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Abstract 
Purpose 
This study developed and validated a Motion Artifact Quantification algorithm to automatically 
quantify the severity of motion artifacts on coronary computed tomography angiography (CCTA) 
images. The algorithm was then used to develop a Motion IQ Decision method to automatically 
identify whether a CCTA dataset is of sufficient diagnostic image quality or requires further correction. 
Method 
The developed Motion Artifact Quantification algorithm includes steps to identify the right coronary 
artery (RCA) regions of interest (ROIs), segment vessel and shading artifacts, and to calculate the 
motion artifact score (MAS) metric. The segmentation algorithms were verified against ground‐truth 
manual segmentations. The segmentation algorithms were also verified by comparing and analyzing 
the MAS calculated from ground‐truth segmentations and the algorithm‐generated segmentations. 
The Motion IQ Decision algorithm first identifies slices with unsatisfactory image quality using a MAS 
threshold. The algorithm then uses an artifact‐length threshold to determine whether the degraded 
vessel segment is large enough to cause the dataset to be nondiagnostic. An observer study on 30 
clinical CCTA datasets was performed to obtain the ground‐truth decisions of whether the datasets 
were of sufficient image quality. A five‐fold cross‐validation was used to identify the thresholds and to 
evaluate the Motion IQ Decision algorithm. 
Results 
The automated segmentation algorithms in the Motion Artifact Quantification algorithm resulted in 
Dice coefficients of 0.84 for the segmented vessel regions and 0.75 for the segmented shading artifact 
regions. The MAS calculated using the automated algorithm was within 10% of the values obtained 
using ground‐truth segmentations. The MAS threshold and artifact‐length thresholds were determined 
by the ROC analysis to be 0.6 and 6.25 mm by all folds. The Motion IQ Decision algorithm 
demonstrated 100% sensitivity, 66.7% ± 27.9% specificity, and a total accuracy of 86.7% ± 12.5% for 
identifying datasets in which the RCA required correction. The Motion IQ Decision algorithm 
demonstrated 91.3% sensitivity, 71.4% specificity, and a total accuracy of 86.7% for identifying CCTA 
datasets that need correction for any of the three main vessels. 
Conclusion 
The Motion Artifact Quantification algorithm calculated accurate (<10% error) motion artifact scores 
using the automated segmentation methods. The developed algorithms demonstrated high sensitivity 
(91.3%) and specificity (71.4%) in identifying datasets of insufficient image quality. The developed 
algorithms for automatically quantifying motion artifact severity may be useful for comparing 
acquisition techniques, improving best‐phase selection algorithms, and evaluating motion 
compensation techniques. 



1 Introduction 
Coronary computed tomography angiography (CCTA) is a noninvasive cardiac imaging exam for 
coronary artery disease diagnosis, in which iodinated contrast agent is intravenously injected to 
enhance the coronary arteries. From the CT scan, high resolution 3D image datasets can be 
reconstructed to visualize coronary arteries and to assess stenosis and disease level.1 
 
Because CCTA images are collected while the heart is moving, motion artifacts may degrade the 
visualization of the vessels, which may make the dataset nondiagnostic. New CT scanners are designed 
to improve temporal resolution, as temporal resolution is a bottleneck of cardiac imaging. Despite 
technological advancements such as wide cone‐beam coverage,2, 3 fast gantry rotation times,4 dual 
source scanners,5 retrospective and prospective gating methods,6 and best‐phase selection 
algorithms,7-9 reconstructing artifact‐free coronary CT images is not always possible. For example, 
when heart rate exceeds 75 beats per min, the velocity at the lowest motion phase is significantly 
higher than that of patients with lower heart rate.10 Motion correction algorithms have been 
proposed and clinically implemented to reduce residual motion artifacts. One correction approach uses 
motion artifacts metrics (MAM) to quantify image quality and then optimizes the CT reconstruction 
based on a MAM gradient descent procedure.11 Another approach characterizes artery motion by a 
bidirectional label point matching method and then compensates the motion to a target phase during 
reconstruction.12 
 
The purpose of this study was to develop and validate algorithms that automatically quantify the level 
of coronary artery motion artifact in clinical CCTA image sets. The algorithms developed in this work 
could be applied to identify the low‐motion phase, optimize and evaluate motion compensation 
methods, or to quantitatively assess motion reduction techniques on clinical CCTA images. Motion 
artifact quantification is based on the product of two vessel motion artifact metrics validated in a 
previous study: fold overlap ratio (FOR) and low‐intensity region score (LIRS).13 The FOR metric 
quantifies the level of vessel deformation, while the LIRS metric quantifies the severity of the low‐
intensity shading artifacts. Previous studies proposed and validated metrics for relative motion artifact 
quantification across different phases of the same exam. Instead, the FOR and LIRS metrics were 
designed and validated for absolute quantification of motion artifact levels across different patient 
studies with varying characteristics such as vessel size, vessel contrast, image noise, and image 
resolution. The ability to quantify absolute motion artifact level enables several potential applications, 
for example evaluating motion reduction techniques across a range of patients and scanners. 
 
In the previous study, the FOR and LIRS metrics were validated using gold standard, manually 
segmented vessel and artifact regions. In this current study, algorithms are developed and verified to 
automatically calculate the motion artifact metrics. These consist of algorithms to identify the slices 
that contain through‐plane arteries, segment artery regions, and segment shading artifact regions. The 
developed algorithms are combined with the previously validated motion artifact metrics to create a 
Motion Artifact Quantification algorithm that outputs a motion artifact score (MAS) for each image 
slice. 
 
While the proposed Motion Artifact Quantification algorithm has several potential applications, in this 
work the method is applied to the specific example of classifying CCTA datasets as either adequate 
diagnostic quality or requiring additional motion correction. This automated Motion Image Quality 
Decision algorithm could be beneficial for task‐based assessment of motion correction techniques. The 
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automated motion artifact decision method could also improve workflow by enabling automatic 
application of motion correction only for datasets that need correction, while minimizing computation 
time for studies of adequate diagnostic quality. For example, previously proposed motion correction 
algorithms require multiple or iterative reconstructions that may be time consuming.11, 12 The 
performance of the Motion IQ Decision method, based on the Motion Artifact Quantification 
algorithm, is evaluated in this work through an observer study. 
 
The paper describes the Motion Artifact Quantification algorithm in Section 1 and the Motion IQ 
Decision method in Section 2. The image data used in this paper and verification/validation methods 
are described in Section 2.A.. Section 2.B. presents the results followed by discussion (Section 2.C.) and 
conclusions (Section 3). 

2 Motion Artifact Quantification algorithm 
A previous study demonstrated that the fastest coronary artery velocity was measured on right 
coronary artery (RCA) segments in which the vessel orientation was perpendicular to the slice plane 
(i.e., through‐plane segment).10 Therefore, this paper develops the Motion Artifact Quantification and 
Motion IQ Decision algorithms for image slices that contain the through‐plane RCA, assuming that this 
vessel segment represents the motion artifacts level for the entire cardiac region. This assumption is 
tested by the observer study which is described in Section 2.C.. 
 
Figure 1 presents a flow chart of the proposed, automated Motion Artifact Quantification algorithm. 
The input to the algorithm is a CCTA image volume at one phase. The outputs are the motion artifact 
scores calculated for each image slice that contains the through‐plane RCA. 
 

 
Figure 1 Motion Artifact Quantification algorithm flowchart. 
 
To calculate the motion artifact metrics on through‐plane RCA slices, an algorithm is first needed to 
identify the through‐plane RCA location on each slice, after which regions of interest (ROIs) containing 
the RCA are extracted. RCA segmentation algorithms have been previously proposed and could be 
used for this purpose of the algorithm.14-17 In this work, we developed an automated algorithm that 
leverages image processing steps developed in a previous study on identification of CCTA best 
phase.9 The developed automated algorithm to identify ROIs containing the through‐plane RCA is 
described in the Appendix. Figure 2 presents an example RCA ROI extracted by the algorithm. 
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Figure 2 Example of extracted RCA ROI delineated by the white box. 
 
Once the RCA ROIs have been extracted, the algorithm segments the vessel and shading artifact 
regions within the ROIs, as these regions are needed for calculating the motion artifact metrics. The 
vessel and shading region segmentation algorithms (Sections 2.A and 2.B) are novel steps of the 
Motion Artifact Quantification algorithm presented in this work to enable automated calculation of the 
motion artifact metrics. The last step of the Motion Artifact Quantification algorithm calculates the 
MAS for each ROI. The specific algorithm steps for this stage of the algorithm are described in more 
detail in the following sections. 
 
2.A. Segment the vessel region 
The input to this step of the algorithm is the ROI containing the through‐plane RCA for each image 
slice, as shown in Fig. 1. The output of this step is a binary mask corresponding to the vessel region, 
which includes regions of vessel deformation and vessel blur due to motion. Segmentation of the 
vessel region within the vessel ROI is required for calculating the FOR metric of vessel symmetry, which 
is part of the overall MAS. 
 
Segmentation of the RCA vessel region in each ROI is performed using a K‐means clustering algorithm. 
We assume that the RCA ROI images contain regions of the vessel, cardiac chambers, low‐intensity 
shading artifacts, myocardium, and lung. Therefore, all pixel intensities in the RCA ROI are classified 
into one of four clusters: low‐intensity pixels (lung and low‐intensity shading artifacts), myocardium, 
high‐intensity pixels (vessel; cardiac chamber; ribs and sternum), and intermediate‐intensity pixels. The 
cluster mean values are initialized at −200 HU for the low‐intensity cluster, 50 HU for the myocardium 
cluster, and the CT number of the identified RCA location for the high‐intensity cluster. The mean of 
the intermediate‐intensity cluster is initialized as the average of the initial means for the myocardium 
and high‐intensity clusters. The intermediate‐intensity cluster may contain part of the chambers in 
addition to the region of the RCA that is blurred due to motion. The purpose of the intermediate‐
intensity cluster is to break the connection between the RCA and the chambers in the high‐intensity 
tissue cluster, as shown in Figs. 3(b) and 3(c). The K‐means algorithm is performed for 10 iterations. 
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Figure 3 Example demonstrating the steps of vessel region segmentation algorithm. (a) Original image, 
(b) K‐means clustering output corresponding to the high‐intensity cluster, and (c) K‐means clustering 
output corresponding to the intermediate‐intensity cluster. (d) Depicts the vessel core region identified 
as the center region of (b). (e) Presents the intermediate‐intensity region after an AND operation with 
the dilated vessel core region, representing the vessel motion blur. (f) is the final segmented vessel 
region, including the contributions of both the (d) vessel core and (e) motion blur. (h) Depicts the final 
segmented region as black contour overlaid on the RCA ROI. 
 
Since the goal of this step of the algorithm is to generate a binary mask representing the vessel region, 
the low‐intensity and myocardium clusters are ignored. Figures 3(b) and 3(c) depict the pixels within 
the clusters identified as “high intensity” and “intermediate intensity”, which are further processed 
through morphological operations, as illustrated in Fig. 3. 
 
First, we perform connected components analysis on the regions identified in the high‐intensity 
cluster. The component that contains the identified RCA location is selected as the vessel core region, 
as illustrated in Fig. 3(d). To identify regions of the vessel that have been blurred due to motion, a 
vessel mask is first obtained by dilating the vessel core region with a disk shape kernel, with radius, d, 
that is equal to c times that of the RCA core equivalent radius: 
 

 
𝑑𝑑 = 𝑐𝑐�𝐴𝐴𝑣𝑣𝑣𝑣/𝜋𝜋, (1) 
 
where 𝐴𝐴𝑣𝑣𝑣𝑣  is the number of pixels in the segmented vessel core and c is a scaling coefficient. To 
identify regions of the intermediate‐intensity vessel that correspond to vessel blur, an AND operation 
is then performed between the vessel mask and the binary region representing the intermediate‐
intensity cluster, as depicted in Fig. 3(e). As c increases, more motion blur regions may be identified, 
but with the risk of erroneously including other tissues such as the myocardium or chambers. In this 
study, the scaling factor c was empirically set to 1.5. The final vessel region is equal to the union of the 
vessel core region [Fig. 3(d)] and the processed motion blur region [Fig. 3(e)], with results shown in 
Figs. 3(f) and 3(g). Figure 4 presents five examples of vessel region segmentation results. 
 

 
Figure 4 Examples of RCA segmentation results for five different vessel ROIs. The top row displays the original RCA ROI 
images. The bottom row marks the segmented RCA regions with contours. The first five columns demonstrate RCA 
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segmentation results with various motion artifact level. The last column demonstrates segmentation for a dataset with high 
noise level (84 HU noise standard deviation in the myocardium region). 
 
2.B. Segment the low‐intensity regions 
Segmentation of the low‐intensity shading regions within the vessel ROI is required for calculating the 
LIRS metric, which is part of the overall MAS. The output of this step is a binary mask corresponding to 
low‐intensity shading artifacts. The K‐means clustering algorithm described in Section 2.A was not 
designed to distinguish the low‐intensity shading artifacts from other low‐intensity pixels in the ROI. 
Therefore, a combination of thresholding and morphological operations was developed to detect and 
segment the low‐intensity shading regions. 
 
As described in Appendix I, the first step of the RCA identification algorithm is to segment the cardiac 
region from the CT image slice, using a previously proposed algorithm.9 The resulting cardiac region is 
used in the current step of the algorithm to exclude from analysis all pixels within the identified RCA 
ROI that are outside of the cardiac region. Within the RCA ROI, of the pixels within cardiac region, the 
pixels representing the myocardium are identified as having intensity less than 50 HU. The mean 
intensity of the identified myocardium pixels 𝐼𝐼𝑚̅𝑚𝑚𝑚𝑚𝑚 will be used to calculate LIRS metric in Section 2.C. 
The pixels representing candidate low‐intensity shading artifacts within the myocardium are identified 
as having intensity below the threshold TLIR, which is calculated from the mean and standard deviation 
of the myocardium pixel intensities, 𝐼𝐼𝑚̅𝑚𝑚𝑚𝑚𝑚 and σmyo, as 
 

 
𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿  = 𝐼𝐼𝑚̅𝑚𝑚𝑚𝑚𝑚   −  1: 5𝜎𝜎𝑚𝑚𝑚𝑚𝑜𝑜 (2) 
 
Candidate low‐intensity shading pixels within a distance of 1.5 times the equivalent vessel radius are 
identified as shading artifacts, where the equivalent radius is calculated as 
 

 
 
𝑟𝑟 = 𝐴𝐴𝑣𝑣/𝜋𝜋 (3) 
 
where Av is the area of the segmented RCA region in Section 2.A (i.e., sum of the pixels in the binary 
RCA mask). The result is the final mask of the low‐intensity shading artifact regions, as demonstrated in 
Fig. 5. 
 

 
Figure 5 Examples of LIR segmentation results. Top row displays the original RCA ROI images. The bottom row 
marks the segmented low‐intensity shading regions with white contours. The first five columns demonstrate 
low‐intensity shading segmentation results with various motion artifact level. The last column demonstrates 
segmentation for a dataset with high noise level (84 HU noise standard deviation in the myocardium region). 
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2.C. Calculate motion artifact score 
A previous study proposed and validated two metrics, FOR and LIRS, to measure vessel deformation 
and shading artifacts, respectively.13 We briefly summarize the metrics here, while additional details 
can be found in our previous study. 
 
The FOR metric measures vessel symmetry within an ROI by “folding” the vessel region mask about 
two perpendicular axes. The ratio of the intersection and union of the two folded subsets is a measure 
of symmetry about each axis. For a perfectly symmetric region, the intersection and union of the 
folded subsets is equal. If the region is asymmetric about the folding axis, the intersection is less than 
the union, resulting in a ratio less than one. In the previous study, folding was performed across the 
vertical and horizontal axes, and the FOR metric was defined as the minimum of the two calculated 
ratios, with a range of 0 (no symmetry) to 1 (perfect symmetry). Since the FOR metric is only 
determined by vessel shape and is independent of vessel diameter, intensity, location, and other 
factors, it is designed to quantify absolute motion artifact level across different patients and scans.13 
 
The LIRS metric measures low‐intensity shading artifacts. The LIRS is defined as the average of two 
scores measuring shading intensity (LIR‐IS) and area (LIR‐AS), respectively. The intensity score is the 
ratio of the mean intensity of the shading region, 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿, to the mean intensity of the myocardium 
region, 𝐼𝐼𝑚̅𝑚𝑚𝑚𝑚𝑚, where both values have been offset by 1024 to ensure positive mean numbers, as 
described in Eq. 4. The myocardium intensity, 𝐼𝐼𝑚̅𝑚𝑚𝑚𝑚𝑚, was identified and calculated as described in 
Section 2.B. 
 

 
 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐿̅𝐿𝐿𝐿𝐿𝐿+ 1024
𝐼𝐼𝑚̅𝑚𝑚𝑚𝑚𝑚+ 1024

 (4) 

 
The Low‐Intensity Region Area Score (LIR‐AS) is defined as 
 

 
 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝐴𝐴𝐴𝐴  =  1 − 𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿
𝐴𝐴𝑣𝑣

 (5) 

 
where 𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿 is the total area of the low‐intensity shading region mask, and 𝐴𝐴𝑣𝑣 is the area of the 
segmented vessel region. Since the low‐intensity shading region is usually smaller than the vessel 
region, LIR‐AS ranges from 0 to 1, with 1 indicating a region without dark shading artifact. The final LIRS 
metric, which is the average of the LIR‐IS and LIR‐AS scores, has a range of (0, 1], with 0 corresponding 
to severe artifact and 1 corresponding to no artifact. Normalizing the shading intensity by the 
myocardium intensity and the shading area by the vessel area, enables the LIRS to quantify absolute 
motion artifact level across different patients.13 
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Although motion artifacts are characterized as vessel deformation and shading artifacts, the two types 
of artifacts may not always be present in an image. To more accurately quantify motion artifacts, the 
overall MAS was proposed in previous work as the product of the FOR and LIRS metrics.13 This MAS 
metric was found to have good ranking agreement to observer scores in our previous study, and 
improved performance compared to the individual metrics. 

3 Application of Motion Artifact Quantification algorithm to Motion IQ 
Decision method 
The Motion Artifact Quantification algorithm outputs the MAS values for each through‐plane slice. The 
Motion IQ Decision method performs additional processing to determine whether the entire dataset is 
of adequate image quality or requires further motion correction. 
 
Motion artifacts may appear on every slice of a vessel or only a segment of the vessel. Either condition 
can cause the dataset to be nondiagnostic and require motion artifact correction. Therefore, the 
Motion IQ Decision algorithm is designed to identify vessel segments with unsatisfactory image quality 
and then to determine whether the length of the degraded vessel is large enough to cause the dataset 
to be nondiagnostic. 
 
In the first step of the algorithm, the MAS score in each slice is compared with a threshold TMAS. Slices 
with MAS less than TMAS are identified as containing severe motion artifacts. If there are N continuous 
slices that are identified as containing severe artifacts, each with slice thickness of w mm, then this 
dataset contains a segment of length of L = wN with severe motion artifacts. This study adopts the 
criteria that the dataset is of inadequate image quality (i.e., needs correction) if the length of RCA with 
severe motion artifacts (MAS < TMAS) is more than a threshold, L > TL_RCA_MAS. TL_RCA_MAS is referred to as 
artifact‐length threshold in this study. 
 
The TMAS and TL_RCA_MAS threshold values were determined by receiver operating characteristic (ROC) 
techniques in this study using the results of an observer study as ground truth. The observer study and 
ROC analysis will be described in Sections 4.A and 4.C, respectively. 

4 Evaluation methods 
4.A. Clinical datasets and observer study 
Twenty‐three CCTA exams were used in this study to validate the Motion IQ Decision algorithm. The 
patient heart rates ranged from 52 to 82 bpm. The exams were collected with a 256‐row CT scanner 
(GE Healthcare, Revolution CT, Chicago, USA) operating in axial scan mode. The images were acquired 
at 100 kVp or 120 kVp tube voltage, depending on patient size, with automatic tube current 
modulation and exposure control. Gantry speed was 0.35 s per rotation. The images were 
reconstructed by filtered backprojection, onto 17 to 26 cm fields of view with 512 × 512 pixels and a 
slice thickness of 0.625 mm. The SmartPhase technique (GE Healthcare) was applied to automatically 
identify the systolic and/or diastolic phases with lowest motion for each of the exams,9 resulting in 30 
total CCTA datasets. The identified lowest motion phases ranged from 43% to 82% of the R–R interval. 
The noise level of the 30 datasets was evaluated by calculating the standard deviation of a manually 
selected ROI within the myocardium on the center slice of each dataset. The minimum, average, and 
maximum standard deviation of the myocardium ROIs were 30.0, 46.3, and 84.4 HU. Three datasets 
contained minor or moderate stenosis, while six datasets contained no stenosis, as evaluated by a 
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board‐certified radiologist specializing in cardiothoracic imaging. The stenosis level of 21 datasets could 
not be determined due to motion artifacts. The contrast of three exams was determined as fair or poor 
by the expert reader, while the remainder of the exams was considered to have adequate contrast. No 
datasets were excluded due to image quality or stenosis level. The Motion Artifact Quantification 
analysis was performed on reconstructed image slices with 0.625‐mm slice thickness. 
 
The 30 CCTA datasets, each consisting of a volume of images at one phase, were evaluated 
independently by three board‐certified radiologist readers specializing in cardiothoracic or body 
imaging. For each dataset, the readers were asked to decide whether each dataset was of sufficient 
diagnostic motion artifact image quality or required additional motion correction for each coronary 
artery. The majority opinion of the readers for each coronary artery was considered as the ground‐
truth decision. 
 
4.B. Verification of segmentation methods 
Three CCTA exams were used to verify the vessel and shading segmentation algorithms presented in 
Section 2.A and 2.B, respectively. Twenty RCA ROIs were randomly selected for this verification study, 
as shown in Fig. 6. The 20 ROIs contain varying degrees of motion artifacts. 
 

 
Figure 6 RCA ROIs used for segmentation verification. 
 
Three readers, trained in biomedical engineering, manually segmented both the deformed vessel and 
the low‐intensity shading regions for each RCA ROI. The three reader segmentations were combined 
into a ground‐truth segmentation using the Simultaneous Truth and Performance Level Estimation 
(STAPLE) method, with a probability threshold of 0.9.18 
 
For each ROI, the vessel and shading regions were segmented by the algorithms described in Section 1, 
then compared with ground‐truth segmentations using the Dice coefficient metric. 
 
In addition to quantifying the segmentation performance, an investigation was performed to evaluate 
the effect of the automated segmentation algorithm on the calculation of the MAS metric. The MAS 
metric was calculated using both the ground‐truth segmented regions and the algorithm‐segmented 
regions, denoted as MASGi and MASAi respectively, where i = 1, 2, …, 20 is the image index. To quantify 
the effect of the automated segmentation algorithms on the calculation of the metrics, the difference 

https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13243#mp13243-sec-0013
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13243#mp13243-sec-0014
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13243#mp13243-fig-0006
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13243#mp13243-bib-0018
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13243#mp13243-sec-0005
https://wol-prod-cdn.literatumonline.com/cms/attachment/2c361eb0-e902-49f1-84c7-eab83924c13c/mp13243-fig-0006-m.jpg


between the metrics calculated using the ground‐truth and algorithm‐generated segmentations was 
calculated as: 
 

 
𝐷𝐷𝑖𝑖 =  𝑀𝑀𝑀𝑀𝑀𝑀𝐺𝐺𝐺𝐺  −  𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴𝑖𝑖  (6) 
 
which is referred to as the MAS difference. If the algorithm‐generated segmentations are identical to 
the ground‐truth segmentations, the MAS difference is zero. The MAS difference distribution of the 20 
RCA ROIs was fit to a normal distribution. The mean of the fitted normal distribution indicates whether 
the segmentation algorithm introduces a bias in the MAS calculation. The standard deviation of the 
fitted normal distribution quantifies the variation in MAS due to segmentation errors. This study used 
the 95% confidence interval of the fitted normal distribution as a measure of precision. 
 
4.C. Cross‐validation ROC analysis to identify Motion IQ Decision algorithm thresholds 
In this study, a five‐fold cross‐validation method was used to both identify the thresholds of the 
Motion IQ Decision algorithm (training) and to evaluate the algorithm performance (testing). 
Compared with simply dividing the datasets into a training set and test set, the cross‐validation 
method utilizes all of the datasets for both training and evaluation, thereby more reliably estimating 
classifier performance from a limited number of datasets.19 
 
The five‐fold cross‐validation method used in this study randomly split the 30 datasets into five distinct 
sets with stratified sampling, which means that the ratio of the number of datasets that need 
correction to the number of datasets with adequate image quality for each fold was the same as the 
ratio for the total dataset. The following ROC analysis was performed for five trials, with four folds (24 
datasets) selected for training each time. For each trial, the 24 training datasets were used to 
determine the Motion IQ Decision algorithm thresholds, TMAS and TL_RCA_MAS by ROC techniques. For 
each trial, the remaining fold (six datasets) was used to verify the Motion IQ Decision algorithm 
performance using the method described in Section 4.D. 
 
The training datasets were input to the Motion Artifact Quantification algorithm, which output the 
MAS score for each image slice in the training dataset identified by the algorithm as containing the 
through‐plane RCA. The Motion IQ Decision algorithm was performed with the MAS 
threshold, TMAS, varied between 0 to 1 with an increment of 0.05, and the threshold corresponding to 
the length of motion artifact segment, TL_RCA_MAS, fixed at 3.75 mm. Datasets were identified by the 
algorithm as being of inadequate image quality (“needing correction”) if the MAS was less than TMAS for 
a vessel segment of length greater than TL_RCA_MAS. The algorithm decision of whether the dataset was 
of adequate image quality was compared to the majority reader opinion for the RCA vessel, with true 
positives, true negatives, false negatives, and false positive results defined in Table 1. The true positive 
rate (TPR) was calculated as the ratio of true positive to all positive results determined by the readers, 
and the false positive rate (FPR) was calculated as false positive results divided by all negative results 
determined by the readers. 
 
Table 1. True condition and predicted condition definition for Motion IQ Decision algorithm validation  

Algorithm results   
RCA needs correction Adequate RCA IQ 
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Readers’ decisions   
RCA needs correction True Positive (TP) False Positive (FP) 
Adequate RCA IQ False Negative (FN) True Negative (TN) 

 
Both true positive and true negative results are correct decisions, thus the accuracy was defined as the 
sum of true positive and true negative results divided by the total number of studies. The ROC curve 
was generated by plotting the TPR vs the FPR for each TMAS threshold value. 
 
The ROC analysis was then repeated with the TL_RCA_MAS fixed at each of 5, 6.25, and 7.5 mm, with 
the TMAS, varied between 0 to 1. The tested TL_RCA_MAS range of 3.75 to 7.5 mm was selected as it 
represents the segment length of small lesions.20 For each ROC curve, the point which gave the 
highest accuracy, that is, the highest sum of true positive and true negative results, was selected as the 
optimal TMAS setting for that specific motion artifact‐length threshold setting. 
 
For each of the five‐fold trails, the ROC curve with the highest accuracy was identified, and the 
corresponding highest accuracy combination of TL_RCA_MAS and TMAS thresholds was identified as the 
final Motion IQ Decision thresholds for each of the five‐fold trials. 
 
4.D. Evaluation of the Motion IQ Decision algorithm 
The Motion IQ Decision algorithm was developed assuming that the RCA represents the motion artifact 
severity for the entire CCTA exam. The Motion IQ Decision algorithm was first verified for its 
performance in identifying datasets with insufficient RCA image quality, using the five‐fold cross‐
validation method. For each of the fivefold trials, the algorithm decision for the six testing datasets was 
compared to the ground‐truth expert decisions for the RCA. Sensitivity, specificity and overall accuracy 
were calculated as metrics of Motion IQ Decision Algorithm performance for each fold. The mean and 
standard deviation of the sensitivity, specificity, and accuracy were calculated to characterize the 
overall algorithm performance. The final TL_RCA_MAS and TMAS thresholds were selected as the mean of 
the thresholds determined by the five‐fold trials. 
 
The algorithm was then validated for its performance identifying datasets with insufficient CCTA image 
quality using all 30 datasets for testing. For this validation study, the ground‐truth decision of “needs 
correction” was determined if at least one of the vessels was identified as requiring correction by a 
majority of the readers. The ground‐truth decision that considered all three vessels was compared to 
the decision output by the Motion IQ Decision algorithm for the RCA. In this study, the readers’ 
decisions for all three vessels were used to validate the assumption that the RCA represents the 
motion artifact level of the whole CCTA dataset. 

5 Results 
5.A. Verification of the vessel and shading artifact region segmentation algorithms 
Figure 7 displays the ground‐truth and algorithm segmentations of the ROI RCAs used for segmentation 
verification, with the Dice coefficients also displayed for each ROI. The mean Dice coefficient of 
agreement between the algorithm‐generated and ground‐truth vessel regions was 0.84 across the 20 
ROIs. Four of the investigated ROIs did not have low‐intensity shading artifacts identified by the 
readers or algorithm. The mean Dice coefficient of the low‐intensity shading artifact region across the 
remaining 16 ROIs was 0.75. 
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Figure 7 Verification results of the algorithms to segment the vessel and low‐intensity shading regions. For each 
pair of images, the left image shows the segmented region output by the algorithm, labeled with “A”, and the 
right image shows the ground‐truth segmentation, labeled with “G”. Segmented vessels are marked with black 
contours, and low‐intensity shading regions are marked with white contours. Dice coefficients of vessel 
segmentation (Dves) and low‐intensity shading region segmentation (DLIR) are displayed at the top of the image 
pairs. 
 
The distribution of differences between the MAS calculated using the algorithm and ground‐truth 
segmentations was fit to a normal distribution and found to have a mean of 0.06 and standard 
deviation of 0.1, as plotted in Fig. 8. The 95% confidence interval was found to be between 0.016 and 
0.104, suggesting that the segmentation algorithm resulted in less than 10% MAS estimation error, 
relative to the full MAS range. 

 
Figure 8 The histogram of the difference in MAS values calculated using the ground‐truth and algorithm‐
generated segmentations for 20 RCA ROIs. The fitted normal curve is also displayed. 
 
That the mean MAS difference across the 20 ROIs was greater than zero (0.06) demonstrates that the 
MAS calculated using ground‐truth segmentation is, on average, 6% higher than that calculated using 
the automated‐algorithm segmentation. Since a lower MAS represents more severe artifacts, this 
positive mean difference signifies that the automated segmentation overestimates the level of artifact 
severity by 6% on average. Further analysis calculated the difference in the FOR metrics obtained using 
ground‐truth and algorithm segmentations and the differences in the LIRS metric obtained using 
ground‐truth and algorithm segmentations. The mean FOR difference of the 20 ROIs was −0.01, while 
mean LIRS difference was 0.07. Therefore, the MAS offset was mainly caused by the automated 
segmentation algorithm detecting more shading artifacts than the ground‐truth segmentations. 
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5.B. Examples of motion artifact quantification 
The Motion Artifact Quantification algorithm outputs the MAS for every slice that contains the 
through‐plane RCA, with an MAS = 1 indicating no motion artifacts and MAS = 0 indicating severe 
motion artifacts. Figures 9 and 10 are examples of Motion Artifact Quantification algorithm results for 
varying levels of motion artifact. Figure 9 presents an example of a dataset with generally low‐motion 
artifacts, for which the MAS across all slices ranged from 0.21 to 0.88. Mean and standard deviation of 
the MAS across all slices were 0.66 and 0.14, respectively. The distal segment of the RCA in 
Fig. 10 contains more severe motion artifacts than the proximal segment. The mean MAS of the 
proximal 15 slices was 0.44, which was higher than the mean MAS of 0.31 for the distal 19 slices. 
Overall, the examples Figs. 9 and 10 demonstrate a range of motion artifact levels across different 
patients, from low (Fig. 9) to medium (proximal segment of Fig. 10) to high motion artifacts (distal 
segment of Fig. 10). Accordingly, the mean MAS of these datasets/segment were, respectively, 0.66, 
0.44, and 0.31, which generally matched the perceived level of motion artifact. 
 

 
Figure 9The first example of Motion Artifact Quantification and Motion IQ Decision results on one dataset. This 
figure shows the RCA ROIs on every other through‐plane slice with the left‐top ROI displaying the most superior 
slice. The MAS is labeled on top of each ROI. The RCA ROIs marked with a triangle were determined as “contain 
severe motion artifacts” by Motion IQ Decision algorithm as the MAS were less than the TMAS threshold of 0.6. 
This dataset contains low level of motion artifacts and was determined as having sufficient image quality for 
diagnosis by both the readers and Motion IQ Decision algorithm. 
 

 
Figure 10 The second example of Motion Artifact Quantification and Motion IQ Decision results on one dataset. 
This figure shows the RCA ROIs on every other through‐plane slice with the left‐top ROI displaying the most 
superior slice. The MAS is labeled on top of each ROI. The MAS is labeled on top of each ROI. The RCA ROIs 
marked with a triangle were determined as “contain severe motion artifacts” by Motion IQ Decision algorithm 
as the MAS was less than the TMAS threshold of 0.6. The distal RCA segment contains high motion artifacts, while 
the proximal segment image quality is relatively good. This dataset was determined as needing motion 
correction by both the readers and the Motion IQ Decision algorithm. 
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5.C. Cross‐validation and Motion IQ Decision algorithm performance 
The ROC curves of one fold trial resulting from the threshold parameters sweeps are shown in Fig. 11, 
with the artifact‐length threshold (TL_RCA_MAS) set to 3.75, 5, 6.25, and 7.5 mm in Figs. 11(a)–11(d). For 
each ROC curve, TPR and FPR were calculated with MAS threshold varied between to 0 to 1 with 0.05 
step, that is, 21 points are on each ROC curve. In some cases, two thresholds resulted in the same TPR 
and FPR, causing the points to overlap on the curve. The solid point on each ROC curve is the one that 
gives the highest number of true positive plus true negatives, that is, the highest accuracy of the 
Motion IQ Decision. For this fold trail, TMAS and TL_RCA_MAS combinations of (0.60, 6.25 mm) produced 
the highest accuracy of 87.5% for the 24 training datasets in this fold trial. 
 

 
Figure 11 The ROC curves corresponding to artifact‐length threshold values of (a) 3.75 mm, (b) 5 mm, (c) 
6.25 mm, and (d) 7.5 mm for one fold. On each ROC curve, the solid marker represents the operating point with 
highest accuracy (the highest sum of true positive and true negative results). The asterisk marker corresponds to 
the lowest threshold that provides a sensitivity of one. The point with highest accuracy on plot (a) is 
(TMAS, TL_RCA_MAS) equal to (0.455, 3.75 mm), with accuracy of 79.2%. The highest accuracy points on (b) and (c) 
are both (0.60, 5 mm) with accuracy of 83.3% and 87.5%, respectively. The point with highest accuracy on plot 
(d) is (TMAS, TL_RCA_MAS) equal to (0.65, 7.25 mm), with accuracy of 75%. 
 
The Motion IQ Decision algorithm may be useful as a task‐based evaluation and comparison of 
different motion artifact reduction techniques. For this application, the thresholds that yield the 
highest accuracy are desired. Another potential application of the Motion IQ Decision algorithm is to 
automatically send datasets with insufficient image quality for motion correction, while saving the 
computation time if correction is not needed. When we select TMAS and TL_RCA_MAS by the above 
“highest accuracy” strategy, some datasets that need correction are missed. Since the cost of missing a 
dataset that needs correction is greater than the cost of unnecessarily correcting a dataset, another 
option for this application is to adopt a “low‐risk” strategy. This strategy selects the lowest TMAS that 
yields a sensitivity of one. This low‐risk strategy ensures that all datasets that require correction are 
identified although with a potential increase in the number of false negative datasets that will be 
unnecessarily corrected. The “low‐risk” points on Fig. 11 are marked with asterisks. For Figs. 11(b) 
and 11(c), the highest accuracy strategy and the low‐risk strategy selected the same operating point. 
The selected TMAS and TL_RCA_MAS combination of (0.6, 6.25 mm) met both the highest accuracy strategy 
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and low‐risk strategy, resulting in a sensitivity of 1.0. ROC curves similar to Fig. 11 were obtained 
during training of the other four fold trials. All five fold trials determined the same optimal 
combination of TMAS and TL_RCA_MAS threshold values (0.6, 6.25 mm) as meeting both the highest 
accuracy and low‐risk strategy. 
 
Table 2 displays the sensitivity, specificity, and accuracy of the Motion IQ Decision algorithm in 
identifying datasets for which the RCA needs correction, using the six testing datasets for each of the 
five fold trials. All fold trials resulted in a sensitivity of 100%, demonstrating that the Motion IQ 
Decision can robustly identify the datasets of needing correction. The specificity was 66.7% ± 27.9%, 
with an accuracy of 86.7% ± 12.5%. 
 
Table 2. Selected thresholds and test performance of five‐fold cross‐validation  

T MAS TL_RCA_MAS (mm) Sensitivity (%) Specificity (%) Accuracy (%) 
Fold #1 0.6 6.25 100 50 83.3 
Fold #2 0.6 6.25 100 50 83.3 
Fold #3 0.6 6.25 100 100 100 
Fold #4 0.6 6.25 100 100 100 
Fold #5 0.6 6.25 100 33.3 66.7 
Mean 0.6 6.25 100 66.7 86.7 
SD 

  
0 27.9 12.5 

 
Figures 9 and 10 demonstrate examples of Motion IQ Decision results. The first example was 
determined as “adequate RCA image quality” by the both the readers and the algorithm, while the 
second example was determined as “RCA needs correction” by readers and the algorithm. 
Figure 12 presents one false negative result, for which the reader decision was “adequate RCA image 
quality” and the algorithm decision was “RCA needs correction,” because the length of the RCA that 
contained severe artifacts exceeded the artifact‐length threshold of 6.25 mm. For this dataset, two 
readers determined that the RCA was of sufficient image quality, while the third reader determined it 
as needing correction. Because the low‐risk strategy was adopted to determine the Motion IQ Decision 
parameters, the datasets without consensus among the readers are more likely determined as needing 
correction, as occurred for this one dataset. 
 

 
Figure 12 Dataset for which Motion IQ Decision returned a false positive. This figure shows the RCA ROIs on 
every through‐plane slice with the left‐top ROI displaying the most superior slice. The MAS is labeled on top of 
each ROI. The RCA ROIs marked with a triangle were determined as “contain severe motion artifacts” by the 
Motion IQ Decision algorithm as the MAS values were less than the TMAS threshold of 0.6. The readers identified 
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this dataset as sufficient image quality while Motion IQ Decision algorithm identified this dataset as needing 
correction as its length of “contain severe motion artifacts” was 16.875 mm, which was longer than the 
threshold of 6.25 mm. 
 
The algorithms developed in this work assumed that the through‐plane RCA segment represents the 
motion artifact level for all coronary arteries. The results of our current study suggest that this 
assumption is true most, but not all, of the time. Of the 23 datasets that were determined as needing 
correction by the readers, 20 were rated as needing correction for the RCA, while three datasets were 
rated as needing correction for only the left vessels, that is, 10% of datasets needed correction only for 
the left vessels. A CCTA dataset will need motion correction if any of the three coronary arteries needs 
correction. In the validation study, we compared the Motion IQ Decision algorithm decision, based on 
the RCA, with the ground‐truth decision based on all three coronary arteries for all 30 datasets, as 
shown in Table 3. The Motion IQ Decision algorithm identified CCTA datasets that need correction with 
91.3% sensitivity, 71.4% specificity, and a total accuracy of 86.7%. 
 
Table 3. Motion IQ Decision algorithm validation results based on three coronary arteries 

Readers’ decision (number of 
datasets) 

 Motion IQ decision output 
(number of datasets) 

 
 

 Needs correction Adequate IQ 
Needs correction 23 21 (91.3%) 2 (8.7%) 
Adequate IQ 7 2 (28.6%) 5 (71.4%) 

6 Discussion 
The purpose of this study was to (a) develop and evaluate algorithms to automatically quantify motion 
artifact metrics in clinical CCTA images and (b) apply the algorithms to identify CCTA datasets that need 
further correction. The results demonstrated that the automated segmentation algorithms developed 
in this work introduced less than 10% error in the final MAS compared to manual artifact 
segmentation. This error was primarily due to oversegmentation of the low‐intensity shading regions, 
which demonstrated a lower Dice coefficient (0.75) than the vessel region segmentation algorithm 
(0.84). Therefore, the Motion Artifact Quantification algorithm could be improved in the future by 
increasing the accuracy of the low‐intensity artifact segmentation step. 
 
The assumption that the RCA represents the overall CCTA image quality was based on a previous study 
that demonstrated a higher velocity for the RCA than the left coronary artery velocities.10 Of the 23 
datasets in our study that were identified as needing correction, three of the datasets had severe 
artifacts in the left vessels but not the RCA. This is likely because factors other than velocity, including 
both patient and scanner factors, affect the motion artifact severity, for example vessel diameter, 
intensity, and gantry start angle. Also, if the left vessels contain calcifications, the high intensity may 
increase the perceived severity of motion artifacts. The severity of motion artifact also depends on the 
direction of the motion relative to the projection direction. The motion direction of the left anterior 
descending (LAD) and left circumflex (LCX) vessels may be such that the artifacts appear more severe 
for the left vessels than for the RCA, despite the potentially lower velocity of the left vessels. 
Quantifying the RCA motion may be sufficient for evaluating the performance of different motion 
artifact reduction techniques. For identifying CCTA datasets that require further correction, the results 
of our study suggest that the Motion IQ Decision algorithm could be improved by extending the 
algorithms to the left vessels. 
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One limitation of this work is that the all images were obtained by filtered backprojection 
reconstruction. Iterative reconstruction approaches may alter the noise and texture properties of the 
reconstructed images, which may affect the segmentation algorithms presented in Section 1. Future 
study is required to investigate the performance of the Motion Artifact Quantification algorithm for 
images reconstructed by iterative approaches. 
 
Another limitation of this study is that none of the clinical datasets contained vessels with total 
occlusion. Therefore, performance of the Motion Artifact Quantification algorithm on slices with total 
occlusion is unknown. An occluded RCA may not be enhanced by contrast agent during the scan, which 
could cause the RCA identification and vessel map algorithms to identify an incorrect RCA ROI. An 
incorrect RCA ROI would result in erroneous FOR and LIRS values that do not represent the level of 
motion. The Motion Artifact Quantification algorithm could be improved by implementing criteria to 
exclude such slices from further analysis. Another potential issue is that the FOR metric cannot 
distinguish between vessels deformed by stenosis from vessels deformed by motion. It is possible that 
the FOR score for a stenosed vessel may be erroneously high, therefore overestimating the level of 
motion artifact for slices with stenosis. In this study, three datasets contained minor or moderate 
stenosis, while the stenosis level of 21 datasets could not be evaluated due to motion artifacts. 
 
The robustness of the Motion Artifact Quantification algorithm and the Motion IQ Decision algorithm 
depends on multiple factors, including noise level, vessel size, contrast, and resolution. This study 
developed and verified the algorithms using datasets for which these factors were varied. For example, 
the image noise varied from 30.0 to 84.4 HU (myocardium ROI standard deviation). The pixels sizes of 
the datasets varied from 0.293 to 0.7031 mm, with a mean pixel size of 0.4156 mm. The contrast 
enhancement was rated as poor for three datasets. This study did not exclude any exams due to any 
image quality factors. The Motion IQ Decision algorithm correctly determined the need for motion 
correction for the three exams with poor or fair contrast and for the three exams with stenosis. The 
algorithm also made the correct decision for the exam with the highest noise level. 
 
As described in Section 5.C, all five folds of the cross‐validation study identified the same 
thresholds, TMAS = 0.6 and TL_RCA_MAS = 6.25 mm, as meeting both the highest accuracy strategy and the 
lowest risk strategy. While these consistent values across validation folds suggest that these thresholds 
are fairly robust, training with more datasets may yield different threshold values. Additional testing 
datasets are needed for a larger scale study of algorithm performance across a larger range of clinical 
conditions and image quality factors. 
 
This paper presents one potential application of the Motion Artifact Quantification algorithm—
automatically determining whether a CCTA dataset is of sufficient image quality or requires additional 
motion correction. This Motion Check Decision algorithm could be used to streamline CCTA workflow. 
In addition, the presented algorithms could be used to improve best‐phase selection algorithms and to 
evaluate motion reduction techniques. For example, for a specific motion compensation technique, the 
Motion IQ Decision algorithm could determine how often a particular motion correction technique 
improves the image quality from inadequate to adequate, thus providing a task‐based evaluation. 
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7 Conclusion 
This study developed and validated a series of algorithms to automatically quantify the level of motion 
artifact on clinical CCTA images. The study demonstrated that the automated segmentation algorithms 
developed in this work introduced less than 10% error in the final MAS compared to manual artifact 
segmentation. The Motion IQ Decision algorithm demonstrated 100% sensitivity, 83.3% specificity, and 
a total accuracy of 93.3% for identifying datasets in which the RCA required correction. The Motion IQ 
Decision algorithm, demonstrated 91.3% sensitivity, 71.4% specificity, and a total accuracy of 86.7% for 
identifying whole CCTA datasets that need correction. The developed algorithms for automatically 
quantifying motion artifact severity may be useful for comparing acquisition techniques, improving 
best‐phase selection algorithms, and evaluation motion compensation techniques. 
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Appendix I 
Identification of RCA ROIs 
As presented in Fig. 1, the RCA ROI identification algorithm consists of three steps: identify through‐
plane slices, create vessel map, and extract RCA ROIs. RCA segmentation algorithms have been 
previously proposed and could be used for this purpose of the algorithm.14-16 In this work, we 
developed an automated algorithm that leverages image processing steps developed in a previous 
study on identification of CCTA best phase.9 The RCA ROI identification algorithm begins with the 
vessel‐enhanced images that were obtained by a sequence of cardiac‐region segmentation, top hat 
transformation, Sobel filtering, and matched filtering, as described in the previous study.9 
A1 Identify through‐plane slices 
The validated motion artifact metrics used in this study assume that the vessel is circular, which is true 
for slices in which the vessel orientation is primarily perpendicular to the slice plane (i.e., through‐
plane slices). Therefore, the first step is to identify the slices with through‐plane vessels. To identify the 
through‐plane slices, the algorithm first identifies the proximal and distal in‐plane vessel sections, and 
assumes that the slices between the two sections are through‐plane. 
 
This algorithm takes advantage of the fact that that the extent of in‐plane vessels within an image slice 
is greater than that of through‐plane vessels. The algorithm begins with the vessel‐enhanced images 
output by an algorithm developed in previous work.9 Next, thin slab (5 mm) maximum intensity 
projections (MIP), centered on each image slice location, are created to further accentuate vessels with 
large in‐plane extent. The intensities within the right half of each MIP image are summed to represent 
the in‐plane extent of the vessels in that slice. An example of the MIP‐sum per slice is plotted in Fig. 13. 
The algorithm identifies the two maximum peaks in the MIP‐sum values, which represent the two in‐
plane vessel sections, and identifies the slices between the two peaks as containing the through‐plane 
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RCA. Figure 14 demonstrates an example of the performance of the algorithm for the identification of 
through‐plane slices on one volume dataset. 

 
Figure 13 The MIP‐sum is plotted against slice number for an example patient dataset. The two peak locations 
identified by the algorithm represent the two in‐plane vessel section locations. 
 

 
Figure 14 Example of identifying through‐plane slices in one volume dataset. Only the segmented cardiac 
regions are displayed. The top left image is the most superior slice and the bottom right image is the most 
inferior slice. Slice thickness is 2.5 mm. The slices labeled with a circle were identified by the algorithm as 
containing through‐plane vessels and were further processed in subsequent steps of the Motion Artifact 
Quantification algorithm. 
 

 
Figure 15 Demonstration of the vessel map algorithm. The three paths are built recursively from the three 
candidate points on the first slice. The RCA locations are identified by the solid path whose path length is the 
smallest. In this example, the RCA location is correctly identified by the algorithm in all slices. 
 
A2 Create vessel map 
The next step in the algorithm estimates the location of the RCA in each through‐plane slice, resulting 
in the list of the RCA center pixel coordinates, which is referred to as the Vessel Map. 
 
In our previous work, three candidate RCA locations in the right half of each image slice were identified 
by thresholding the vessel‐enhanced images.9 Further analysis demonstrated that this method almost 
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always identified the correct RCA location as one of the three candidate locations, even in the presence 
of motion artifacts. Therefore, the goal of the vessel map algorithm developed in the current work is to 
select the correct RCA location from the three candidate points. 
The proposed vessel map algorithm exploits the fact that the RCA vessel is continuous and that the 
Euclidean distance between the x–y plane coordinates of the RCA on adjacent slices should be small. 
The vessel map algorithm is performed with the following steps, as illustrated in Figure 15: 
 

• Step 1: Starting with the first candidate location on the first slice, calculate the 2D Euclidean 
distance to each of the three candidate points on the next slice. The point located at the closest 
distance is considered to be connected to the candidate point on the first slice. From the 
selected point on the second slice, repeat the method to select the point on the third slice. This 
process is repeated for all slices. All identified points are considered to form a path, and the 
sum of the distances between points equals the path length. 

• Step 2: Repeat Step 1 for the remaining two candidate points on the first slice. At the end of 
this step, there are three possible vessel paths, each with a calculated path length. 

• Step 3: The RCA vessel map is identified as the path with shortest path length. The vessel map 
algorithm outputs the RCA locations (pixel coordinates) on each slice. 
 

A3 Extract RCA ROIs 
Regions of interest (ROI's) of size 15 × 15 mm2 are extracted for each slice, centered on the RCA 
location identified on the vessel map. This ROI size was selected based on the expected maximum 
coronary artery diameter of 5 mm21 and so that in presence of motion artifacts, both the deformed 
RCA and shading artifacts are included in the ROI. Figure 2 presents an example of an output RCA ROI. 
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