12-1-1988

Anti-cancer Action of Metal Complexes: Electron Transfer and Oxidative Stress?

Peter Kovacic  
University of Wisconsin - Milwaukee

William J. Popp  
University of Wisconsin - Milwaukee

James R. Ames  
University of Wisconsin - Milwaukee

Michael D. Ryan  
Marquette University, michael.ryan@marquette.edu

© 1986 Cognizant Communication Corporation. Used with permission.
Anti-cancer action of metal complexes: electron transfer and oxidative stress?

P. Kovacic¹, W.J. Popp¹, J.R. Ames¹ & M.D. Ryan²

¹Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, and ²Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, USA

Summary: Evidence is presented in support of an electron transfer mechanism for various metal complexes possessing anti-neoplastic properties. Cyclic voltammetry was performed on several metalloccenes, bis(acetato)bis(imidazole)Cu(II), and coordination compounds (Cu or Fe) of the anti-tumor agents, bipyridine, phenanthroline, hydroxyurea, diethyldithiocarbamate, and a,a'-bis(8-hydroxyquinolin-7-yl)-4-methoxytoluene. The favorable reduction potentials ranged from +0.5 to −0.5 V. Electrochemical behavior is correlated in some cases with structure and physiological activity. Relevant literature data are discussed.

Although the mechanisms by which xenobiotics operate are becoming better understood, many questions still remain. Several decades ago, the hypothesis was advanced that oxygen radical entities play an important role in the cancer process (Brues & Guzman Barron, 1951; Harman, 1956, 1962; Holman, 1956; Kovacic, 1959, 1960). These moieties can attack cellular constituents, e.g. DNA, resulting in transformations that may give rise to the oncogenic state. At about the same time, oxy radicals were suggested to play a major role in anti-cancer action (Holman, 1956; Kovacic, 1959). These concepts have received recent support (Kovacic et al., 1986; Kovacic et al., 1987a; Kovacic et al., 1988a; Kovacic et al., 1988b; Kovacic et al., 1988f). Metal species produce a number of responses in biological systems relevant to the present discussion, namely oxygen radical generation (Ames, 1983; Kovacic et al., 1986; Czapski & Goldstein, 1987), DNA strand cleavage (Furst & Radding, 1984; Czapski & Goldstein, 1987), and DNA complex formation (Furst & Radding, 1984; Saenger, 1984). Moreover, ET has been suggested to play an important mechanistic role (Lumme & Elo, 1985; Czapski & Goldstein, 1987).

The objective of this work was to ascertain the electrochemical characteristics of various drugs belonging to the metal category of anti-cancer agents. Cobaltocenium hexafluorophosphate (Cp₂CoPF₆), ruthenocene (Cp₂Ru), nickelocene (Cp₂Ni), titanocene dichloride (Cp₂TiCl₂), and bis(acetato)bis-(imidazole) copper (II) [Cu(OAc)₂(HIm)₂] were investigated. The anti-tumor agents, bipyridine (bipy), o-phenanthroline (phen), hydroxyurea (HU), diethyldithiocarbamate (DTC) were discussed.
mate (DDC), and \( \text{a.a'}-\text{bis}(8\text{-hydroxyquinolin-7-yl})-4\text{-methoxytoluene} \) were examined in the form of their metal complexes (Fe or Cu).

**Materials and methods**

The metal complexes, \( \text{Cu(phen)}_2(\text{NO}_3)_2 \) (Fay, 1966), and \( \text{Cu(bipy)}_3(\text{NO}_3)_2 \) (Hathaway et al., 1969) were prepared by literature methods; elemental analyses were satisfactory. The 8-hydroxyquinoline derivative, 1 was synthesized by the method of Yamato et al. (1987) except that solvent was omitted. The n.m.r. spectrum matched that reported; elemental analysis was satisfactory; mass spectrum, \((\text{Cl})_4 \), 409 \((\text{M}^+ + 1)(100\%)\). However, the m.p. (148–150°C) disagreed with the reported value of 200–203°C; this may be due to the presence of structural isomers.

For complexes prepared in solution (\( \text{Cu(bipy)}_3(\text{NO}_3)_2, \text{Cu(HU)}_3(\text{NO}_3)_2, \text{Fe(HU)Cl}_3, \text{FeCl}_3\cdot\text{DDC}(1:1), \text{Cu(NO}_3)_2\cdot\text{DDC}(1:1), \text{FeCl}_3, 1 \), and \( \text{[Cu(OAc)}_2(\text{HIm})_2] \)), the precursors were allowed to react for 30 min before electrochemical measurements were performed. The \( \text{Fe(HU)Cl}_3 \), solutions were generated in dimethylformamide due to instability of the complex under aqueous conditions (Harman et al., 1970). An aqueous ethanolic solution of bis(acetato)bis(imidazole)copper(II) reduced with an \( E_r \) of 0.36 V. Copper(II) acetate reduced with adsorption at 0.17 V.

**Metallocenes and ligands** were obtained from Aldrich Chemical Co., other reagents and electrochemical procedures have been previously reported (Ames et al., 1987a; Crawford et al., 1986; Kovacic et al., 1987b). A platinum flag (7 x 9 mm) was used as the working electrode. All values reported are versus NHE (SCE values adjusted by 0.24 V) at a scan rate of 100 mV/s.

**Results and discussion**

**Metallocenes**

Metallocenes and metallocene dihalides exhibit anti-tumor activity (Köpf-Maier et al., 1980; Köpf-Maier et al., 1981a and b; Köpf-Maier, 1985; Köpf-Maier et al., 1985), the degree of which is highly dependent on the transition metal (Köpf-Maier et al., 1981a). The most effective compounds, which have received the most attention, are the dihalides whose activities are comparable to that of cis-platin (Köpf-Maier et al., 1981a). The hypothesis has been advanced that metallocenes exert their action by a mechanism similar to the cis-platin case (Köpf-Maier and Köpf, 1980) in which the compound in the blood exists as a neutral molecule that is able to penetrate the cell membrane by passive diffusion (Dombrowski et al., 1986). Chloride ion concentration inside the cell is very low compared to that in blood. Therefore, as the agent enters the cell it undergoes aqueous dissociation of the halide to produce a positively charged species that can react with nucleophilic sites located in the cell.

The transition metal is fundamental to the activity of these compounds, due in part to the structure of the metallocene. The transition metal is fundamental to the activity of these compounds, due in part to complexation with DNA. It is essential that the coordination geometry or 'bite' of the agent fits the site of attack on the helix (Köpf-Maier et al., 1981b). Guanosine residues may be the binding sites, since they serve in this capacity for related species (Tamura et al., 1987). The resulting coordination compound may subsequently participate in ET. Hence, it is reasonable that the electrochemical characteristics of the metallocenes may also play a major role.

Table I lists the reduction potentials of various metallocenes. All of the active compounds reduced in the favorable range of +0.40 to -0.44 V, based on the present work and literature data. The most potent anti-tumor agents are \( \text{Cp}_2\text{TiCl}_2, \text{Cp}_2\text{TiBr}_2, \text{Cp}_2\text{VCl}_2, \text{Cp}_2\text{NbBr}_3 \) (Köpf-Maier and Köpf, 1980; Köpf-Maier et al., 1981a and b). A lower level of activity is exhibited by \( \text{Cp}_2\text{Fe}^+ \) (Köpf-Maier, 1985). \( \text{Cp}_2\text{ZrBr}_3 \), which has no anti-tumor action (Köpf-Maier et al., 1980), does not reduce in an aqueous medium. No information was found concerning the activities of \( \text{Cp}_2\text{CoPF}_6, \text{Cp}_2\text{Ni}, \text{Cp}_2\text{Ru} \). \( \text{Cp}_2\text{TaBr}_3 \), which is not chemically reducible, shows sporadic anti-tumor effects (Köpf-Maier et al., 1981b). Although there is some correlation between reduction potential and activity, exceptions are seen. It is reasonable to expect important involvement of other factors also.

**Bis(acetato)bis(imidazole)copper(II)**

Recently, \( \text{bis(acetato)}\text{bis(imidazole)copper(II)} \),
Table I  Reduction values for metallocenes and metallocene halides

<table>
<thead>
<tr>
<th>Compound</th>
<th>Reduction values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80% EtOH (E&lt;sub&gt;v&lt;/sub&gt;)</td>
</tr>
<tr>
<td>Cp,TiCl&lt;sub&gt;2&lt;/sub&gt;</td>
<td>-0.44</td>
</tr>
<tr>
<td>Cp,TiBr&lt;sub&gt;2&lt;/sub&gt;</td>
<td>—</td>
</tr>
<tr>
<td>Cp,VCl&lt;sub&gt;2&lt;/sub&gt;</td>
<td>—</td>
</tr>
<tr>
<td>Cp,NbBr&lt;sub&gt;5&lt;/sub&gt;</td>
<td>—</td>
</tr>
<tr>
<td>Cp,TaBr&lt;sub&gt;5&lt;/sub&gt;</td>
<td>—</td>
</tr>
<tr>
<td>Cp,ZrBr&lt;sub&gt;5&lt;/sub&gt;</td>
<td>—</td>
</tr>
<tr>
<td>Cp,CoPF&lt;sub&gt;5&lt;/sub&gt;</td>
<td>NR</td>
</tr>
<tr>
<td>Cp,Fe</td>
<td>+0.40</td>
</tr>
<tr>
<td>Cp,Ni</td>
<td>NR</td>
</tr>
<tr>
<td>Cp,Ru</td>
<td>NR</td>
</tr>
</tbody>
</table>

<sup>a</sup>Scouting experiments in DMF gave appreciably more negative values for Cp,TiCl<sub>2</sub>, but more positive for Cp,Ni
<sup>b</sup>Wilkinson and Birmingham, 1954
<sup>c</sup>In NaClO<sub>4</sub> solution
<sup>d</sup>In HC10<sub>4</sub> solution

<sup>e</sup>Reversible value from Cp,ZrFe oxidation (Gagné et al., 1980)

[Cu(OAc)<sub>2</sub>(HIm)<sub>2</sub>], was found to possess strong anti-tumor activity (Tamura et al., 1987). From cyclic voltammetry, the reduction potential of the complex in aqueous ethanol was 0.36 V with a difference in cathodic and anodic peak potentials of 160 mV; the reaction was 100% reversible. Alone, Cu(OAc)<sub>2</sub> reduced at E<sub>v</sub> = 0.17 V with adsorption. It is evident that imidazole favorably influences conversion of Cu(II) to Cu(I). Prior investigators found a value of 0.32 V as the E<sub>i</sub> for an aqueous copper(II) imidazole complex (James & Williams, 1961).

Studies with the restriction enzyme Ban I indicate that [Cu(OAc)<sub>2</sub>(HIm)<sub>2</sub>] binds to the guanosine residues of DNA (Tamura et al., 1987). The resulting metal purine coordination compound may be capable of redox chemistry leading to generation of oxy radicals in a site-specific manner, analogous to related xenobiotics (Bachur et al., 1982; Barton, 1986). [Cu(OAc)<sub>2</sub>(HIm)<sub>2</sub>] is comparable in cytotoxicity to cis-platin and superior to mitomycin C (Tamura et al., 1987), which are believed to participate in ET reactions (Kovacic et al., 1986). This complex has been examined as a model for the redox couple in copper proteins (Henriksson et al., 1976; Henriksson, 1977).

**Metal chelators**

**Bipyridine and phenanthroline** The chelating agents 2,2'-bipyridine, (bipy) and α-phenanthroline, (phen), as well as derivatives, are antineoplastic (Letier et al., 1953; Dwyer et al., 1965; Mayhew et al., 1965; Shulman et al., 1977). It is likely that these agents exert their activity via complexation with metals such as copper or iron. Although coordination with iron is more likely due to the larger in vivo pool, α-phenanthroline has been observed to complex with Cu in several tissues (Gutteridge, 1984). Our discussion will mainly involve Cu, the metal most widely studied.

The electrochemical behavior of complexes of bipy and phen were determined. Cu(phen)<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub> reduced in a quasi-reversible manner with E<sub>i</sub> of 0.34 V and ΔE<sub>p</sub> of 105 mV (Table II). The reaction was diffusion controlled with an i<sub>p</sub>/i<sub>c</sub> value slightly larger than one (1.1). The ratio of the current function (CF) (benzil as reference) (Ryan & Evans, 1976) was 0.59, indicating the transfer of one electron. The small value of the ratio is due to the lower diffusion coefficient expected for the cation. The complex was not studied in aqueous ethanol due to
Table II  Cyclic voltammetry of metal complexes from bipy and phen

<table>
<thead>
<tr>
<th>Compound</th>
<th>( E_1 (V) )</th>
<th>( \Delta E_r (mV) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \text{Cu(phen)}_2(\text{NO}_3)_2 )</td>
<td>0.34 ( \alpha )</td>
<td>105</td>
</tr>
<tr>
<td>( \text{Cu(bipy)}_2(\text{NO}_3)_2 )</td>
<td>0.30</td>
<td>130</td>
</tr>
<tr>
<td>( \text{Cu(NO}_3)_2 \text{bipy (1:2)} )</td>
<td>0.22 ( ^a )</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>0.21 ( ^a )</td>
<td>130</td>
</tr>
</tbody>
</table>

\( ^a \) 100 mV/s, compound (0.5 mm), electrolyte (0.1 m), Pt electrode versus SCE, adjusted to NHE. DMF unless otherwise indicated.
\( ^b \) 50% aqueous ethanol

Reduced solubility. A value of about 0.17 V has been reported under aqueous conditions (Ogura & Arinobu, 1978; Albert, 1979a; Koppenol, 1987).

The possibility of redox cycling in vivo is supported by involvement of NADH (Reich et al., 1981) \((E^\text{pr} = -0.32 V \text{ (Rawn, 1983)})\), thiols (Downey et al., 1980; Gutteridge & Halliwell, 1982), or ascorbate (Choiu, 1984) in DNA scission by phenanthroline chelates of copper. The autoxidation involving thiols generates oxy radicals (Downey et al., 1980; Marshall et al., 1981). The different reactivities of various metal complexes may be reflective of the different redox potentials (Choiu, 1984). The cupric complex inhibits polymerase activity which may be related to its ability to cleave DNA and generate toxic oxy species (Sigman et al., 1979); the reaction is blocked by catalase. The Cu(2,9-dimethylphenanthroline) adduct, \( E_r = 0.88 \text{ V} \) (Patterson & Holm, 1975), does not cleave DNA (Reich et al., 1981). This may be due to the absence of redox cycling resulting from steric interactions (Sigman, 1986).

The Cu(3,4,7,8-tetramethylphenanthroline) cation exhibits anti-tumor properties (Dwyer et al., 1965; Mayhew et al., 1965). A reduction value slightly less than 0.34 V is expected as a result of the alkyl substituents (Albert, 1985; Ames et al., 1986a).

Ruthenium(II) tetramethylphenanthroline complexes are also effective against tumors (Dwyer et al., 1965; Mayhew et al., 1965). The stability of the cations suggests that their biological effects are due to the complex as a whole rather than the individual constituents from dissociation (Dwyer et al., 1965). The complex cleaves DNA upon irradiation (Mei & Barton, 1986). Recently, Clarke et al. (1986) proposed that Ru(II) ammine complexes with DNA may exert their activity by redox cycling in the presence of oxygen and a reducing agent, producing active oxygen species which cleave the polymer.

The bipy copper species behaved in a manner analogous to the phen counterparts in DMF. The \( E_1 \) was 0.30 V with \( E_{\text{pr/2}} = 130 \text{ mV} \) and current ratio of 0.97 (Table II). One electron was involved (see above), CF ratio = 0.79. The difference in \( E_1 \) values (40 mV) for the phen versus the bipy complexes in our work is similar to a reported value (50 mV) under aqueous conditions (Albert, 1979a; Koppenol, 1987). In aqueous ethanol Cu(bipy),\( _2(\text{NO}_3)_2 \) took up an electron at 0.22 V. Again, the reaction was diffusion controlled and quasi-reversible \((\Delta E_r = 100 \text{ mV}; i_{\text{pr/2}}/i_{\text{pc}} = 0.92)\) (Table II). We also investigated the complex formed in situ \((E_r = 0.20 \text{ V})\). Prior studies have found a value of 0.12 V in neutral solution (Albert, 1979a).

In the presence of oxygen and a reducing agent the complexes from bipy and phen generate superoxide (Graham et al., 1980). Phen chelates are generally more potent than corresponding bipy compounds against leukemia (Shulman et al., 1977), as in the anti-bacterial realm (Albert, 1979a), and they also possess more positive reduction potentials (Table II and Albert, 1979a). Phenanthroline chelates of Ru(II) may interfere with biological redox reactions (Dwyer et al., 1969).
Hydroxyurea is very active against L1210 lymphoid leukemia, and is a metal binder (Harmon et al., 1970; Berger & Fritz, 1972; Albert, 1979b). Metal chelation may correlate with biological activity. The molecular basis for its selectivity is attributed to the sequestering of iron required by the iron-dependent enzyme ribonucleoside diphosphate reductase (Albert, 1979b). In line with our general premise, we studied the redox properties of solutions containing HU and iron(III) or copper(II). The results are summarized in Table III.

The Fe(III)-HU (1:1) solution gave quasi-reversible reduction at 0.31 V in DMF with an average separation of 180 mV between the cathodic and anodic peaks; this solvent was chosen because of instability of the complex under aqueous conditions (Harmon et al., 1970). The process was 83% reversible (i_{pc}/i_{pa} × 100%). Changing the solvent to ethanol/DMF (75/25) resulted in an anodic shift of the first peak to $E_1 = 0.56$ V. The reaction was more reversible with $\Delta E_p$ and $i_{pc}/i_{pa}$ of 140 mV and 1.0, respectively; HU did not reduce before the background discharge. In the case of iron, the in situ complexes reduced at the same potential as FeCl$_3$ in the solvents used. However, the solutions that contained both FeCl$_3$ and HU were dark green as reported for other non-aqueous systems (Harmon et al., 1970), whereas the solutions with iron alone were yellow.

Complexation with copper (1:2) (Harmon et al., 1970) in aqueous ethanol produced an irreversible ($E_{pp2} = 140$ mV) reaction at 0.30 V. Chelation brings about an increase of 0.1 V in the reduction potential of the metal (Table III). HU gave no reduction before $-0.2$ V. A previous study reported an $E_1$ value of $-0.5$ V at pH 6.8 (Wold et al., 1980).

The involvement of HU in radical reactions is reasonable since the cytotoxic effects are lessened by radical scavengers, e.g. SOD, α-tocopherol, and ascorbic acid (Przybyszewski & Malec, 1982; Szczepannska et al., 1985). Preliminary experiments indicate that the teratogenic activity of HU may result from the generation of oxy radicals (De Sesso, 1979). HU exhibits electron carrier properties by acting as a conduit between NADH and oxygen with reduction of nitroblue tetrazolium. SOD in-

<table>
<thead>
<tr>
<th>Solution</th>
<th>$E_1$ (V)</th>
<th>$\Delta E_p$ (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(III)-HU (1:1)</td>
<td>0.31</td>
<td>180</td>
</tr>
<tr>
<td>Cu(II)-HU (1:2)</td>
<td>0.56$^a$</td>
<td>140</td>
</tr>
<tr>
<td>Fe(III)-DDC (1:1)</td>
<td>0.30$^a$</td>
<td>140</td>
</tr>
<tr>
<td>Cu(II)-DDC (1:1)</td>
<td>-0.20$^a$</td>
<td>70</td>
</tr>
<tr>
<td>Fe(III)-I (2:1)</td>
<td>-0.49</td>
<td>100</td>
</tr>
<tr>
<td>Fe(III)-8-quinolinol</td>
<td>0.28</td>
<td>190</td>
</tr>
<tr>
<td>FeCl$_3$</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Cu(NO$_3$)$_2$$\cdot$3H$_2$O</td>
<td>0.56$^a$</td>
<td></td>
</tr>
<tr>
<td>HU NR$^e$</td>
<td>&gt; -0.2$^e$</td>
<td></td>
</tr>
<tr>
<td>DDC NR$^e$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$^a$100 mV/s, metal concentration (0.5 mM) unless otherwise indicated, TEAP (0.1 M), platinum flag versus SCE, adjusted to NHE, DMF unless otherwise indicated

$^b$Ethanol/DMF (75/25), 0.05 mM TEAP, single determination

$^c$50% aqueous ethanol, irreversible, $E_{pp2}$ value

$^d$Irreversible; $E_{pp2}$ value

$^e$NR: no reduction
hibited the reaction. Other relevant observations include methemoglobin formation, sensitivity to oxidant stress, and blockage of DNA synthesis similar to that induced by X-rays (Przybyszewski & Malec, 1987).

**Diethyldithiocarbamate** Diethyldithiocarbamate (DDC) exhibits anti-cancer properties (Spath & Tempel, 1987). Since dithiocarbamates are known to form metal chelates (Manoussakis & Bolos, 1985; Amatore et al., 1988; Trombetta et al., 1988), one can plausibly consider these derivatives as the active agents. The redox characteristics of the iron(III)-DDC (1:1) solution are given in Table III. This ratio was chosen because saturation of the metal with ligand nullifies the toxic effects of the chelate (Spath & Tempel, 1987); presumably, open positions are needed for site binding. The ferric solution gave reduction at $-0.20 \text{ V (} E_{p2} = 70 \text{ mV)}$, coupled to a small wave at $0.16 \text{ V}$. The large wave separation and reduced height of the oxidation portion may be due to dissociation of the complex after reduction; prior workers have observed such effects (Toropova et al., 1978). Complexation with iron(III) resulted in a decrease of approximately $500 \text{ mV}$ in the reduction potential of the metal. In another control experiment, the ligand gave no reaction before the background. The cupric complex reduced at $-0.49 \text{ V}$ in a process that was $91\%$ reversible with $\Delta E_p$ of $100 \text{ mV}$. Related electroanalytical studies of metal chelates (1:2) have been reported (Hendrickson et al., 1976; Toropova et al., 1978); an alcoholic benzene solution of the copper coordination compound reduced at $-0.30 \text{ V}$ (Cordova et al., 1977).

Data suggest that cytotoxicity is peroxidative with involvement of copper (Trombetta et al., 1988). Inhibition by glutathione was observed. Strong copper chelators reduced the toxicity. The anti-tumor activity of DDC is increased by hyperbaric oxygen (Petrovskii et al., 1982), thus leaving superoxide unchecked, which may explain the potentiation of bleomycin toxicity (Lin et al., 1980). It also inhibits lipid peroxidation (Freundt et al., 1981a and b; Younes et al., 1984), but has no dismutating activity (Lengfelder, 1979).

The dimethyl analog is a potent fungicide, but only in complex (copper) form (Albert, 1979a). Concentration quenching is evident. Oxidative destruction of lipoic acid is believed to be the molecular mode of action.

**8-Hydroxyquinoline derivatives** The bis derivative 1 of 8-hydroxyquinoline which readily chelates metals was found to have high activity against leukemia P388 (Yamato et al., 1987). The action is attributed to complexation with the iron of ribonucleotide reductase which catalyzes DNA biosynthetic pathways. Recently, we proposed that several agents, ($\beta$-lactams, (Kovacic et al., 1987; Kovacic et al., 1988c); methotrexate and $\alpha$-difluoromethylornithine (Kovacic et al., 1988g)) which are thought to exert their activity solely by enzyme inactivation, may also be involved in electron transport. In this context, we carried out electrochemical studies on the Fe(III)-1 complex (2:1); some isomer may be present (see the experimental section). Reduction occurred quasi-reversibly at $0.28 \text{ V}$ with $i_{p2}/i_{pc}$ of 0.89 and $\Delta E_p$ of $190 \text{ mV}$ in DMF (Table III), similar to Fe(III)-8-quinolinol (1:1): $E_1 = 0.27 \text{ V}$, $\Delta E_p = 310 \text{ mV}$, $i_{p2}/i_{pc} = 0.87$. The corresponding aqueous system was not examined due to reduced solubility of 1.
The physiological (anti-bacterial) effects of 8-hydroxyquinoline likely arise from the generation of metal compounds (Ames et al., 1986b; Stierev & Kaneti, 1986). Metal coordination may be involved in the anti-cancer properties of streptonigrin in the 8-quinolinoform (Boger et al., 1987). Various 8-hydroxyquinoline complexes of Fe(III) accelerate lipid peroxidation (Hayakawa et al., 1982) which is prevented by antioxidants (Ohtsuka et al., 1982). Oxy radical generation has been shown for both endogenous and exogenous compounds of iron and copper (Ames et al., 1986b).

The tropolone analogs of 1 also exhibit anti-tumor activity, possibly due to metal chelation (Yamato et al., 1987).

Other considerations

In response to the question concerning the actual form of the active metal species, there are several possibilities. Generally, binding to DNA appears to take place. In one case, the drug itself, e.g. Cu-phen, (Sigman, 1986), attaches to the surface and functions as such. This category encompasses the most stable complexes. The other class includes the chelates that are more prone to dissociation, namely, bis(acetato)bis(imidazole)Cu(II), ruthenium ammine complexes (Clarke et al., 1986), and cis-DDP (Kovacic et al., 1986). Fixation to the active site entails coordination to a ligand in DNA. In the exchange process, ligands from amino or thiol groups of protein could also become involved. Presumably, binding to DNA is followed by induction of ET at a sensitive locale.

A number of correlations between reduction potential and activity have been noted for bipy, phen, DDC and 1 (see above). Prior work (Kovacic et al., 1986; Crawford et al., 1987) has revealed a similar relationship for cis- versus trans-DDP, and for Cu- versus Ni-salicylaldoxime. Apparently, the metal plays a primary role since removal results in decreased toxicity (Trombetta et al., 1988). Absolute interrelation between in vitro electrochemical behavior and physiological activity is not reasonable due to important involvement of other variables, such as metabolism, diffusion, solubility (Florence et al., 1983; Florence & Stauber, 1986; Trombetta et al., 1988), site binding, and stereochemistry.

Some of the complexing agents treated in this work show activities in other areas, e.g. bipy or phen, anthelmintic (Albert, 1979a), antibacterial (Shulman et al., 1972), DDC, antifungal, and antimycobacterial (Albert, 1979a) which may be related to ET reactions (Ames et al., 1986b; Kovacic et al., 1988d).

Application of the general theme has also been made to β-lactam antibiotics (Kovacic et al., 1987b; Kovacic et al., 1988c), cocaine (Kovacic et al., 1988e), antiprotozoan agents (Ames et al., 1987b), anthelmintics (Kovacic et al., 1988d), and amebicides (Ames et al., 1987a). References to other areas investigated (benzo-diazepines, 1-methyl-4-phenyl-1,2,3,6-tetra­hydropyridine, mesionic compounds, carcinogens, phencyclidine, nicotine, spermine, and antibacterial agents) are given elsewhere (Ames et al., 1986b; Crawford et al., 1986; Ames et al., 1987a and b). Redox cycling involving electron transfer is increasingly implicated in the mechanism of action of various drugs, and has been reviewed (Halliwell & Gutteridge, 1985; Kappus, 1986).

In summary, various steps seem to be involved in the physiological activity. Site binding occurs, frequently involving DNA (Basile & Barton, 1987). As a result, there could be interference with DNA replication or other essential processes. Our electrochemical evidence suggests the participation of ET. Redox cycling can generate toxic oxy radicals or interfere with normal electron transport. DNA binding might favor reversibility and an increased reduction potential (Ames et al., 1986c; Crawford et al., 1986; Carter & Bard, 1987).

References


AMES, B.N. (1983). Dietary carcinogens and anticarci­
genics. Science, 221, 1256.
AMES, J.R., POTTs, K.T., RYAN, M.D. & KOVA­
CIC, P. (1986a). Conjugated and cross-conjugated me­
esomeric betaines. Correlation of electroreduc­
tion with structure and physiological activity. Life 
Sciences, 39, 1085.
AMES, J.R., RYAN, M.D. & KOVACIC, P. 
(1986b). Mechanism of antibacterial action: elec­
tron transfer and oxy radicals. Journal of Free 
Radicals in Biology and Medicine, 2, 377 (and 
references therein).
AMES, J.R., BRANDANGE, S., RODRIGUEZ, B., 
CASTAGNOli, N., JR., RYAN, M.D. & KOVA­
CIC, P. (1986c). Cyclic voltammetry with cyclic 
iminium ions. Implications for charge transfer with 
bio molecules (metabolites of nicotine, phenethyl­
dine, and spermine). Bioorganic Chemistry, 14, 228.
AMES, J.R., HOLLSTEIN, U., GAGNEUX, A.R., 
grated concept of amebicidal action: electron 
transfer and oxy radicals. Free Radical Biology 
and Medicine, 3, 85 (and references therein).
AMES, J.R., RYAN, M.D. & KOVACIC, P. 
Electron transfer and oxy radicals. Life 
Sciences, 41, 1895.
BACHUR, N.R., GEE, M.V. & FRIEDMAN, R.D. 
(1982). Nuclear catalyzed antibiotic free radical 
BARTON, J.K. (1986). Metals and DNA: Molecular 
double-stranded DNA cleaving agent with two 
polyamine metal-binding arms: Ru(DIP)Mac roTr. 
Journal of the American Chemical Society, 109, 
7548.
BERGER, R. & FRITZ, H.P. (1972). Metal com­
plexes of N-hydroxyurea. Zeitschrift für Natur­
forschung, 27B, 608.
BOGER, D.L., YASUDA, M., MITSCHER, L.A., 
DRAKE, S.D., KITOS, P.A. & THOMPSON, 
tial structures. Probes for the minimum, potent 
pharmacophore of streptonigrin, lavendamycin, 
and synthetic quinoline-5,8-diones. Journal of 
Medicinal Chemistry, 30, 1918.
BRUES, A.M. & GUZMAN BARRON, E.S. (1951). 
Biochemistry of cancer. Annual Reviews of Bio­
chemistry, 20, 343.
metric studies of the interaction of tris(1,10­
phenanthroline)cobalt(II) with DNA. Journal of 
the American Chemical Society, 109, 7528.
ascorbate in the presence of metal chelates. Journal 
of Biochemistry, 96, 1307.
CLARKE, M.J., JANSEN, B., MARX, K.A. & 
KRUGER, R. (1986). Biochemical effects of binding 
\([\text{H}_2\text{O})(\text{NH}_3\text{Ru})^2]^+\) to DNA and oxidation to 
\([\text{NH}_3\text{Ru}]^{2+}\)-DNA. Inorganica Chimica Acta, 124, 
13.
CORDOVA, R., OLIVA, A. & SCHREBLER, R. 
(1977). Polargraphic determination of some metal 
dithyldithiocarbamates. Talanta, 24, 259.
CRAWFORD, P.W., SCHEMEHORN, R.G., HOLL­
STEIN, U., RYAN, M.D. & KOVACIC, P. 
(1986). Cyclic voltammetry of phenazines and qui­
noxalines including mono- and di-N-oxides. Re­
tion to structure and antimicrobial activity. Chem­
ico-Biological Interactions, 60, 67.
CRAWFORD, P.W., LUMME, P., ELO, H., 
transfer-oxy radical mechanism for antican­
cer agents: mAMSA derivatives, rhodamine 123, 
and nickel salicylaldoximate. Free Radical Research 
Communications, 3, 347.
CZAPSKI, G. & GOLDSTEIN, S. (1987). Role of 
metal complexes in the formation-detoxication 
an action of active oxygen species. Bioelectrochemistry and Bioenergetics, 18, 21.
mechanism for hydroxyurea teratogenesis. Medi­
cal Hypotheses, 5, 937.
DOMBROWSKI, K.E., BALDWIN, W. & 
SHEATS, J.E. (1986). Metalloccenes in bio­
chemistry, microbiology and medicine. Journal of 
Organometallic Chemistry, 302, 281.
Degradation of DNA by 1,10-phenanthroline. Bio­
chemical and Biophysical Research Communica­
tions, 93, 264.
DWYER, F.P., REID, I.K., SHULMAN, A., LAY­
actions of 1,10-phenanthroline and 2,2'-bipyri­
dine hydrochlorides, quaternary salts and metal 
chelates and related compounds. Australian Journal of Experimental Biology and Medical Science, 47, 
203.
DWYER, F.P., MAYHEW, E., ROE, E.M.F. & 
SHULMAN, A. (1985). Inhibition of Landschütz 
asces tumor growth by metal chelates derived 
from 3,4,7,8-tetramethyl-1,10-phenanthroline. 
British Journal of Cancer, 19, 195.
FAYE, G.H. (1966). The correlation of absorption 
spectra and structure of pseudo-octahedral and 
trigonal bipyramidal copper(II) 1,10-phenanthro­
line complexes in acetone solutions. Canadian Jour­
nal of Chemistry, 44, 2165.
FLORENCe, T.M., LUMSDEN, B.G. & FARDY,


WOLD, E., KAALHUS, O., JOHANSEN, E.S. &
