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Abstract 
Purpose 
Identifying an appropriate tube current setting can be challenging when using iterative 
reconstruction due to the varying relationship between spatial resolution, contrast, noise, 
and dose across different algorithms. This study developed and investigated the 
application of a generalized detectability index (𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔) to determine the noise parameter to 
input to existing automated exposure control (AEC) systems to provide consistent image 
quality (IQ) across different reconstruction approaches. 

Methods 
This study proposes a task‐based automated exposure control (AEC) method using a 
generalized detectability index (𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔). The proposed method leverages existing AEC 
methods that are based on a prescribed noise level. The generalized 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 metric is 
calculated using lookup tables of task‐based modulation transfer function (MTF) and noise 
power spectrum (NPS). To generate the lookup tables, the American College of Radiology 
CT accreditation phantom was scanned on a multidetector CT scanner (Revolution CT, GE 
Healthcare) at 120 kV and tube current varied manually from 20 to 240 mAs. Images were 
reconstructed using a reference reconstruction algorithm and four levels of an in‐house 
iterative reconstruction algorithm with different regularization strengths (IR1–IR4). The 
task‐based MTF and NPS were estimated from the measured images to create lookup 
tables of scaling factors that convert between 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 and noise standard deviation. The 
performance of the proposed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method in providing a desired IQ level over a 
range of iterative reconstruction algorithms was evaluated using the American College of 
Radiology (ACR) phantom with elliptical shell and using a human reader evaluation on 
anthropomorphic phantom images. 

Results 
The study of the ACR phantom with elliptical shell demonstrated reasonable agreement 
between the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 predicted by the lookup table and 𝑑𝑑’ measured in the images, with a 
mean absolute error of 15% across all dose levels and maximum error of 45% at the 
lowest dose level with the elliptical shell. For the anthropomorphic phantom study, the 
mean reader scores for images resulting from the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method were 3.3 (reference 
image), 3.5 (IR1), 3.6 (IR2), 3.5 (IR3), and 2.2 (IR4). When using the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method, the 
observers’ IQ scores for the reference reconstruction were statistical equivalent to the 
scores for IR1, IR2, and IR3 iterative reconstructions (𝑃𝑃 >  0.35). The 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method 
achieved this equivalent IQ at lower dose for the IR scans compared to the reference scans. 

Conclusions 



A novel AEC method, based on a generalized detectability index, was investigated. The 
proposed method can be used with some existing AEC systems to derive the tube current 
profile for iterative reconstruction algorithms. The results provide preliminary evidence 
that the proposed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC can produce similar IQ across different iterative 
reconstruction approaches at different dose levels. 

1 Introduction 
Radiation exposure from CT imaging is a growing public health concern, despite the benefits of CT 
imaging.1, 2 Numerous methods have been developed to reduce CT radiation exposure such as 
automated exposure control (AEC),3 organ‐based tube current modulation,4 iterative 
reconstruction algorithms,5-7 and various image‐based denoising techniques.8-11 Automated 
exposure control techniques improve the consistency of image quality (IQ) by regulating the tube 
current across varying patient size, shape, and attenuation of anatomy. The tube current is 
modulated in the angular and/or longitudinal directions to account for the varying patient size 
and anatomy. Previous studies demonstrated that AEC methods can reduce patient radiation dose 
by 40% to 50% by modulating the tube current while maintaining sufficient IQ for the 
diagnosis.12, 13 

CT manufacturers use different approaches for prescribing the target metric for the AEC system. 
Some manufacturers use noise index or noise standard deviation as the prescribed IQ 
descriptor,3, 14 while others use a reference image or reference tube‐current–time product as 
input to the AEC algorithm.3, 15 In noise‐descriptor‐based AEC systems, the operator inputs the 
desired noise level, and the system is then calibrated for different patient sizes to derive the tube 
current profile to meet the prescribed level of IQ. 

Noise‐based AEC systems were initially designed for filtered back projection reconstruction, 
which is a linear reconstruction algorithm and for which noise standard deviation is inversely 
proportional to the square root of the radiation dose. However, this relationship is not necessarily 
valid when images are reconstructed using iterative reconstruction algorithms.16-18 In addition, 
noise standard deviation does not fully describe overall IQ, as images with the same noise 
standard deviation but reconstructed by different algorithms may vary in noise texture, which 
affects the perceived IQ.19-21 

Iterative reconstruction techniques have demonstrated substantial noise reduction potential,22-
24 which provides an opportunity to reduce CT radiation dose, with dose reduction varying from 
50 to 82% across different algorithms and studies.25 Unlike filtered back projection 
reconstruction, iterative reconstruction algorithms involve nonlinear processing and have 
different relationships between noise standard deviation and dose. Traditional metrics of IQ, such 
as noise and contrast‐to‐noise ratio, are insufficient for iterative reconstruction algorithms due to 
variations in noise texture and changes in spatial resolution with contrast.25-27 Identifying an 
appropriate tube current setting may be challenging when using iterative reconstruction due to 
the varying relationship between noise, dose, and contrast across different iterative algorithms. 
For example, previous studies using human and model observers demonstrated decreased low‐
contrast detectability when using iterative reconstruction at low doses.28 A previous study 
demonstrated using the Channelized Hotelling Observer (CHO) to optimize protocols and dose 
settings to maintain low‐contrast detectability for iterative reconstruction.29 

https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0001
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0002
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0003
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0004
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0005
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0007
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0008
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0011
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0012
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0013
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0003
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0014
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0003
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0015
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0016
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0018
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0019
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0021
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0022
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0024
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0025
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0025
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0027
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0028
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0029


The purpose of this study was to investigate the application of a generalized detectability index 
(𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔) to automatically determine the noise parameter to input to existing AEC systems for 
different reconstruction approaches to obtain consistent IQ. The generalized detectability index is 
an IQ metric that considers spatial resolution, noise magnitude, noise texture, and the properties 
of the object to be detected. In the proposed approach, a desired 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 value is identified based on 
a reference noise level. The noise level needed to achieve this IQ level by a different reconstruction 
algorithm is then identified. In this work, the proposed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method was implemented by 
leveraging the noise‐standard‐deviation‐based AEC that is available on some scanners, by using a 
lookup table of conversion factors that can be calculated by scanning the American College of 
Radiology (ACR) phantom. 

The ability of the proposed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method to provide a desired IQ level over a range of 
iterative reconstruction algorithms was evaluated through a reader evaluation on phantom 
images and compared to a noise‐standard‐deviation‐based AEC method. 

2 Generalized detectability index (𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔) and proposed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method 
The detectability index (𝑑𝑑′) is a task‐based signal‐to‐noise ratio IQ metric that combines the 
contrast‐dependent spatial resolution, noise properties, and an analytical representation of the 
task to be detected into a single figure of merit.30, 31 The detectability index d′, corresponding to 
a non‐prewhitening observer model, is expressed as 

 

𝑑𝑑’2 =
(∬ 𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2 (𝑢𝑢, 𝑣𝑣)𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2  (𝑢𝑢, 𝑣𝑣) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)2

∬ 𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2  (𝑢𝑢, 𝑣𝑣)𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2  (𝑢𝑢, 𝑣𝑣) 𝑁𝑁𝑁𝑁𝑁𝑁 (𝑢𝑢, 𝑣𝑣) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 

(1) 

where 𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 represents the frequency content of the signal, 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
  is the modulation transfer 

function that represents how frequency content is transferred through the imaging system for a 
specific contrast level, and NPS is the noise power spectrum, which represents the noise variance 
across spatial frequencies. The 𝑑𝑑’ metric has been used for various IQ studies, including evaluating 
the IQ and dose reduction potential of iterative reconstruction algorithms32-34 and for optimizing 
tube current modulation, reconstruction parameters, and gantry tilts in cone‐beam CT.35 
If the NPS is normalized by its integral across frequency, the NPS can be written as a product of 
the normalized NPS, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, and noise variance, 𝑎𝑎2, thereby separating noise magnitude from noise 
texture. With this modification, the expression for 𝑑𝑑’ in Eq. 1 can be rewritten as 

 

𝑑𝑑’2 = �∬ 𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2 (𝑢𝑢,𝑣𝑣)𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2  (𝑢𝑢,𝑣𝑣) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�
2

𝜎𝜎2 ∬ 𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2  (𝑢𝑢,𝑣𝑣)𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2  (𝑢𝑢,𝑣𝑣) 𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁 (𝑢𝑢,𝑣𝑣) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 (2) 
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𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is independent of radiation dose, but changes with the shape, size, and contrast of the object 
of interest. 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  and 𝑛𝑛𝑛𝑛𝑛𝑛S are generally independent of dose for filtered back projection 
reconstruction, except at very low dose, for which electronic noise correction may be employed. 
For iterative reconstruction algorithms, the amount of blurring may vary with the dose/noise 
level. Previous work reported the behavior of 𝑛𝑛𝑛𝑛𝑛𝑛 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  across a range of dose levels for 
the reference reconstruction algorithm and the four strengths of iterative reconstruction used in 
this study.36 
Equation 2 can be written as: 

 

𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔
2 = 𝐾𝐾2

𝜎𝜎2(3) 

 

𝐾𝐾2 = �∬ 𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2 (𝑢𝑢,𝑣𝑣)𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2  (𝑢𝑢,𝑣𝑣) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�
2

𝜎𝜎2 ∬ 𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2  (𝑢𝑢,𝑣𝑣)𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2  (𝑢𝑢,𝑣𝑣) 𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁 (𝑢𝑢,𝑣𝑣) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 (4) 

where K is a scalar conversion factor that depends on the reconstruction method and task object 
that is identified to represent IQ for a protocol, and 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 is the generalized metric, calculated 
using the scalar conversion factor, that we propose to represent overall IQ. Using Eq. 3, we can 
convert between noise standard deviation and the generalized detectability index for a specific 
reconstruction algorithm. This formulation enables identifying the noise standard deviation 
needed to produce a specific 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 value for a specific reconstruction algorithm using a 
precomputed lookup table of K scaling factors. Existing noise‐based AEC methods can then be 
used to derive the tube current to provide this level of noise standard deviation. Iterative 
reconstruction algorithms may alter the perceived IQ by changing the noise texture and/or spatial 
resolution of the image. The proposed method is designed to adjust the standard deviation of the 
IR image to compensate for the changes in noise texture and spatial resolution to maintain the 
reference level of IQ. 
Figure 1 presents a flowchart of the proposed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method for the case in which a reference 
noise level, or a reference image with acceptable IQ, is available for a reference reconstruction 
algorithm, for example, filtered back projection. The objective of the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC system is to 
identify the noise standard deviation level required by an IR algorithm to provide 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 equivalent 
to the reference image or protocol. The method first requires that an object be identified to 
represent the IQ needs of the particular imaging task (task object). For tasks that require 
detection of low‐contrast objects, such as a liver lesion evaluation, a low‐contrast object of 20–
40 mm size could be selected to represent the image feature whose visualization should drive the 
derivation of the tube current profile. For high‐contrast detectability tasks, such as detecting 
contrast‐filled vessels in CT angiography, a higher contrast object of 1–2 mm size could be selected 
to represent the image feature that should drive the derivation of the tube current profile. For 
combined tasks, the task with the higher current requirement should drive tube current selection. 
The proposed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method requires a lookup table of K‐factors for the reference 
reconstruction algorithm and the desired IR algorithm. The generation of these K‐factor lookup 
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tables will be described in Section 3. As illustrated in Fig. 1, the proposed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method 
consists of the following steps. 

 
Figure 1 Flowchart of the proposed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method. [Color figure can be viewed at wileyonlinelibrary.com] 

1. Identify the noise standard deviation of the reference image,𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  
2. Define an object to represent the imaging task, for example, size, contrast, and shape to be 

detected. 
3. Calculate the Figure 1 Flowchart of the proposed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method. [Color figure can be 

viewed at wileyonlinelibrary.com] 
4.  of the reference image using the K lookup table for the reference reconstruction algorithm 

and task object. 

 

𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  =
𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
  (5) 

4. Calculate the standard deviation, 𝜎𝜎𝐼𝐼𝐼𝐼, required of the IR algorithm to meet this 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 level, using 
the K lookup table for the IR algorithm. 

 

𝜎𝜎𝐼𝐼𝐼𝐼 =
𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
(6) 

The expressions in Eqs. 5 and 6 can be combined to relate the standard deviation of the iterative 
reconstruction to the standard deviation of the reference image at the same 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 level 
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𝜎𝜎𝐼𝐼𝐼𝐼 =
𝐾𝐾𝐼𝐼𝐼𝐼_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  (7) 

5. Input the desired standard deviation of the IR algorithm, 𝜎𝜎𝐼𝐼𝐼𝐼, into the existing noise‐based AEC 
system, which will derive the required tube current profile. 

As can be seen in Eq. 7, the proposed method calculates the noise standard deviation of the IR 
algorithm required to meet the desired 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 IQ level by scaling the reference standard deviation. 

3 Generation of K‐factor lookup tables 
The proposed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method requires lookup tables of the K scaling factors defined in Eq. 4, 
which depend on𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , and 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, for each investigated reconstruction 
algorithm. 𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is analytically modeled based on the shape, size, and contrast of the task object to 
be detected, while 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  depends on the contrast of the task object. 

In this study, 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  and 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 were estimated for each investigated reconstruction algorithm 
using the images of the ACR CT phantom. The ACR phantom was scanned on a clinical scanner 
(Revolution CT, GE Healthcare, Waukesha, WI) using the scan parameters and fixed tube current 
levels listed in Table 1. For each fixed tube current setting (20 to 160 mAs in steps of 20 mAs), 80 
images were reconstructed at 2.5 mm slice thickness using the filtered back projection (FBP) 
reconstruction available on the scanner (Revolution CT, GE Healthcare), referred to as the 
reference protocol. Images at each tube current setting were reconstructed with four strengths of 
an in‐house iterative reconstruction method (IR1–IR4), where a higher strength refers to more 
regularization. The IR algorithm used in this study contains advanced noise modeling and object 
modeling. To speed up the reconstruction process, the system optics modeling is simplified in the 
algorithm, as this is the most time‐consuming portion of a model‐based iterative reconstruction 
method. This IR algorithm has achieved similar reconstruction speed as FBP. 

Table 1. Summary of CT acquisition parameters and experimental conditions. All scans were performed on 
a clinical CT scanner (Revolution CT, GE Healthcare). For Studies 2 and 3, the tube current profile was 
derived by the automated exposure control (AEC) on the scanner (SmartmA) from the prescribed noise 
indices (see Sections 5 and 6)  

K‐factor lookup 
table generation 

Study 1: evaluation for 
case of ideal noise‐
based AEC 

Study 2: evaluation 
using existing noise‐
based AEC 

Study 3: evaluation 
using human 
reader evaluation 

Tube voltage 
(kV) 

120 120 120 120 

Tube current 
time product 
(mAs) 

20–160 in steps of 
20 

20–240 in steps of 20 Prescribed noise index 
varied for each case 
(18 HU reference) 

Prescribed noise index 
varied for each case 
(17 HU reference) 

AEC method Fixed tube current Fixed tube current SmartmA SmartmA 
FOV (cm) 25 × 25 25 × 25 25 × 25 35 × 35 
Pixel size (mm) 0.49 × 0.49 0.49 × 0.49 0.49 × 0.49 0.68 × 0.68 
Slice thickness 
(mm) 

2.5 2.5 2.5 2.5 

Phantom ACR ACR 
ACR + 25 × 35 cm shell 

ACR + 25 × 35 cm shell Abdominal phantom 
with liver lesions 
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Task object 
shape, diameter 
(mm), contrast 
(HU) 

Gaussian, 25, 120 
Disk, 25, 120 
Gaussian, 5, 955 
Disk, 5, 955 

Gaussian, 25, 120 Gaussian, 25, 120 Gaussian, 25, 120 

 

The task‐based MTF, 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , represents the spatial resolution of the system for a specific 
contrast level. 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is used in this study instead of the traditional definition of MTF to more 
accurately represent the nonlinear response of iterative reconstruction algorithms. To incorporate 
the effect of contrast‐dependent resolution, 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  was obtained by estimating the edge spread 
function from the bone and acrylic contrast elements in Module 1 of the ACR phantom using 
previously published methods.26 Estimation of the edge spread function incorporates resolution 
information from both spatial directions within the image slice. NPS was calculated from the 
uniform section of Module 3 of ACR phantom. A total of 200 ROIs of 128 × 128 pixels from 50 axial 
image slices were used to calculate the NPS. The mean value of each selected ROI was subtracted 
prior to the Fourier transform step to set the zero frequency value to zero. 

𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the analytical function that describes the spatial frequency content of the signal, including 
its size, shape, and contrast. The task object should have the same contrast level as the contrast 
element used to estimate 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , but can be of different size or shape to better reflect the needs 
of the specific protocol. A Gaussian‐shaped signal may be a reasonable model for contrast‐
enhanced lesions in which the enhancement increases toward the center of the lesion, for 
example, in tumors where the vasculature may be denser near the center and decreasingly so 
toward the periphery. For other signals, such as a contrast‐filled vessel, a disk‐shaped object may 
be more appropriate. Equation 8 expresses the 2D Gaussian in image space that was used to 
represent 𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  (𝑥𝑥, 𝑦𝑦) in a previous study of CT IQ,34 

 

𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥, 𝑦𝑦) = 𝐶𝐶 exp �− 𝑥𝑥2+𝑦𝑦2

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2 ln(2)� (8) 

In this study, K‐factor lookup tables were generated for both a 120 HU, 25‐mm‐diameter signal 
(e.g., abdomen/liver protocol) and a 955 HU, 5‐mm‐diameter signal (e.g., angiography 
protocol). K‐factor lookup tables were calculated assuming both a Gaussian‐shaped signal 
[Eq. 8 with FWHM = diameter] and a constant disk‐shaped signal with the corresponding 
diameter. 

Figure 2 plots the K‐factors [Eq. 4] obtained for the reference reconstruction algorithm and four 
levels of IR for a 25‐mm‐diameter task with 120 HU contrast and 5‐mm‐diameter task with 
955 HU contrast, modeled using both Gaussian and disk shapes. The plots demonstrate a decrease 
in K‐factors at lower dose levels for some reconstruction methods that were due to changes in 
the  and  at lower dose levels. However, the K‐factors were relatively constant across 
a wide range of dose values. Therefore, for each reconstruction algorithm, the average K‐factor 
across the measured dose values was used as the final lookup table for subsequent evaluation. 
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Figure 2 K‐factors for the (a) 25‐mm diameter acrylic task and (b) 5‐mm diameter bone task, modeled with a Gaussian 
shape, plotted across the range of dose levels for each reconstruction method. K‐factors for the (c) 25‐mm diameter 
acrylic task and (d) 5‐mm diameter bone task, modeled with a disk shape, plotted across the range of dose levels for 
each reconstruction method. Note the higher amplitude of K‐factors for the disk‐shaped objects compared to the 
Gaussian objects. 
 

The K‐factors calculated assuming the disk shape have higher amplitude than the K‐factors 
calculated assuming the Gaussian shape, due to the higher frequency content of the sharp 
transition in the disk shape. As seen in Eq. 7, the ratio of the K‐factors for the IR algorithm relative 
to the reference algorithm determines the final weighting of the reference noise standard 
deviation. To understand the effect of task shape on the ratio of K‐factors for the IR algorithms 
relative to the reference algorithm, Fig. 3 plots the ratio of 𝐾𝐾𝐼𝐼𝐼𝐼 to 𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 for the IR algorithms 
and the two task shapes. The task shape had a small effect on the K‐factor ratios for the 25‐mm‐
diameter acrylic task object, with a larger effect for the 5‐mm bone task object, due to the 
increased high frequency content for this smaller object with higher contrast. 
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Figure 3 (a) Ratio of K‐factors (iterative/reference) for the 25‐mm diameter acrylic task modeled by both Gaussian 
and disk shapes. (b) Ratio of K‐factors (iterative/reference) for the 5‐mm diameter bone task modeled by both 
Gaussian and disk shapes. 
 
Determining the correct tube current setting for low‐contrast tasks is particularly challenging for 
IR algorithms because the MTF response of the algorithm can decrease at low‐contrast 
levels.34 Therefore, the following studies investigated the performance of the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method 
while representing the task object as the 25‐mm‐diameter acrylic object. As both Gaussian and 
disk shapes resulted in similar K‐factor ratios for this larger task object, the Gaussian lookup table 
was used for the subsequent studies. 

4 Study 1: evaluation of 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method for case of ideal noise‐based 
AEC 
4.A. Study 1: methods 
The first set of experiments were designed to validate whether an image with noise standard 
deviation suggested by the K‐factor lookup tables provided the desired 𝑑𝑑’ IQ level. In this study, 
the ACR phantom, without and with elliptical shell of diameters 25 cm × 35 cm (Fig. 4), was 
scanned using parameters listed in Table 1. The tube current was fixed for each scan (i.e., no AEC), 
with the tube current setting varied from 20 to 240 mAs in increments of 20 mAs across scans. 
Using the ACR phantom in this study enables comparing the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 values predicted by the lookup 
table with the 𝑑𝑑’ values measured directly from the image data using the methods described in 
Section 3. Throughout the paper, 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 represents the detectability calculated using the lookup 
table K‐factor and the noise standard deviation estimated in the image [Eq. 3]. 𝑑𝑑’ represents the 
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detectability measured from image data [Eq. 2]. Repeating the experiment using the ACR phantom 
with elliptical shell enables evaluating the accuracy of the predicted 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 values for an object that 
is different than the one used to generate the lookup tables. 

 
Figure 4 Image demonstrating the size and shape of the elliptical shell used with the ACR phantom for Studies 1 and 2. 
 
At each dose level, images were reconstructed using the reference reconstruction algorithm and 
the four levels of IR. The noise standard deviation was calculated in a 128 × 128 ROI extracted 
from the uniform region of ACR phantom for each reconstruction algorithm and dose level. For 
each reconstruction algorithm, 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 was calculated using the measured noise standard deviation 
at each dose level and the dose‐independent K‐factor lookup tables for the acrylic task. The 𝑑𝑑’ was 
also measured directly from the image data, using the methods described in Section 3, for each 
reconstruction algorithm and dose level, and for the ACR phantom with and without shell. The 
predicted 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 and measured 𝑑𝑑’ values were compared across the dose range to evaluate the 
accuracy of the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 values obtained using the K‐factor lookup tables. 

This dataset was also used to evaluate the proposed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method for the case of an ideal 
noise‐based AEC method that can derive the tube current profile to exactly provide the desired 
noise standard deviation for each reconstruction approach. The reference protocol was selected as 
the 240  mAs acquisition of the ACR phantom with elliptical shell reconstructed with the FBP 
reference algorithm and 2.5‐mm slice thickness. The representative 𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 was selected as a 25‐
mm Gaussian with 120 HU contrast. The reference noise standard deviation, 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, was 
measured in the images to be 23.6 HU. Using this standard deviation and the K‐factor lookup table 
for the reference algorithm, the reference 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 was calculated to be 4.8. For each IR algorithm, the 
standard deviation required to match the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 of the reference image, 𝜎𝜎𝐼𝐼𝐼𝐼, was calculated using 
the K‐factor lookup tables calculated in Section 7. For each IR algorithm, the dataset with standard 
deviation of 𝜎𝜎𝐼𝐼𝐼𝐼 was identified from the acquired set of images and the 𝑑𝑑’ was calculated from the 
image data using the methods described in Section 3. The 𝑑𝑑’ values estimated from the image data 
were compared to the desired, reference 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 for each IR algorithm. 

4.B. Study 1 results 
Figure 5 plots the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 predicted by the K‐factor lookup table and 𝑑𝑑’measured in the image data 
for the ACR phantom with and without elliptical shell for the IR 2 reconstruction algorithm. 
Similar results were obtained for the other reconstruction approaches. Reasonable agreement 
between the predicted and measured detectability was observed, with a maximum error of 45% 
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for the elliptical phantom with shell at low dose and a mean absolute error of 15% across all dose 
levels. The difference between the predicted and measured detectability increased with 
decreasing dose for the elliptical phantom. With the elliptical shell, the exposure reaching the 
detector at the low‐dose levels is less than the exposures that were used to create the lookup table 
without the shell. Figure 2 demonstrated a small decrease in the K‐factors at lower dose for the 
ACR phantom without shell. It is possible that the K‐factors decrease more substantially at the 
detected exposure levels corresponding to low‐dose acquisitions of the elliptical phantom. 
Therefore, the assumption of constant K‐factors may introduce greater error for low‐dose 
acquisitions of larger objects. Despite this error at low‐dose levels, the results of the ACR phantom 
with elliptical shell demonstrate that the lookup table method provides reasonably accurate 
measured 𝑑𝑑’ values for an object that is different than the one used to create the lookup tables. 

 
Figure 5 Prescribed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 and measured 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 for images of the (a) ACR phantom and (b) ACR phantom with 
elliptical shell plotted across a range of dose levels for IR 2. [Color figure can be viewed at wileyonlinelibrary.com] 
 
Figure 6 presents the images of the ACR phantom with elliptical shell resulting from the 
proposed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method for the case of an ideal noise‐based AEC system that can provide 
images with the prescribed noise standard deviation. Figure 6 presents the reference image as 
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well as the images resulting from IR 2 and IR 4 for two cases: (a) tube current setting manually 
identified to match the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 of the reference image (b) tube current setting manually identified to 
match the noise standard deviation of the reference image. The 𝑑𝑑’calculated from the image data 
was 4.8 for IR 2 and 4.7 for IR 4 for the 𝑑𝑑’ matched images, compared to the prescribed 
reference 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 of 4.8, demonstrating that the proposed lookup tables can match the 
prescribed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔value for the case of an ideal noise‐based AEC. The images resulting from 
matching the noise standard deviation of the reference scan resulted in 𝑑𝑑’ values of 2.9 (IR 2) and 
1.2 (IR 4), suggesting reduced IQ for the iterative algorithms when matching noise standard 
deviation of the reference scan. Matching the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 of the reference scan required more dose than 
matching the noise standard deviation, as seen in Fig. 6. However, both iterative reconstruction 
algorithms matched the 𝑑𝑑’ of the reference image while reducing the dose compared to the 
reference reconstruction algorithm. 

 
Figure 6 The reference image of the ACR phantom with elliptical shell is displayed at the left side of the figure. The top 
row shows images with noise standard deviation identified to match the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 of the reference image for IR 2 and 
IR 4. The bottom row shows images with noise standard deviation identified to match the noise standard deviation of 
the reference image. The prescribed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 was equal to 4.8. The 𝑑𝑑’ calculated from the image data, as well as the 
noise standard deviation and tube current setting, is displayed above each image. Because of the 25 × 25‐cm FOV, the 
full extent of the elliptical shell is not visible in the images. 

5 Study 2: evaluation of 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC combined with existing noise‐based 
AEC method 
5.A. Study 2: methods 
The next study evaluated whether the proposed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method, combined with the noise‐
based AEC available on the scanner, can produce IQ equivalent to the reference image across the 
investigated iterative reconstruction algorithms. The ACR phantom with elliptical shell was 
scanned using the existing tube current modulation AEC (SmartmA) at a reference protocol with 
prescribed noise standard deviation of 18 HU and reference FBP reconstruction (Table 1). 
Using 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 18 HU and the K‐factor lookup tables (𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 corresponding to 25‐mm Gaussian 
with 120 HU contrast), the reference 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 was calculated to be 7.15. For each level of iterative 
reconstruction, the K‐factor lookup tables were used to calculate the noise standard deviation, 𝜎𝜎𝐼𝐼𝐼𝐼, 
required to obtain the reference 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 of 7.15. For each iterative reconstruction algorithm (IR1–
IR4), the phantom was scanned with the 𝜎𝜎𝐼𝐼𝐼𝐼 value as the noise standard deviation input to the 
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scanner AEC system. For comparison, the phantom was also scanned for each IR algorithm with 
the reference noise standard deviation,  = 18 HU, as the noise level input to the AEC 
system. For each case, the 𝑑𝑑’ was calculated from the reconstructed images using the methods 
described in Section 3 and compared to the desired reference 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 value predicted by the K‐
factor lookup table. 

5.B. Study 2: results 
Figure 7 presents the results of the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method when combined with existing noise‐based 
AEC system. Figure 7 presents the reference image as well as the images resulting from the four IR 
levels with the prescribed noise level selected to match the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 (top row) of the reference image 
and the noise standard deviation (bottom row) of the reference image. Table 2 lists the 
prescribed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔, measured 𝑑𝑑’, prescribed noise standard deviation, and measured noise standard 
deviation for each image displayed in Fig. 7. 

 
Figure 7 The reference image is displayed at the left side of the figure. The top row displays images 
resulting from the proposed to 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method, where the prescribed noise level was calculated using 
the K‐factor lookup to match the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 of the reference image and the existing AEC system was used to 
derive the tube current profile to meet that noise level. The bottom row displays images generated by 
prescribing the same noise level as the reference image. The images, from left to right, represent IR 1, IR 2, 
IR 3, and IR 4. The 𝑑𝑑’ calculated from the image data and CTDIvol are displayed above each image. The 
prescribed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 was equal to 7.15. The prescribed and measured noise values for the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method 
are given in Table 2. 
 

Table 2. The prescribed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔, measured d′, prescribed noise standard deviation, and measured noise standard 
deviation tabulated for each reconstruction approach in Fig. 7. The resulting 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔, calculated by the lookup table for 
the measured noise standard deviation, is also presented to evaluate the error due to the lookup table  

Prescribed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 Measured d′ Prescribed σ Measured σ 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 resulting from 
measured σ 

Reference 7.1 5.15 18 21.16 5.7 
IR 1 7.1 5.41 14.5 18.27 5.6 
IR 2 7.1 5.15 12.4 15.81 5.6 
IR 3 7.1 4.86 10 13.71 5.2 
IR 4 7.1 2.93 7 12.77 3.9 

 

As seen in Table 2, there were discrepancies between the prescribed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔and measured 𝑑𝑑’ values, 
with errors ranging from 24% to 31% for the reference IR1–IR3 algorithm and 58% error for IR 4. 
The ability of the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method to produce the desired 𝑑𝑑’ depends on (a) the accuracy of 
the K‐factor lookup table approximation which was quantified in Section 4 and (b) the accuracy of 
the measured noise compared to the requested noise level. The results in this section include both 
sources of error. To further analyze the sources of error, Table 2 lists the prescribed (𝜎𝜎𝐼𝐼𝐼𝐼) and 
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measured (𝜎𝜎) noise standard deviation, with higher error between prescribed and measured 
noise associated with increasing levels of applied iterative reconstruction. To further explore the 
source of discrepancy between the prescribed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 and measured 𝑑𝑑’ values, Table 2 also lists 
the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 values predicted by K‐factor lookup table for the measured noise level, with errors 
ranging from 3% for IR 2 to 25% for IR 4. The results suggest that the agreement between the 
prescribed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 and measured 𝑑𝑑’ values across the wide range of applied iterative reconstruction 
levels depends on the accuracy of the measured vs prescribed noise values across those same 
levels. The AEC algorithm is not typically defined for the phantom used in this specific experiment 
but, despite these errors, Fig. 7 demonstrates that the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method provides more consistent 
IQ compared to the reference scan than the approach of matching the noise standard deviation of 
the reference scan at dose levels that are reduced compared to the reference scan. As seen in 
Fig. 7, matching the noise standard deviation of the reference scan required less dose than 
matching the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔of the reference scan but resulted in lower 𝑑𝑑’ values. 

6 Study 3: evaluation of 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC using an anthropomorphic phantom 
and human reader evaluation 
6.A. Study 3: methods 
Experiments with an anthropomorphic phantom were performed to evaluate whether the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐
AEC method produces images reconstructed by iterative algorithms that have equivalent 
subjective IQ to the reference scan, as evaluated by expert human readers. This study used an 
upper abdominal phantom representing a small adult (CT Torso Phantom, CTU‐41, Kyoto Kagaku, 
Kyoto, Japan), with low‐contrast structures in the liver and with approximate diameters of 14 cm 
(anteroposterior) and 20 cm (lateral), as measured on the image slice used for IQ evaluation. The 
phantom was first scanned on the clinical scanner using the existing AEC at a selected reference 
protocol of prescribed noise level of 17 HU and reference FBP reconstruction (Table 1). Using the 
steps shown in Fig. 1, the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method determined the noise index level to input into the 
existing AEC system (SmartmA) for the four levels of an in‐house iterative reconstruction 
algorithm (IR 1, IR 2, IR 3, IR 4) to match the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 of the reference image. This study used the K‐
factor lookup tables assuming the 25‐mm Gaussian task object with 120 HU contrast. In this study, 
the low‐contrast objects within the abdominal phantom (various liver lesions with ~25 HU 
contrast) were different than the task object used to determine the K‐factor lookup table. 
Therefore, this study investigated whether the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC can provide comparable IQ across 
reconstruction approaches without exact knowledge of the task object. For comparison, the 
anthropomorphic phantom was also scanned at a prescribed noise level of 17 HU using the 
existing AEC algorithm (SmartmA) for the four levels of iterative reconstruction. 

Three board‐certified radiologists with expertise in abdominal/body imaging and two clinical 
application specialists in CT imaging, each with more than 30 yr of experience, evaluated the 
images for overall diagnostic IQ, image noise level, and noise texture on 5‐point Likert scales 
(Table 3). The observers were blinded to the radiation dose and reconstruction method. 

Table 3. Likert score used to evaluate the overall image quality (IQ), noise magnitude, and noise texture 
Likert 
scale 

Overall IQ Noise magnitude Noise texture 

1 Insufficient for diagnosis Too much, cannot discern basic 
structure 

Noise texture can easily mistake as 
pathology 
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2 Degraded IQ barely sufficient for 
diagnosis 

Distracting, barely sufficient for 
diagnosis 

Noise texture may be questioned as 
pathology 

3 Satisfactory, fully adequate for 
diagnosis 

Satisfactory, fully adequate for 
diagnosis 

Noise texture not ideal but sufficient 
for diagnosis 

4 Above average IQ Would consider lowering dose Normal noise texture 
5 Excellent IQ Would definitely consider 

lowering dose 
Excellent noise texture 

 

The noise standard deviation was estimated in a 128 × 128 ROI within each reconstructed image 
and used along with the K‐factor lookup tables to calculate the resulting 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 for each image. The 
statistical equivalence between the observer IQ scores for the reference and IR reconstructions 
was tested with a paired, two‐sided t‐test assuming unequal variance. 

6.B. Study 3: results 
Figure 8 displays images of the abdominal phantom reconstructed by the reference algorithm and 
the four levels of iterative reconstruction. The top row displays images from the four levels of 
iterative reconstruction using the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method to match the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 of the reference protocol. 
The bottom row displays images from the four iterative reconstruction levels obtained using the 
existing AEC to match the noise standard deviation of the reference scan. The average observer 
overall IQ score is displayed for each image along with the CTDIvol. 

 
Figure 8The reference image of the abdominal phantom is displayed at the left side of the figure. The top row displays 
images generated by the proposed to 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method, where the prescribed noise level was calculated using the K‐
factor lookup tables to match the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 of the reference image, and the existing AEC was used to derive the tube 
current profile to meet that noise level. The bottom row displays images generated by prescribing the same noise 
level as the reference image. The images, from left to right, represent IR 1, IR 2, IR 3, and IR 4. The mean overall image 
quality score recorded by the observer and CTDIvol is displayed above each image. The prescribed and measured noise 
values for the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method are given in Table IV. 
 

As seen in Fig. 8, the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method provided more consistent IQ between the reference 
algorithm and the four strengths of iterative reconstruction (IR1–IR4) with reduced dose 
compared to reference scan. For example, the mean IQ score was 3.3 for the reference and 3.5 for 
the IR3 image produced using 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC. Images obtained using the noise‐based AEC resulted in 
lower dose than the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC images but demonstrated reduced IQ compared to the reference 
scan and the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC images. 

Table 4 lists the prescribed noise standard deviation 𝜎𝜎𝐼𝐼𝐼𝐼, noise standard deviation measured in the 
image , the prescribed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 values, and the resulting 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 calculated using the measured noise 
standard deviation and K‐factor lookup table. The closer agreement between prescribed and 
observed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 is likely associated with a similar agreement between the measured and 
prescribed image noise level. 
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Table 4. The prescribed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔, prescribed noise standard deviation, and measured noise standard deviation tabulated 
for each reconstruction approach in the top row of Fig. 8. The 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 resulting from the lookup table for the measured 
noise standard deviation is also presented  

Prescribed σIR Measured σ Prescribed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 Resulting 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 
Reference 17 17.5 7.5 7.3 
IR 1 13.7 15.4 7.5 6.8 
IR 2 11.7 13.0 7.5 6.8 
IR 3 9.5 10.7 7.5 6.8 
IR 4 6.8 8.4 7.5 6.0 

 

Figure 9 plots the observer IQ, noise, and noise texture scores for the reference and iterative 
reconstruction methods. The proposed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method resulted in diagnostic IQ, noise, and 
noise texture scores that were statistically equivalent to the reference scan for IR1‐IR3 (P > 0.37). 
The images acquired to match the noise standard deviation of the reference scan demonstrated 
lower mean IQ score than the reference scan, with the reduction in IQ score statistically significant 
for IR 3 and IR 4 (P < 0.005). For IR4, images produced by 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method had significantly 
lower IQ scores than the reference scan (P = 0.003); however, the images had higher IQ score 
(IQ = 2.2) than the images resulting from matching the noise standard deviation of the reference 
scan (IQ = 1). Figure 10 plots the mean observer score of overall IQ against the prescribed and 
resulting 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 values. 

 
Figure 9 Mean image quality score for overall image quality for diagnosis, noise in the image, and noise texture plotted 
for range of reconstruction algorithm for images produced by the (left) 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC and (right) noise‐based AEC 
methods. The error bars represent the standard deviation of image quality score across the five readers. 

 
Figure 10 Mean observer score for image quality plotted against the prescribed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 and resulting 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 values. The 
error bars represent the standard deviation across the five observers. 
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7 Discussion 
This paper proposes a method to determine the noise parameter to input to existing AEC systems 
to provide consistent IQ across different reconstruction approaches. The results demonstrated 
that using the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method provided equivalent IQ to the reference scan for IR 1, IR 2, and 
IR 3, at reduced dose compared to the reference scan. 

For the IR 4 algorithm, the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method resulted in a 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 of 4.2 and mean observer IQ 
score of 2.2, compared to a 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 of 7.6 and IQ of 3.3 for the reference scan. When an ideal noise‐
based AEC system was modeled in the study described in Section 4, the lookup table method was 
able to identify the correct noise level for IR4 to match the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 of the reference scan (Fig. 6). 
When the noise‐based AEC was used to derive tube current (Section 5), higher discrepancies 
between the measured 𝑑𝑑’ and prescribed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 were associated with similarly higher 
discrepancies between prescribed and measured noise standard deviation, particularly evident for 
IR 4 (Tables 2 and 4). These results suggest that it is difficult for the noise‐based AEC to model the 
relationship between tube current, patient size, and noise level for this iterative algorithm with 
high level of regularization. Despite this discrepancy, the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method provided improved IQ 
compared to the noise‐based AEC system for IR 4. 

The 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method achieved more consistent IQ at reduced dose compared to the reference 
scan. The noise‐based AEC system provided greater dose reduction than the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method, 
however, at reduced IQ compared to the reference scan. If overall lower IQ is acceptable to the 
radiologist, the reference dose level could also be reduced. These results demonstrate that the 
dose reduction potential of IR algorithms may be overestimated when matching the image noise 
standard deviation across algorithms. 

In this study, the K‐factors were calculated as the average value obtained across the studied dose 
range, since results illustrated in Fig. 2 indicated that the K‐factors were relatively constant with 
dose. However, the K‐factors did indeed decrease at the lower dose range. This reduction in K‐
factor is due to increased blurring that occurs at high noise level, due to increased regularization 
and potentially electronic noise correction. The error in the assumption of constant K‐factors at 
low dose is potentially the cause of the discrepancy between the prescribed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 and 
measured 𝑑𝑑’ at low doses (Fig. 5), which was greater for the ACR phantom with elliptical shell due 
to reduced detected exposure through larger objects. The MTF and NPS of iterative reconstruction 
algorithms are known to change with noise level,26, 34 which would affect the K‐factors for cases 
of low‐dose acquisition and large object size. This leads to the conclusion that the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC 
method could potentially be improved in the future by creating separate K‐factor lookup tables for 
low‐dose ranges that would need to depend on the level of dose reaching the detector and may 
change with patient size. 

This study used a two‐dimensional calculation of 𝑑𝑑’ [Eq. 2], due to the method of 
calculating 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  from the contrast elements within the ACR phantom.26 The 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC 
method could be improved in future work by using a three‐dimensional  calculation that takes 
into account how the IR algorithms differ in spatial resolution along the slice direction. The 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐
AEC method accounts for the nonlinear response of iterative reconstruction algorithms due to 
local contrast level, which is a cause of the spatially varying response of iterative reconstruction 
algorithms. Other factors that cause the MTF or NPS to vary locally are not modeled by the 
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proposed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method. MTF and NPS are known to vary locally even for filtered back 
projection reconstruction, yet these metrics have been widely used to describe overall IQ as a 
first‐order approximation, which is the goal of the proposed method. 

A previous study proposed using the CHO to identify the dose setting for an iterative 
reconstruction algorithm to match the low‐contrast detectability of a reference scan.13 This 
previous method and our proposed method both aim to provide consistent IQ across different 
reconstruction approaches. The primary differences are that our proposed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method can 
leverage the noise‐based AEC system on some scanner models to derive the tube current profile 
and uses a task‐based SNR metric, 𝑑𝑑’, instead of a metric of detection performance (area under the 
receiver operator characteristic curve: AUC). Because 𝑑𝑑’ represents the signal‐to‐noise ratio 
between the observer scores for the signal present and absent conditions, it can be 
mathematically related to AUC for certain conditions.37 However, calculating the AUC typically 
requires more images. Unlike 𝑑𝑑’, AUC saturates at one when the observer score distributions are 
separated and the signal is reliably detectable by the observer, even as noise level 
decreases. 𝑑𝑑’ continues to increase as the noise level decreases. Based on the above reasons, we 
consider it may be more practical to use 𝑑𝑑’ as a general IQ metric for guiding AEC that is less 
sensitive to accurate modeling of the task object. 

The evaluation of the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method in this study used the 120 HU, 25‐mm acrylic Gaussian as 
the representative task object for driving the derivation of the tube current profile. For the 
abdominal phantom in Study 3, the results of the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method could potentially be improved 
by using a lower contrast task to calculate the K‐factors, for example, a 25 HU contrast level as is 
seen in the liver of the phantom. The size of the task object can be altered by changing the 
analytical function 𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. However, calculating the 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  for a lower contrast object requires 
calibration scans at this contrast level. Our goal was to develop a task‐based AEC method that is 
practical to calibrate. The results of this study suggest that the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method can provide IQ 
comparable to the reference scan without requiring exact knowledge of the imaging task. 
However, Fig. 3 demonstrates that accurate modeling of task shape may be more important for 
small, high‐contrast objects. Future studies are needed to investigate the performance of 
the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method for other applications, such as cardiac imaging or lung imaging, where small 
objects with high contrast may drive the tube current profile. It may be possible for a clinical 
application to be driven by multiple task requirements. In this case, it may be beneficial to 
calculate the required tube current for each task independently and then pick the higher tube 
current to ensure adequate IQ for all tasks. 

The proposed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method can be implemented by the user on any scanner with a noise‐
based AEC method. For each reconstruction algorithm, a K‐factor lookup table should be 
calculated using the methods described in Section 3, which involve scanning a uniform phantom 
for estimating 𝑁𝑁𝑁𝑁𝑁𝑁 and a phantom with elements at desired contrast levels for 
estimating 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . The results in Fig. 2 suggest that performing calibration at one dose setting 
may be acceptable, although improvements could be obtained with additional low‐dose lookup 
tables. K‐factors for tasks of different size and shape could be obtained by changing the analytical 
task function, 𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. For each protocol, a reference standard deviation must be determined that 
produces acceptable IQ for the reference algorithm. This reference noise standard deviation could 
be based on existing protocol tables, as this reference noise level is currently input to the scanner 
as the noise index, or the noise level could be estimated in a reference image of acceptable IQ. 

https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0013
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-bib-0037
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-fig-0003
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-sec-0007
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13286#mp13286-fig-0002


Using the lookup table for the reference algorithm and the measured noise standard deviation in a 
reference image of acceptable IQ, the user would calculate the reference 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔 value. The lookup 
table for the desired iterative algorithm would then be used to calculate the noise standard 
deviation that should be prescribed for the iterative algorithm to meet this IQ level. The reference 
reconstruction need not be based on filtered back projection. The K‐factor lookup tables along 
with Eq. 7 could be used to convert the desired noise standard deviations between any two 
algorithms. 

While the proposed method was designed specifically for scanners with noise‐based AEC systems, 
a 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐based method could potentially be developed for scanners with other AEC systems. For 
scanners that take a reference tube‐current‐time‐product value as input to the AEC, a lookup table 
of weighting factors could potentially be calibrated to convert reference mAs values between 
different reconstruction algorithms, with the goal of maintaining constant detectability. 

This study presents a preliminary feasibility study of the proposed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method. 
Quantitative results and conclusions are limited to the algorithms and phantoms that were 
evaluated. Future work is needed to further investigate the performance of the 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC method 
for additional object sizes and contrast levels, as well as additional reconstruction algorithms. The 
proposed method could be applied in future work to provide consistent IQ across other changes in 
scan parameters, for example, tube voltage setting. 

8 Conclusions 
This study investigated a novel AEC method, based on a generalized detectability index, to provide 
more consistent IQ across image reconstruction approaches. The proposed method can be 
implemented on CT scanners with noise‐based AEC by using a lookup table of scaling factors to 
calculate the noise standard deviation needed for an iterative algorithm to meet a reference 
detectability index. The results of the phantom study provide preliminary evidence that the 
proposed 𝑑𝑑’𝑔𝑔𝑔𝑔𝑔𝑔‐AEC can produce consistent IQ across different iterative reconstruction 
approaches, with reduced dose compared to the reference scan. 
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