentrations of the individual 
analytes (Ci(t)) that would be measured in single-analyte responses. Free partitioning of analytes between 
polymer and aqueous phase is inferred, also implying that the sorption process is reversible at room 
temperature and that only physisorption occurs. For BTEX compounds, based on experimental observations, it is 
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found that Henry’s law is valid for analyte concentrations in the range of 0 to 50 ppm (mg/L) depending on the 
sorbent coating.(6) The process of analyte sorption/desorption can then be assumed to follow first-order 
kinetics (similar to the model of single-analyte sensor response(23)). Second, Henry’s law behavior along with 
comparatively low analyte concentrations dissolved in the polymer film ensure that, at any time t, the change in 
frequency due to the mixture is the sum of the frequency changes due to each analyte in the mixture. Based on 
these two assumptions, the sensor response to a mixture of n analytes can be written as 

∆𝑓𝑓(𝑡𝑡) = −∑ 𝑎𝑎𝑖𝑖𝐶𝐶𝑖𝑖(𝑡𝑡)𝑛𝑛
𝑖𝑖=1  (1a) 

where Δf(t) is the observed frequency shift at time t, the subscript i = 1, 2, ···, n refers to each analyte in the 
mixture, ai is a sensitivity parameter for each analyte (which is a function of the sensor platform, the sensor 
coating, and the analyte(25)), and Ci(t) is the concentration of each analyte in the coating at time t. Ci(t) is the 
solution to the following first-order differential equation 

𝐶̇𝐶𝑖𝑖(𝑡𝑡) = − 1
𝜏𝜏𝑖𝑖
𝐶𝐶𝑖𝑖(𝑡𝑡) + 𝐾𝐾𝑝𝑝−𝑤𝑤,𝑖𝑖

𝜏𝜏𝑖𝑖
𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖(𝑡𝑡) (1b) 

where Camb,i(t) is the ambient concentration of each analyte at time t (which for these experiments remains 
constant due to the constant flow of fresh analyte-containing sample solution throughout the measurement), 
τi is the response time constant of each analyte for a given coating, and Kp–w,i is the polymer/water partition 
coefficient of each analyte for a given coating.(25) Equation 1 represents the general analytical model for the 
sensor response to any number of analytes in the sample, provided that each possible target analyte and all 
interferents in the sample have been separately characterized for the appropriately selected coating in the 
relevant concentration range. 

For the desorption process (which is measured by exposing the sensor to clean (or filtered) water after the 
sorption process reaches steady state), it is also observed that the sensor signal changes rapidly at first and then 
more slowly as it approaches steady state. Thus, the desorption process can also be described using eq 1. The 
difference between absorption and desorption is reflected in the sign of the frequency shift, Δf(t). For the 
investigated sensors and coatings, the sorption process produces a negative frequency shift and desorption a 
positive frequency shift. It should be noted that, based on single-analyte experiments for a given analyte, 
sorption and desorption responses display the same absolute magnitude of equilibrium frequency shift—
meaning the responses are reversible, but they do not necessarily have the same response-time constants. 
Empirically, it is observed that desorption time constants are slightly different from sorption time constants, but 
the difference is usually within the experimental error margins. The mechanistic implication of this observation 
is that the dominant factor in determining the time constants is the rate of diffusion of each analyte through the 
polymer coating. 

To implement the estimation-theory-based technique, the model represented by eq 1 has to be converted into 
state-space form. For that purpose, eq 1 is normalized and discretized first. This is because the sensor response 
data are collected at discrete times. The model is normalized by dividing eq 1 by Kp–w,iCmax,i (where Cmax,i represents 
the equilibrium ambient concentration). By introducing new variables, 

𝑚𝑚𝑖𝑖(𝑡𝑡) = 𝐶𝐶𝑖𝑖(𝑡𝑡)
𝐾𝐾p−w,i𝐶𝐶max,i

 (2a) 

𝑢𝑢𝑖𝑖(𝑡𝑡) = 𝐶𝐶amb,i(𝑡𝑡)
𝐶𝐶max,i

 (2b) 

and 

𝛼𝛼𝑖𝑖 = −𝛼𝛼𝑖𝑖𝐾𝐾pw,i𝐶𝐶max,i (2c) 
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the following normalized equations are obtained 

𝑚̇𝑚𝑖𝑖(𝑡𝑡) = − 1
𝜏𝜏𝑖𝑖
𝑚𝑚𝑖𝑖(𝑡𝑡) + 1

𝜏𝜏𝑖𝑖
𝑢𝑢𝑖𝑖(𝑡𝑡) (3a) 

and 

∆𝑓𝑓(𝑡𝑡) = ∑ 𝛼𝛼𝑖𝑖𝑚𝑚𝑖𝑖(𝑡𝑡)𝑛𝑛
𝑖𝑖=1  (3b) 

where, for analyte i, mi(t) is the normalized concentration absorbed/desorbed at time t, αi is the equilibrium 
frequency shift, and ui(t) is the concentration profile to which the sensor responds during switching from clean 
water to the sample, or vice versa for desorption. Mathematically, ui(t) can be described using a modified error 
function 

𝑢𝑢𝑖𝑖(𝑡𝑡) = 1
2
�1− erf �1−𝑣𝑣𝑣𝑣

2√𝐷𝐷𝐷𝐷
�� (4) 

where l is the total length of the tube separating the point of sample introduction and the sensor device, v is the 
average flow speed, and D is the diffusion coefficient of the soluble substance.(26,27) For the measurement 
system used to collect the data analyzed in this paper, ui(t) can be approximated by a unit step function (for t < 
0, Camb,i(t) = 0; for t > 0, Camb,i(t) = Cmax, or vice versa for desorption) provided the initial few data points 
(depending on the data collection sampling period) are ignored. 

Since the sensor response data are collected at discrete times (i.e., t = kTs, where Ts is the sampling period 
and k ≥ 0 is an integer), the continuous-time normalized model of eq 3 is converted into a discrete-time model 
using Euler’s first-order forward method 

𝑚𝑚𝑖𝑖,𝑘𝑘+1 = (1 − 𝑆𝑆𝑖𝑖)𝑚𝑚𝑖𝑖,𝑘𝑘 + 𝑆𝑆𝑖𝑖𝑢𝑢𝑖𝑖,𝑘𝑘 (5a) 

and 

∆𝑓𝑓𝑘𝑘 = ∑ 𝛼𝛼𝑖𝑖𝑚𝑚𝑖𝑖,𝑘𝑘 + 𝑤𝑤𝑘𝑘𝑛𝑛
𝑖𝑖=1  (5b) 

where Si is the sorption/desorption rate constant (i.e., 𝑆𝑆𝑖𝑖 = 𝑇𝑇𝑖𝑖
𝜏𝜏𝑖𝑖

). The term wk represents the measurement noise 

with variance σw
2, which likely is present during data collection. It is assumed that the measurement noise is 

white noise (uncorrelated in time). 

From eq 5, the state-space form can be obtained by assigning state variables to the normalized concentrations  

absorbed/desorbed at time t, mi,k 

𝑦𝑦𝑘𝑘 = ∆𝑓𝑓𝑘𝑘 = ∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑘𝑘
(𝑖𝑖) +𝑤𝑤𝑘𝑘 = 𝐶𝐶𝑇𝑇𝑥𝑥𝑘𝑘 + 𝑤𝑤𝑘𝑘𝑛𝑛

𝑖𝑖=1  (6a) 

and 

⎣
⎢
⎢
⎢
⎡𝑥𝑥𝑘𝑘+1

(1)

𝑥𝑥𝑘𝑘+1
(2)

⋮
𝑥𝑥𝑘𝑘+1

(𝑛𝑛) ⎦
⎥
⎥
⎥
⎤
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0
0
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0
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0
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𝑆𝑆2
⋮
𝑆𝑆𝑛𝑛

�𝑈𝑈𝑘𝑘 = 𝐴𝐴𝐴𝐴𝑘𝑘 + 𝐵𝐵𝐵𝐵𝑘𝑘

 (6b) 

where 

𝐶𝐶𝑇𝑇 = [𝛼𝛼1 𝛼𝛼2 ⋯ 𝛼𝛼𝑛𝑛] 
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In eq 6, xk
(i) represents the normalized concentration of absorbed/desorbed analyte at time t, A and B represent 

the state matrices, and C is a vector of the equilibrium (or steady-state) frequency shifts, αi, which are the 
parameters to be estimated. Using the state-space form of eq 6 and estimation-theory-based technique, the 
αi value for each analyte can be estimated in near-real time using the measured total frequency shift, Δfk. 

B. Model of the Target Analyte Sensor Response in the Presence of Interferents 
For the quantitative analysis of the target analytes in the presence of interferents, it is important to identify all 
the interferents that respond to the selected polymer coatings. Often, detectable interferents will either have 
longer response times or lower sensitivities than the target analytes. Based on the sensor response of the 
detectable interferents, several different representations of the target analytes in the presence of interferents 
are possible using eq 6: 

Case 1: If all the detectable interferents have distinct sensor parameters (i.e., response time constants and 
sensitivities) each interferent must be explicitly represented using an individual exponential term. In this case, 
eq 6 can be used to represent the response due to the p detectable interferents using p individual exponential 
terms and z target analytes using z exponential terms where n = z + p. 

Case 2: If all the detectable interferents have very low sensitivity for detection using the chosen polymer 
coatings (low sensitivity in the sense that the resulting signals for these interferents will always be much less 
than any signal for any target analyte), the response due to the interferents can be ignored. In this case, eq 6 can 
be used alone to represent the response due to the target analytes. 

Case 3: If the responses due to all the detectable interferents have similar time constants and sensitivities, the 
combined response due to the interferents can be represented using one single-analyte term. In this case, eq 6 
can be used to represent the response due to all detectable interferents using one individual exponential term 
(i.e., p = 1) and z target analytes using z exponential terms where n = z + 1. 

Case 4: If the responses due to multiple groups of similarly responsive interferents have different time constants 
(and sensitivities if separate quantitation is needed), the combined response due to each group of interferents 
with similar sensor parameters can be represented using one exponential term. In this case, eq 6 can be used to 
represent the response due to each group of detectable interferents using one individual exponential term 
(i.e., p = p1 + p2 + p3 + ...) and z target analytes using z exponential terms where n = z + p. 

In this paper, the multianalyte model is used to treat the detection and quantification of BTEX compounds in 
water in the presence of interferents. In order to utilize the multianalyte model, each target BTEX compound 
and each possible interferent (in its concentration range of interest) in the sample must be separately 
characterized for the selected polymer coatings, with the following considerations particular to this application 
scenario: 

1. Target Analytes - The average values of response time constants and sensitivities for the target BTEX analytes 
extracted from the sorption and sorption responses for the investigated coatings are listed in Tables1 and 2. As 
chemical isomers, for the investigated sensor coatings, ethylbenzene and the mixture of m-, o-, and p-xylenes 
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are found to have nearly identical values for the response times and sensitivities; thus, no attempt was made to 
distinguish between them. 

Table 1. Measured Average Sensitivities and Response Times for 0.6 μm PECH-Coated SH-SAW Sensor to 
Various BTEX Analytes and Common Interferentsa 

  Mean Sensitivity, aKp–w (Hz/ppm)  Mean Response Time, τ (s)  
Analyte Sorption Desorption Sorption Desorption 
Benzene 109 (±9) 110 (±11) 27 (±8) 27 (±9) 
Toluene 435 (±25) 422 (±4) 78 (±3) 74 (±5) 
Ethylbenzene 1450 (±240) 1410 (±240) 175 (±13) 171 (±13) 
1,2,4-Trimethylbenzene 3540 (±420) 3390 (±410) 428 (±22) 461 (±27) 
Naphthalene 1560 (±30) 1605 (±27) 495 (±87) 665 (±24) 
n-Heptane ≈ 0 ≈ 0 N/A N/A 
Ethanol ≈ 0 ≈ 0 N/A N/A 
MTBE ≪benzene ≪benzene <benzene <benzene 

aN/A = not applicable; PECH = poly(epichlorohydrin). 

Table 2. Measured Average Sensitivities and Response Times for 0.8 μm PIB-Coated SH-SAW Sensor to Various 
BTEX Analytes and Common Interferentsa 

  Mean Sensitivity, aKp–w (Hz/ppm)  Mean Response Time, τ (s)  
Analyte Sorption Desorption Sorption Desorption 
Benzene 78 (±7) 78 (±12) 36 (±7) 31 (±3) 
Toluene 403 (±39) 408 (±85) 88 (±7) 88 (±9) 
Ethylbenzene 1160 (±57) 1100 (±85) 230 (±12) 215 (±11) 
1,2,4-Trimethylbenzene 3640 (±230) 3440 (±165) 610 (±18) 667 (±31) 
Naphthalene 621 650 250 254 
n-Heptane ≫ethylbenzene 5930 ≫ethylbenzene 9180 
Ethanol ≈ 0 ≈ 0 N/A N/A 
MTBE ≪benzene ≪benzene <benzene <benzene 

aN/A = not applicable; PIB = poly(isobutylene). 

2. Interferents - The coated sensors were exposed to some interferents commonly found in contaminated 
groundwater, namely, ethanol, 1,2,4-trimethylbenzene, naphthalene, n-heptane, and MTBE (methyl tert-butyl 
ether). For concentrations up to 100 ppm, no significant sensor response to ethanol was observed. For MTBE, a 
very low sensitivity was found for the selected coatings (∼1 Hz/ppm) and, since this compound is usually present 
at low concentrations in groundwater, its contributions to the sensor responses were neglected. For 1,2,4-
trimethylbenzene and naphthalene, high sensitivity and long response times were observed, indicating that the 
response to these compounds cannot be ignored. For poly(isobutylene) (PIB) sensor coatings, non-negligible 
responses to n-heptane were also found. Therefore, the characteristic response time constants and sensitivities 
of 1,2,4-trimethylbenzene, naphthalene and n-heptane were extracted from the sensor responses of the 
investigated coatings and are listed in Tables1 and 2. Due to its lower solubility in water, the concentration of n-
heptane is usually much lower than that of 1,2,4-trimethylbenzene. Based on the analysis performed on these 
common interferents, it has been found that the response to 1,2,4-trimethylbenzene dominates the 
contribution of the interferents to the sensor response. All the above information is used in devising the models 
for the detection and quantification of BTEX compounds in the presence of interferents. 

Based on the characterization of each target analyte (the BTEX compounds as defined above) and possible 
interferent, a five-analyte model (n = 5) was selected for the detection and quantification of BTEX in the 
presence of interferents. In this model, the first three exponential terms (i = 1, 2, 3) represent the response due 
to the BTEX compounds and the last two exponential terms (i = 4, 5) represent the response due to all 
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detectable interferents in the mixture with a response time constant longer than that of all BTEX analytes. The 
choice to represent the overall interferent response by only two exponential terms is based on empirical data 
showing that the response to 1,2,4-trimethylbenzene dominates the interferent response. Therefore, 1,2,4-
trimethylbenzene is treated individually using one exponential term (i = 4) and the other exponential term (i = 5) 
represents the contributions of other less important interferents. It is noted that the time constant for i = 5 is set 
close to the characteristic time constant of C10 aromatic compounds, consistent with the fact that besides 1,2,4-
trimethylbenzene and similar C9 aromatic compounds, the second largest group of interferents identified in the 
test samples are C10 aromatics, which are expected to show even longer response times. The state-space form 
of the five-analyte model is as follows: 

𝑦𝑦𝑘𝑘 = ∆𝑓𝑓𝑘𝑘 = ∑ 𝛼𝛼𝑖𝑖𝑥𝑥𝑘𝑘
(𝑖𝑖) +𝑤𝑤𝑘𝑘5

𝑖𝑖=1
 (7a) 
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Sensor Signal Processing 
The purpose of sensor signal processing is to facilitate the detection and accurate quantification of the target 
analytes in the presence of noise and interferents. In this work, an estimation-theory-based technique is used 
for sensor response data processing because it offers various advantages, including its ability to accurately 
estimate the states even in the presence of noise (both measurement and process noise), near-real-time data 
processing, and minimal computational and memory requirements for real-world implementations. Since the 
state-space form is “linear in the unknown parameters” (they occur linearly in eq 7a), linear estimation theory is 
selected. In particular, based on our investigations, an estimation-theory-based technique comprising EW-RLSE 
and BKFs (two-step processing) was selected as being most suitable. A brief review of EW-RLSE and BKFs is given 
in the Supporting Information.(28−33) 

The sensor signal-processing procedure used to obtain the final estimated concentrations of BTEX compounds in 
the presence of interferents using the data collected from only a single polymer-coated SH-SAW device is 
summarized in Figure 1. Both sorption and desorption data are utilized. Note that the error range in the 
measured mean response times for sorption and desorption as shown in Tables1 and 2 were taken into account 
in the signal-processing procedure. Incorporating desorption transients (which can be more sensitive to energies 
of desorption of analyte targets, particularly for comparatively larger energies of interaction) in the signal-
processing procedure provides more information about the analyte/polymer interactions that can be used to 
obtain more accurate estimated concentrations for BTEX compounds compared to using sorption transients 
alone. Moreover, utilizing sorption and desorption data in the signal processing reduces the error in the 
estimation due to measurement noise, making this procedure highly tolerant of such noise. In short, this 
approach improves the accuracy of the extracted concentrations and the reliability of chemical speciation. 
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Figure 1. Estimation-theory-based sensor signal processing procedure that utilizes sorption and desorption data for 
detection and quantification of BTEX analytes. “BT” and “EX” refer to the respective BTEX analytes. 
 

Based on our tests, it is observed consistently that using the sorption data results in more accurate estimates of 
benzene and toluene concentrations whereas using the desorption data results in more accurate estimates for 
the combined concentrations of ethylbenzene and xylenes. We believe this is due to the analytes’ general 
interaction with (and diffusion through) the polymer coatings, i.e., to minor deviations from strict Henry’s law 
behavior. During analyte sorption, compounds with shorter response times (B and T) are absorbed into a 
relatively “empty” coating, similar to the case of single-analyte detection that was used to determine individual 
response time constants and sensitivities. The remaining compounds (EX, interferents) are mostly absorbed into 
a coating that already contains B and T, thus introducing a slight error—some change in their rates of diffusion 
due to the presence of B and T. The reverse is found to be true for analyte desorption: much of the desorption 
of EX occurs after B,T have already vacated the film, but the diffusion of B and T may be slightly influenced by 
the presence in the film of EX. Therefore, in the proposed signal-processing procedure, sorption data are used to 
estimate B and T concentrations whereas desorption data are used to obtain an estimate for the combined 
concentrations of EX. For sorption and/or desorption, the algorithm obtains the estimates using two-step 
processing (EW-RLSE and BKFs). The bank is formed as a parallel combination of KFs, each designed for a 
different set of frequency shifts, αi, with the range of αi based on the frequency shifts associated with the 
extracted concentrations from EW-RLSE. The frequency shifts, αi from EW-RLSE, are increased and decreased by 
20% to define limits for a range of possible equilibrium frequency shifts for the analytes. Within these limits, a 
finite number of αi is obtained by uniformly quantizing the equilibrium frequency shifts which are used to form 
the vector C in eq 6. Note that, for this technique, no initial values of the unknowns are needed; therefore, any 
concentration range of BTEX compounds can be analyzed and the results can be obtained in near real-time. The 
proposed signal-processing procedure is tested and validated using experimental data. 

Chemical Sensor Data Acquisition 
In order to test and validate the performance of the proposed technique, experimental sensor data were 
acquired as follows. A 36° YX-LiTaO3 guided SH-SAW device was used as the sensing platform for direct 
measurement in aqueous phase as described previously.(23,34) The operating frequency of the polymer-coated 
sensor devices have a frequency of operation of 103 MHz. To eliminate the effects of environmental parameters 
such as temperature and pressure variations on the sensor response, a dual-delay-line configuration was used 
with one line as the sensing line and the other as the reference line.(23,34) The sensing area of both delay lines 

javascript:void(0);
javascript:void(0);


are metalized to reduce/eliminate acoustoelectric interactions with the load (i.e., the liquid under investigation). 
The sensing line is coated with the chemically sorbent polymer coatings, either poly(epichlorohydrin) (Sigma-
Aldrich, St. Louis, MO) or poly(isobutylene) (Sigma-Aldrich). These polymers were dissolved in chloroform, spin 
coated onto the sensing line, and baked for 15 min at 55 °C, resulting in thicknesses of 0.6 and 0.8 μm for PECH 
and PIB, respectively. The baking step (in effect, annealing the polymer film) is crucial to ensure repeatability of 
the sensor responses. Poly(methyl methacrylate) (PMMA) (Scientific Polymer Products, Ontario, NY) coating, 
baked for 120 min at 180 °C, resulting in a relatively glassy nonsorbent layer was used for the reference line as 
the chemically insensitive material for the concentration range of interest. The BTEX analytes used in the 
experiments had purities of at least 98.5% and were purchased from Sigma-Aldrich. BTEX analytes were 
dissolved at the desired concentrations in deionized (DI) water or groundwater. Groundwater and light 
nonaqueous-phase liquid (LNAPL) samples used in the experiments were collected from actual monitoring wells 
in California. The concentrations of these samples are given in parts per million or parts per billion by weight. 
Some interferents commonly found in groundwater were also tested. These include n-heptane, 1,2,4-
trimethylbenzene, naphthalene, MTBE, and ethanol. All the above listed interferents were obtained from Sigma-
Aldrich with purity of at least 98%, except for ethanol that was denatured and had purity of at least 90%. 

The sensor data was collected as described in our previous publications.(23,34) An independent measurement 
of BTEX concentrations was obtained for the aqueous LNAPL solutions using a portable GC-PID (gas 
chromatograph-photoionization detector) system (Defiant Technologies FROG-4000, Albuquerque, NM). When 
needed, analyte concentrations were further verified using GC-MS (gas chromatography–mass spectroscopy). 
The LNAPL samples were prepared as described previously(23,34) to yield concentrations of ≤1 ppm for each 
BTEX compound. To minimize the loss of volatile analytes, the headspace in the sample vials was kept negligible. 
For the experiments, the coated sensor device was placed inside a water flow cell designed in-house;(35) a 
peristaltic pump (IDEX Ismatec Reglo Digital MS, Oak Harbor, WA) was used for the sample flow. To minimize 
hydrodynamic forces from the flowing fluid, the solutions were pumped at a constant flow rate of 7 μL/s. A 
stable baseline output signal was obtained by drawing in a reference solution (DI water or groundwater) before 
introducing the analyte(s) into the flow cell. Filtration of the groundwater samples for removal of sediments and 
other physical interferents was also performed before usage. Once the sensor response to the analyte reaches 
equilibrium, the flow cell was flushed again with the reference solution, causing the analyte(s) to desorb from 
the sensor coating. The process was repeated for different analyte samples and concentrations. All 
measurements were conducted at room temperature (22 ± 0.05 °C). 

Results and Discussion 
This section presents the results on detection and quantification of target analytes (BTEX compounds) in the 
presence of interferents using the proposed signal processing approach and the n-analyte model described 
above. The new approach was tested extensively using measured sensor responses (i.e., frequency shifts) to 
BTEX compounds in groundwater. Since the proposed technique is independent of the initial values of the 
unknown parameters (i.e., the equilibrium frequency shifts, αi), the initial values of all the unknown parameters 
were set to zero for all the tested measurement data. Once the unknown parameters are estimated, the 
corresponding concentrations associated with each of these unknown parameters (analytes) are extracted using 
the measured mean sensitivities of BTEX compounds as listed in Table1 (for PECH) and Table2 (for PIB). The 
extracted results were then compared to the BTEX concentrations independently obtained from the GC-PID (and 
GC-MS). It is important to point out that the BTEX concentrations obtained from the GC-PID have an average 
error of ±7%.(36) 

A large number of experiments with BTEX-containing samples were conducted. The estimated concentrations 
obtained from these tests are summarized in Figures 4 and 5 at the end of this section. Two representative 
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estimation results for each coating (i.e., PECH and PIB) are presented first to highlight the effectiveness of the 
proposed technique. Figure 2 and Table3 show results for sensor response data collected using the sensor 
device coated with 0.6 μm PECH to a LNAPL sample, which contains 390 ppb benzene, 580 ppb toluene, and 75 
ppb ethylbenzene and xylenes in the presence of interferents commonly found in groundwater. Figure 2 shows 
very good agreement between the measured data and the estimated sensor response obtained using sorption 
and desorption response data. The concentrations for BTEX compounds estimated using the proposed signal 
processing procedure are summarized in Table3. Those results indicate very good agreement between the 
concentrations measured using GC-PID and the concentrations estimated using the proposed approach. All 
estimated concentrations are well within 10% of the GC-PID measurements. 

 
Figure 2. Measured response of a SH-SAW sensor with 0.6 μm PECH coating to a solution of LNAPL in groundwater 
containing 390 ppb benzene, 580 ppb toluene, 75 ppb ethylbenzene/xylenes, and unknown concentrations of interferents 
(top: sorption data, bottom: desorption data). Also shown (red dashed line) are the estimated sensor responses obtained 
using the five-analyte model. 
 
Table 3. Estimated Concentrations of BTEX Compounds Obtained using the Measured Response to LNAPL in 
Groundwatera Compared to Concentrations Measured using GC-PID 

Target Analyte GC-PID (ppb) Estimated (ppb) [% difference] 
Benzene 390 353 [9%] 
Toluene 580 533 [8%] 
Ethylbenzene and Xylenes 75 70 [7%] 

aCollected using a SH-SAW sensor with 0.6 μm PECH coating. 
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The estimation results obtained for the response of a sensor device coated with 0.8 μm PIB to a LNAPL sample, 
which contains 400 ppb benzene, 800 ppb toluene, and 550 ppb ethylbenzene and xylenes in the presence of 
interferents, are shown in Figure 3 and Table4. Based on Figure 3, it can be observed that the estimated 
response curve is in close agreement with the measured data which indicate that the estimated equilibrium 
frequency shifts, αi, are indeed close to the actual values. In Table4, the estimated concentrations are in very 
good agreement with the concentrations determined using GC-PID. In this case, all estimated concentrations are 
within 15% of the GC-PID measurements. It is important to note that for the sample results shown, if the 
desorption data were not used in the proposed signal-processing procedure, the estimation error for 
ethylbenzene and xylenes would have been much higher. These results clearly illustrate the effectiveness of the 
proposed technique. 

Table 4. Estimated Concentrations of BTEX Compounds Obtained Using the Measured Response to LNAPL in 
Groundwatera Compared to Concentrations Measured using GC-PID 

Target Analyte GC-PID (ppb) Estimated (ppb) [% difference] 
Benzene 400 420 [5%] 
Toluene 800 890 [11%] 
Ethylbenzene and Xylenes 550 517 [6%] 

aCollected using a SH-SAW sensor with 0.8 μm PIB coating. 

 
Figure 3. Measured response of a SH-SAW sensor with 0.8 μm PIB coating to a solution of LNAPL in groundwater containing 
400 ppb benzene, 800 ppb toluene, 550 ppb ethylbenzene/xylenes, and unknown concentrations of interferents (top: 
sorption data, bottom: desorption data). Also shown (red dashed line) are the estimated sensor responses obtained using 
the five-analyte model. 
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Multiple measurement data with BTEX concentrations in the low ppb to low ppm range were tested using the 
proposed technique. The results of this analysis are summarized in Figure 4, which include results for sensor 
devices coated with 0.6 μm PECH (Figure 4a) and 0.8 μm PIB (Figure 4b). Also shown in Figure 4 are the relative 
percentage errors between the estimated concentrations and concentrations determined using GC-PID. Based 
on Figure 4, it can be observed that most of the estimated concentrations of BTEX compounds lie in close 
proximity to the ideal line (with an average of about ±7% for benzene, ± 9% for toluene, and ±11% for 
ethylbenzene and xylenes). Given the 7% measurement error of the GC-PID instrument,(36) this implies the 
estimated concentrations are in excellent agreement with the concentrations determined using GC-PID. Note 
that among the BTEX compounds, the estimation errors for ethylbenzene and xylenes are the largest (in 
percent) due to the low concentration range (low ppb range) tested for these compounds. In the low ppb range, 
the signal noise limits the accuracy of the estimated concentrations. Another factor contributing to these 
inaccuracies might be the simplifying assumption made in modeling the combined response of interferents in 
the mixture using just two exponential terms. Also note that the estimation error for ethylbenzene and xylenes 
is not as critical as that for benzene, because the latter has a greater hazard potential and lower maximum 
contaminant level for drinking water. The estimated concentrations for benzene for both investigated sensor 
coatings are shown in Figure 5. These results are found to be in excellent agreement with the concentrations 
determined using GC-PID. 

 
Figure 4. BTEX concentrations estimated using the proposed signal-processing technique and five-analyte model, obtained 
from SH-SAW sensors coated with 0.6 μm PECH and 0.8 μm PIB (a and b). Legends show the average percentage error 
between the estimated and the GC-PID measured concentrations. The diagonal line represents the ideal case (where 
estimated concentrations equal measured concentrations). 
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Figure 5. Benzene concentrations estimated using the proposed signal processing technique and five-analyte model, 
obtained from SH-SAW sensors coated with either 0.6 μm PECH or 0.8 μm PIB. Legends show the average percentage error 
of ±7% between the estimated and the GC-PID measured concentrations. The diagonal line represents the ideal case (where 
estimated concentrations equal measured concentrations). 
 
Utilizing the proposed approach, BTEX compounds in the sample can be identified and quantified in near-real 
time with high accuracy within approximately 2 min after data collection (including sorption and desorption 
responses). For applications which only require high accuracy for the estimated concentrations of benzene, even 
faster processing time can be achieved by just processing the sorption response data. In this case, benzene can 
be quantified with high accuracy in real time even before the sorption response reaches steady-
state.(23,25) Moreover, the accurate results obtained clearly highlight the potential of the proposed approach 
to detect BTEX compounds in aqueous phase using only the data collected from a single polymer-coated SH-
SAW device. If needed, in some applications, redundancy and improved detection limits could be achieved using 
the proposed approach with a small sensor array (consisting of 2 to 3 devices) coated with appropriately 
selected coatings. 

Summary and Conclusions 
The identification and quantification of target analytes (BTEX compounds) in the presence of interferents is 
demonstrated using an estimation-theory-based sensor signal-processing technique that utilizes data from only 
a single coated sensor device. The proposed approach is based on a multianalyte sensor response model and 
does not require any prior knowledge of the initial concentration range of the target analytes in the sample for 
accurately estimating the concentrations of those analytes of interest. The model utilizes a multivariate sensor 
parameter approach (in this case, equilibrium frequency shifts and response time constants from the single-
analyte responses to target analytes and the dominant interferents). Specifically, for the identification and 
quantification of BTEX analytes in the presence of interferents commonly found in groundwater, only a limited 
number of interferents must be considered to produce a response to the polymer-coated sensor: a five-analyte 
model is sufficient to analyze the six BTEX compounds/isomers along with the two most significant groups of 
interferents. 

Two-step linear-estimation theory, comprising EW-RLSE and BKFs, is used to estimate the unknown parameters 
(i.e., equilibrium frequency shifts), which also exploits the time transients associated with sorption and 
desorption of the analytes. The proposed approach was tested extensively using measured responses of 
polymer-coated SH-SAW sensors to samples of LNAPL dissolved in water. Highly accurate estimates were 
obtained, with estimated concentrations for benzene, toluene, and ethylbenzene/xylenes falling within ±7%, 
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±9%, and ±11%, respectively, of the concentration determined using GC-PID. It is recalled here that the BTEX 
concentrations obtained from the GC-PID have an average error of ±7%.(36) 

The approach presented here allows for more accurate detection and quantification of target analytes in near-
real time using the data from only a single coated sensor device, with high tolerance against measurement 
noise, and improves chemical speciation. This approach also can be implemented using a standard 
microcontroller to enable small, portable, cost-effective smart microsensor systems for various field applications 
including wastewater and groundwater monitoring, the monitoring of plumes in a subsurface marine oil spill, 
and spill clean-ups. 

Finally, we point out that the proposed approach is independent of sensing platform, i.e., this signal-processing 
procedure can perform equally well with other sensing platforms such as chemiresistors, optical sensors, and 
MEMS-based sensors, provided the sensor responses using these platforms (1) offers the appropriate limits of 
detection and dynamic range and (2) can be analytically modeled. Our approach does not require a sensor array 
to achieve high accuracy in the individual quantification of multiple target analytes in a mixture, even in the 
presence of multiple interferents. 
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