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Abstract 
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that play critical roles in 

animal development and physiology, though functions for most miRNAs remain unknown. Worms with 

reduced miRNA biogenesis due to loss of Drosha or Pasha/DGCR8 activity are sterile and fail to ovulate, 

indicating that miRNAs are required for the process of oocyte maturation and ovulation. Starting with 

this penetrant sterile phenotype and using new strains created to perform tissue specific RNAi, we 

characterized the roles of the C. elegans Pasha, pash-1, and two miRNA-specific Argonautes, alg-1 and 
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alg-2, in somatic gonad cells and in germ cells in the regulation of ovulation. Conditional loss of pash-1 

activity resulted in a reduced rate of ovulation and in basal and ovulatory sheath contractions. 

Similarly, knockdown of miRNA-specific Argonautes in the cells of the somatic gonad by tissue-specific 

RNAi results in a reduction of the ovulation rate and in basal and ovulatory sheath contractions. 

Reduced miRNA pathway gene activity resulted in a range of defects, including oocytes that were 

pinched upon entry of the oocyte into the distal end of the spermatheca in about 42% of the ovulation 

events observed following alg-1 RNAi. This phenotype was not observed on worms exposed to control 

RNAi. In contrast, knockdown of alg-1 and alg-2 in germ cells results in few defects in oocyte 

maturation and ovulation. These data identify specific steps in the process of ovulation that require 

miRNA pathway gene activity in the somatic gonad cells. 

Keywords 
MicroRNA, Ovulation, Somatic gonad, Germ cells, C. elegans 

1. Introduction 
MicroRNAs (miRNAs) are ~22 nt small non-coding RNAs that function to repress the translation of 

target mRNAs, typically through binding to sites in their 3’ untranslated region (UTR) (Bartel, 2009). 

Through their association with Argonaute proteins, they serve as guide molecules for activity of the 

miRNA-induced silencing complex (miRISC) (Ha and Kim, 2014). Worms have two Argonautes that are 

required in the miRISC, but not other small interfering RNA (siRNA) pathways, and are encoded by alg-

1 and alg-2 (Grishok et al., 2001, Hutvágner et al., 2001). Most mature miRNAs are generated through 

the canonical miRNA biogenesis pathway, consisting of a nuclear processing step, to generate a stem-

loop pre-miRNA structure, and a cytoplasmic processing step, to generate the mature, active miRNA. 

Nuclear processing requires the RNase III enzyme Drosha, along with its cofactor, DGCR8/Pasha, 

whereas cytoplasmic processing requires the Dicer RNase III enzyme (Ha and Kim, 2014). Dicer 

processes both miRNAs and siRNAs while Drosha/DGCR8/Pasha is only known to process miRNAs 

(Grishok et al., 2001, Hutvágner et al., 2001, Ketting et al., 2001). 

Although miRNAs are essential for worm, fly, fish and mouse development (Bernstein et al., 2003; 

Giraldez et al., 2005; Grishok et al., 2001; Ketting et al., 2001; Lee et al., 2004; Wienholds et al., 2003), 

the identification of specific biological functions and direct downstream targets for miRNAs remains a 

critical gap in our knowledge. Individual miRNAs for which functions have been described in C. elegans 

include the pioneering lin-4 and let-7, which act to regulate larval developmental timing. The 

identification of lin-4 and let-7 was achieved through the strong, penetrant phenotypes induced by 

their mutation (Lee et al., 1993, Reinhart et al., 2000). However, most loss of function mutations in 

individual miRNA genes do not result in readily observable mutant phenotypes (Miska et al., 2007). 

One approach to identify and characterize miRNA-regulated processes is to examine the effects of 

inhibiting the activity of the miRNA biogenesis pathway. Loss of the miRNA specific Argonaute genes 

alg-1 and alg-2 during early development causes embryonic lethality, demonstrating an essential role 

for miRNAs during embryogenesis (Grishok et al., 2001). 

Interestingly, worms that have maternal, but not zygotic, activity of miRNA biogenesis genes, including 

drsh-1 (Drosha), pash-1 (Pasha/DGCR8) and dcr-1 (Dicer), are sterile with endomitotic oocytes, 

indicating strong, penetrant ovulation defects (Denli et al., 2004, Grishok et al., 2001, Knight and Bass, 
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2001). In addition, mice with conditional loss of Dicer activity in the somatic cells of the gonads 

(Nagaraja et al., 2008), and of Pasha ortholog DGCR8 activity in the female reproductive tract are 

sterile (Kim et al., 2016). These results indicate that miRNAs are required in the mouse somatic gonad 

for normal fertility. In worms, Dicer/dcr-1 activity is required in the somatic gonad for fertility (Drake et 

al., 2014) and Argonaute/alg-1 acts in the somatic distal tip cell to control germline proliferation 

(Bukhari et al., 2012). However, the specific events of oocyte maturation and ovulation that require 

miRNA activity in the somatic gonad cells in worms remain unknown. 

A role for miRNAs in the control of ovulation in germ cells is less clear. While translational regulation is 

essential for meiotic maturation in animals (Mendez and Richter, 2001), the activity of miRNAs may not 

be required for germ cell development in all organisms (Ma et al., 2010). In worms, Dicer is 

phosphorylated and localized to the nucleus during most of oogenesis in worms, thereby preventing its 

normal cytoplasmic processing role (Drake et al., 2014). However, miRNA biogenesis likely functions at 

an early stage of germ cell development because mature, processed miRNAs are present in oocytes 

(Gu et al., 2009, McEwen et al., 2016). It is clear that some maternal miRNAs that are present in 

oocytes, including the miR-35 family, are essential for early development (Alvarez-Saavedra and 

Horvitz, 2010). Mosaic analysis indicates that Dicer activity is not essential in the germ line for the 

processes of oocyte maturation and ovulation to occur (Drake et al., 2014). However, it remains 

possible that maternal miRNAs act in the oocyte to more finely regulate the processes of oocyte 

maturation and ovulation. 

Notably, the differences in miRNA abundance between worms that have zygotic deletion of Dicer and 

wild-type animals were found to be modest (Drake et al., 2014, Grishok et al., 2001, Knight and Bass, 

2001). This is surprising because Dicer is required for the cytoplasmic processing of miRNAs. A possible 

explanation for the continued presence of miRNAs in the dcr-1 zygotic mutants is presence of maternal 

Dicer activity. Because of the modest reduction of miRNA levels in a zygotic dcr-1 mutant, we analyzed 

the function of the miRNA specific Argonautes, alg-1 and alg-2, to determine if miRNAs can act to 

regulate oocyte maturation and ovulation, since these proteins act downstream of Dicer and are 

necessary for miRISC activity. 

In worms, ovulation is a complex, rhythmic behavior that is regulated by multiple signaling pathways 

between the soma and the germ cells. The gonad arms contain germ cells that divide mitotically at the 

distal end and mature into oocytes as they reach the most proximal position of the gonad arm 

(Greenstein, 2005). The somatic distal tip cell (DTC) controls the mitotic zone and ten somatic sheath 

cells surround the rest of the germ cells with the six most proximal sheath cells capable of contraction. 

The spermatheca is also contractile with a constricted distal end preventing the oocyte from entering 

the spermatheca until ovulation (McCarter et al., 1999). Major sperm protein (MSP) is released from 

sperm and interacts with receptors on the somatic sheath cells to initiate contractions of the proximal 

sheath cells and activate meiotic maturation in the oocyte. Upon meiotic resumption, the oocyte 

signals to the sheath cells and spermatheca resulting in an increase in sheath contraction rate and 

intensity, termed ovulatory contractions, and dilation of the distal end of the spermatheca. The mature 

oocyte is thus propelled into the spermatheca where it is fertilized (Iwasaki et al., 1996, McCarter et 

al., 1999, Yin et al., 2004). Both sheath cell contraction and spermatheca dilation are dependent upon 

IP3-mediated calcium release (Clandinin et al., 1998). Meiotic maturation is the rate-limiting step in the 
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production of embryos (McCarter et al., 1999). Thus, the rate of ovulation typically reflects the rate of 

meiotic maturation. 

In order to investigate the role of miRNAs in specific events of oocyte maturation and ovulation more 

directly in both germ cells and the somatic gonad, we assessed the effects of conditional knockdown of 

miRNA pathway genes, including pash-1 and the two miRNA specific Argonautes, alg-1 and alg-2, on 

ovulation events, including ovulation rate, sheath cell contractility, and movement of oocyte through 

the spermatheca. We found that pash-1 as well as alg-1 and alg-2 activities are not essential in germ 

cells for ovulation. However, alg-1 and alg-2 are important in the cells of the somatic gonad for control 

of sheath cell contraction and dilation of the distal end of the spermatheca. Also, our data indicates 

that alg-1 and alg-2 activity in the somatic gonad acts to maintain the rate of meiotic maturation in the 

oocyte. 

2. Materials and methods 

2.1. Strains and maintenance 
C. elegans strains were grown on NGM plates seeded with E. coli strain AMA1004 at 20 °C unless 

otherwise indicated. Strains used are listed in Table S1. 

2.2. RNAi by feeding 
All bacteria for RNAi experiments were isolated from the Ahringer RNAi library (Kamath et al., 2003). 

To knock down alg-1 activity, the X-6D15 clone (Source Bioscience) was used. alg-1 and alg-2 are 80% 

identical at the nucleotide level, this level of similarity is within a range where partial cross-

interference in RNAi assays is expected, therefore it is likely that alg-1 knockdown results in 

knockdown of alg-2 (Grishok et al., 2001, Schubert et al., 2000). RNAi bacteria were cultured in Luria-

Bertani (LB) broth supplemented with 100 µg/ml ampicillin, and 50 µg/ml tetracycline. Overnight 

cultures of RNAi bacteria were used to seed NGM plates supplemented with 1 mM IPTG and 100 µg/ml 

ampicillin. Plates were kept at room temperature for 24 h to allow for induction of dsRNA expression. 

Worms were transferred to RNAi plates at the L4 stage and F1 progeny were analyzed as young adults. 

Alternatively, for post-embryonic RNAi, worms were transferred at approximately the L2 stage and 

subsequently analyzed as young adults, approximately 42 h later. Bacteria that have the 

pPD129.36/L4440 plasmid, which is an empty RNAi plasmid, was used as a negative control for RNAi. 

2.3. Microscopy 
Nomarski DIC and epifluorescence microscopy was performed using a Nikon 80i compound microscope 

equipped with a CoolSNAP HQ2 monochrome camera (Roper Scientific, CA). Images were captured 

with a 60x Plan Apo objective lens using Elements software (Nikon). For time-lapse observations of 

sheath contraction and ovulation, day 1 young adult worms were anesthetized for 20–25 min in M9 

solution with 0.1% tricaine and 0.01% tetramisole (Sigma-Aldrich, St. Louis, MO) before viewing 

(McCarter et al., 1997). Anesthetized worms were mounted on a 2% agarose pad. For germline RNAi 

experiments using worms expressing the pie-1prom::rde-1(+) transgene, day 1 young adult worms were 

immobilized by placing worms on 2 µl of Polybead Microspheres 0.10 µm (Polysciences) on a 5% 

agarose pad. A small amount of petroleum jelly was placed around the coverslip to prevent 

desiccation. Only worms that displayed movement indicating viability on the pad were analyzed for 

ovulation events. 
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2.4. Ovulation rate assay 
The method used to calculate ovulation rate was modified from McCarter et al. (1999). The ovulation 

rate is calculated as the number of ovulation events per gonad arm per hour, which reflects the rate of 

meiotic maturation. Day 1 young adults were placed onto individual plates and viewed using a Nikon 

SMZ-1500 stereomicroscope to determine the initial number of embryos present in the uterus. Worms 

were then transferred to a 20 °C incubator for an average of 3 h; at which point the final number of 

embryos inside the uterus was counted. The number of ovulations for each individual worm was 

determined by counting the number of embryos or live progeny produced. These values were placed 

into the formula [(Final number of embryos in uterus – Initial number of embryos in uterus) + number 

of progeny or embryos produced] /[(2 gonad arms) (3 h)] = number of ovulation events per hour per 

gonad arm. 

2.5. In vivo analysis of sheath cell contractions 
Time-lapse DIC images of the proximal gonad and oocytes were captured (10 frames/sec) during 

individual ovulation events prior to rounding of the proximal oocyte through entry of the fertilized 

embryo into the uterus. Worms were observed until ovulation occurred or for 60 min. If the proximal 

oocyte did not resume meiosis and no ovulation occurred within 60 min, they were categorized as 

failing to resume meiosis. Worms in which the oocyte resumed meiosis but failed to fully enter or exit 

the spermatheca were observed for a minimum of 10 min post nuclear envelope breakdown or entry 

into the spermatheca, respectively. To measure the rate of gonadal sheath contractions, the number of 

lateral displacements were counted, focusing on one side of the −1 oocyte that included the junction 

to −2 oocyte. The rate of basal contractions was calculated during a 3–5 min interval prior to the 

initiation of ovulatory contractions. The rate of ovulatory contractions was determined by the 

maximum number of contractions that occurred in the −3–0 min period, with time 0 indicating when 

the oocyte was fully in the spermatheca (McCarter et al., 1999). 

2.6. Construction of transgenic strains 
Gibson assembly (NEB) was used to generate the pCR4 plasmid containing the inx-8prom::rde-1(+)::unc-

543’utr transgene in the pCFJ909 plasmid backbone for use in MiniMOS insertion (Frøkjaer-Jensen et al., 

2014). PCR amplification of a 1067 bp genomic fragment upstream of the inx-8 start site was 

performed using primers AA1225 and AA1229 and N2 genomic DNA as a template. Primer sequences 

are provided in Table S2. PCR amplification of rde-1(+)::unc-543’utr was performed using AA1052 and 

AA1222 primers and the pXXY2004.1 plasmid (Espelt et al., 2005) as a template. pXXY2004.1 was kindly 

provided by Dr. Keith Nehrke (University of Rochester, NY). PCR products (0.05 pmoles) were mixed 

with a 5.1 kb PstI-SpeI pCFJ909 fragment (0.05 pmoles) in a Gibson assembly reaction (NEB). pCR4 

construction was confirmed by sequencing. To generate strains that contain the inx-8prom::rde-

1(+)::unc-543’utr transgene inserted in the genome, an injection mix containing pCR4 (10 ng/ul), along 

with coinjection plasmids pGH8 (10 ng/ul), pCFJ90 (2.5 ng/ul), pCFJ104 (10 ng/ul), pMA122 (5 ng/ul) 

and pCFJ601 (50 ng/ul) was injected into unc-119(ed3) worms. Worms that contained a transgene 

insertion were obtained as described in Frøkjaer-Jensen et al. (2014). Progeny were screened for 

rescue of the Unc phenotype and for the absence of coinjection marker expression (detected by RFP 

expression), which indicated the presence of an extrachromosomal array. For the xwTi1 inx-8prom::rde-

1(+)::unc-543’utr insertion, inverse PCR was performed to determine the genomic location (Table S1). 
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Worms with inx-8prom::rde-1(+)::unc-543’utr transgenes were crossed with rde-1(ne219)V mutant worms 

using standard genetic approaches, using PCR to follow the xwTi1 insertion (AA1309 with Ocf1588, and 

AA1310 with AA1309 primers). The presence of the ne219 allele was confirmed by sequencing. 

MultiSite Gateway cloning (Life Technologies) was used to generate the pCR6 plasmid containing the 

pie-1prom::rde-1(+)::tbb-23’utr transgene. First, PCR was used to amplify the rde-1(+) coding region using 

primers AA1282 and AA1283 with pXXY2004.1 as a template. The necessary attB1 and attB2 sequences 

were added using PCR primers. The PCR product was recombined with the Gateway donor vector 

pDONR221 to make the pCR5 rde-1(+) entry clone. pCR5 construction was confirmed by sequencing. To 

generate the pie-1prom::rde-1(+)::tbb-23’utr transgene, pCR5 along with entry clones pCM1.127 and 

pCM1.36, which supplied the pie-1 promoter and the tbb-2 3' UTR sequences (Addgene plasmid 

#21384, #17249), respectively, were recombined with destination vector pCFJ907 to generate pCR6. 

pCR6 junctions were confirmed by sequencing. rde-1(ne219) mutant worms were injected with pCR6 

(10 ng/µl) along with coinjection plasmids as described above. Worms that contained a transgene 

insertion were obtained as described in Frøkjaer-Jensen et al. (2014). Progeny were screened for 

resistance to G418 (Invitrogen), which was added to NGM plates to a final concentration of 0.4 mg/ml, 

along with the absence of coinjection marker expression, which indicated the presence of an 

extrachromosomal array. Inverse PCR was performed to determine the genomic location of the xwTi5 

insertion (Table S1). 

3. Results 
Sterility in miRNA biogenesis mutants has been previously observed. We start by showing that the 

basis of sterility in drsh-1(ok369) mutant worms is the failure of ovulation, accompanied by and likely 

due to the absence of sheath contractions. Then we demonstrate the consequences that the 

knockdown of the pash-1 gene has for various steps of ovulation. Finally, we use tissue specific 

knockdown of miRISC genes alg-1 and alg-2 in somatic gonad and germ cells, as a way to determine 

the function of miRNA pathway genes that act further down the miRNA pathway in the regulation of 

oocyte maturation and ovulation. 

3.1. miRNA-specific biogenesis genes are required for ovulation 
While sterility has been described for miRNA biogenesis mutants, including dcr-1 and drsh-1 mutants 

(Denli et al., 2004, Grishok et al., 2001, Knight and Bass, 2001), specific defects in the process of 

ovulation have not been described. drsh-1(ok369) homozygous mutants were derived from balanced, 

heterozygous worms and therefore had maternal activity of drsh-1(+), allowing for worms to complete 

embryonic and larval development. Zygotic drsh-1 mutant worms have a sterile phenotype with 

endomitotic oocytes (Denli et al., 2004). To examine this defect further, ovulation rate analysis and 

video microscopy was performed. Zygotic drsh-1 mutants produced no progeny (Fig. S1A) and had few, 

if any, ovulation events (Fig. 1A). In agreement, video microscopy revealed essentially no gonadal 

sheath contractions in ~1 h of observation (data not shown). These results provide quantitative 

analysis of the observed sterile phenotype and further support a requirement for miRNA biogenesis 

genes in the process of ovulation. 
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Fig. 1. miRNA pathway genes are required for the regulation of the ovulation rate, somatic sheath contractions 

and distal spermathecal dilation during ovulation. (A-B) Ovulation rates were measured by total progeny and 

embryo production in populations of wild-type, miRNA biogenesis mutant worms and miRNA biogenesis mutant 

worms expressing a rescue array at different temperatures. (A) Ovulation rates (ovulation events / hour) for 

wild-type and drsh-1(ok369) worms at normal growing conditions of 20 °C. drsh-1(ok369) were zygotic mutants, 

collected from heterozygous hermaphrodites and therefore had maternal drsh-1 activity (n=14–30). (B) Wild-

type, pash-1(mj100ts) and pash-1(mj100ts) carrying an extrachromosomal rescue array, mjEx331, grown at the 

permissive temperature of 17.5 °C ovulation rates (ovulation events / hour) (n=10–25). (C-E) Individual ovulation 

events were analyzed using time-lapse microscopy. (C) Average basal and ovulatory sheath contractions were 

determined for wild-type and pash-1(mj100ts) mutants grown at 17.5 °C. Average basal contractions were 

determined using the −7 to −4 min interval with time 0 corresponding to when the oocyte is inside the 

spermatheca. Average peak ovulatory contractions were determined using the single highest contraction rate at 

17.5 °C (n=10). (D) Wild-type and pash-1(mj100ts) sheath contraction rates were analyzed as single minute 
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intervals from −7 min until 0 min at 17.5 °C (n=10). (E) A summary of ovulation phenotypes observed for 

individual ovulation events in wild-type (n=10) and pash-1(mj100ts) (n=13 events) worms. (F-J) pash-1(mj100ts) 

mutant worms carrying an extrachromosomal rescue array, mjEx331, were grown at different temperatures 

(17.5–25 °C). Worms grown at restrictive temperatures lost activity from the pash-1(mj100ts) allele. The rescue 

array is only expressed in the soma due to transgene silencing. (F) Embryonic lethality was measured at 17.5 °C, 

20 °C and 25 °C (n>200). (G-H) The ovulation rate (ovulation events / hour) was measured by counting total 

progeny and embryos produced for wild-type and pash-1(mj100ts), mjEx331 worms grown at the restrictive 

temperatures of 20 °C and 24 °C respectively. (I-J) Sheath contractility was analyzed for individual ovulatory 

events using time-lapse microscopy in wild-type and pash-1(mj100ts), mjEx331 worms. The average rate of basal 

contractions was determined from the −9 to −4 min interval. Time 0 corresponds to when the oocyte is inside 

the spermatheca. The average rate of ovulatory sheath contraction was determined by using the single highest 

contraction rate observed in individual worms for wild-type and pash-1(mj100ts), mjEx331 worms at 20 °C (n=7). 

pash-1(mj100ts); mjEx331 worms grown at 20 °C. There were no ovulation defects observed for wild-type 

worms grown at 20 °C (n=10, data not shown), or for pash-1(mj100ts); mjEx331 worms grown at 20 °C (n=7, data 

not shown). Error bars indicate SEM. Statistical analysis was performed using unpaired, non-parametric, t-test * 

p<0.05, *** p<0.001, **** p<0.0001. 

To identify the specific steps in ovulation for which miRNA biogenesis is required, we used the mj100 

conditional allele of the pash-1 gene, which results in reduced, but not eliminated, miRNA biogenesis 

activity. We used pash-1(mj100ts) worms, with and without the mjEx331 (eft-3prom::pash-1(+)) 

extrachromosomal rescue array (Lehrbach et al., 2012). pash-1(mj100ts) mutant worms are viable and 

develop essentially normally at 15 °C but are not viable at 25 °C, with severe defects observed in 

miRNA biogenesis (Lehrbach et al., 2012). It is important to note that pash-1(mj100ts) worms display 

an early aging phenotype with shortened lifespan and altered metabolism at the restrictive 

temperature of 25 °C (Lehrbach et al., 2012). It is possible that worms may display a weaker early aging 

phenotype at the intermediate temperatures. To minimize any potential indirect effects from early 

aging, all analysis was performed in young adult worms, within 24 h of the L4 molt. 

Compared to wild-type worms, pash-1(mj100ts) mutants had significantly reduced brood size (Fig. S1A) 

and ovulation rate at 15 °C (data not shown), and these defects were even more pronounced at the 

intermediate temperature of 17.5 °C (Fig. 1B). The temperature of 17.5 °C was chosen for further 

analysis because worms showed a reduced ovulation rate but remained viable. When worms are 

grown at 17.5 °C, pash-1 activity is expected to be moderately reduced (Lehrbach et al., 2012) so that 

phenotypes observed demonstrate the effects of a reduction, but not an absence, of miRNAs. When 

pash-1(mj100ts) mutant worms are grown at 20 °C or higher, the worms are not viable, therefore 

analysis of ovulation events was not possible at elevated temperatures. 

Next, we analyzed whether decreased pash-1 activity resulted in other observable ovulation 

phenotypes. Video microscopy of pash-1(mj100ts) worms grown at 17.5 °C was performed to observe 

individual ovulation events (n=13). Gonadal sheath cells were monitored and found to have a reduced 

rate for basal and ovulatory contractions (Fig. 1C-D) compared to wild-type. There were no ovulation 

defects observed in wild-type worms grown at 17.5 °C (Fig. 1E). In contrast, in over 30% of the 

recorded ovulation events in pash-1(mj100ts) worms ovulation defects were observed (Fig. 1E). In 15% 

of the recorded ovulation events, the proximal oocyte was pinched by the distal end of the 

spermatheca while entering the spermatheca (Fig. 1E and Fig. 2D-F). In addition, in 8% of the ovulation 

events the oocyte failed to resume meiosis, and in another 8% of the events the oocyte oscillated in 
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and out of the spermatheca (Fig. 1E and Fig. 2G-I). These data indicate that miRNAs are required either 

in the somatic cells or in the germ cells for regulation of sheath cell contractions and spermatheca 

dilation in the process of ovulation. 

 

Fig. 2. Ovulation defects observed following knockdown of miRNA pathway gene activity. Individual ovulation 

events were analyzed using time-lapse Nomarski DIC microscopy and representative micrographs show selected 

observed phenotypes. Animals are oriented with the dorsal side up. The oocytes housed in the gonad arm are 

toward the right and the uterus is toward the left. The ovulating oocyte is indicated by a white arrowhead. (A-C) 

Wild-type ovulation event. (A) The proximal oocyte resumed meiosis as shown by the initiation of breakdown of 

the nuclear envelope. (B) The proximal oocyte subsequently entered the spermatheca. (C) After transit through 

the spermatheca, the fertilized oocyte was observed inside uterus. (D-E) Ovulation event with pinching of the 

ovulating oocyte by the distal spermatheca is shown. rrf-1(ok589) exposed to alg-1 post embryonic RNAi (D) The 

proximal oocyte resumed meiosis. (E) The proximal oocyte was pinched by distal spermatheca as the oocyte 

entered the spermatheca. Two arrowheads show the two sides of the pinched oocyte. (F) Pinching resulted in an 

oocyte fragment in the uterus and a fragment in the proximal somatic gonad indicated by arrowheads. (G-I) 

Ovulation event with oscillation of the oocyte into and out of the spermatheca in a pash-1(mj100) worm grown 

at 17.5 °C (G) The proximal oocyte resumed meiosis. (H) The proximal oocyte was observed to enter the 

spermatheca and then oscillate back and forth between the spermatheca and proximal gonad arm. (I) The 

ovulating oocyte never transited through the spermatheca but rather remained in the proximal gonad arm. sp, 

spermatheca. ut, uterus. 

In order to determine if germ cells require pash-1 activity for ovulation, pash-1(mj100ts) worms with 

the mjEx331 rescuing extra-chromosomal array were analyzed at elevated temperatures. Because 

extra-chromosomal arrays are typically silenced in the germ line, the mjEx331 array provides somatic, 

but not germ cell, pash-1(+) rescuing activity. First, compared to wild-type worms, pash-1(mj100ts) 
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with mjEx331 at 17.5 °C had no significant difference in the rate of ovulation (Fig. 1B). This result 

indicates that expression of wild-type pash-1(+) activity in somatic cells is sufficient to restore 

ovulation rate at the intermediate temperature of 17.5 °C (Fig. 1B). To validate knockdown of maternal 

miRNAs in the germline, we analyzed the rate of embryonic lethality in pash-1(mj100ts);mjEx331 

grown at elevated temperatures. It is known that loss of maternal miRNAs, including the mir-35 family, 

results in a fully penetrant embryonic lethality phenotype (Alvarez-Saavedra and Horvitz, 2010). 

Embryonic lethality increased with temperature in pash-1(mj100ts);mjEx331 worms (Fig. 1F), 

suggesting reduced levels of maternal miRNAs in the oocyte. pash-1(mj100ts) worms without the 

rescuing array that are shifted to the restrictive 25 °C show 100% embryonic lethality and mature miR-

35 is not detectable (Lehrbach et al., 2012). Because the observed embryonic lethality phenotype was 

not fully penetrant in pash-1(mj100ts);mjEx331 at 24 °C (Fig. 1F), it is likely that there some activity of 

the pash-1(ts) allele is still present in worms grown at 24 °C for many generations. 

Next we tested ovulation rates for the pash-1(mj100ts);pash-1::gfp with the mjEx331 rescue array at 

elevated temperatures (Fig. 1G-H). It was not possible to analyze pash-1(mj100ts) worms without the 

rescue array at elevated temperatures because viability is reduced when worms are grown at 20 °C or 

higher. The ovulation rate was reduced in pash-1(mj100ts);mjEx331 grown at 20 °C and even further at 

24 °C compared to wild-type worms (Fig. 1G-H). The ovulation rate of worms grown at 24 °C was 

reduced from 3.7 ovulation events/hour in wild-type to 2.1 (p<0.0001) in the pash-1(mj100ts);mjEx331 

(Fig. 1H). The decrease in the ovulation rate of the pash-1(mj100ts) with the mjEx331 rescue array at 

elevated temperatures suggests a possible role for miRNAs in germ cells in the process of ovulation, or 

alternatively is a result of incomplete pash-1 (+) somatic rescue of the array. 

Video microscopy was performed to analyze ovulation events (n=13) in pash-1(mj100ts);mjEx331 

worms with somatic pash-1(+) rescue. Worms were analyzed at 20 °C. In spite of the decreased 

ovulation rate (Fig. 1G), there were no observable differences in the rate of basal or ovulatory 

contractions compared to wild-type (Fig. 1I-J). In addition, there were no defects in transit through the 

spermatheca observed during ovulation events in pash-1(mj100ts); mjEx331 (n=13 successful ovulation 

events). Together, our results suggest a role for pash-1 activity in somatic cells and germ cells for the 

ovulation rate, and in somatic cells for sheath contractions and transit of the oocyte through the 

spermatheca. 

3.2. miRNA-specific Argonaute activity is required in somatic gonad cells, but not germ 

cells, for ovulation 
Having identified ovulation rate, sheath contractions, and distal spermatheca defects in the pash-

1(mj100ts) worms, we next investigated the role for miRNA specific Argonautes in the cells of the 

somatic gonad during ovulation by knocking down alg-1 and alg-2. The miRISC functions downstream 

of Pasha/pash-1 in the miRNA pathway and is required for miRNA activity. C. elegans have 27 

Argonaute genes (Youngman and Claycomb, 2014). Out of these, only alg-1 and alg-2, have been 

shown to be required for the miRNA pathway, (Grishok et al., 2001, Hutvágner et al., 2004), and not 

RNAi (Grishok et al., 2001). To validate the RNAi knockdown of alg-1, we exposed L4-stage alg-

2(ok304) mutant worms to alg-1 RNAi and verified 100% embryonic lethality (data not shown), in 

parallel with every RNAi experiment. First, tissue specific knockdown of alg-1 was performed in the 

cells of the somatic gonad. Expression of alg-1 and alg-2 has been analyzed extensively (Tops et al., 
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2006, Vasquez-Rifo et al., 2012). alg-1 is expressed from early embryogenesis to adulthood in most, if 

not all, cells (Tops et al., 2006) and both alg-1 and alg-2 are expressed in the cells of the somatic gonad 

(Vasquez-Rifo et al., 2012). 

We generated two strains for tissue specific RNAi; the first targeted the entire somatic gonad, and the 

second the sheath cells of the somatic gonad. The first strain included a transgene with a wild-type 

copy of the rde-1 gene, regulated by the mir-786 promoter, which is expressed in the somatic gonadal 

sheath cells, spermatheca, uterus, as well as in the posterior cells of the intestine (Kemp et al., 2012). 

This transgene was expressed from an extrachromosomal array in an alg-2(ok304); rde-1(ne219) 

genetic background. The alg-2(ok304) mutation was included to further reduce miRNA specific 

Argonaute activity. The second strain contained a transgene with the inx-8 promoter driving the 

expression of wild-type copy of the rde-1 gene in the somatic gonadal sheath cells. The somatic innexin 

inx-8 gene is expressed in the proximal sheath cells as a component of the gap junctions that connect 

sheath cells to developing oocytes (Starich et al., 2014). Therefore, this promoter was chosen to test 

for the function of miRNA activity specifically in somatic sheath cells. The ability of the inx-8 promoter 

to drive the expression of rde-1(+) in the sheath cells was validated by analyzing inx-8prom::rde-1(+) 

transgenic worms that had ubiquitous expression of gfp. These worms were exposed to gfp RNAi, and 

it was found to successfully knockdown gfp in the sheath cells (Table S3 and Fig. S2). 

The rde-1(ne219);inx-8prom::rde-1(+) transgenic worms and the rde-1(ne219) control strain were 

exposed to alg-1 RNAi and a control RNAi, while the alg-2(ok304);rde-1(ne219); mir-786prom::rde-1(+) 

and the alg-2(ok304);rde-1(ne219) control strain were exposed to post-embryonic alg-1 RNAi and a 

control RNAi (see methods). Compared to alg-2(ok304);rde-1(ne219) controls, alg-2(ok304);rde-

1(ne219); mir-786prom::rde-1(+) worms showed a significantly reduced rate of ovulation from a rate of 

3.2 ovulation events/hour following control RNAi to 0.9 ovulation events/hour following alg-1 RNAi 

(Fig. 3A). There was also a significant decrease in overall brood size (p<0.0001, Fig. S1). 

Ovulation also requires the normal development and physiology of germ cells to proceed normally. 

Signals from sperm, including MSP, act to trigger meiotic maturation in the proximal oocyte, while 

signals from the oocyte act to trigger increased sheath contractility and dilation of the distal end of the 

spermatheca (Iwasaki et al., 1996, McCarter et al., 1999). The decrease in the ovulation rate observed 

in pash-1(mj100ts) worms with the rescue array, lead us to further assess the role of miRNAs in the 

germ cells. Our approach was to knockdown miRNA-specific Argonautes. First, knockdown of alg-1 was 

performed in rrf-1 mutant worms. rrf-1 encodes an RNA dependent RNA polymerase that is required 

for RNAi in somatic tissue (McCarter et al., 1999, Sijen et al., 2001, Yin et al., 2004). rrf-1 mutants are 

sensitive to RNAi in the germline, but are resistant in somatic cells (Sijen et al., 2001). However, rrf-1 

mutants have been found to display RNAi in some somatic tissues including the intestine and the 

hypodermis, but, importantly, no RNAi was observed in cells of the somatic gonad (Kumsta and 

Hansen, 2012). RNAi was performed in rrf-1 worms at the L4 stage and their F1 progeny were analyzed 

as young adults. In rrf-1(ok589) mutants, knockdown of alg-1 by RNAi resulted in a reduced ovulation 

rate (Fig. 3C), supporting the results observed in the pash-1(ts) worms with the rescue array. 

Because the phenotypes observed upon alg-1 knockdown in the rrf-1(ok589) mutants may reflect 

indirect involvement of somatic tissues, a tissue specific RNAi strain was constructed, using the pie-1 

promoter to drive rde-1(+) activity, followed by the tbb-2 3’UTR. The pie-1 gene encodes a zinc finger 
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protein that is essential for germline cell fate (Reese et al., 2000). The pie-1 promoter allows expression 

in all germ cells (D'Agostino et al., 2006). This transgene was expressed in an alg-2(ok304); rde-

1(ne219) genetic background. For these experiments, post-embryonic RNAi was performed starting in 

L2 stage worms in an effort to avoid potential knockdown in any somatic lineages (Reece-Hoyes et al., 

2007). The ability of the pie-1 promotor to drive expression of rde-1(+) in germ cells, and therefore 

restore RNAi sensitivity, was validated using a control RNAi experiments (Table S3). Exposure to alg-1 

RNAi beginning at the L2 stage in alg-2(ok304); rde-1(ne219); pie-1prom::rde-1(+) hermaphrodite worms, 

resulted in 100% embryonic lethality indicating a strong, penetrant reduction in miRNA biogenesis in 

the germline. When worms of this genotype were exposed to post-embryonic alg-1 RNAi, a decreased 

rate of ovulation was observed compared to control RNAi (p=0.0474) (Fig. 3D). However, the rate of 

ovulation was not significantly different from rde-1(ne219);alg-2(ok304) without the pie-1prom::rde-1(+) 

transgene (Fig. 3D) indicating that the modest effect could be attributed to a variation in the rde-

1(ne219);alg-2(ok304) background and was not due to the specific knockdown of miRNA biogenesis in 

the germline. In addition, there was no significant decrease in the total number of embryos produced 

(Fig. S1D). These results indicate that germ cells do not require alg-1 and alg-2 to maintain the normal 

ovulation rate. 
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Fig. 3. miRNA-specific Argonautes alg-1 and alg-2 are required in the somatic gonad, but likely not in the germ 

cells, for the regulation of ovulation rate. Ovulation rate was analyzed following RNAi to knockdown alg-1 or a 

control RNAi (empty vector). For each group, 10–20 young adult worms were analyzed. To verify alg-1 

knockdown, we exposed alg-2(ok304) L4 stage worms to alg-1 RNAi and confirmed that they exhibited 100% 

embryonic lethality. (A) Ovulation rates (ovulation events / hour) measured by total progeny and embryo 

production in alg-2(ok304); rde-1(ne219) and alg-2(ok304);rde-1(ne219); mir-786prom::rde-1(+) following post-

embryonic RNAi. The mir-786 promoter drives the expression of rescuing rde-1(+) activity throughout the 

somatic gonad. (B) Ovulation rates (ovulation events / hour) measured by total progeny and embryo production 

in rde-1(ne219) control strain and rde-1(ne219); inx-8prom::rde-1(+) following RNAi. The inx-8 promoter drives 

expression of rescuing rde-1(+) activity in the somatic sheath cells. (C-D) Tissue specific gene knockdown in germ 

cells was performed using rrf-1(ok589) mutants and rde-1(ne219); alg-2(ok304); pie-1prom::rde-1(+) transgenic 

worms following RNAi to knockdown alg-1 or with control (empty vector) RNAi. (C) Ovulation rates (ovulation 

events / hour) for rrf-1(ok589) worms following alg-1 or control (empty vector) RNAi (n=10–20). (D) Ovulation 

rates (ovulation events / hour) for rde-1(ne219); alg-2(ok304) control strain and rde-1(ne219); alg-2(ok304); pie-

1prom::rde-1(+) transgenic worms following post-embryonic alg-1 or control RNAi. The pie-1 promoter drives 

rescuing rde-1(+) expression in germ cells. Error bars indicate SEM. Statistical analysis was performed using 

unpaired, non-parametric, t-test for C and two-way ANOVA, Tukey's multiple comparison for A-B and D. * 

p<0.05, *** p<0.001, *** p<0.001, **** p<0.0001. 

3.3. alg-1 and alg-2 are required in the somatic gonad for sheath contraction and 

spermatheca dilation 
We used our tissue specific RNAi strains to investigate whether reduction in alg-1 and alg-2 activity in 

cells of the somatic gonad and germ cells would result in reduced sheath contractions and distal 

spermathecal dilation, as observed in pash-1(mj100ts) mutants. Video microscopy of alg-2(ok304);rde-

1(ne219); mir-786prom::rde-1(+) worms demonstrated that the average basal contractions were reduced 

from 4.2 to 2.7 contractions/minute (p<0.05) while the average ovulatory contractions had a larger 

reduction from 16.7 to 9.1 contractions/min. (p<0.0001) following alg-1 RNAi compared to control 

RNAi (Fig. 4A-B). Similar, but more severe defects to pash-1(ts) mutants were observed during video 

microscopy of individual ovulation events (n =12): 25% showed successful ovulations (Fig. 2A-C, Fig. 

4C), 42% showed pinching by the distal spermatheca (Fig. 2D-F, Fig. 4C), 25% failed to resume meiosis 

and did not ovulate within 1 h of observation (Fig. 4C), and 8% entered but failed to exit the 

spermatheca (Fig. 4C). alg-2(ok304);rde-1(ne219); mir-786prom::rde-1(+) worms on control RNAi showed 

few ovulation defects: 92% showed successful ovulations (Fig. 2A-C, Fig. 4C), and 8% entered but failed 

to exit the spermatheca (Fig. 4C, n=12). These data support a role for miRNAs acting in the somatic 

gonad to regulate the rate of meiotic maturation, rate of sheath cell contractions, and the dilation of 

the distal spermatheca. 
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Fig. 4. miRNA-specific Argonautes alg-1 and alg-2 are required in the somatic gonad for sheath contractility and 

distal spermathecal dilation. (A-B) Sheath contractility was analyzed during individual ovulatory events using 

time-lapse microscopy in alg-2(ok304); rde-1(ne219); mir-786prom::rde-1(+) following post-embryonic alg-1 and 

control RNAi (n=12). (B) The average rate of basal contractions was determined from the −9 to −4 min interval 

with time 0 corresponding to when the oocyte is inside the spermatheca. Average peak ovulatory sheath 

contraction rate was determined by using the single highest contraction rate observed in individual worms. The 

average peak ovulatory contractions were determined by using the single highest contraction rate observed in 

individual worms. (B) Contraction are shown as single minute intervals prior to ovulation. (C) A summary of 

ovulation phenotypes observed for individual ovulation events in rde-1(ne219); alg-2(ok304); mir786prom::rde-

1(+) (n=12), rde-1(ne219); alg-2(ok304); pie-1prom::rde-1(+) (n=10), and rrf-1(ok589) (n=10) mutant worms 

following control and alg-1 RNAi. For descriptions of ovulation defects, see Fig. 2. (D-G) alg-1 and control (empty 

vector) RNAi was performed on rrf-1 and post-embryonically on rde-1(ne219); alg-2(ok304); pie-1prom::rde-1(+) 

mutant worms. (D) The average rate of basal contractions was determined using the −9 to −4 min interval with 

time 0 corresponding to when the oocyte is inside the spermatheca. The average ovulatory sheath contraction 

rate was determined by using the single highest contraction rate observed in individual worms (n=10). (E) 

Contraction rates are shown in single minute intervals prior to ovulation. (F) The average rate of basal 

contractions was determined using the −9 to −4 min interval. The average ovulatory sheath contraction rate was 

determined by using the single highest contraction rate observed in individual worms (n=10). (G) Contraction 

rates are shown in single minute intervals prior to ovulation for rde-1(ne219); alg-2(ok304); pie-1prom::rde-1(+) 

worms following RNAi. Error bars indicate SEM. Statistical analysis was performed using unpaired, non-

parametric, t-test for (A-B, D-G). * p<0.05, *** p<0.001, *** p<0.001, **** p<0.0001. 

To assess the role of alg-1 and alg-2 in germ cells in individual ovulation events, we used our tissue 

specific RNAi strains that allow for knockdown in germ cells but not in somatic gonad cells. In rrf-

1(ok589) mutants, knockdown of alg-1 by RNAi resulted in reduced basal and ovulatory sheath 

contractions (Fig. 4D-E), however the pattern of sheath contractions closely mirrored that of worms 

placed on control RNAi. Importantly, rrf-1(ok589) worms exposed to alg-1 RNAi and control RNAi 

showed wild-type ovulation events (Fig. 2A-C, Fig. 4C) with no defects in oocyte transit through the 

spermatheca observed (n>10, Fig. 4C). 

We next performed video microscopy on the alg-2(ok304); rde-1(ne219); pie-1prom::rde-1(+)) worms to 

on both alg-1 and control RNAi. A modest decrease in the rates for basal and ovulatory contractions 

was observed following alg-1 RNAi, but the pattern of sheath contractions mirrored even more closely 

those of worms exposed to control RNAi (Fig. 4F-G). Importantly, knocking down alg-1 in the alg-

2(ok304); rde-1(ne219); pie-1prom::rde-1(+)) mutants did not result in any defects in oocyte transit 

through the spermatheca (n>10, Fig. 4C). We conclude that miRNA pathway genes are not essential in 

germ cells for the process of ovulation in C. elegans. 

4. Discussion 
Worms with mutation in genes involved in the miRNA-specific biogenesis pathway including drsh-1 and 

pash-1, are sterile (Denli et al., 2004, Grishok et al., 2001) and we observed essentially no successful 

ovulations. However, the functional roles of miRNAs in the complex process of ovulation remain 

unknown. Using a conditional pash-1(mj100ts) mutant and new strains created to perform tissue 

specific RNAi, we characterized the roles of miRNA-specific biogenesis gene pasha in the whole worm 

and Argonautes alg-1 and alg-2 in somatic gonad cells and in germ cells. The knockdown of the miRNA-
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specific Argonautes interferes with the miRNA biogenesis pathway downstream of previously 

characterized miRNA biogenesis mutants (Denli et al., 2004, Drake et al., 2014, Grishok et al., 2001, 

Knight and Bass, 2001) and impacts the activity of the miRNAs. We conclude that alg-1 and alg-2 and 

likely miRNA activity, is not essential in germ cells for ovulation, but is critical in the cells of the somatic 

gonad for proper sheath cell contraction and distal spermathecal dilation. In addition, results indicate 

that miRNAs may function in cells of the somatic gonad for the control of meiotic maturation in 

oocytes as evident by the decrease in ovulation rate, which requires oocyte maturation to occur. 

In contrast to drsh-1 zygotic mutants, we did not observe a penetrant sterile phenotype in any of our 

experimental conditions. This likely reflects the conditional or partial knockdown of miRNA biogenesis. 

This could be due, in part, to incomplete knockdown of Argonaute activity. Also, worms have 27 

Argonaute genes, including one that is closely related to ALG-1/2, T23D8.7/hpo-24, therefore it 

remains possible that additional Argonaute proteins could function to mediate miRNA regulation in the 

germline (Youngman and Claycomb, 2014), though such activity has never been described. In addition, 

worms with the mir-786prom::rde-1(+) transgene expressed rde-1(+) activity from an extrachromosomal 

array, which can have some mosaicism in transgene expression. Lastly, worms with the pash-

1(mj100ts) allele likely have some residual protein activity at the semi-permissive temperature of 

17.5 °C. 

4.1. miRNAs in germ cells may not have an essential role in ovulation 
miRNAs are found in germ cells across the animal kingdom including worms, flies, mice, and cows 

(Gilchrist et al., 2016, Gu et al., 2009, Lee et al., 2014, Ma et al., 2010, McEwen et al., 2016). In worms, 

the mir-35 family is one of several miRNA families found to be highly enriched in germ cells, specifically 

in oocytes (Gu et al., 2009, McEwen et al., 2016). Like other miRNAs that are expressed in oocytes, the 

mir-35 family is required for embryonic development but has no known function in oocyte formation 

or maturation (McJunkin and Ambros, 2014). In previous work with zygotic dcr-1(0), levels of miRNAs 

in the germline were surprisingly high, leaving the possibility that they are functioning even in the dcr-

1(0) genetic background. In this work, we take an alternative approach by reducing the activity of 

miRNA-specific genes alg-1 and alg-2 in the germ cells. ALG-1 and ALG-2 act downstream of Dicer in 

the biogenesis pathway and function in the activity of the miRNA silencing as a core component of the 

miRISC. This approach allowed us to examine the function of miRNAs in germ cells in the process of 

oocyte maturation and ovulation. 

Post-transcriptional control of gene expression is essential in the C. elegans germline for the 

development of mature oocytes. Analysis of reporter transgene expression demonstrated that the 

3’UTRs of mRNAs in the germline and developing oocytes play a larger role than the promoter regions 

(Merritt et al., 2008). RNA binding proteins and miRNAs can both function through sites in the 3' UTR 

to control translation. Many RNA binding proteins are essential for normal germline development, 

including PUF proteins, GLD-1, and NOS-3 (Lee and Schedl, 2006). To test whether miRNAs found in 

germ cells act as 3’ UTR regulators in the process of ovulation, we knocked down miRNA biogenesis in 

these cells. There was strong embryonic lethality in both our pie-1prom::rde-1(+) and our pash-

1(ts);mjEx331 rescue mutants indicating strong, penetrant knockdown of miRNA activity. Surprisingly, 

despite this strong knockdown, we did not observe similarly strong or penetrant ovulation defects. Our 
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study therefore indicates that germ cell miRNAs do not play an essential role for the control of oocyte 

maturation or ovulation, but are required soon after ovulation for early embryonic development. 

The observation that miRNA activity is largely dispensable in the germline prior fertilization is 

consistent with research in mice and worms, but inconsistent with research in flies. In mice, gene 

regulation by miRNAs is inactive in both oocytes and early embryos before the maternal-to-zygote 

transition (Svoboda, 2010). Also in mice, oocytes with a deletion in the miRNA-specific Dgcr8 exhibit 

normal maturation, and deletion of both maternal and zygotic Dgcr8 alleles does not result in any pre-

implantation development phenotypes. In addition, limited miRNA-directed mRNA degradation occurs 

in mouse oocytes (Ma et al., 2010). In worms, sterility of dcr-1(0) mutants is due to lack of DCR-1 in the 

soma, not the germline (Drake et al., 2014). Dicer function is inhibited until the end of oogenesis and 

resumes just before fertilization (Drake et al., 2014). 

4.2. Ovulation events that require ALG-1 And ALG-2 in the somatic gonad involve IP3-

receptor channels 
The basal and the more intense ovulatory sheath contractions that propel the mature oocyte into the 

spermatheca require calcium release via IP3 receptor channels (McCarter et al., 1999, Yin et al., 2004). 

Upon meiotic resumption, the oocyte produces LIN-3/EGF that interacts with the LET-23/EGFR on the 

distal spermatheca cells, causing dilation, likely by initiating IP3-dependent calcium release (Bui and 

Sternberg, 2002, Clandinin et al., 1998, Yin et al., 2004). After fertilization, directional constriction of 

the spermatheca propels the embryo into the uterus, and this constriction also requires calcium 

release through IP3 receptors (Kovacevic et al., 2013). 

Reduced activity of the IP3 signaling pathway produces ovulation defects similar to those observed 

when we reduced miRNA biogenesis in the somatic gonad. Worms with reduced IP3-dependent calcium 

release exhibit a decrease in both basal and ovulatory sheath contractions (Yin et al., 2004). Worms 

exposed to plc-3 RNAi and itr-1(sa73) mutants exhibit pinching of the proximal oocyte by the distal 

spermatheca during ovulation. We observed a similar pinching of the proximal oocyte in worms with 

reduced ALG-1 and ALG-2 in the somatic gonad. The phenotypes were not identical. The itr-1(sa73) 

mutant's distal spermatheca was found to dilate and constrict several times during ovulation (Denli et 

al., 2004, Grishok et al., 2001, Knight and Bass, 2001, Yin et al., 2004), which was not the case in our 

study. These observations suggest a possible role for miRNAs in the regulation of the IP3 signaling 

pathway in somatic gonad cells. 

Previously, we identified a role of mir-786 in the control of the IP3 mediated rhythmic behavior of 

defecation (Kemp et al., 2012). mir-786 shows high expression in the somatic gonad (Kemp et al., 2012) 

and its deletion causes synthetic sterility in a sensitized genetic background (Brenner et al., 2010, 

Nagaraja et al., 2008), suggesting that miR-786 is one of the miRNAs that control ovulation from the 

somatic gonad. However, loss of mir-786 alone does not result in strong ovulation defects 

(unpublished data) indicating that additional miRNAs act in sheath cells and the spermatheca to 

control ovulation. 
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4.3. ALG-1 and ALG-2 function in the somatic gonad to regulate the rate of meiotic 

maturation 
We are using the rate of ovulation and a readout for the rate of meiotic maturation. The control of 

meiotic maturation involves signaling between MSP and Gαs receptors on the somatic sheath cells, 

which activate the adenylate cyclase (acy-4) –PKA pathway. The activation is required for resumption 

of meiosis in the proximal oocyte (Govindan et al., 2009). ALG-1 and ALG-2 together with a set of 

miRNAs expressed in the distal tip cell of the somatic gonad maintain germ cell proliferation, oocyte 

abundance and brood size (Bukhari et al., 2012). Therefore the decrease in ovulation rate and brood 

size that we observed following knock down of ALG-1 and ALG-2 in the somatic gonad may result from 

reduced miRNA activity in the distal tip cell. It is possible that miRNAs function in the sheath cells to 

directly or indirectly control the activation of acy-4 and the induction of meiotic maturation of the 

proximal oocyte. 
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