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Abstract 
Purpose 
We study the problem of spectrum estimation from transmission data of a known phantom. The goal is to reconstruct 
an x‐ray spectrum that can accurately model the x‐ray transmission curves and reflects a realistic shape of the typical 
energy spectra of the CT system. 
Methods 
Spectrum estimation is posed as an optimization problem with x‐ray spectrum as unknown variables, and a Kullback–
Leibler (KL)‐divergence constraint is employed to incorporate prior knowledge of the spectrum and enhance 
numerical stability of the estimation process. The formulated constrained optimization problem is convex and can be 
solved efficiently by use of the exponentiated‐gradient (EG) algorithm. We demonstrate the effectiveness of the 
proposed approach on the simulated and experimental data. The comparison to the expectation–maximization (EM) 
method is also discussed. 
Results 
In simulations, the proposed algorithm is seen to yield x‐ray spectra that closely match the ground truth and 
represent the attenuation process of x‐ray photons in materials, both included and not included in the estimation 
process. In experiments, the calculated transmission curve is in good agreement with the measured transmission 
curve, and the estimated spectra exhibits physically realistic looking shapes. The results further show the comparable 
performance between the proposed optimization‐based approach and EM. 
Conclusions 
Our formulation of a constrained optimization provides an interpretable and flexible framework for spectrum 
estimation. Moreover, a KL‐divergence constraint can include a prior spectrum and appears to capture important 
features of x‐ray spectrum, allowing accurate and robust estimation of x‐ray spectrum in CT imaging. 
 

1 Introduction 
In x‐ray imaging, determination of the x‐ray energy spectrum is an important task for many applications, 
including patient dose calculation, beam‐hardening correction, and dual‐energy material decomposition.1-
3 For an energy resolved CT system, the x‐ray spectrum represents the product of the polychromatic 
source spectrum and the detector spectral response. Interest in estimating the x‐ray spectrum of a CT 
system is recently growing due to the development of spectral CT with a photon‐counting detector.4-6 

One common approach for reconstructing the x‐ray energy spectrum is based on transmission 
measurements acquired by a CT scanner through a calibration phantom of known thicknesses and 
materials. This method formulates the measurement process of x‐ray photons into a linear system of 
equations, and after acquiring calibration transmission measurements, the x‐ray spectrum is recovered by 
inverting the linear system. While this inverse problem of spectrum estimation is intrinsically unstable due 
to its ill‐conditioning, a number of methods have been proposed for obtaining a stable and accurate 
solution. 

Using a physical model with few parameters effectively reduces the degrees of freedom of the problem, and 
allows for stable estimation of the spectrum by expressing a low‐dimensional representation of the x‐ray 
spectrum.7-9 The parameters are fitted with least squares or other data discrepancy objectives. 
Meanwhile, another line of work investigates an iterative perturbation method10 that minimizes 
differences between measured and calculated transmission curves using low‐Z attenuators. 

Various forms of regularization have been also employed to avoid the ill‐conditioning of the problem and 
ensure stable spectrum estimation. For instance, a minimization of the sum of a X2 objective term and a 
nonlinear regularization term has been performed11 to stabilize the final solution. The expectation–
maximization (EM) method12 iteratively solves the ill‐conditioned linear system and truncates the 
iteration of the algorithm at some finite iteration. Here, early stopping serves as a sort of regularization as 
it prevents overfitting of the model. Singular value decomposition (SVD) is a more direct approach that 
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attempts to directly invert the linear system to estimate each bin contents of spectrum.13, 14 The SVD 
method often involves truncating smaller singular values and singular vectors of the system matrix, also 
known as truncated singular value decomposition (TSVD), since these components make almost no 
contribution to the measured data and are susceptible to the noise.15 The obtained spectrum from TSVD is 
sufficiently accurate to model the measured transmission curve, but it has the drawback that positivity of 
the spectrum is not guaranteed and the solution exhibits negative values in some energy positions. 
Recently, an extension of the TSVD method, called prior truncated singular value decomposition (PTSVD), 
has been proposed16 to further incorporate prior information about the statistical nature of the 
transmission data and about high‐frequency spectral components such as characteristic peaks. In 
particular, by exploiting basis vectors for the null space of the system matrix, the authors reconstruct an x‐
ray spectrum that accurately reproduces the physical shape of the ground truth spectrum. 

In this work, we present a new x‐ray spectrum reconstruction method based on transmission 
measurements of a calibration phantom. Our aim is to formulate spectrum estimation as an optimization 
problem, for which an efficient first‐order iterative algorithm is employed to solve the resulting 
optimization problem rapidly. The proposed method is capable of incorporating prior information about 
the physical shape of an x‐ray spectrum, which enables accurate and realistic estimation of x‐ray spectrum 
by including the characteristic lines of the target spectrum in the final estimation. Although the method can 
be used for any spectrum estimation task, in this work, the focus is on photon‐counting CT. The effective 
spectrum estimate, which includes the source spectrum and detector response, is needed for material 
decomposition into basis material sinograms5 and for direct inversion into basis material images.6, 17 Our 
optimization‐based approach can also be useful when the spectral calibration of an imaging system is 
combined with other optimization‐based algorithms for spectral CT image reconstruction. A simulation 
study is carried out to demonstrate the utility of the method on spectrum determination, and the method is 
further evaluated on the measured transmission data through a step wedge phantom. 

2 Materials and methods 
2.A. Transmission measurement model 
We assume the standard transmission measurement model for an x‐ray imaging system — writing 𝐶𝐶�ℓ to 
denote the number of transmitted photon counts along ray ℓ which encodes different source positions, 
then the forward data model after discretization is expressed as 

 

𝐶̂𝐶ℓ =  𝑁𝑁ℓ   � 𝑠𝑠𝑖𝑖
𝑖𝑖

 exp �− � 𝑋𝑋𝑚𝑚ℓ 𝜇𝜇𝑚𝑚i
𝑚𝑚

� , 

 (1) 

where 𝑁𝑁ℓ is the expected number of photon counts detected along ray ℓ in the absence of an object, 𝑠𝑠𝑖𝑖 is the 
normalized distribution of x‐ray photons at frequency i in the absence of an object, 𝜇𝜇𝑚𝑚i is the linear x‐ray 
attenuation coefficient for material m at frequency i, and 𝜇𝜇𝑚𝑚i is the total amount of material m lying along 
ray ℓ. The model given in 1 is idealized and neglects numerous physical factors such as x‐ray scatter. 

The x‐ray spectrum, given by 𝑠𝑠𝑖𝑖 across frequencies indexed by i, comprises the energy spectrum of the x‐
ray source and the spectral response of the detector. While we may assume that the x‐ray source spectrum 
can be modeled to a certain degree, the detector spectral response is typically unknown due to many 
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nonideal physical effects of the detector. For instance, photon‐counting detectors can discriminate incident 
x‐ray photons based on their energies, allowing for the CT data acquisition in each energy window, and 
thus are useful for material decompositions to more than two basis functions; however, they also exhibit 
undesirable technical issues such as pulse pile‐up and charge sharing,4 potentially resulting in serious 
artifacts in the reconstructed images. Therefore, in reconstructing photon‐counting CT images, it is crucial 
to accurately calibrate the spectral response of the detectors for further reduction of image artifacts. 

The spectrum estimation approach studied in this work inverts the forward model 2 to estimate the x‐ray 
spectrum, {𝑠𝑠𝑖𝑖}, from noisy transmission measurements, {𝐶𝐶ℓ}. The difficulty inherent in inverting 1, 
however, is twofold. First, the system matrix describing the attenuation of x‐ray photons is highly low rank, 
leading to the ill‐conditioned linear system of the spectrum estimation problem. In particular, some form of 
regularization is necessary for reliable estimation of the x‐ray spectrum. Second, the physical nature of an 
x‐ray spectrum involves multiple structures in its shape, namely, the low‐frequency component arising 
from bremsstrahlung radiation, which covers the entire range of the energy bins, and the high‐frequency 
component arising from characteristic radiation, which produces sharp peaks at certain energy locations — 
for instance, see Fig. 1(b) in Section 2.G for a typical x‐ray spectra. The challenge is to recover both 
structures simultaneously, so that the estimated spectrum accurately represents the spectral response of 
the x‐ray imaging system. 

 
Figure 1 Left: (a) Step wedge phantom used for spectral calibration in x‐ray imaging. Right: (b) The initial 
x‐ray spectrum. [Color figure can be viewed at wileyonlinelibrary.com] 
 
In this work, we exploit prior knowledge of the x‐ray spectrum to design a suitable regularizer when we 
formulate an optimization problem; in this way, we can allows for recovering both structures and at the 
same time overcome the ill‐conditioning of the problem. 

2.B. EM method 
Expectation‐maximization is a widely used optimization method, which has frequently been applied to the 
problem of x‐ray spectrum estimation.12, 18 Broadly speaking, EM is a general framework for solving a 
maximum likelihood estimation problem when the obtained data is incomplete. In the setting of spectrum 
determination, the incompleteness of the data arises from the fact that the detected photon count along ray 
ℓ is observed through a sum of transmitted photon counts across frequencies i, namely, 𝐶𝐶ℓ ≈ ∑ 𝑋𝑋ℓ𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖  for the 
system matrix 𝑋𝑋ℓ𝑖𝑖. Under the Poisson noise, EM then finds the maximum likelihood estimate {𝑠̂𝑠𝑖𝑖}, 
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𝑠̂𝑠  =  arg min
𝑠𝑠  ��  

ℓ

�� 𝑋𝑋ℓ𝑖𝑖𝑠𝑠𝑖𝑖
𝑖𝑖

− 𝐶𝐶ℓ  log �� 𝑋𝑋ℓ𝑖𝑖𝑠𝑠𝑖𝑖
𝑖𝑖

���, 

 

 

by applying the following iterations 

 

𝑆𝑆𝑖𝑖
(𝑡𝑡+1) = 𝑆𝑆𝑖𝑖

(𝑡𝑡)

∑ 𝑋𝑋ℓ𝑖𝑖ℓ
 ∑

𝑋𝑋ℓ𝑖𝑖𝐶𝐶ℓ

∑ 𝑋𝑋ℓ𝐼𝐼’𝑆𝑆𝑖𝑖’
(𝑡𝑡)

𝑖𝑖’
ℓ  for all 𝑖𝑖.(2) 

Here, the updated equation is derived by minimizing the EM objective function 𝑄𝑄�𝑠𝑠; 𝑠𝑠(𝑡𝑡)�, given by 

 

𝑄𝑄�𝑠𝑠; 𝑠𝑠(𝑡𝑡)� =  ∑ 𝑋𝑋ℓ𝑖𝑖𝑆𝑆𝑖𝑖ℓ𝑖𝑖  − 𝐶𝐶ℓ  𝑋𝑋ℓ𝑖𝑖𝑆𝑆𝑖𝑖
(𝑡𝑡)

∑ 𝑋𝑋
ℓ𝐼𝐼’𝑆𝑆𝑖𝑖’

(𝑡𝑡)𝑖𝑖’
log�𝑋𝑋ℓ𝑖𝑖𝑆𝑆𝑖𝑖� (3) 

Note that the multiplicative form of the update Eq. 2 automatically guarantees non‐negativity of the 
solution as long as the initial value is set to non‐negative. 

For an underdetermined and noisy linear system, the maximum likelihood solution is known to overfit to 
the data and yield undesirable structure of the x‐ray spectrum. Hence, it is desirable to minimize the data 
discrepancy function (the transmission Poisson likelihood function in this case) but possibly subject to 
constraints and/or regularization on the spectrum. Meanwhile, it is known that the iterations 2 are 
guaranteed to converge to the solution {𝑠̂𝑠𝑖𝑖} for any initial point. Therefore, if run to convergence, the EM 
iterations should reach the solution {𝑠̂𝑠𝑖𝑖} and thus fail to deliver accurate estimation of the x‐ray spectrum. 
In particular, if we try to incorporate prior information about the x‐ray spectrum into the initialization of 
EM, we would expect it to still end up at the same solution, {𝑠̂𝑠𝑖𝑖}. To avoid this issue, early stopping of EM is 
often employed12 to regularize the algorithm path and avoid overfitting to the data. Note that, due to the 
global convergence property of EM, the idea of incorporating prior information via initialization makes 
sense only in the context of early stopping. In our supplementary material, we provide simulation results 
that show the effect of early stopping on the EM method (see Fig. S1). 

While EM enjoys many empirical advantages for spectrum reconstruction, our motivation to derive a 
spectrum reconstruction method from an optimization framework is to enhance interpretability and 
flexibility of the reconstruction procedure; for EM, it is not clear what kind of regularization early stopping 
is performing for the algorithm, and other desirable constraints on the spectrum, such as a normalization 
constraint, cannot be easily incorporated. On the other hand, our framework is capable of including 
multiple constraints on the spectrum, and moreover, we do not require any form of early stopping but 
rather fully minimize target optimization problem for accurate reconstruction of x‐ray spectrum. Our 
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approach might also allow us to build towards simultaneous spectrum estimation and basis material maps 
reconstruction in spectral CT. 

2.C. Spectrum estimation via KL‐divergence constraint 
Now we turn to the development of our method to estimate the x‐ray spectrum from transmission 
measurements through an optimization problem. 

We assume that an initial spectrum, namely a prior estimate of the x‐ray spectrum, is available such that 
the initial value exactly captures the characteristic peaks of the target spectrum (without such information, 
we cannot hope to recover details of the spectral curves such as the characteristic peaks). Denoting the 
initial value by {𝑆𝑆𝑖𝑖

ini}, we measure the distance of the x‐ray spectrum {𝑠𝑠𝑖𝑖} to the initial value via (weighted) 
Kullback–Leibler (KL) divergence, dKL

w (𝑆𝑆, 𝑆𝑆𝑖𝑖
ini), where for positive vectors 𝑥𝑥 ≥  0,  𝑦𝑦 >  0 and a weight 

vector 𝑤𝑤 >  0, the KL divergence is defined by 

 

dKL
w (𝑥𝑥, 𝑦𝑦) = ∑ 𝑤𝑤𝑖𝑖 �𝑥𝑥𝑖𝑖 log �𝑥𝑥𝑖𝑖

𝑦𝑦𝑖𝑖
� + 𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖�𝑖𝑖 .(4) 

When using the uniform weight, that is, 𝑤𝑤𝑖𝑖 − 1 for all i, we simply write dKL (𝑥𝑥, 𝑦𝑦). The KL divergence is 
convex in (𝑥𝑥,  𝑦𝑦) and satisfies dKL

w (𝑥𝑥, 𝑦𝑦) ≥ 0 for 𝑥𝑥 ≥  0,  𝑦𝑦 >  0, and dKL
w (𝑥𝑥, 𝑦𝑦) = 0 if and only if 𝑥𝑥 =  𝑦𝑦. In 

order to stabilize inversion of the data model, a KL‐divergence constraint, that is, a bound on dKL
w �𝑆𝑆, 𝑆𝑆𝑖𝑖

ini�, is 
placed on the estimated x‐ray spectrum {𝑠𝑠𝑖𝑖} to control the deviation from the initial value. 

Specifically, the x‐ray spectrum is reconstructed through the following constrained minimization problem: 

 

minimize
𝑠𝑠  (dKL𝑐𝑐;  𝑋𝑋𝑋𝑋)

 
   

subject to dKL
w �𝑠𝑠;  𝑠𝑠ini� ≤ 𝑐𝑐, ∑ 𝑠𝑠𝑖𝑖 = 1, 𝑠𝑠𝑖𝑖  ≥ 0𝑖𝑖   for all 𝑖𝑖, (5) 

for a constraint parameter 𝑐𝑐 ≥  0, where the KL divergence is employed for both the data discrepancy 
function and the constraint function. Note that the data discrepancy function here, namely, KL divergence 
between measured data and calculated photon counts, is equivalent to the transmission Poisson likelihood 
(TPL) function up to constant terms19 hence the solution of the problem 5 is equivalent to a constrained 
maximum likelihood estimate of the counts data under a Poisson noise assumption. The TPL function can 
be useful even when the measured counts data is inconsistent with the Poisson assumption, since it assigns 
more weight to higher count measurements.17 In terms of the weight vector w in 5, in this work, we 
investigate two possible weighting schemes, 𝑤𝑤𝑖𝑖 = 1 and 𝑤𝑤𝑖𝑖  ∝ ∑ 𝑋𝑋ℓ𝑖𝑖ℓ   for the system matrix {𝑋𝑋ℓ𝑖𝑖}. The latter 
choice helps to treat different spectral densities 𝑠𝑠𝑖𝑖 on a more equal basis, since each column of the system 
matrix {𝑋𝑋ℓ𝑖𝑖} that contributes to the measured photon counts has different scalings. The ℓ ‐norm 
constraint, ∑ 𝑆𝑆𝑖𝑖 = 1𝑖𝑖 , ensures normalization of the resulting solution, which endows physical meaning to 
the reconstructed x‐ray spectrum. 
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Although the description of the data model 1 is idealized, the proposed optimization‐based approach is 
flexible and can include other physical effects, such as x‐ray scatter as well as other nonideal detector 
effects, in the estimation process by adding constraints or modifying the objective function. The use of KL 
divergence as a constraint function can be valid for any given optimization formulations. In terms of 
computation, the problem 5 is a convex program, so any convex solver can be applied to solve the problem 
efficiently. For instance, we have implemented the method using the “cvx” package in Matlab with solver 
MOSEK which solves the problem 5 in less than a second. Alternatively, we can apply the exponentiated‐
gradient (EG) algorithm, which is a simple first‐order algorithm that iteratively performs a descent step 
followed by projection onto the feasible region of x‐ray spectra. See Section 2.E for a detailed discussion of 
the EG algorithm and convergence guarantees for obtaining optimal solution of the problem 5. 

Care must be taken in specifying the initial value {𝑆𝑆 
ini} as it has a great influence on the final estimation of 

the x‐ray spectrum. If the employed initial value reflects realistic structure of a spectral curve, the resulting 
solution can provide accurate estimation of the target spectrum and therefore accurately reproduce 
transmission measurements. For instance, in the real system spectrum estimation task, one can obtain 
relatively accurate estimate of the x‐ray source and this is sufficient for our method to produce better 
spectrum estimate that calibrates both the inaccurate source and the detector response. Other techniques 
have been also developed in the literature18 to generate initial estimates that contain the characteristic 
peaks of the x‐ray source and the K‐edges of the detector, which is also applicable in our setting. In the 
simulation study (see Section 3.A), we further investigate the robustness of the method with respect to the 
initial spectrum. 

2.D. Connection to maximum entropy method 
The proposed method based on KL divergence is closely related to the well‐known principle of maximum 
entropy in the existing literature. This principle state that, of all possible solutions that are consistent with 
the data, we choose the one with the largest entropy − ∑ 𝑆𝑆𝑖𝑖log 𝑆𝑆𝑖𝑖,𝑖𝑖  or with the least divergence (or relative 
entropy) ∑ 𝑆𝑆𝑖𝑖log 𝑆𝑆𝑖𝑖

𝑆𝑆𝑖𝑖
ini ,𝑖𝑖  if the prior information {𝑆𝑆𝑖𝑖

ini} is known. The maximum entropy principle has been 

widely studied in the following decades, with applications to a broad range of problems including image 
reconstruction from incomplete and noisy data.20 We refer the reader to Shore and Johnson21 for 
justification of the principle. 

In the context of spectrum estimation, applying the maximum entropy principle with prior 
information {𝑆𝑆𝑖𝑖

ini} leads to the following constrained optimization problem: 

 

minimize
𝑠𝑠  dKL(𝑆𝑆, 𝑆𝑆 

ini )
 

   

subject to dKL
 (𝐶𝐶, 𝑋𝑋𝑋𝑋) ≤ 𝐶𝐶, ∑ 𝑠𝑠𝑖𝑖 = 1, 𝑠𝑠𝑖𝑖  ≥ 0𝑖𝑖   for all 𝑖𝑖, (6) 

where we again employ the TPL discrepancy function as a measure of the fit to the data, and 𝐶𝐶 >  0 is a 
parameter that limits the amount of this discrepancy. 

Now, since the problem is convex in the variable {𝑠𝑠𝑖𝑖}, we can find a one‐to‐one correspondence between 
the parameters c in 5 (where we choose 𝑤𝑤𝑖𝑖 = 1) and C in 6 such that the solutions from both optimization 
problems exactly match; this, in turn, implies that the problem 5 is equivalent to the problem 6, and 
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particularly shows the equivalence between the proposed approach and the maximum entropy principle. 
This provides a justification of the use of KL divergence as a constraint function for spectrum estimation. 
On the other hand, note that the convexity of the TPL discrepancy function is essential here. While the KL‐
divergence constraint can be applied to the data models including other physical factors, as long as the 
resulting data discrepancy function is convex, the equivalence to the maximum entropy principle always 
holds. This interpretation can be useful in gaining further insight into the constrained approach with KL 
divergence. 

2.E. Exponentiated‐gradient algorithm 
While the problem 5 can generally be solved by any convex solver, in some applications, it is useful to have 
an iterative algorithm that solves the problem more explicitly. In this work, we solve this optimization 
problem using the EG algorithm,22 that is designed to solve general convex objectives over the 
simplex 𝑆𝑆: ∑ 𝑆𝑆𝑖𝑖 = 1, 𝑆𝑆𝑖𝑖 ≥ 0𝑖𝑖 for all 𝑖𝑖. The EG algorithm can also be viewed as a special case of mirror descent 
with the mirror map given as the negative entropy function.23 

First, we write the constrained problem 5 in the equivalent Lagrangian form: 

 

minimize
𝑠𝑠  dKL(𝐶𝐶, 𝑋𝑋𝑋𝑋) + 𝜆𝜆 ∙ dKL

w �𝑠𝑠;  𝑠𝑠ini�
 

   

subject to ∑ 𝑠𝑠𝑖𝑖 = 1, 𝑠𝑠𝑖𝑖  ≥ 0𝑖𝑖   for all 𝑖𝑖, (7) 

where λ is a regularization parameter that controls the amount of regularizing effect and the constraints 
represent the feasible region of x‐ray spectra. Again, there is a one‐to‐one correspondence 
between c in 5 and λ in 7, due to the convexity of the problem. 

The EG algorithm applied to the above problem yields the following iterations: initialize 𝑆𝑆(0) =
𝑆𝑆ini, fix the step size 𝜂𝜂 >  0, then for steps 𝑡𝑡 =  0,  1,  2, …, 

 

⎩
⎪
⎨

⎪
⎧Set 𝑔𝑔(𝑡𝑡) = ∇𝑠𝑠dKL�𝑐𝑐;  𝑋𝑋𝑋𝑋(1)� + 𝜆𝜆∇𝑠𝑠dKL

w �𝑠𝑠(1), 𝑠𝑠ini�;

Set 𝑠𝑠𝑖𝑖
(𝑡𝑡+1)   ←  𝑠𝑠𝑖𝑖

(𝑡𝑡) exp �−𝜂𝜂 ∙ 𝑔𝑔𝑖𝑖
(𝑡𝑡)� for all 𝐼𝐼;

Set 𝑠𝑠(𝑡𝑡+1)  ← 𝑆𝑆(𝑡𝑡+1)

‖𝑆𝑆(𝑡𝑡+1)‖� 1

    (8) 

Now examining the steps given in 8, we see that the update equation of 𝑠𝑠𝑖𝑖
(𝑡𝑡+1) is multiplicative as analogous 

to the EM iterations 2. Particularly, this guarantees automatic inclusion of non‐negativity constraints in the 
estimated spectrum, as long as the initial spectrum is non‐negative. On the other hand, a distinct feature of 
the EG algorithm is that at every iteration the normalization constraint is enforced by the projection 
step 𝑆𝑆(𝑡𝑡) �𝑆𝑆(1)�1�  (more precisely, the projection is performed with respect to the KL divergence), whereas 
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the EM method can give no such guarantees on the final solution. The projection step can be optional, and is 
not needed if the normalization constraint is not included in 7. To compare the EG and EM algorithms, 
while the EM algorithm seeks to minimize 3 at each iteration to reach the maximum likelihood solution (if 
EM is run to convergence), EG instead seeks to take each step that monotonically decreases 3 with 
additional KL‐divergence regularization term. Both algorithms will produce a sequence of estimates that 
will decrease the (regularized) data discrepancy at each iteration. 

The convergence of the EG algorithm has been well established in the literature — for instance, it is shown 
that the objective gap between the point at iteration t and the optimal solution decays with the 
rate 𝒪𝒪 �1

𝑡𝑡
�.23 In Appendix A, we provide a simple way to test for convergence by checking whether the KKT 

conditions is satisfied within a predefined threshold 𝜀𝜀 >  0.24 Implementing the algorithm is quite 
straightforward, but one needs to specify the step size 𝜂𝜂 >  0 at every iteration. In general, the step size can 
be chosen to be fixed or with a line search method. For the numerical experiments studied in this work, we 
perform the EG algorithm with a fixed step size, for which the algorithm is observed to converge rapidly to 
the optimal solution. Details for our implementations of the algorithm can be found in Section 2.F. 

2.F. Simulation study 
A step wedge phantom is modeled and simulated, consisting of aluminum and polymethyl methacrylate 
(PMMA). The thicknesses of aluminum and PMMA are each selected in the range of 
{0, 0.635, 1.270, 1.905, 2.540} and {0, 2.540, 5.080, 7.620, 10.160}, respectively, giving a total of 25 
combinations across the step wedge. The linear attenuation coefficients are obtained using the NIST 
table.25 Three kinds of polychromatic spectra, sampled at 1 keV intervals between 10 and 100 keV, are 
employed to either generate transmission measurements, or to serve as an initial value for the effective 
spectrum estimation; those spectra are determined from the experimental data described in Section 2.G, 
and represent a typical spectral response of the photon‐counting CT system for energy windows with 
thresholds at 25, 40, and 60 keV. Using the experimentally determined spectra allows us to model the 
rational shape of the x‐ray spectrum. 

Given the true spectrum, the expected total transmitted photon counts {𝐶̂𝐶ℓ} are computed according to the 
data model 1 with expected incident photon counts 𝑁𝑁ℓ = 105 for each ray ℓ. The noisy 
measurements {𝐶𝐶ℓ} are then generated with an independent Poisson model from which the true x‐ray 
spectrum is reconstructed. Additionally, we generate another set of noisy transmission measurements 
through 20 different thicknesses of water which are varied from 0 to 20 cm at equal intervals, and where 
the NIST values are used to obtain the energy‐dependent attenuation coefficients. These measurements are 
not included in the reconstruction of the x‐ray spectrum, but will serve as a “validation” set to assess the 
reproducibility of the spectrum estimation methods. 

The x‐ray spectrum is reconstructed by solving the optimization problem 7 with an implementation of the 
EG algorithm, as described in Section 2.E. We use the uniform weighting scheme throughout the simulation 
study. Recall that 𝜆𝜆 is the user‐defined parameter to control the trade‐off between the data fidelity of the 
model and the regularization on the KL divergence of the solution. We 
vary 𝜆𝜆 over 𝜆𝜆  ∈   {20,  30,  … ,  1000}, and select the value that minimizes the root mean square error 
(RMSE) 
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RSME(𝜆𝜆) = �∑ (𝑆𝑆𝑖𝑖(𝜆𝜆)−𝑆𝑆𝑖𝑖
true)2𝑖𝑖

∑ (𝑆𝑆𝑖𝑖
true)2𝑖𝑖

(9) 

where {𝑆𝑆𝑖𝑖(𝜆𝜆)} is the estimated spectrum given this choice of 𝜆𝜆, and �𝑆𝑆𝑖𝑖
true� is the true spectrum. The 

spectrum achieving the minimum RMSE will be close to the true spectrum in shape, and thus can reliably 
reproduce transmission curves for any configurations of materials. For step size, we fix 𝜂𝜂 =
1.3 × 10−5 throughout the simulation. We run the EG algorithm 8 until convergence, where we check the 
convergence of the algorithm as given in Appendix A. For the present work, we set the threshold 𝜖𝜖 = 10−8. 

2.G. Experimental study 
The proposed KL‐divergence approach is evaluated on the experimental data which is performed on a 
bench‐top x‐ray system consisting of a microfocus x‐ray tube and a photon‐counting cadmium‐zinc‐
telluride (CZT) detector comprised of 128 detector pixels, of which 96 are usable. A step wedge phantom 
made of aluminum and PMMA, shown in Fig. 1(a), are measured at the same dimensions with the simulated 
step wedge as described in Section 2.F. We refer the reader to our coauthors’ paper6 for more details of the 
experimental setup. 

The initial spectrum is generated with the SPEC78 software from the IPEM78 report,26 which contains the 
expected spectrum exiting the tube for a 100 kV beam with 1 mm of aluminum filtration. Based on the 
measurement sets, reconstruction is performed with the KL‐divergence regularized problem 7 to estimate 
effective spectral response of the photon‐counting detectors for each energy window and detector pixel. 
Determining a good regularization parameter is critical in obtaining an accurate x‐ray spectrum. The RMSE 
rule 9 cannot be applied here, since the true spectrum is unknown in the experimental setting. A validation 
method is another attractive option to choose a good value of λ, for which we randomly partition the 
transmission measurements into the training data and test data and select λ that best predicts the test data 
using the x‐ray spectrum reconstructed from the training data. While the validation method is observed to 
perform well in the simulation setting, we find that when applied to the experimental setting, the estimated 
spectra tend to highly ovefit the experimental data and show unphysical fluctuations in the resulting 
curves. This is attributed to the systematic dependencies present in the measured photon counts, which 
can arise from various nonideal physical effects of photon‐counting detectors that have not been included 
in the data model 1. 

For the current experiment, we instead rely on an alternative procedure for selecting the optimal value of λ. 
The selection rule is based on the observation that the bremsstrahlung spectrum typically reveals unimodal 
structure in the corresponding energy region. The initial spectrum, shown in Fig. 1(b), exhibits 
characteristic peaks at 58, 67, 69 keV, but in other regions, the curve is smooth and nearly unimodal — it 
has a local minimum at 𝑆𝑆11

ini (not visible in the figure), and a local maximum at 𝑆𝑆33
ini. We expect to see this 

type of simple structure in the true spectrum as well. We therefore choose regularization parameters λ that 
yield the spectrum whose bremsstrahlung part reflects the same unimodal structure as the initial 
spectrum. More specifically, consider the spectrum {𝑠𝑠𝑖𝑖} constrained to the bremsstrahlung part of the 
frequency curve, by removing the characteristic peaks at 58, 67, 69 keV: 

 

𝑠𝑠brem =  (𝑠𝑠10, . . . ; , ;  𝑠𝑠59, . . . , 𝑠𝑠66, 𝑠𝑠68, 𝑠𝑠70, . . . , 𝑠𝑠100), 
 

that is, the energy spectrum of photons is decomposed into 𝑠𝑠brem and 𝑆𝑆char = 𝑆𝑆58,  𝑆𝑆67,  𝑆𝑆69. We choose the 
regularization parameter by taking the smallest value of λ such that the estimated spectrum, 𝑠𝑠(𝜆𝜆), exhibits 
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at most one local minimum and one local maximum, when the characteristic peaks are removed — that is, 
at most one local minimum and one local maximum in the vector 𝑠𝑠(𝜆𝜆)brem, the bremsstrahlung part of the 
estimated spectrum. We expect that values of λ which are too small, leading to insufficient regularization, 
would yield an estimated spectrum 𝑠𝑠(𝜆𝜆) that overfits to the data, which would typically exhibit many local 
minima and maxima; therefore, our procedure ensures that we choose a value of λ that is not too small, to 
avoid overfitting. 

It is shown in Section 3.B that the approach for estimating λ works reasonably well for our system, yielding 
realistic looking spectra of the system for each energy window. For other photon‐counting systems, it may 
be necessary to devise other methods for estimating λ. 

3 Results 
3.A. Simulation study 
Now, we perform a numerical experiment on the simulated transmission measurements to examine the 
empirical performance of the proposed method, as well as compare to the EM method. More simulation 
results can be found in our supplementary material (see Fig. S2). 

Figures 2(a) and 2(b) show the spectral curves reconstructed from transmission measurements by 
employing the ground truth and initial spectrum shown in the figures, respectively. For each given ground 
truth and initial spectrum, we simulate 20 independent sets of transmission measurements and obtain the 
best spectrum solutions by running the EG algorithm. Hence, each plot of Figs. 2(a) and 2(b) shows 
reconstructed x‐ray spectrum for 20 different sets of measurements. Due to the noise, there exist some 
variation between the spectral curves. As seen in the figures, however, the spectra generated by the 
method are concentrated near the respective true spectra and furthermore every single spectrum 
resembles the shape of its target with a high precision. More importantly, the results further show the 
robustness to the shapes of the chosen ground truth and initial spectra; the method continues to perform 
well, as long as the initial spectrum shares the same locations of the characteristic peaks as the true 
spectrum even though the relative intensities can be substantially different. This property can be 
particularly favorable for spectral calibration of a photon‐counting detector, since spectral information 
from one energy window can be useful for estimating the spectral response of other windows. 

 
Figure 2 Spectrum estimation from simulated transmission measurements by use of KL. Different types of true and 
initial x‐ray spectrum are employed as shown in black solid line and black dotted lines, respectively. In each setting, 
spectrum reconstruction is performed for 20 independent sets of transmission measurements. (a and b): Spectral 
curves for 20 different trials. The band formed by the curves shows variation between the reconstructed x‐ray 
spectra. (c and d) The RMSE curves computed by 9 for different regularization parameters. Each point represents an 
average over 20 trials. [Color figure can be viewed at wileyonlinelibrary.com] 
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The lower row of Fig. 2 displays the RMSE plots, averaged over 20 trials, with respect to regularization 
parameter λ. For the two plots, the method yields larger error at first, but drops rapidly thereafter and 
achieves a minimum at λ in the range of 200–400. The error remains relatively lower in a broad range of λ’s 
around the minimum, which illustrates that the method is numerically stable relative to the choice of λ. At 
larger values of λ, bias is induced in the solution and the error from the true spectrum begins to grow again. 
In comparison to the other case, the RMSE curve is placed higher in Fig. 2(c), which results from the fact 
that the employed initial spectrum is farther from the truth than the other case. 

Figures 3(a) and 3(b) show comparison of the spectra fitted by the KL‐divergence‐based method and the 
EM method from simulated transmission measurements. For EM, the number of iterations is varied from 
10 to  and the optimal number is chosen based on the RMSE rule described in 9. While it is seen that EM 
tends to estimate the true spectrum more faithfully (the averaged RMSE values by the best case KL and EM 
solutions are 0.0350 and 0.0184, respectively), the spectrum representations by both methods generally 
exhibit comparable performance in recovering physical shape of the true spectrum. Moreover, the utility of 
the KL‐divergence approach lies in the mathematical formulation of spectrum estimation as an 
optimization problem. 

 
Figure 3 Comparison of spectrum estimation from simulated transmission measurements by use of KL and EM. 
Results for spectral curves, fitted by KL and EM, respectively, are displayed for 20 different trials. [Color figure can be 
viewed at wileyonlinelibrary.com] 
 
Next, we evaluate the prediction of the transmission curves using the spectrum estimates based on water 
transmission measurements at 20 thicknesses. We use the ℓ2‐distance for log counts 

 

∑ �log(𝐶𝐶ℓ’)  − log�𝐶̂𝐶ℓ′��
2

ℓ    (10) 

to measure the prediction performance. Figure 4(a) shows the prediction error of the KL‐divergence 
approach plotted against the varying regularization parameter, as well as the prediction by the best case 
EM solution [which, recall, minimizes the RMSE criterion in 9] and the true spectrum for reference (note 
that even the true spectrum cannot perfectly reproduce the transmission data due to the noise). For small 
values of λ, the KL‐divergence approach performs nearly as well as the best case EM solution and slightly 
less than the true spectrum, demonstrating its capability to represent the measurement process; for higher 
values of λ, however, the performance rapidly degrades which results from the underfitting of the model. 
Figure 4(b) displays the actual transmission curves predicted by both methods, as well as the simulated 
water transmission data and the transmission curve predicted by the initial spectrum, and Fig. 4(c) 
compares the relative differences between the predicted and water transmission curves. Without loss of 
generality, here we only give a representative result from different trials. Again, it is clearly seen that both 
predicted transmission curves are accurate enough to predict the water transmission data and show the 
significant improvement over the transmission curve predicted by the initial spectrum. The residuals also 
behave similarly across the water transmission data. 
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Figure 4 (a) Prediction error in the transmission curves derived from the x‐ray spectra using KL and EM. For the EM 
error, the best case solution is used to produce the transmission curve, which is irrelevant with respect to the 
regularization parameters. Each point represents an average over 20 trials. (b) Plot of the predicted transmission 
curves for the reference material water. The x‐axis indicates the thicknesses index ℓ’ for water, and the y‐axis is 
plotted on a logarithmic scale. The results for KL and EM are nearly identical and cannot be distinguished in the plot. 
(c) Relative differences between the measured and the predicted transmission curves for the reference material 
water. The relative differences for KL and EM behave similarly across thicknesses lengths. 

3.B. Experimental study 
Results for experimental data are shown in Fig. 5. Each panel in the upper row shows the reconstructed x‐
ray spectra for three different energy windows, as well as the initial spectrum depicted as the dotted line. 
Within each panel, the curves are obtained by running the EG algorithm from 96 different detector pixels, 
where the uniform weighting scheme is used and step size is set to 𝜂𝜂 = 1.3 × 10−5. While there is 
substantial variation in the reconstructed x‐ray spectra across the detector pixels, the selection method 
based on the unimodality consistently yields spectra that resemble realistic shapes of the bremsstrahlung 
and characteristic lines. Compared to the results for high energy window, the spectra estimated for low and 
medium energy windows appear to follow the realistic shape more faithfully. The spectral curves displayed 
in high energy window seem to be less stable and exhibit more fluctuations in the bremsstrahlung region. 
We suspect that this is attributed to overfitting to the transmission measurements for high energy window, 
namely, the model agree with the given set of measurements too closely. Since the measurements are 
highly noisy, the spectra that overfits become tailored to fit noise in the data as well, resulting in a wider 
band of spectra as shown in 5(c). On the other hand, comparing the prediction errors [calculated based 
on ℓ2‐distance for log counts 10] shown in the lower row of Fig. 5, the error of the transmission model 
in 5(f) is lower than the other windows in 5(d) and 5(e). Since the prediction error is calculated with the 
same measurements that have been used to reconstruct the spectra, this can also result from the overfitting 
phenomenon in the high energy window. 

 
Figure 5 Spectrum estimation from the measured transmission data by use of KL. Each column represents the results 
for different spectral windows. (a, b, and c) Spectral curves for each energy window. The plots show the solution 
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curves for 96 different detector pixels. (d, e, and f) Prediction error in the transmission curves derived from the x‐ray 
spectra shown above across detector pixels. [Color figure can be viewed at wileyonlinelibrary.com] 
 
Of course we can increase the penalization parameter λ to avoid this problem of overfitting, but the 
resulting spectra will now be strongly biased towards the initial spectrum. In principle, the problem of 
calibrating spectral response for high energy window is more difficult than the other cases, because the 
consecutive photons with low energies can be wrongly counted as the single photon with high energy, 
leading to a degradation of the spectral measurements in the high energy window. 

To improve the stability of the estimated spectra for high energy window, we next implement the method 
that imposes KL‐divergence regularization on the spectrum with weights proportional to the sum of each 
column of the system matrix, that is, 𝑤𝑤𝑖𝑖  ∝ ∑ 𝑋𝑋ℓ𝑖𝑖.ℓ  Figure 6 shows spectral curves reconstructed by the 
three methods, the original (uniform weight) KL‐divergence‐based method, the column weighted version, 
and the EM method, from the measured counts data for different spectral windows. Here, we fix the 
detector pixel (pixel number = 34) such that the spectrum returned by the KL‐divergence approach 
exhibits some fluctuation in the high energy window. We can see that employing the column weighted KL 
divergence removes such unphysical shape in the resulting curve and makes the spectrum more smooth in 
the bremsstrahlung energy region. Moreover, it is interesting to see that in all energy windows, the column 
weighted KL divergence and the EM method yield x‐ray spectra that are close in shape, but have some 
deviations from the x‐ray spectra generated by the KL‐divergence‐based method. We observe this 
phenomenon not only for the measured data at this particular detector pixel, but across all detector pixels. 
This is in sharp contrast to the results shown in simulation study where both the KL‐divergence approach 
and the EM method yield x‐ray spectra that closely resemble the ground truth. Under the presence of 
inconsistency between the data model 1 and the physical transmission model, the KL‐divergence‐based 
method can perform quite differently in comparison to EM and the column weighted KL‐divergence 
approach. 

 
Figure 6 Comparison of spectrum estimation from the measured transmission data by use of KL, EM, and weighted KL. 
Results are shown for one particular detector pixel (pixel number = 34). Each panel shows the reconstructed spectra 
for different spectral windows. 
 
In Figure 7, the prediction performance is evaluated using the fitted x‐ray spectra shown in Fig. 6, where 
the error is computed according to the squared log count distance 10. We can see that all three methods 
significantly improve the prediction of the transmission curves compared to the initial spectrum. The 
residuals between the measured and predicted transmission curves are shown in the lower row of Fig. 7. 
While the residuals generally behave similarly between the three methods, in the case of low and medium 
energy windows, the EM method generates larger residual errors for small thicknesses indexes; this is 
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attributed to the fact that spectrum normalization constraint is not imposed in the EM solutions, which 
leads to errors in the transmission curves when there is no object in the scan system (thickness index 1 in 
the figure corresponds to the absence of an object). For high energy window, the three methods appear to 
perform similarly in terms of predicting the transmission data, though the curves between the KL‐
divergence approach and EM are more similar than the column weighted KL divergence. 

 
Figure 7 Comparison of spectrum estimation from the measured transmission data by use of KL, EM, and weighted KL. 
Results are shown for one particular detector pixel (pixel number = 34). The x‐axis indicates the thicknesses index ℓ 
for the step wedge. The upper row of each panel shows prediction in the transmission curves derived from the x‐ray 
spectra shown in Fig. 6. The resulting curves are nearly identical and cannot be distinguished in the plot. The lower 
row of each panel shows the residuals (relative differences) between the measured and the predicted transmission 
curves. 
 

It is also worth noting that comparing to Fig. 4(c) from the simulated data, the plots displayed in 
Fig. 7 clearly show visible trends in the residual errors, indicating the presence of systematic errors due to 
the unmodeled physics in the measurement process. While the spectrum estimation model is known to 
capture flux‐independent effects, the extent to which the estimated spectra account for flux‐dependent 
effects depends on the particulars of the experimental setup: test object, detector hardware, x‐ray source 
beam shape, quality, and intensity. This suggests the need for employing more realistic modeling of 
physical factors, as well as the given experimental setup, in order to account for the limitation of the 
method and enable more accurate and effective spectrum estimation. 

Finally, we mention that it is difficult to compare various spectrum estimation models with the EM model 
because it involves early stopping, which cannot easily be specified in a closed mathematical expression. In 
fact, this is one of the motivations of developing pure optimization approaches. They are precisely and 
concisely described mathematically, and as a result the difference between models (e.g., uniform weights vs 
column normalized weights) is also easy to appreciate. 

4 Discussion and conclusions 
In this paper, we have developed a constrained optimization problem for reconstructing x‐ray spectrum 
from transmission measurements through known thicknesses of known materials. The proposed method 
places a (weighted) KL‐divergence constraint on the spectrum variable which improves numerical stability 
of the inversion process and allows to incorporate prior knowledge on the spectrum. The formulated 
optimization problem is a convex program over the simplex, which we propose to solve based on the EG 
algorithm. Both numerical simulations and experimental results show that the method can yield realistic x‐
ray spectra that can accurately reproduce the spectral response of the CT system. Furthermore, the method 
that employs column normalization as a weight vector appears to perform well in the experimental data 
when the measurements are highly noisy and inconsistent with the data model. 

In realistic applications, the measured data is affected by many physical factors such as an x‐ray scatter and 
various physical processes involved in a photon‐counting detector. The simple data model assumed in this 
work is not sufficient to describe the realistic measurement process of the imaging system, and some 
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corrections and extensions are required to further improve the quantitative accuracy of the reconstructed 
spectrum. For the x‐ray scatter effects, one can perform scatter correction for spectrum estimation on the 
EM method.27 An analogous approach can be considered to combine with the method presented in this 
work. 

While the numerical experiments demonstrate a comparable performance with the proposed method and 
EM, we emphasize the other benefits of our algorithm relative to EM. First, the proposed approach using a 
KL‐divergence constraint is a general optimization framework for spectrum estimation that supports 
different data discrepancy functions and can easily incorporate other desirable constraints on the x‐ray 
spectrum. The data model described in 1 can be generalized to take the nonideal detector physics into 
account in the acquisition of the photon counts. By formulating the inversion of the data model into the 
optimization problem, the parameters specifying the detector effects can be estimated within our 
framework of spectrum estimation. Besides the flexibility of the method, our formulation also provides the 
advantage in terms of interpreting spectrum determination from transmission measurements. In 
particular, under the assumption of the simple data model 1 and using the TPL discrepancy function, the 
equivalence to the maximum entropy method is established which enriches our understanding of the 
spectrum estimation problem in connect to the long history of the maximum entropy literature. The 
flexibility and interpretability of the proposed method makes it promising for spectrum determination in 
practical spectral calibration applications. 

Finally, incorporating the proposed optimization calibration procedure in the framework of simultaneous 
spectral calibration and spectral CT image reconstruction can be an interesting future research direction. In 
previous work on spectral CT image reconstruction, we have incorporated unknown spectral response 
scaling factors in the spectral CT data model and we performed simultaneous image reconstruction and 
estimation of these scaling factors.6, 17 This approach allowed for the reduction of ring artifacts in the 
reconstructed images. Investigating the possibility of combining with the KL divergence for imposing 
constraint on the spectral components can potentially be useful for autocalibration of the spectral response 
of the imaging system during the spectral CT image reconstruction. 
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Appendix A: Convergence test 
The convergence test of the exponentiated‐gradient algorithm has appeared in the literature,24 which we 
provide here for the sake of completeness. The Lagrangian function associated with the problem 7 is given 
by 
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ℒ(𝑠𝑠, 𝑣𝑣, 𝛾𝛾) =  dKL(𝑐𝑐, 𝑋𝑋𝑋𝑋) + 𝜆𝜆 ∙  dKL
w  �𝑠𝑠, 𝑠𝑠ini� −  � 𝑣𝑣𝑖𝑖𝑠𝑠𝑖𝑖 + 𝛾𝛾

𝑖𝑖

   �� 𝑠𝑠𝑖𝑖  −  1
𝑖𝑖

� . 

 

By the KKT condition, the optimal solution satisfies the following conditions: 

1. . 

� 𝑆𝑆𝑖𝑖 = 1
𝑖𝑖

 and 𝑠𝑠𝑖𝑖 ≥ 0∀𝑖𝑖. 

2. . 

𝑣𝑣𝑖𝑖 ≥ 0∀𝑖𝑖. 

3. . 

𝑣𝑣𝑖𝑖𝑠𝑠𝑖𝑖 ≥ 0∀𝑖𝑖. 

4. . 

∇𝑆𝑆ℒ(𝑠𝑠, 𝑣𝑣, 𝛾𝛾) = 0 

Set 𝛾𝛾 =   − min �∇𝑠𝑠, dKL (𝑐𝑐;  𝑋𝑋𝑋𝑋) +  𝜆𝜆∇𝑠𝑠dKL
w  �𝑠𝑠, 𝑠𝑠ini�� and 𝑣𝑣 = ∇𝑠𝑠, dKL (𝑐𝑐;  𝑋𝑋𝑋𝑋)  +  𝜆𝜆∇𝑠𝑠dKL

w  �𝑠𝑠, 𝑠𝑠ini� +

𝛾𝛾 ∙ 1, where min is taken componentwise. Then, it can be checked that the conditions (2) and (4) 
are satisfied. Also, the condition (1) is trivial since the optimal solution is always feasible from the 
update Eq. 8. It remains to check the complementary slackness condition (3). By the conditions 
(1) and (2), we know that  is non‐negative, so the condition (3) is implied if ∑ 𝑣𝑣𝑖𝑖𝑠𝑠𝑖𝑖 = 0𝑖𝑖 . 
Therefore, we can test convergence of the algorithm by checking ∑ 𝑣𝑣𝑖𝑖𝑠𝑠𝑖𝑖 = 𝜖𝜖𝑖𝑖  for a predefined 
threshold  >  0. 
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Here, we provide simulation results that investigate the effect of early stopping on the x-ray spectrum 
reconstruction using the EM algorithm. Figure 1 shows the spectral curves estimated by EM for different 
numbers of iterations. The transmission data are simulated 20 as described in the simulation study (see 
Section III.A in the main text). As seen in the figure, by stopping after 300 iterations, the EM method 
recovers the ground truth spectrum remarkably well and both spectra are indistinguishable in the plot; 
however, for low iteration number 25 (e.g. 10 iterations), the resulting spectrum is still biased towards the 
initial value, and for high iteration number (e.g. 5, 000 iterations), the EM method appears to overfit to the 
transmission data and therefore cannot generalize to transmission measurements beyond the given 30 
data set. While determining a good iteration number is crucial to implement the EM method, Sidky et al. 1 
demonstrates the robustness of the EM method, i.e. the estimated x-ray spectrum is not strongly sensitive 
to the choice of number of iterations. In practice, the number of 35 iterations can be determined by 
preliminary simulation studies.  

Next, we investigate how the choice of the initial spectrum affects on the performance of the proposed KL 
divergence based method. We fix the ground truth spec40 trum as depicted in Figure 2(a) with black solid 
line, and vary the initial spectrum as shown in Figure 2(a). We repeat the estimation process as done in 
Section III.A, but now with a wider range of λ ∈ {20, 30, . . . , 2000} as larger regularization parameters are 
likely to be chosen when 45 the initial spectrum is more precise. Figure 2(b) shows the RMSE plots for the 
three initial values, each of which are averaged over 20 trials. As clearly indicated by the plot, spectrum 
estimation with better initial guess leads to improvements in the accuracy and appears to be more 50 
stable against λ, compared to the poor initial guess. This finding is further confirmed by comparing Figure 
2(c) and (d), where using better initial guess, Figure 2(c), results in narrower band between the spectral 
curves than the poor initial guess, Figure 2(d).  

1E. Y. Sidky, L. Yu, X. Pan, Y. Zou, and M. Vannier, “A robust method of x-ray source spectrum estimation 
from transmission measurements: Demonstrated on computer simulated, scatter-free transmission 
data,” J. Appl. Phys., vol. 97, art. no. 124701, 2005. 

 
Fig. 1 Spectrum estimation from simulated transmission measurements by use of EM. A detailed 
description of the simulation setting is given in the main text. Panel (a) shows the ground truth x-ray 
spectrum (black solid line) and the initial x-ray spectrum (black dotted line). The remaining three panels 
show the estimated spectra by EM for dfferent number of iterations. 



 
 
Fig. 2  Spectrum estimation from simulated transmission measurements by use of KL. Different types of 

true and initial x-ray spec- trum are employed as depicted  in panel (a).  In each setting, spectrum 
reconstruction is performed for 20 independent sets of  trans- mission measurements.  Panel (b):  
Spectral curves for 20 different trials.   The  band   formed  by  the  curves  shows  variation  between 
the reconstructed x-ray spectra.  Panels  (c),(d):  The RMSE curves for  different  regularization  
parameters.   Each  point  represents  an average over 20 trials. 
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