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Abstract: 
Two major challenges of existing high-performance magnetic gears are: (i) High content of rare-earth permanent 
magnets which results in high cost as well as price fluctuation; (ii) Conflict between mechanical and 
electromagnetic performances, especially in the design of highspeed rotor. A magnetic gear using a blend of 
magnet types, i.e NdFeB, or Dy-free NdFeB and ferrites, is proposed in this paper. The goal is to bring down the 
cost while retaining comparable torque-transducing performance to a baseline magnetic gear only using rare-

https://doi.org/10.1109/IEMDC.2019.8785338
http://epublications.marquette.edu/


earth NdFeB magnets. A variety of topologies based on different combinations of magnet types and geometric 
shapes have been studied and compared. In addition, the potential impact of using an advanced dual-phase 
material is evaluated. The goal is to eliminate the well-known tradeoff between rotor mechanical integrity and 
PM flux leakage. 

SECTION I. Introduction 
The ability to scale the torque/speed enables designing electrical machines for higher speeds/lower torques and 
hence reduce their size and cost. Such ability is accomplished by using gearboxes. Gearboxes are used in a wide 
range of applications including renewable energy, aerospace and traction applications among others. In addition 
to the size/cost reduction of electrical machines, gearboxes are needed in some applications for example 
traction where driving a vehicle requires multi gear ratios to match the load torque/speed requirements. 
Mmechanical gearboxes have historically dominated most applications. However, they suffer from tooth 
breakage, periodic maintenance, and less reliability. On the other hand, coaxial magnetic gears (MGs), as shown 
in Fig. 1, is a promising candidate to replace mechanical gears in some applications since they fundamentally 
function in the same way but with the advantage of physical isolation between the shafts. This unique feature 
offers overload protection, higher reliability, and less noise operation [1]. Coaxial MG working principle is well 
known and is based on the interaction of the harmonic frequency components produced by one rotor in its 
adjacent airgap and after being modulated by the flux modulation pole-pieces (FMP-Ps) in the non-adjacent 
airgap to coincide with the other rotor harmonic frequency components and then a useful torque transmission 
can be transduced. The expression governing the flux modulation concept is given by (1). 

𝑓𝑓𝑚𝑚𝑚𝑚 = |𝑚𝑚𝑚𝑚 + 𝑘𝑘𝑁𝑁𝑠𝑠|
𝑚𝑚 = 1,3,5,7,9, … … . ,∞

𝑘𝑘 = 0, ±1, ±2, ±3, … . , ±∞
𝑁𝑁𝑠𝑠 = 𝑚𝑚𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑚𝑚𝐻𝐻𝐿𝐿𝐿𝐿

 (1) (2) 

where P is the number of pole pairs; Ns is the number of FMP-Ps, and 𝑓𝑓𝑚𝑚,𝑘𝑘 is the harmonic frequency. 
When (𝑚𝑚 = 1&𝑘𝑘 = −1), this corresponds to the useful flux modulation and torque transducing case. There are 
some other super and sub harmonics that do not contribute to torque transducing but tend to generate iron 
losses and torque ripple. For better torque transmission, the number of FMP-Ps should equal the sum of the 
pole-pairs of the low-speed rotor (LSR) and highspeed rotor (HSR) as indicated in (2). Moreover, since all the 
three rotors are able to rotate, we can have three different gear ratios by making one of them stationary and let 
the other two rotors rotate as shown in (3), 

𝐺𝐺𝑟𝑟1 = 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿
𝑃𝑃𝐻𝐻𝐿𝐿𝐿𝐿

,𝐺𝐺𝑟𝑟2 = 𝑁𝑁𝐿𝐿
𝑃𝑃𝐻𝐻𝐿𝐿𝐿𝐿

, 𝑜𝑜𝑜𝑜𝐺𝐺𝑟𝑟3 = 𝑁𝑁𝐿𝐿
𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿

  (3) 

 
Fig. 1. Surface mounted coaxial MG with gear ratio of 7.2 
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The torque equation assuming no loss operation is given by (4): 

𝑇𝑇𝐹𝐹𝐹𝐹𝑃𝑃−𝑃𝑃𝑠𝑠 + 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑇𝑇𝐻𝐻𝐿𝐿𝐿𝐿 = 0 (4) 

Alternatively, controlling the speed of one rotor enables continuously variable transmission [2]. 

Although MG can potentially provide a solution for some of the practical issues of mechanical gears, MGs have 
their own challenges that researchers are trying to address. Those include relatively limited tip speed on 
HSR [3]–[4][5], low torque density [4]–[5][6][7][8][9][10][11], complexity in structure [12]–[13][14][15][16][17], 
as well as the significant use of rare-earth permanent magnets (PMs) [16]–[17][18]. In addition, like in 
conventional electrical machines, there are several design tradeoffs involved. For example, [3] demonstrates a 
MG prototype with the highest torque density reported in literature so far [19], [20]. However, the rotor tip 
speed is limited by the segmented structure. In [7], although a HSR with interior PMs and FMP-Ps with two 
supportive bridges were adopted to improve their mechanical strength, torque density was significantly 
reduced. 

Since the shear stress in a MG is only constrained by the magnetic loading, large quantities of PMs are typically 
used to maintain high shear stress level. Therefore, the objective of this paper is to design a spoke-PM HSR with 
a blend of different magnets. This results in minimization of the overall materials cost while achieving 
comparable torques production to a baseline design that only uses rare-earth PMs. It will be shown that by using 
this hybrid approach, ~36% reduction in HSR rare-earth PM usage can be achieved with only 6% or lower 
reduction in torque production. Moreover, the use of dual-phase material in the HSR rotor as well as a 
dovetailed HSR are discussed. Both concepts can maintain mechanical integrity of the HSR when spinning at high 
tip speeds while minimizing/eliminating PM leakage flux. For the LSR, the PMs are embedded in cavities to 
enhance the mechanical structure while the trapezoid FMP-Ps use laminated steel sheets with high yield 
strength. 

This paper is arranged as follows: the design parameters and corresponding analyses are included in Section 
II. Section III discusses the feasible combinations with a blend of different magnet types and a down-selection 
process of the optimum combination is discussed. Section III also provides a comparison of different potential 
geometries of the HSR. Section IV investigates methods to improve the structural integrity of the HSR while 
minimizing/eliminating PM flux leakage then conclusions. 

SECTION II. Design Anaysis and Details 
A. Topology and Gear Ratio 
A comparative study between various rotor designs targeting at high torque density was presented in [21]. MGs 
using spoke PMs are well-known for their high torque density due to flux concentration effect, as shown in Fig. 
2. Moreover, in order to reduce the size and cost of a MG, a high gear ratio is always preferred. However, there 
are still some challenges for further increasing the torque density. In [22], a comprehensive study on the 
parameters that affect the torque capability proves that as the gear ratio increases, the torque capacity on the 
FMP-Ps gets lower. Moreover, one of these parameters that is correlated with the high gear ratio is the reduced 
width of the LSR PMs in which might result in impractical PM shapes from a manufacturing point of view as well 
as reduced airgap flux density due to the increased flux leakage. The torque ripple of a MG, which is associated 
with the least common multiple (LCM) of the HSR pole-pair and FMP-Ps for stationary LSR operation, is fairly low 
with high gear ratio. A study on the gear ratio selection for the listed combinations in Table I was performed to 
identify a compromise between the aforementioned challenges and the following considerations. It should be 
noted that integer gear ratios are avoided since they tend to have low LCM (PHSR,Ns)compared to fractional 
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gear ratios [23]. Also. it is recommended to choose an even number of Ns in order to have symmetrical radial 
forces that would cancel out. The gear ratio for stationary LSR operation and the LCM between (PHSR,Ns) are 
both shown in Table I. Since the proposed topology is designed to run at high tip speed, a constraint on the HSR 
radius is required. A design tradeoff can be shown here, since the HSR rotor radius is constrained at 95 mm. High 
pole-pair number minimizes the space to employ low remanence magnet (LRM). On the other hand, a low pole-
pair number in the HSR leads to a larger pole span which becomes challenging to retain when the rotor is 
equipped with LRM. Table I demonstrates that the LCM is fairly high for all combinations. However, at this HSR 
outer radius the combination listed in Table IIleads to a LSR pole thickness of 5 mm assuming at least 8 mm 
FMP-Ps radial thickness. The HSR pole-pair for this combination provides enough space for LRM. The MG 
specifications are listed in Table II. 

 
Fig. 2. Spoke coaxial MG with gear ratio of 7.2 
 

Table I. Gear ratio combinations 
PHSR PLSR Ns Gr LCM (PHSR, Ns) 
4  25 29 7.25 116 
4  27 31 7.75 124 
5  31 36 7.2 180 
5  32 37 7.4 185 
5  33 38 7.6 190 
5  34 39 7.8 195 
6  37 43 7.16 258 
6  38 44 7.33 132 
6  40 46 7.66 138 
6  41 47 7.83 282 

 

Table II. Model specifications 
Parameter  Value & Unit 
HSR Pole-Pair (rotational) 5 
LSR Pole-Pair (fixed)  31 
FMP-Ps (rotational)  36 
Gear ratio  
 

7.2 
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B. Choice of Materials 
In MGs, the magnetic loading is the only source of excitation to accomplish high torque per unit volume. This 
gives rise to higher usage of rare-earth PM materials as can be seen in the spoke design. Blending different PM 
types can be an effective solution that can mitigate this penalty while having comparable torque density. The 
proposed topology has a blend of rare-earth PMs (either Dy-NdFeB or Dy-free NdFeB) with Ferrites. The Dy-free 
NdFeB has higher remanence compared to the Dy-NdFeB as shown in Table III. The proposed MG can be 
potentially designed to have a high- tip-speed HSR in which a relatively high-yield-strength material is required 
for reliable operation with variable loads and physical environments. HF-10 from AK Steel (with yield strength of 
450 MPa) is adopted in the design. Material specifications are listed in Table III with assumptions of their market 
prices. It should be noted that material prices are influenced by the market supply/demand as well as quantities 
of purchase. 

Table III. Summary of materials and prices 
Material Type  Material Commercial Name/ Price 
Lamination DI-MAX HF-10 by AK Steel (10 mils or 0.25 mm thickness) [2 $/kg] [7600 kg / m3] 
NdFeB-Dy PM Arnold N40H (Br = 1.25 T) (μr= 1.07 H/m) [100 $/kg] [7500 kg/m3] 
NdFeB-Dy free PM Vacuumschelze VACODYM 238TP (Br = 1.33 T) (μr = 1.05 H/m) [60 $/kg] [7600 kg/m3] 
Ferrite PM Ferrite NMF-12G (Br = 0.48 T) (μr = 1.06 H/m) [10 $/kg] [4800 kg/m3] 
Shaft Non-magnetic 304 Stainless Steel [4 $/kg] [8190 kg/m3] 

 

C. Optimization of Baseline Design 

An optimization tool has been coupled with 2D-FEA to conduct a multi sweep range of seven independent 
variables in order to reach an optimum baseline design. A summary of the independent variables and their 
sweep ranges are summarized in Table IV. The key parametric model corresponding to Table IV is shown in Fig. 
3. The outer radius of the HSR is kept constant, which has a significant impact on determining the general design 
geometries. The FMP-Ps radial thickness is given by (5): 

𝑅𝑅3 = 𝑅𝑅2 + 𝑎𝑎 + 𝑥𝑥1 (5) 

The outer MG radius is given by (6): 

𝑅𝑅4 = 𝑅𝑅2 + 2 ∗ 𝑎𝑎 + 𝑥𝑥1 + 𝑤𝑤1 (6) 

The magnet inner arc length in the LSR is kept equal to the neighboring iron piece and has a rectangular shape. 
In Fig. 4, a map of designs was generated by using 2D-FEA showing the torque density versus the specific torque. 
The torque density calculation is given by (7): 

𝑇𝑇𝑇𝑇 = 𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹−𝐹𝐹𝑃𝑃
𝜋𝜋∗𝐿𝐿42∗𝐿𝐿

 (7) 

The specific torque is calculated by (8): 

𝑆𝑆𝑇𝑇 = 𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹−𝐹𝐹𝑃𝑃
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠

 (8) 

where the mass is calculated based on each material volume multiplied by the corresponding density listed 
in Table III. The optimal design variables, that achieves the highest torque density, are listed in Table IV while, 
the average torque density and specific torque values of the optimal design are listed in Table V. 
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Fig. 3. Baseline key parameter model. 

 
Fig. 4. Map of designs showing the torque density vs. Specific torque. 
 

Table IV: Geometries sweep range 
Parameter  Sweep Range Step Optimal Design Unit 
FMP-Ps Radial Thickness, (x1) 8-12 0.5 9 (mm) 
HSR Inner Radius, (R1) 40-60 1 40 (mm) 
HSR Outer Radius, (R2) Fixed - 95 (mm) 
Airgap Thickness, (a) Fixed - 1 (mm) 
LSR Radial Thickness, (x2) 10-17 1 16 (mm) 
Inner FMP-Ps Angular Span, (γ) 5-7 0.5 5.5 (deg) 
Outer FMP-Ps Angular Span, (β) 5-7 0.5 6.5 (deg) 
Axial Length, (L) 70-90 2 86 (mm) 
HSR PM Width, (w1) 10-13 0.5 12.5 (mm) 

 

Table V: Baseline torque capability 
Parameter  Value Unit 
Torque  980 (N.m) 
Torque Density  243.7 (kN. m/m3) 
Specific Torque  34.4 (N. m/kg) 

SECTION III. Designs with Different Magnet Types 
A. Geometric Anaylsis 
This section covers the utilization of different magnet types in five designs. It should be noted that all design 
variables are kept fixed except the PM thickness in the HSR and the inner HSR radius to enable LRM adoption. 
First, the baseline design is simulated using Dy-NdFeB. Then, the other two types of magnets (Dy-free NdFeB and 
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Ferrite) were used to check the torque capability when using each of them separately. For designs 4 and 5, a 
rectangular parallel hybrid PMs consist of three layers were modeled using a parametrized model for the PM 
thickness to achieve the highest torque. The ferrite is sandwiched in between the rare-earth NdFeB layers. 
Design 4 uses a blend of NH40 (Dy-NdFeB) and NMF-12G (Ferrite), whereas design 5 adopts VACODYM 238TP 
(Dy-free NdFeB) and NMF-12G (Ferrite). The HSR inner radius became 44 mm to provide space for the LRM 
adoption. This leads to ∼36% reduction of rare-earth PM volume used in the HSR while the overall rare-earth 
magnet is reduced by ∼21% Also, ∼27% increase in the overall HSR PM volume compared to the first two 
designs due to the higher volume of ferrite. In terms of the mass of PMs, the reduction of the overall rare-earth 
magnet mass for designs 4 and 5 is almost 21 %, compared to designs 1 and design 2. Table VI shows the overall 
changes in the model geometries. This development leads to a marginal difference in the torque capability for 
the proposed designs as will be shown next. 

B. FEA Results and Comparison Between Toplogies 
In this section, the performances of design 1 and 2 are compared to designs 4 and 5. The following results are 
obtained using static 2D-FEA simulation. The models and flux distribution are shown in Fig. 5. The flux density 
level in the HSR lamination is relatively low around 1.5 T while the flux density level in the FMP-Ps is about 1.7 T. 
It can be seen from Fig. 5 that the end effect leakage (fringing) is significant and can have a relatively significant 
impact on the transferred torque. The radial space harmonic plots for both airgaps with corresponding harmonic 
spectra are provided in Figs. (6)and (7). The dominant harmonics for torque transducing are the ones with 5 and 
31 pole-pairs respectively. There are some other harmonics in the inner airgaps when (m>1 & k=0) in (1), 
specifically, the ones with 15,25, and 35 pole-pairs. These harmonics do not couple with any in the outer airgap 
when they are modulated (m>1 & k≠0) in (1). For the outer airgap, the main torque producing harmonic is the 
one with 31 pole-pairs. In Table VII, the torque on the various components (HSR, LSR, FMP-Ps) for the five 
designs agrees with (4). Design 2 has the highest torque density due to the higher remanence of the Dy-free PM, 
while design 1 is lower by ∼4percent. It is shown from Table VII that the variance in the torque density between 
designs 4 and 5 is about 3.6%. Furthermore, the achievable torque density in designs 4 and 5 is lower compared 
to designs 1 and 2 by ∼6%, However, the specific torque for designs 4 and 5 are maintained at the same level as 
designs 1 and 2 by the virtue of lower density of ferrite. 

 
Fig. 5. Design solid model with the corresponding field plot (NdFeB-DY is in blue color. Ndfeb-dy-free is in brown color, 
while the green is ferrite): (a) Design 1, (b) design 2, (c) design 3, (d) design 4, (e) design 5 
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Fig. 6. Outer airgap flux density with its harmonic spectra. 

 
Fig. 7. Inner airgap flux density with its harmonic spectra. 
 
Table VI: Geometries change 

Design Number PM Width (mm)  HSR PM Mass (kg)  
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 Rare-earth LRM Rare-earth LRM 
Design 1 Dy-NdFeB 12.5 -- 4.45 -- 
Design 2 Dy-free NdFeB 12.5 -- 4.5 -- 
Design 3 Ferrite -- 24.4 -- 5.531 
Design 4 Dy-NdFeB and Ferrite 8.5 13.45 2.85 2.9 
Design 5 Dy-free NdFeB and Ferrite 8.5 13.45 2.9 2.9 

 

Table VII: Torque capability of different designs 
Design 
Number 

Torque on Components 
(N. m) 

  Torque Density (kN. 
m/m3) 

Specific Torque (N. 
m/kg) 

 HSR LSR FMP-
Ps 

  

Design 1 -136 -844 980 243.7 34.4 
Design 2 -142 -878 1020 253.6 35.7 
Design 3 -35 -217 252 62.6 10.5 
Design 4 -128 -794 922 229.3 34.4 
Design 5 -133 -823 956 237.7 35.6 

 

C. Possible Hybrid Magnet Designs 
So far, the focus has been a parallel-sided PM geometry. In this section, other geometries will be evaluated all of 
which has the same ration of NdFeB to ferrite as in design 4 from the previous section. The considered designs 
and their corresponding flux plots are shown in Fig. 8 and obtained using static 2D-FEA simulation. As can be 
seen in Figs. 8(a) and (b), the use of trapezoidal magnets results in significant leakage flux near the rotor inner 
surface, which is inefficient for torque transmission in comparison to rectangular PMs. This is due to the flux 
leakage path through the shaft. Additionally, it is hard to retain the pole with larger span in order to come up 
with comparable performance to the baseline design. The series magnet combination can produce a comparable 
torque density to the parallel design case (Figs. 8(c) and (d)). However, the utilization of LRM in this case is fairly 
low since ferrite behaves as a flux barrier and intensifies the flux along the flux path generated by rare-earth 
magnets. This results in little interaction between LRMs with rare-earth magnets due to the fact that the 
operating points of the rare-earth magnets and LRMs are different. 

 
Fig. 8. Different hybrid magnet combination with the corresponding field plot and torque performance (NdFEb-DY is in blue 
color, while the green is ferrite): (a) Trapezoid shape 1, (b) Trapezoid shape 2, (c) Series shape 1, (d) Series shape 2, (e) 
Parallel shape 1, (f) Parallel shape 2 
 

The parallel combination can produce comparable transferred torque because the flux is uniformly distributed in 
the lamination with less leakage inward the shaft. A better performance for the parallel combination can be 
achieved if the LRM is sandwiched between the NdFeB layers as shown in Fig. 8(f). This results in stronger field 
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in the HSR core compared to case (e). Table VIII shows the torque performance for the six different 
combinations. It can be concluded that the design with the ferrite sandwiched between the NdFeB magnets is 
the optimum combination. 

Table VIII: Torque capability of different hybrid combinations 
Case Magnet Shape Torque (N.m)   
(a) Trapezoid shape  1 800 
(b) Trapezoid shape  2 878 
(c) Series shape  1 895.5 
(d) Series shape  2 893 
(e) Parallel shape  1 850 
(f) Parallel shape  
 

2 
 

922 

 

D. Cost Analysis 
The feasibility of the reduced rare-earth topologies was shown in terms of performance. It will be seen that in 
terms of cost minimization, the proposed topology is even more encouraging. Based on the material prices 
in Table II, design 1 costs more with lower torque density in comparison to design 2. Clearly, ferrite is the lowest 
in performance and cost when it is used alone. A cost reduction of ~17 and 14 % can be achieved in designs 4 
and 5 respectively compared to designs 1 and 2 as shown in Fig. (9). For the hybrid topologies, design 4 has 
lower torque capability compared to design 5 with even higher cost (by ~ 54 %). 

 
Fig. 9. Materials cost for various designs. 

SECTION IV. Mechanical Design Options 
In all the previous analysis, it was assumed that there are no bridges in the LSR and HSR. Even though this 
assumption should not change the relative results, or the trends discussed, this section will cover some potential 
options to build the rotors either without bridges or with bridges but minimize the PM flux leakage in the 
bridges. 

A. HSR with Dual Phase Material 
The mechanical design is critical especially for high tip speeds. Based on the obtained results in the previous 
section, design 5 is chosen to be the optimum design for further consideration. The first option to be 
investigated is the adoption of a dual-phase magnetic material for the HSR laminations. Nonmagnetic regions 
can be selectively introduced in rotor bridges [24]. This will enable increasing the thickness of these bridges to 
withstand higher mechanical stresses without worrying about the PM flux leakage in these regions. Also, the 
yield strength of the non-magnetic regions of the dual-phase magnetic material is roughly twice that of the 
magnetic regions which further help withstand higher mechanical stresses due the high tip speed. Consequently, 
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design 5 was modeled in 2D-FEA utilizing the dual-phase magnetic material with bridge thickness of thickness 
1mm to show the potential of such material. As can be seen, the nonmagnetic bridges lead to minimum leakage 
flux (Fig. 10(b)) compared to significant leakage in case of a magnetic bridges (Fig. 10(c)). It should be noted also 
that the torque was reduced by 9% to be 869 N.m when the bridges are magnetic as in (Fig. 10(c)). 

 
Fig. 10. Dual-phase material design: (a) Indication of the dual-phase material location (b) flux plot with dual-phase material 
(c) flux plot without the dual-phase material. 
 

B. HSR with Dovtalied Design 
Another option is to have the HSR laminations dovetailed to a non-magnetic shaft. A similar dovetailed design 
was presented in [25]. This dovetailed approach can be implemented alone and lead to a segmented rotor 
structure with no bridges (as was demonstrated in [25]) or it can be potentially implemented in conjunction with 
the dual-phase magnetic material as shown in Fig, 11 to further strengthen the HSR. The reduction in torque 
when implementing the dovetailed shaft was ~26 N.m to be 929.2 N.m. this reduction maight be reduced with 
further analysis. 

 
Fig. 11. Potential design with dovetailed shaft and dual-phase material in the HSR. 
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C. LSR Design 
Regarding the LSR, due to the large number of poles, it might be difficult to implement similar options discussed 
for the HSR. In this case, the simplest solution is to have the PMs buried inside the LSR laminations, effectively 
creating an IPM rotor. In this case, the bridges will present an electromagnetic penalty as expected. Table 
IX shows the torque reduction with respect to the bridges thickness. As can be seen, the torque production is 
very sensitive to the bridge thickness. Since in this study, we have been assuming that the LSR is stationary, a 
bridge thickness of a 0.5 mm or thinner can be used. 

Table IX. Designs torque capability 
Bridges Thickness (mm)  Torque (N.m) 
0  929.2 
0.25  857.1 
0.5  781 
0.75  714.5 

 

D. Dynamic Torque 
Based on 0.5 mm LSR bridge thickness, the average torque of the design is 781 N.m. The final parameters for 
this optimal design are listed in Table X. The dynamic torque on the FMP-Ps over one electrical cycle is shown 
in Fig. 12. As can be seen, the peak-to-peak torque ripple on the FMP-Ps is about 3 N.m average which is below 
0.3% of the average torque. This is considered fairly low. In addition to the torque production, it is expected that 
the proposed topology with the blend of magnets will have higher efficiency due to the significantly higher 
electrical resistivity of ferrite. 

 
Fig. 12. Dynamic torque on the FMP-Ps. 
 

Table X. Final design parameters 
Parameter  Value 
HSR Dual-phase bridge thickness (mm)  1 
LSR bridge thickness (mm)  0.5 
HSR Inner Radius (mm)  46 
LSR Outer Radius (mm)  123 
Torque Density (kN. m/m_)  191.1 
Specific Torque (kg)  29.06 
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SECTION V. Conclusion 
A MG with a blend of NdFeB and ferrite magnet has been proposed. It was shown that the torque density of the 
proposed topology is ~6% lower the baseline rare-earth design while the specific torque is maintained due to 
the lower density of ferrites. The material cost is reduced by 21%. In addition, some options to enable high tip 
speeds in the HSR while minimizing/eliminating PM flux leakage in the bridges have been discussed. In addition 
to the torque production, it is expected that the proposed topology with the blend of magnets will have higher 
efficiency due to the significantly higher electrical resistivity of ferrite. 
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