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Abbreviations: VO2, Vanadium dioxide; TCR, temperature 
coefficient of resistance; VOX, vanadium oxide mixture; MIT, metal-
insulator transition; mK, milli-Kelvin

Introduction 
Metal oxide semiconductor materials are widely used in sensing 

applications.1,2 Vanadium dioxide (VO2) shows temperature induced 
metal insulator transition with several orders of magnitude change 
in resistivity above room temperature (transition temperature 
near 68°C).3,4 Among many other applications, it has been studied 
as uncooled bolometer for several decades, because of its large 
temperature coefficient of resistance (TCR).4,5 The temperature 
coefficient of resistance (TCR) reported for vanadium oxide mixture 
(VOX) is more than 5% per°C 6 and 25% per °C in a vanadium oxide 
diode.7 For pure vanadium dioxide (VO2), TCR value can reach 
more than 70% near the transition temperature. But this material 
suffers from thermal hysteresis, which results in poor measurement 
reproducibility. 

By chromium and niobium co-doping, TCR can be increased 
to 11.9%/°C with practically no thermal hysteresis.8 Strelcov et 
al.,9 proposed and tested a novel gas sensor using single crystal 
VO2 nanowire.9 Single crystal VO2 nanowire (VO2) has sharp and 
superior transition properties.10 In addition, small size, low thermal 
capacitance, and high surface to bulk ratio of VO2 nanostructure, 
make them potential candidate to be researched as a high sensitivity 
gas sensor. A shift in MIT transition voltage is used as the indicator 
for a change in environments (e.g., molecular composition, pressure, 
and temperatures etc.). Maximum sensitivity of VO2 nanowire sensor 
is ∼10-3V/Pa for light gases at low pressure range. Functionalizing 
the NW surface with catalysts, which promotes exothermic reactions, 
VO2 based sensor can be used for various chemical and gas sensing 
with increase in sensitivity and selectivity. Byon et al.,11 demonstrated 
a highly responsive and selective H2 sensor, based on electro thermally 
induced MIT of Pd-nanoparticles decorated VO2 nanowire.11 Simo 
et al.,12 reported a room temperature H2 sensor using VO2(A phase) 
nanobelt pellet with concentration limit about 0.17ppm.12 To the 
best of our knowledge, biosensing using VO2 material is largely 
unexplored. Many biological process and biochemical reaction in 
living cell generates or absorbs heat. 

These temperature changes are usually in milli-Kelvin (mK). 
Inomata et al.,13 demonstrated that a VO2 thermal sensor can detect 
cholesterol and glucose with minimum 30 and 15µM detection limit 
respectively.13 However, poor thermal isolation associated with their 
diaphragm structure results in high power consumptions. A cantilever 
based suspended structure could give better thermal isolation and 
consequently high signal to noise ratio with low power consumptions. 
In this article we perform a simulative study on VO2 cantilever based 
thermal sensor for biosensing applications. 

Device description 

In this article, we investigate the VO2 based thermal sensor 
performance for measuring the biomolecule concentration. Cr and Nb 
co-doped VO2 will be used for the active sensing material for its large 
TCR and no thermal hysteresis behavior as mentioned above. Our 
sensor’s schematic is shown in Figure 1. There are two VO2 layers, the 
first will act as the sensing layer and other will be the reference layer. 
The reference sensor is primarily used to cancel out the background 
and measurement noise. The sensing VO2 layer is deposited on top of 
a silicon cantilever. This suspended structure will provide isolation 
to external signal and thermal noise. For more thermal isolation a 
Si3N4/TiO2 layer can be used on top of the silicon cantilever before 
depositing the VO2 layer.

The semiconducting material’s resistance change with temperature 
is expressed using the following Arrhenius relationship14 
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Where, k is Boltzmann’s constant, Ro is a constant, and ∆E is the 
activation energy. From this equation, we can solve for the TCR as 
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Device temperature response can be expressed as13

		  * * *
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Where, 
Det

V is the detection voltage, G is the amplifier gain, TCR 
is the VO2 temperature coefficient of resistance, and 

Supply
V . In our 
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Abstract

Transitional metal oxides get considerable interest in electronics and other engineering 
applications over few decades. These materials show several orders of magnitude metal-
insulator transition (MIT) triggered by external stimuli. Bio-sensing using Vanadium 
dioxide (VO2), a MIT material is largely unexplored. In this short article, we investigate 
the VO2 based thermal sensor performance for measuring the biomolecule concentration. 
Active sensing layer is chromium and niobium co-doped VO2 as it shows 11.9%/°C 
temperature coefficient of resistance (TCR) with practically no thermal hysteresis. Our 
study demonstrated that VO2 based microsensors can be used to measure the biomolecule 
concentrations, which produce temperature changes in the mK range. For 1mK change in 
temperature, the maximum detection voltage is near 0.4V.
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study 
Supply

V  is kept constant at 5V,  T∆ is assumed in the range 
1-10mK. The sensor sensitivity can be expressed as
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Figure 1 VO2 sensor schematic for bio-molecule concentration detection.

Result and discussion 
It is evident from Figure 2 that for 1mK change in temperature, 

the maximum detection voltage is near 0.4V, which is above the noise 
base. With Tungsten doping15 or interfacial strain engineering,16 the 
transition temperature can be tuned to the biological system’s ambient 
temperature. At this temperature, TCR value is in the range of 10-
70%.8,17 and the maximum detection voltage is about 3.73V for 1mK 
change in temperature. For a gain value of 1000 and TCR=5.0%, we 
can achieve 0.25V/mK sensitivity using our device. Still, an intensive 
investigation is required for design optimization to reduce the power 
consumption. High latent heat (over ~51kJ/kg) of MIT transition 
indicates that VO2 sensor is power hungry18. Tuning the transition 
temperature15,16 close to the sensing environment will help to reduce 
power consumption and increase sensitivity with improved response 
time. 

Figure 2 VO2 sensor detection voltage as a function of temperature change 
in a biochemical process A) For different amplifier gain at TCR=5.0%. B) For 
different TCR values at gain=1000.

Conclusion 
In this study, we demonstrate that VO2 based microsensors can be 

used to measure the biomolecule concentrations based on their mK 
temperature sensitivity. In future work, we will address other technical 
issues, required when designing robust sensors, such as:

I.	Response time.

II.	Sensitivity.

III.	Reliability.
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