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Abstract 
Electrical Impedance Tomography (EIT) is a non-invasive imaging modality that uses surface electrical 
measurements to determine the internal conductivity of a body. The mathematical formulation of the EIT 
problem is a nonlinear and severely ill-posed inverse problem for which direct D-bar methods have proved 
useful in providing noise-robust conductivity reconstructions. Recent advances in D-bar methods allow 
for conductivity reconstructions using EIT measurement data from only part of the domain (e.g., a patient 
lying on their back could be imaged using only data gathered on the accessible part of the body). 
However, D-bar reconstructions suffer from a loss of sharp edges due to a nonlinear low-pass filtering of 
the measured data, and this problem becomes especially marked in the case of partial boundary data. 
Including a priori data directly into the D-bar solution method greatly enhances the spatial resolution, 
allowing for detection of underlying pathologies or defects, even with no assumption of their presence in 
the prior. This work combines partial data D-bar with a priori data, allowing for noise-robust conductivity 
reconstructions with greatly improved spatial resolution. The method is demonstrated to be effective on 
noisy simulated EIT measurement data simulating both medical and industrial imaging scenarios. 
 

Keywords: Electrical impedance tomography, partial boundary data, Neumannto-Dirichlet map, D-bar 
method, a priori information. 

1.   Introduction 
In Electrical Impedance Tomography (EIT), we measure the surface voltages resulting from the injection of 
currents on an array of electrodes placed on the surface of a body. These measured boundary currents and 
voltages are then used to reconstruct the internal electrical conductivity distribution via a mathematical 
inversion process, thus forming an image of the body's interior structures. Compared with other imaging 
modalities, EIT has advantages in its low cost, high contrast, portability, and absence of ionizing radiation. There 
is an ever-growing list of applications of EIT in diverse fields, including medicine and biology, geophysical 
imaging, process engineering, and nondestructive testing, just to name a few. Of special relevance to the 
examples studied in this paper are the use of 2-D EIT in human pulmonary imaging, as described for example 
in,8,16,32,43,44,45 along with the nondestructive testing and evaluation of concrete and other materials in industrial 
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and engineering applications.10,18,25,26,33,34,46 In these applications, it is of immense interest to detect emerging 
pathologies when monitoring patients, or defects in industrial components. 

 

Figure  1.  Example simulating a patient with a pneumothorax in the left lung. The simulated noisy measurement is 
collected from 75% ventral data. The first image displays the true conductivity with the position of electrodes indicated. 
Using a partial data D-bar approach alone results in a reconstruction with low spatial resolution, where the pathology can 
be hardly seen (second). Incorporating a priori data corresponding to a healthy patient directly into the reconstruction 
method significantly improves the spatial resolution (third). Refining the prior improves the reconstruction further, allowing 
even sharper visualization of the pathology (fourth) 
 

In 2-D EIT, electrodes are arranged in a plane around the perimeter of the domain, and the reconstruction 
occurs in the plane of the electrodes. Ideally, electrodes are positioned around the entire boundary, resulting in 
full boundary data. However, there are many practical applications in which only part of the domain boundary is 
accessible, and we must rely instead on partial boundary data. This often occurs in medical applications when a 
critically ill patient is lying on their back and cannot be moved, or in industrial testing applications when, for 
example, we wish to test a component that is attached to part of a larger structure. Direct D-bar inversion 
techniques for full boundary data are a well-established category of reconstruction methods based on the 
results of41 and.42 The first practical implementation was described in,47 the method was further 
developed,39,30,11 and a regularization strategy for D-bar methods was introduced and proven in.35 Furthermore, 
D-bar reconstruction methods preserve the nonlinearity of the inverse problem, have been proven to exhibit 
robustness to domain shape errors,40 and are capable of real time imaging.13 

D-bar methods for the partial boundary setting differ from the full boundary case in a few important ways. This 
study is based on a recently proposed approach in,22 where the authors use a formulation of the conductivity 
equation with Neumann boundary conditions corresponding to applied currents. For an open and bounded 
domain Ω ⊂ ℝ2, with an open (and not necessarily connected) subset Γ ⊂ ∂Ωon which zero-mean current 𝜑𝜑 ∈
𝐿𝐿2(∂Ω) is injected, the electric potential uu supported in Ω is modeled by 

(1) 

∇ ⋅ 𝜎𝜎∇𝑢𝑢 = 0,  in Ω,
𝜎𝜎 ∂𝜈𝜈𝑢𝑢 = 𝜑𝜑,  on Γ ⊂ ∂Ω
𝜎𝜎 ∂𝜈𝜈𝑢𝑢 = 0,  on ∂Ω ∖ Γ.

  

For uniqueness we require ∫ 𝑢𝑢𝑢𝑢𝑢𝑢 = 0∂Ω , and due to conservation of charge ∫ 𝜑𝜑𝑢𝑢𝑢𝑢 = 0∂Ω .The resulting voltage 
distribution on the boundary, 𝑢𝑢|∂Ω, is assumed to be known only on Γ. In EIT, we wish to recover the 
conductivity σσ from the boundary measurements 𝑢𝑢|∂Ω and our knowledge of 𝜑𝜑. 

The boundary data for the EIT problem is given by the Neumann-to-Dirichlet (ND) map, which takes boundary 
currents to boundary voltages. In the case of full boundary data, where Γ = ∂Ω, computation of the scattering 
transform, which is a nonlinear custom Fourier transform crucial to the method, depends instead on the 
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Dirichlet-to-Neumann (DN) map. In the full boundary setting, the DN map is obtained by simply inverting the ND 
map. Since the ND data and the DN data are not equivalent for the partial boundary setting, due to the graphs of 
the operators representing different subsets of the Cauchy data, we cannot use the classical D-bar method that 
depends on the DN map. For this reason we compute the scattering transform directly from the ND map by an 
approximation. Details of our setting are discussed in §2. The uniqueness question for the Neumann-to-Dirichlet 
problem (1) has been addressed for coinciding measurement and input domains in ℝ2 in,29 and in higher 
dimensions in,21 for bisweep data in,28 and for different input and measurement domains in.7 

Regardless of the reconstruction method used, EIT imaging involves solving a nonlinear and extremely ill-posed 
inverse problem which requires regularization, so EIT images in general tend to exhibit a loss of sharp edges and 
finer detail in the presence of noisy measurements. In D-bar methods, this regularization involves low-pass 
filtering of the nonlinear scattering transform data. Higher scattering frequencies become unstable in the 
presence of noise and are therefore omitted from the reconstruction process. However, these higher 
frequencies also encode finer details and sharp edges, and thus the reconstructions suffer from a loss of spatial 
resolution. These problems are exacerbated in the case of partial boundary data, where, as shown in,22 the 
introduced error to the reconstruction depends linearly on the missing domain. 

One means of improving spatial resolution in EIT reconstructions is the inclusion of prior information in the 
reconstruction algorithm. This information, in the form of approximate shapes and locations of internal 
structures and/or regional conductivity estimates, may be obtained in various ways depending on the 
application. In the case of medical imaging, the approximate shapes, sizes, and locations of organ boundaries 
may be obtained from a previous CT or ultrasound scan, or by consulting an anatomical atlas. In particular, in 
cases where chronically ill patients must receive CT scans as part of a regular course of diagnosis and treatment, 
these prior scans may be used as a ready source of highly accurate anatomical information for follow-up EIT 
scans, which do not impart doses of ionizing radiation. For these known structures, conductivity estimates may 
also be obtained from literature. If instead the application is the nondestructive evaluation of a manufactured 
structure or machine, the configuration and composition of interior components is likely to be known, and 
design schematics may be readily available, so that we may obtain spatial information and conductivity 
estimates for interior structures with great confidence. 

In the case of iterative reconstruction algorithms, which typically involve minimizing a cost functional, the use of 
such a priori information—included as a penalty term in the regularization strategy—has been established as a 
means of enhancing spatial resolution in practical reconstructions, in both medical imaging2,3,6,12,14,15,31,48,49 as 
well as industrial or engineering applications.23,24 In the Bayesian framework the prior distribution is an essential 
part of the computational inversion. Recent studies employ domain truncation for the partial data problem,4,5 
and region of interest approaches to nonlinear difference imaging.36,37 A technique for embedding a 
priori information into the D-bar algorithm for full boundary data was introduced in,1 where the method was 
also proven to be a nonlinear regularization strategy. An analogous method was applied to the D-bar method for 
full boundary complex admittivity reconstructions in.19 These methods have been demonstrated to provide 
noise-robust reconstructions with improved spatial resolution of full boundary simulated human thoracic data, 
while successfully preserving and enhancing the appearance of introduced pathologies that were not included in 
the priors. 

In this manuscript, the a priori D-bar method is extended to the case of conductivity reconstructions from partial 
boundary data. The purpose of this work is to demonstrate that, even in cases where only partial boundary data 
is available, a priori information can be incorporated into the D-bar method to achieve noise-robust EIT images 
with enhanced spatial resolution, while preserving data pertaining to previously unknown pathologies or 
defects, as illustrated in Figure 1. A presentation of the partial boundary problem and D-bar formulation is given 
in §2, and the new a priori method is described in §3. In §4, the effectiveness of the method is demonstrated on 
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noisy data simulating both human thoracic imaging and industrial nondestructive evaluation scenarios. In the 
case of human thoracic imaging, EIT has been shown to provide information in cases of pneumothorax9 and 
pleural effusion,17 and both pathologies are simulated here. For the nondestructive evaluation case, an industrial 
structural component containing a defect is simulated. In all test cases, only prior information of approximate 
interior boundaries and conductivity estimates of known structures is included; we do not assume any prior 
knowledge of pathologies or defects. This corresponds to a setting in which only prior information pertaining to 
a healthy or unblemished state is known, but a pathology or defect has developed since the prior information 
was obtained. The reconstructions demonstrate the effectiveness of the new method to achieve enhanced 
spatial resolution of not only known internal structures, but also of pathologies and defects not included in the 
priors. Both full-data and partial-data cases are included for comparison. In §5, final thoughts and conclusions 
are presented. 

2.   The partial data problem 
The setting of the partial data problem, as we use it, has been introduced in the continuum case in.22 In the 
following we will combine this setting with the ideas in,27 such that we model a realistic electrode configuration. 
The key to the model is a set of well designed projections to the partial boundary, which is represented as a 
union of electrodes. We consider here a two-dimensional bounded domain Ω ⊂ ℝ2 representing the measured 
object covered by mutually disjoint electrodes 𝐸𝐸𝑚𝑚,𝑚𝑚 = 1, … ,𝑀𝑀. In our computations, we will choose Ω to be 
the unit disk 𝔻𝔻. Each electrode is modeled as a connected and open subset of the boundary ∂Ω. The union of all 
electrodes is denoted as Γ = ∪ 𝐸𝐸𝑚𝑚𝑚𝑚  and will serve as the domain of current input and voltage measurement. 
The problem of EIT can then be modeled by the conductivity equation with Neumann boundary conditions as 
stated in (1). The inverse problem is to recover the conductivity (𝑥𝑥,𝑦𝑦) ∈ Ω for (𝑥𝑥,𝑦𝑦) ∈ Ω from the applied 
current and resulting voltage measurements on the boundary. The measurement is modeled by the Neumann-
to-Dirichlet map (ND map) 

ℛ𝜎𝜎: 𝐿𝐿⋄2(∂Ω) → 𝐿𝐿2(∂Ω),ℛ𝜎𝜎𝜑𝜑 = 𝑢𝑢|∂Ω, 
where 𝐿𝐿⋄2(∂Ω) consists of 𝐿𝐿2-functions with zero mean. Thus, the ND map takes every possible current pattern 
(Neumann data) and maps it to the corresponding voltage distribution on the boundary (Dirichlet data) for a 
given conductivity distribution 𝜎𝜎 on Ω. This work focuses on restricted boundary access, only allowing for the 
measurement of a partial ND map as discussed in.22 The partial ND map is modeled as the composition of the 
full-boundary ND map and a bounded linear operator 𝐽𝐽 that maps current patterns 𝜑𝜑 ∈ 𝐿𝐿⋄2(∂Ω) to a subspace of 
functions only supported on Γ: 

(2) 𝐿𝐿Γ2(∂Ω): = {𝜑𝜑 ∈ 𝐿𝐿⋄2(∂Ω): supp(𝜑𝜑) = Γ and ∫ 𝜑𝜑 = 0Γ }.  

The partial ND map in this setting is then defined as the composition 

ℛ𝜎𝜎
Γ : = ℛ𝜎𝜎𝐽𝐽, 

and represents the resulting voltage distribution ideally known on the whole boundary. We will next discuss how 
to model the input and measurement in the case where the boundary is only partially covered by electrodes. 

2.1.   Modeling the measurement process 
Following the construction in,27 we use the concept of extended electrodes {𝐸𝐸

~
𝑚𝑚}𝑚𝑚=1

𝑀𝑀  that we define here as 
open, connected and mutually disjoint subsets of ∂Ω, with the property that 
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𝐸𝐸𝑚𝑚 ⊂ 𝐸𝐸
~
𝑚𝑚and �𝐸𝐸

~
𝑚𝑚 = ∂Ω,for 𝑚𝑚 = 1, … ,𝑀𝑀

𝑀𝑀

𝑚𝑚=1

. 

Typically, one can only apply discrete current values and, for each applied value, measure one corresponding 
value for the resulting voltage on each electrode. Thus, we need to produce piecewise constant functions to 
properly model the input and measurement for an electrode setting. The projections that are presented in the 
following were introduced in27 and serve exactly this purpose. 

Let 𝜒𝜒 𝑚𝑚  denote the indicator function for electrode 𝐸𝐸𝑚𝑚, and analogously 𝜒𝜒
~

𝑚𝑚 for the extended electrodes 𝐸𝐸
~
𝑚𝑚. 

Then the partial boundary map that produces the current input is given by a nonorthogonal projection onto the 
area of each electrode 

(3) 𝐽𝐽:𝜑𝜑 ↦� 𝜒𝜒 𝑚𝑚
|𝐸𝐸𝑚𝑚|∫ 𝜑𝜑𝑢𝑢𝑢𝑢, 𝐿𝐿⋄2(∂Ω) → 𝐿𝐿Γ2(∂Ω)𝐸𝐸

~
𝑚𝑚

𝑀𝑀

𝑚𝑚=1
.  

This models the current input on each electrode. To model the voltage measurement process appropriately, we 
use a projection to extended electrodes with 

(4) 𝑃𝑃:𝑔𝑔 ↦� 𝜒𝜒
~

 𝑚𝑚
|𝐸𝐸𝑚𝑚|∫ 𝑔𝑔𝑢𝑢𝑢𝑢, 𝐿𝐿2(∂Ω) → 𝐿𝐿2(∂Ω)𝐸𝐸𝑚𝑚

𝑀𝑀

𝑚𝑚=1

.  

Let us point out the different behavior of the two operators. Each current pattern is produced by integration 
over the extended electrodes and projection onto the area of the electrodes 𝐸𝐸𝑚𝑚. This is in contrast with the 
measurement process, where the integration is over the area of each electrode and the result is projected onto 
the extended electrodes as illustrated in Figure 2. In fact, 𝑃𝑃 is the adjoint of 𝐽𝐽 in 𝐿𝐿2(∂Ω), which can be checked 
by straightforward calculations. 
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Figure  2.  Illustration of mappings involved in the measurement modeling. Top row: Neumann data with the basis 
function 𝜑𝜑(𝜃𝜃) = cos (𝜃𝜃)/√𝜋𝜋 on the left and the nonorthogonal projection 𝐽𝐽𝜑𝜑 on the right. Bottom row: Dirichlet data 
where 𝑔𝑔 = 𝑢𝑢|∂Ω on the left is the solution of the partial differential equation (1) and on the right the orthogonal projection 
to the extended electrodes 
 
The measurement that we obtain is then modeled as 

(5) 𝑔𝑔 = 𝑃𝑃ℛ𝜎𝜎
Γ𝜑𝜑 = 𝑃𝑃ℛ𝜎𝜎𝐽𝐽𝜑𝜑.  

The above construction is related to the gap model for EIT; see for instance38 for a discussion of the different 
measurement models. As discussed in §2.2, to reconstruct the conductivity with the D-bar algorithm, we also 
need the ND map ℛ1 corresponding to the case with the homogeneous conductivity 𝜎𝜎 ≡ 1; this can be obtained 
either by measurement (if possible), or careful simulation (e.g., using a finite element model). 

2.2.   Reconstructing from partial boundary measurements 
The classical full boundary data D-bar method is formulated in terms of the Dirichlet-to-Neumann map (DN 
map). If one is given Neumann-to-Dirichlet data, one can simply perform inversion of the ND measurement 
matrix to form the DN matrix and apply a D-bar algorithm. However, this approach does not extend to the case 
of partial boundary data, since the graphs of the ND and DN maps represent different subsets of the Cauchy 
data, hence inversion is not possible. Furthermore, even if one can perform numerical inversion of the ND 
matrix, the resulting matrix is not assured to coincide with the DN matrix. Also, these inverted partial boundary 
ND matrices tend to have large condition numbers, which alone will result in instabilities in the reconstruction 
process. 

Here we very briefly review the background for the D-bar method; the interested reader is directed to41 for 
further details. We begin with a change of variables that transforms the conductivity equation given in (1) into 
the 2-D Schrödinger equation with potential 𝑞𝑞 = ∆√𝜎𝜎/√𝜎𝜎. This Schrödinger equation is smoothly extended to 
the entire plane under the assumption that 𝜎𝜎 ≡ 1 in a neighborhood of ∂Ω. We associate (𝑥𝑥,𝑦𝑦) ∈ ℝ2 with 
points 𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖𝑦𝑦 ∈ 𝒞𝒞, introduce a complex frequency parameter 𝑘𝑘 ∈ 𝒞𝒞, and seek solutions 𝜓𝜓(𝑧𝑧,𝑘𝑘) to the 

Schrödinger equation satisfying the asymptotic property 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝜓𝜓(𝑧𝑧,𝑘𝑘) − 1 ∈ 𝑊𝑊1,𝑝𝑝
~

(ℝ2),𝑝𝑝
~

> 2. The 
functions 𝜇𝜇(𝑧𝑧,𝑘𝑘): = 𝜓𝜓(𝑧𝑧,𝑘𝑘)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 can then be shown to have the property 𝜇𝜇(𝑧𝑧, 0) = �𝜎𝜎(𝑧𝑧). It can further be 
shown that 𝜇𝜇(𝑧𝑧,𝑘𝑘) can be recovered by solving a special D-bar equation involving the scattering transform 𝐭𝐭(𝑘𝑘). 
The scattering transform can be thought of as a nonlinear Fourier transform of the Schrödinger potential qq. In 
classical D-bar methods 𝐭𝐭(𝑘𝑘) is computed using a reformulation to a boundary integral equation involving the 
DN map. 

Our restrictions in the partial boundary setting motivate the reformulation of the D-bar method for ND 
measurement data and the direct use of the ND map as described in.22 The first step involves computation of an 
approximate scattering transform from the ND map for 𝑘𝑘 ∈ ℂ by 

(6) 𝐭𝐭ND(𝑘𝑘) = � (∂𝜈𝜈𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖)
∂Ω

(ℛ1 − ℛ𝜎𝜎)∂𝜈𝜈𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢(𝑧𝑧).  

For the chosen geometry, i.e. the unit disk Ω = 𝔻𝔻, this can be simply evaluated as 

𝐭𝐭ND(𝑘𝑘) = � 𝑖𝑖𝑘𝑘𝑧𝑧𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖(ℛ1 − ℛ𝜎𝜎)𝑖𝑖𝑘𝑘𝑧𝑧𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢(𝑧𝑧)
∂Ω

= |𝑘𝑘|2 � 𝑧𝑧
∂Ω

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖(ℛ𝜎𝜎 − ℛ1)𝑧𝑧𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢(𝑧𝑧).
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In practice, noise in the measurement data leads to blowup (in magnitude) of the scattering data for 
large |𝑘𝑘| frequencies. Therefore we employ a low-pass filtering of the scattering data by only computing 𝐭𝐭ND via 
(6) on a disk of radius 𝑅𝑅 > 0. In the case of full boundary data, low-pass filtering of the scattering data was 
proven in35 to be a regularization strategy, where the radius of the truncation depends on the noise level of the 
measurement data. For the partial boundary data case, a non-uniform truncation in the form of a thresholding 
(through the parameter 𝐶𝐶𝑡𝑡) may be needed to control the blowup, leading to the following definition for the 
computation of the partial ND scattering data: 

(7) 𝐭𝐭𝑅𝑅ND(𝑘𝑘) = �𝐭𝐭
ND(𝑘𝑘)  if 0 < |𝑘𝑘| ≤ 𝑅𝑅, and |ℜ(𝐭𝐭ND)|, |ℑ(𝐭𝐭ND)| ≤ 𝐶𝐶𝑡𝑡

0  else. 
  

The non-uniform truncation parameter 𝐶𝐶𝑡𝑡 is largely influenced by the reduction to partial boundary ND data 
(see Figure 4 of22). In this work, the parameter 𝐶𝐶𝑡𝑡 was set to the largest magnitude of the real or imaginary 
component of the blind scattering prior 𝐭𝐭𝐏𝐏𝐏𝐏 described in Section 3 below. 

 

Figure  3.  The A Priori D-bar Method with Partial Data 

 

Figure  4.  Phantoms used in numerical examples with the corresponding boundaries of the priors outlined by white dots. 
Note that for each example, the prior does not assume a pathology/defect. Left: A simulated pneumothorax occurring near 
the heart in the left lung. Middle: A simulated pleural effusion occurring away from the heart in the left lung. Right: An 
enclosed diamond with an ovular defect 
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The approximate scattering transform 𝐭𝐭𝑅𝑅ND is then used as a parameter in the D-bar equation 

(8) ∂𝑖𝑖𝜇𝜇𝑅𝑅(𝑧𝑧,𝑘𝑘) = 1
4𝜋𝜋𝑖𝑖

𝐭𝐭𝑅𝑅ND(𝑘𝑘)𝑒𝑒−𝑖𝑖(𝑧𝑧)𝜇𝜇𝑅𝑅(𝑧𝑧, 𝑘𝑘),  

where 𝑒𝑒𝑖𝑖(𝑧𝑧): = 𝑒𝑒𝑖𝑖(𝑖𝑖𝑖𝑖+𝑖𝑖𝑖𝑖).The D-bar equation (8) is solved independently for each 𝑧𝑧 ∈ Ω via its equivalent 
integral formulation 

(9) 𝜇𝜇𝑅𝑅(𝑧𝑧,𝑘𝑘) = 1 + 1
(2𝜋𝜋)2

� 𝐭𝐭𝑅𝑅
ND(𝑖𝑖′)

𝑖𝑖′(𝑖𝑖−𝑖𝑖′)
𝑒𝑒−𝑖𝑖′(𝑧𝑧)𝜇𝜇𝑅𝑅(𝑧𝑧,𝑘𝑘′)𝑢𝑢𝑘𝑘1′𝑢𝑢𝑘𝑘2′

|𝑖𝑖|≤𝑅𝑅
,  

and the conductivity is then computed by simply evaluating 

𝜎𝜎𝑅𝑅(𝑧𝑧) = 𝜇𝜇𝑅𝑅(𝑧𝑧, 0)2. 

3.   The a priori partial data method 
In this section we outline the formulation of the new method, in which a priori information is embedded into 
the partial data D-bar algorithm, following the work in1 which was developed for full-data reconstructions. This a 
priori data comes in the form of a conductivity distribution 𝜎𝜎𝐏𝐏𝐏𝐏 that is approximated using previously known 
information. As discussed in §1, in many applications of EIT imaging, some prior information is known about the 
structure and electrical properties of the subject, and this information may be used to form 𝜎𝜎𝐏𝐏𝐏𝐏, which is 
incorporated into the regularized D-bar method in two distinct ways. Throughout this section, some 
mathematical and computational details have been abbreviated; we refer the interested reader to1 and to41 for 
further details. 

To begin, we form the Schrödinger potential 

(10) q𝐏𝐏𝐏𝐏(𝑧𝑧) = ∆�𝜎𝜎𝐏𝐏𝐏𝐏(𝑖𝑖)
�𝜎𝜎𝐏𝐏𝐏𝐏(𝑖𝑖)

.  

In practice, we start with a piecewise-smooth a priori conductivity distribution 𝜎𝜎𝐏𝐏𝐏𝐏, which is then mollified to be 
at least 𝒞𝒞2 smooth to compute (10). We define the function 𝜇𝜇𝐏𝐏𝐏𝐏(𝑧𝑧,𝑘𝑘) to be the solution analogous 
to 𝜇𝜇(𝑧𝑧,𝑘𝑘) that corresponds to 𝜎𝜎𝐏𝐏𝐏𝐏. It is known from the theoretical work in41 that for each fixed 𝑘𝑘, the 
function 𝜇𝜇𝐏𝐏𝐏𝐏 satisfies the Lippmann-Schwinger equation 

(11) [−∆ − 4𝑖𝑖𝑘𝑘 ∂𝑖𝑖 + q𝐏𝐏𝐏𝐏(𝑧𝑧)]𝜇𝜇𝐏𝐏𝐏𝐏(𝑧𝑧,𝑘𝑘) = 0,  

where 𝜇𝜇𝐏𝐏𝐏𝐏(⋅,𝑘𝑘) − 1 ∈ 𝑊𝑊1,𝑝𝑝
~

(ℝ2) for some 2 < 𝑝𝑝
~

< ∞. The function 𝜇𝜇𝐏𝐏𝐏𝐏, obtained by solving (11), now encodes 
the a priori information. 

The first way 𝜇𝜇𝐏𝐏𝐏𝐏 is incorporated into the method involves extending the radius of admissible scattering data 
from 𝑅𝑅 to 𝑅𝑅2 ≥ 𝑅𝑅, by appending an annulus of stable prior scattering data outside the disk where 𝐭𝐭𝑅𝑅ND is 
supported. To this end, we compute the a priori scattering data 𝐭𝐭𝐏𝐏𝐏𝐏 using the alternate formulation 

(12) 𝐭𝐭𝐏𝐏𝐏𝐏(𝑘𝑘) = ∫ 𝑒𝑒𝑖𝑖(𝑧𝑧)𝜇𝜇𝐏𝐏𝐏𝐏(𝑧𝑧, 𝑘𝑘)q𝐏𝐏𝐏𝐏(𝑧𝑧)𝑢𝑢𝑧𝑧ℝ2 ,  

which avoids computation of the ND map corresponding to 𝜎𝜎𝐏𝐏𝐏𝐏. See22 for a derivation of the ND form of the 
scattering transform as in (6) from a definition analogous to (12).The extended scattering data is then formed as 
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(13) 𝐭𝐭𝑅𝑅,𝑅𝑅2(𝑘𝑘): = �
𝐭𝐭ND(𝑘𝑘) 0 < |𝑘𝑘| ≤ 𝑅𝑅
𝐭𝐭𝐏𝐏𝐏𝐏(𝑘𝑘) 𝑅𝑅 < |𝑘𝑘| ≤ 𝑅𝑅2.  

If an additional threshold parameter is used to truncate the measurement scattering data 𝐭𝐭ND as in the 
formulation (7), the above definition of 𝐭𝐭𝑅𝑅,𝑅𝑅2 may be modified so that, for any 𝑘𝑘 such that |ℜ(𝐭𝐭ND)(𝑘𝑘)| > 𝐶𝐶𝑡𝑡 
where either �ℜ�𝐭𝐭ND�(𝑘𝑘)� > 𝐶𝐶𝑡𝑡 or |ℑ(𝐭𝐭ND)(𝑘𝑘)| > 𝐶𝐶𝑡𝑡, we assign 𝐭𝐭𝑅𝑅,𝑅𝑅2(𝑘𝑘): = 𝐭𝐭𝐏𝐏𝐏𝐏(𝑘𝑘). Furthermore, in the 
definition of 𝐭𝐭𝑅𝑅,𝑅𝑅2, the influence of the prior on the resulting reconstruction can be controlled by 
choosing 𝑅𝑅2 smaller or larger as desired. In particular, it should be noted that if an additional thresholding is 
used, then selecting 𝑅𝑅2 = 𝑅𝑅 will not eliminate the prior completely from the definition of 𝐭𝐭𝑅𝑅,𝑅𝑅2, but will result in 
a weak expression of the a priori data in the resulting reconstruction. 

We next replace the asymptotic approximation 𝜇𝜇 ∼ 1 used in (9) with an improved approximation 

(14) 𝜇𝜇int(𝑧𝑧): = 1
𝜋𝜋𝑅𝑅22

∫ 𝜇𝜇𝐏𝐏𝐏𝐏|𝑖𝑖|≤𝑅𝑅2
(𝑧𝑧, 𝑘𝑘)𝑢𝑢𝑘𝑘  

that approaches the asymptotic condition of 1 as 𝑅𝑅2 → ∞. We then choose a weighting parameter 𝛼𝛼 ∈ [0,1] and 
for each 𝑧𝑧 ∈ Ω, solve a modified version of (9), using the extended scattering data 𝐭𝐭𝑅𝑅,𝑅𝑅2 and asymptotic 
replacement term 𝜇𝜇int: 

(15) 𝜇𝜇𝑅𝑅2,𝛼𝛼(𝑧𝑧, 𝑘𝑘) = 𝛼𝛼 + (1 − 𝛼𝛼)𝜇𝜇int(𝑧𝑧) + 1
(2𝜋𝜋)2

� 𝐭𝐭𝑅𝑅,𝑅𝑅2(𝑖𝑖′)

𝑖𝑖′(𝑖𝑖−𝑖𝑖′)
𝑒𝑒−𝑖𝑖′(𝑧𝑧)𝜇𝜇𝑅𝑅2,𝛼𝛼(𝑧𝑧, 𝑘𝑘′)𝑢𝑢𝑘𝑘1′𝑢𝑢𝑘𝑘2′

|𝑖𝑖|≤𝑅𝑅2
.  

This equation is then solved for 𝜇𝜇𝑅𝑅2,𝛼𝛼. The influence of the prior in the construction of 𝜇𝜇𝑅𝑅2,𝛼𝛼 can be controlled by 
modifying the parameter 𝛼𝛼, and in fact, choosing 𝛼𝛼 = 1 will result in 𝛼𝛼 + (1 − 𝛼𝛼)𝜇𝜇int(𝑧𝑧) = 1, so that the only 
influence of the prior will be from the scattering data 𝐭𝐭𝑅𝑅,𝑅𝑅2. Hence 𝛼𝛼 = 0 corresponds to the heaviest weighting 
of the 𝜇𝜇int term. Once we have obtained 𝜇𝜇𝑅𝑅2,𝛼𝛼, the updated conductivity is recovered as 

(16) 𝜎𝜎𝑅𝑅2,𝛼𝛼(𝑧𝑧) = (𝜇𝜇𝑅𝑅2,𝛼𝛼(𝑧𝑧, 0))2..  

The steps of the new method are outlined in Figure 3. Note that steps 1a and 1b can be computed 
independently, allowing for the a priori data computation to take place ahead of time offline, if desired. 
Furthermore, steps 1a and 1b are each parallelizable in 𝑘𝑘, and step 2 is parallelizable in the spatial variable 𝑧𝑧, 
allowing for fast reconstructions. 

4.   Computational results 
We now demonstrate the effectiveness of the proposed method on simulated (noisy) EIT measurement data. 
We include two examples relevant to medical imaging (a simulated pneumothorax and a simulated pleural 
effusion), as well as an example of defect detection in a material, possibly relevant to an industrial 
setting. Figure 4 presents the phantoms used in the experiments, as well as the boundaries of their 
corresponding priors (represented by the white dots). Tables 1 and 2 give the conductivity values in each region 
of the phantoms and assigned priors. Note that a single prior is used for both thoracic examples, as it 
corresponds to a healthy patient with no pathology. Only information known with high confidence is included: 
e.g., approximate locations of heart, lungs, aorta, spine, major inclusions, etc. A common initial scattering radius 
of 𝑅𝑅 = 4 was used across all 𝜎𝜎ND reconstructions. To better visualize the nuances of the results and compare 
across examples, all conductivity reconstructions are displayed on a color scale maxed out at 𝜎𝜎 = 2, unless 
otherwise stated. The true maximum of each colormap is given in each image caption. The reader is advised to 
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view the reconstructions on a computer screen if possible, to avoid color distortions and to visualize nuances 
likely masked in a printed version. 

Table 1.  Conductivity values of thoracic phantoms and assigned blind prior in S/m 

 Heart Lungs Pathology Aorta Spine Background 
Pneumothorax 2.0 0.5 0.15 2.0 0.25 1 
Pleural Effusion 2.0 0.5 1.8 2.0 0.25 1 
Prior 2.05 0.45 - 2.05 0.23 1 
 

Table 2.  Conductivity values of industrial phantom and assigned blind prior in S/m 

 Diamond Inclusion Background 
Industrial 2.0 1.4 1 
Prior 2.05 - 1 

4.1.   Simulation of measurement data 
The construction for simulating the measurement data is described in §2.1. The ND map is represented using an 
orthonormal basis of 𝐿𝐿2(∂Ω), where Ω = 𝔻𝔻 is our chosen domain. The full boundary case assumes 32 
equidistant electrodes around the boundary with a width of |𝐸𝐸𝑚𝑚| = 𝜋𝜋/32 each. In the partial data case a certain 
number of electrodes are deactivated and not attached to the object. We explore three scenarios: 24, 20, and 
16 active electrodes, corresponding to 75%, 62.5%, and 50% of the boundary accessible, respectively. 

We simulate trigonometric current patterns for the basis functions 𝜑𝜑𝑛𝑛 ∈ 𝐿𝐿2(∂Ω) as 

𝜑𝜑𝑛𝑛(𝜃𝜃) =
1
√𝜋𝜋

�
cos (𝑛𝑛𝜃𝜃)  for 0 < 𝑛𝑛 < 16

sin ((16− 𝑛𝑛)𝜃𝜃)  for 𝑛𝑛 > 16,  

where 𝑛𝑛 ∈ {1, … ,31}. Note that for 32 electrodes, there are only 31 linearly independent basis functions.38 Using 
the basis functions 𝜑𝜑𝑛𝑛, the applied current values on the electrodes are produced by the nonorthogonal 
projection (3), as illustrated in Figure 2. The projected basis function is then used as a boundary condition for the 
conductivity equation (1). We solve the boundary value problem using a FEM solver for elliptic partial 
differential equations. The voltages on the electrodes are computed from the continuous solution 𝑢𝑢|∂Ω by 
applying the orthogonal projection (4) to the boundary trace, 𝑔𝑔 = 𝑃𝑃𝑢𝑢|∂Ω. Noisy measurement data was 
produced by adding 0.2% relative Gaussian zero-mean noise to the voltage data (independent for each current 
pattern and electrode). The measurement matrix 𝑀𝑀 ∈ ℝ31×31 was computed by evaluating the inner products 
for 𝑛𝑛,𝑚𝑚 ∈ {1, … ,31} as 

𝑀𝑀𝑛𝑛,𝑚𝑚 = (𝑔𝑔𝑛𝑛,𝜑𝜑𝑚𝑚)𝐿𝐿2(∂Ω) = (𝑃𝑃ℛ𝜎𝜎𝐽𝐽𝜑𝜑𝑛𝑛,𝜑𝜑𝑚𝑚)𝐿𝐿2(∂Ω). 

4.2.   Computation of the prior 
Figure 5(left) displays the piecewise-constant priors using the boundaries shown in Figure 4 and conductivity 
values in Tables 1 and 2. Note that the blind (healthy patient) thoracic prior is used for both the pneumothorax 
and pleural effusion examples, and neither prior (thoracic or industrial) assumes a pathology/defect. The 

conductivity priors were mollified (see Figure 5(right)) and the Schrödinger potential q𝐏𝐏𝐏𝐏 = ∆�𝜎𝜎𝐏𝐏𝐏𝐏

�𝜎𝜎𝐏𝐏𝐏𝐏
 computed. 

The Lippmann-Schwinger equation (11) was solved for each desired 𝑘𝑘 and the associated scattering 
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priors 𝐭𝐭𝐏𝐏𝐏𝐏 and integral replacement terms 𝜇𝜇int formed via (12) and (14), respectively. Figure 6 shows 
the μintμint term for various extended radii 𝑅𝑅2 for the blind thoracic prior. 

 

Figure  5.  Blind priors used for the thoracic (top) and industrial (bottom) imaging examples. Take particular note that the 
priors do not assume any pathology/defect 

 

Figure  6.  The real part of the 𝜇𝜇int data (shown in the 𝑧𝑧 plane for 𝑧𝑧 ∈ 𝒟𝒟) corresponding to the blind thoracic prior given 
in Figure 5(top) computed from extended radii 𝑅𝑅2 = 4.0, 6.5, and 9.0 in the 𝑘𝑘 plane. Note that as the radius increases, the 
integral term approaches its asymptotic behavior of 𝜇𝜇int ∼ 1 
 

The combined scattering data 𝐭𝐭𝑅𝑅,𝑅𝑅2 were then formed by combining 𝐭𝐭ND (measurement data) with 𝐭𝐭𝐏𝐏𝐏𝐏 (prior) as 
described in (13); see Figure 7 for an illustration. 
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Figure  7.  Scattering data corresponding to the pneumothorax example using the blind prior given in Figure 5(top). The 
original radius is 𝑅𝑅 = 4 and extended radius 𝑅𝑅2 = 9. All scattering data is plotted on the same scale (real and imaginary, 
respectively) 
 

4.3.   Thoracic EIT imaging 
We explore two examples of interest in thoracic EIT imaging: a simulated pneumothorax and a simulated pleural 
effusion. In each case, we assume the same prior depicted in Figure 5(top). Although our phantoms here are on 
circular domains, the purpose of this introductory work is to demonstrate the improvements the new method 
offers over the existing partial data results for direct D-bar methods in 2D.22,20 Our thoracic imaging examples 
that follow correspond to 75% and 62.5% access to the boundary of the patient, simulating ventral data for a 
patient lying on their back. 

4.3.1.   Example 1: A Simulated Pneumothorax 
We begin with the simulated pneumothorax. Using only the partial data ND map, the conductivity 𝜎𝜎ND was 
recovered using a threshold of 𝐶𝐶𝑡𝑡 = 13.3528, the maximum magnitude of the scattering prior (see Section 2.2). 
The reconstruction for 75% ventral access boundary data is shown at the top of Figure 8. The maximum value of 
the partial data reconstruction 𝜎𝜎ND is 1.4397 and the minimum is 0.2663. 

While the partial data reconstruction 𝜎𝜎ND contains some quality information, the image exhibits fairly low 
spatial resolution. Using the prior depicted in Figure 5(top), which results in the corresponding extended 
scattering data (Figure 7) and asymptotic replacement term 𝜇𝜇int (Figure 6), the quality of the conductivity image 
improves greatly. Figure 8 shows the reconstructed conductivities 𝜎𝜎𝑅𝑅2,𝛼𝛼 using the new method, for varying 

extended radii 𝑅𝑅2 = 4.0,6.5,9.0 and parameters 𝛼𝛼 = 1, 2
3

, 1
3

, 0. Recall that 𝛼𝛼 = 1 corresponds to the lowest 

weight of the 𝜇𝜇int term, while 𝛼𝛼 = 0 results in fullest expression of the prior. Notice that the reconstruction 
corresponding to 𝑅𝑅2 = 4.0 and 𝛼𝛼 = 1 (the upper left corner of Figure 8), which represents 𝜇𝜇int = 1 and merely 
augmenting the missing scattering data for 𝐭𝐭ND to fill the 𝑘𝑘-disk of radius 4.0, already exhibits a significant 
improvement over the original partial data reconstruction 𝜎𝜎ND. As the value 𝑅𝑅2 of the extended scattering 
radius increases, the pnuemothorax becomes more pronounced. Similarly, as the μintμint term is weighted 
more heavily, the organs separate nicely and again the pathology is striking. We remind the reader that no 
pathology has been included in the prior and hence the visible low conductive area in the upper left lung results 
purely from the measured data. 
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Figure  8.  Pneumothorax example for 62.5% ventral data. TOP: The partial data ND D-bar reconstruction 𝜎𝜎ND. BOTTOM: 
The recovered conductivity 𝜎𝜎ND, using the blind thoracic prior. The maximum value is 2.25, occurring of 𝑅𝑅 = 4, 𝛼𝛼 = 0 
 

It is clear from the conductivity reconstructions in Figure 8 that there is a suspicious region in the upper left lung 
near the heart. This led us to update the spatial prior (in the spirit of1), as follows. We overlaid the organ 
boundaries of the blind thoracic prior on the 𝜎𝜎𝑅𝑅2,𝛼𝛼 reconstruction for 𝛼𝛼 = 1 and 𝑅𝑅2 = 9.0 and employed a 
segmentation inside the left lung. The chosen values correspond to no weight given to the μintμint term. The 
segmentation was implemented, such that only the position of the suspected pathology (organ/region) and a 
division value are needed as inputs. Based on that information alone, the lung was segmented into two parts. 
The boundaries of the updated prior are displayed in Figure 9 using a division value of 0.25 S/m. 

 

Figure  9.  Left: Original prior. Right: Updated Pneumothorax prior. The left lung in the updated prior was segmented into 
two regions 
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We then tested two new priors based on assigning the conductivity value of the suspicious region by using either 
the average value (0.2751 S/m) of the pixels in the region, or the minimum value (0.1754 S/m) of the pixels in 
the region since the value is clearly below the assigned value of 0.45, indicating an area of lower conductivity. In 
an effort to avoid bias, the average pixel value of the lower left lung (0.3894 S/m) was used in both new priors. 
The resulting conductivity reconstructions 𝜎𝜎𝑅𝑅2,𝛼𝛼 from the segmented priors are shown in Figure 10. 

 

Figure  10.  Pneumothorax example with 75% Ventral data and segmented prior. The corresponding partial data ND D-bar 
reconstruction 𝜎𝜎ND is shown in Figure 8. Here we display the recovered conductivity 𝜎𝜎𝑅𝑅2,𝛼𝛼 for 𝑅𝑅2 = 4,6.5 and 
various αα using the SEG AVG or SEG MIN segmented thoracic priors. The maximum value is 2.70 and occurs in the 𝑅𝑅2 =
4, 𝛼𝛼 = 0 recon using the SEG MIN prior. 
 

Figure 11 shows reconstructions using the blind thoracic prior with 62.5% ventral data, which corresponds to 20 
active electrodes. The maximum value of the partial data reconstruction 𝜎𝜎ND is 1.4407 and the minimum is 
0.2728. Figure 12 compares reconstructions from partial boundary data to full boundary data. The segmented 
priors for the full data case were extracted from 𝜎𝜎𝑅𝑅2,𝛼𝛼 using 𝑅𝑅2 = 9 and 𝛼𝛼 = 1, with the average value (0.2657 
S/m) or minimum value (0.1563 S/m) for the top region and the average value (0.4480 S/m) in the bottom. For 
62.5% ventral data, the segmented priors were formed from 𝜎𝜎𝑅𝑅2,𝛼𝛼 for 𝑅𝑅2 = 4.0 and 𝛼𝛼 = 1 with the extracted 
average value (0.3290 S/m) or minimum (0.2176 S/m) in the top region and the average pixel value (0.3724 S/m) 
in the lower lung region. Notice that the pneumothorax is clearly visible regardless of whether the average or 
minimum pixel value is used in the segmented prior. All of the reconstructions using the a priori method 
(original prior as well as from the segmented prior) are vast improvements over the partial data ND map D-bar 
image 𝜎𝜎ND, thus supporting the case for incorporating prior data directly into the method. 
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Figure  11.  Pleural effusion example for 75% ventral data. TOP: The partial data ND D-bar reconstruction 𝜎𝜎ND. BOTTOM: 
The recovered conductivity 𝜎𝜎𝑅𝑅2,𝛼𝛼 using the blind thoracic prior. The maximum value is 2.90, occurring of 𝑅𝑅 = 4, 𝛼𝛼 = 0 

 

Figure  12.  Pneumothorax Example. Results for 𝑅𝑅2 = 9.0 and 𝛼𝛼 = 0.67. The maximum is 2.71 and occurs in the 100% 
boundary data, BLIND prior reconstruction 
 

4.3.2.   Example 2: A Simulated Pleural Effusion 
Next we explore the thoracic example of a simulated pleural effusion in the lower region of the left lung. The 
recovered conductivity 𝜎𝜎ND, using only the 75% ventral data partial ND map, is shown in the top of Figure 13. 
The maximum value of the partial data reconstruction 𝜎𝜎ND is 1.5663 and the minimum is 0.3498. Notice that the 
fluid is visible as a region of higher conductivity, however the organs have little to no sharpness. Again, we 
employ the blind thoracic prior given in Figure 5(top) to produce the new conductivity 
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reconstructions 𝜎𝜎𝑅𝑅2,𝛼𝛼 shown in Figure 13(bottom). As the blind prior is weighted more heavily, an artifact of 
higher conductivity between the lungs near the spine develops. This could be due to the prior trying to force the 
left lung to have a much lower conductivity in the lower region than it truly does. Nevertheless, we see that 
even the weakest expression of the prior (𝑅𝑅2 = 4 and 𝛼𝛼 = 1) produces a conductivity image that is greatly 
improved over the partial data ND reconstruction 𝜎𝜎ND. 

 

Figure  13.  Pleural effusion example for 62.5% ventral data. The partial data ND D-bar reconstruction 𝜎𝜎ND is shown at the 
top. Below, the recovered conductivity 𝜎𝜎𝑅𝑅2,𝛼𝛼 is shown using the blind thoracic prior. The maximum value is 2.74, occurring 
of 𝑅𝑅 = 4, 𝛼𝛼 = 0 
 

It is evident that there is a suspicious region in the left lung, indicating an update to the prior is needed (see1 for 
a description of methods to update the prior). Using the 𝑅𝑅2 = 4 and 𝛼𝛼 = 1 reconstruction, we overlaid the 
boundaries of the organs from the blind thoracic prior, and segmented the left lung (see Figure 14), as described 
in the pneumothorax example, using a division value of 0.9 S/m. New values for the bottom of the left lung were 
assigned from the average pixel value (1.1204 S/m) in the region, and the maximum pixel value (1.3444 S/m) in 
the region. The conductivity in the top of the left lung was set to the average pixel value in the region (0.6129 
S/m) to avoid bias. 
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Figure  14.  Left: Original prior. Right: Updated Pleural Effusion prior with the left lung segmented into two regions 
 

Following the last example, the extended scattering data was formed from the updated priors and the 
new 𝜇𝜇int terms computed. The new conductivities 𝜎𝜎𝑅𝑅2,𝛼𝛼 using the updated priors are shown in Figure 15. The 
reconstructions clearly demonstrate that by using either the average pixel value or maximum pixel value in the 
updated prior immensely improves the conductivity reconstructions. 

 

Figure  15.  Pleural effusion example for 75% ventral data and segmented prior. The corresponding partial data ND D-bar 
reconstruction 𝜎𝜎ND is shown in Figure 13. Here we display the recovered conductivity 𝜎𝜎𝑅𝑅2,𝛼𝛼 for 𝑅𝑅2 = 4 and various αα using 
the SEG AVG or SEG MAX segmented thoracic prior. The maximum value is 2.83 and occurs in the 𝑅𝑅2 = 4, 𝛼𝛼 =
0 reconstruction using the SEG MAX prior 
 

The previous artifact seen in the conductivity reconstruction using the blind thoracic prior (Figure 13) is reduced, 
especially when using the SEG MAX prior. This could be due to the area of higher conductivity now being 
allowed to be absorbed into the lower lung region where it belongs. 
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Figure 16 presents reconstructions from 62.5% ventral data and the blind thoracic prior. The maximum and 
minimum of the partial data reconstruction 𝜎𝜎ND are 1.48 and 0.42, respectively.Figure 17 compares 
reconstructions from partial boundary data to full boundary data. The segmented priors for the full data case 
were extracted from 𝜎𝜎𝑅𝑅2,𝛼𝛼 using 𝑅𝑅2 = 9 and 𝛼𝛼 = 1, with the average value (1.2389 S/m) or maximum value 
(1.4796 S/m) for the top region and the average value (0.6077 S/m) in the bottom. The new segmented priors 
for 62.5% boundary data were created using 𝜎𝜎𝑅𝑅2,𝛼𝛼 for 𝑅𝑅2 = 4.0 and 𝛼𝛼 = 1 with the extracted average value 
(0.8234 S/m) or maximum (1.0462 S/m) in the bottom region and the average pixel value (0.6372 S/m) in the 
top region. Note that for all levels of data, if the blind prior is used, a conductive artifact (not present in the D-
bar reconstructions 𝜎𝜎ND) appears in the lower left of the image, near the bottom of the left lung, yet when the 
lung is segmented the artifact is significantly reduced, supporting the case for updating the prior and 
demonstrating what an artifact may look like when the prior is a bad match. 

 

Figure  16.  Pleural effusion example for 62.5% ventral data. The partial data ND D-bar reconstruction 𝜎𝜎ND is shown at the 
top. Below, the recovered conductivity 𝜎𝜎𝑅𝑅2,𝛼𝛼 is shown using the blind thoracic prior. The maximum value is 2.74, occurring 
of 𝑅𝑅 = 4, 𝛼𝛼 = 0 
 

http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=14049#Figure16
http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=14049#Figure17
http://www.aimsciences.org/fileAIMS/journal/article/ipi/2017/3/PIC/1930-8337_2017_3_427-16.jpg
http://www.aimsciences.org/fileAIMS/journal/article/ipi/2017/3/PIC/1930-8337_2017_3_427-16.jpg


 

Figure  17.  Pleural Effusion Example. Results for 𝑅𝑅2 = 6.5 and 𝛼𝛼 = 0.67. The maximum is 2.65 and occurs in the 100% 
boundary data, BLIND prior reconstruction 
 

4.4.   An industrial phantom with a defect 
Lastly we explore an example of potential interest to industry, a material with a defective region of lower 
conductivity. Here we compare D-bar ND reconstructions 𝜎𝜎ND from full, 75%, 62.5% and 50% boundary data 
(centered at π/2π/2 degrees), to those including a priori data. The prior used here is shown in Figure 5(bottom) 
and assumes no defect. The D-bar reconstructions 𝜎𝜎ND were obtained as before using the (partial) ND map. 

Figures 18 and 19 compare reconstructions for each level of boundary data with an extended scattering radius 
of 𝑅𝑅2 = 4 and 𝑅𝑅2 = 6.5, respectively. Observe that even with full boundary data the defect is not visible without 
the introduction of the prior (which, we remind the reader, does not assume any defect). As the prior is 
weighted more heavily, the diamond becomes better formed and the defect is clearly visible even in the first 
extension of the radius of the scattering data to 𝑅𝑅2 = 6.5 (see Figure 19). For the partial data ND cases, we see 
that even the 𝑅𝑅2 = 4 and 𝛼𝛼 = 1 conductivity 𝜎𝜎𝑅𝑅2,𝛼𝛼 reconstructions are significant improvements over the partial 
ND D-bar reconstructions 𝜎𝜎ND. For each level of boundary data, the defect becomes visible in the first increase 
of the radius of the scattering data. The 𝜇𝜇int correction term itself is not enough with only 𝑅𝑅2 =
4.0 demonstrating the importance of both new pieces of information in the a priori method. 
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Figure  18.  Industrial Example: From top to bottom, conductivity reconstructions 𝜎𝜎𝑅𝑅2,𝛼𝛼 for 100%, 75%, 62.5%, and 50% 
boundary data are presented with scattering radius 𝑅𝑅2 = 4 and various weights αα. The first column displays 
the 𝜎𝜎ND reconstructions that do not include any a priori information. The maximum value (3.12) occurs for the 50% data 
reconstruction with strongest weight 𝛼𝛼 = 0 
 

 

Figure  19.  Industrial Example: From top to bottom, conductivity reconstructions 𝜎𝜎𝑅𝑅2,𝛼𝛼 for 100%, 75%, 62.5%, and 50% 
boundary data are presented with extended scattering radius 𝑅𝑅2 = 6.5 and various weights αα. The first column displays 
the 𝜎𝜎ND reconstructions that do not include any a priori information. The maximum value (3.13) occurs for the 50% data 
reconstruction with strongest weight 𝛼𝛼 = 0 
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4.5.   Quantification of errors 
Our results demonstrate that conductivity reconstructions from partial boundary data using only 𝐭𝐭ND carry 
quality information, but suffer from a severe loss of spatial resolution. Incorporating a priori information in the 
reconstruction process can immensely enhance the visual impression of the image. The improvement is also 
clear from a decrease in the overall ℓ2 relative errors (see Figure 20) and regional ℓ2 relative errors (see Figure 
21). In each plot, the error of the initial reconstruction 𝜎𝜎ND is displayed in the top left corner. Filling in the lost 
information in the scattering transform for the radius 𝑅𝑅2 = 4 already increases accuracy (see 𝛼𝛼 = 1). In general, 
one can see that as the radius 𝑅𝑅2 increases, or weighting of 𝜇𝜇int increases (i.e. αα decreases from 1 to 0), the 
relative error in the overall reconstruction decreases. The extended radius 𝑅𝑅2 = 12 is included here to 
demonstrate that only a slight improvement in the error may be expected for larger regularization radii. 
Reconstruction errors for all presented examples in §4 are displayed in Table 3. 

 

Figure  20.  Relative ℓ2-error of reconstructions from 75% ventral data of the pneumothorax example. The horizontal axis 
represents αα-values for increasing regularization radii 𝑅𝑅2. Recall that 𝛼𝛼 = 0 corresponds to the heaviest weighting of 
the 𝜇𝜇int term, while 𝛼𝛼 = 1 to the weakest expression of the prior. Errors from 𝜎𝜎ND are compared to the new 
reconstructions 𝜎𝜎𝑅𝑅2,𝛼𝛼 for the blind and segmented priors 
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Figure  21.  Relative ℓ2-error in the lung region within the boundary of the pathology, for 75% ventral data for the 
pneumothorax example. The horizontal axis represents αα-values for increasing regularization radii 𝑅𝑅2 
 

Table 3.  Relative ℓ2-errors (%) for the conductivity reconstructions from §4, for the extended regularization 
radii 𝑅𝑅2 = 4 and 6.5 

 D-BAR R2=4R2=4 R2=6.5R2=6.5 
 RECON α=1α=1 α=23α=23 α=13α=13 α=0α=0 α=1α=1 α=23α=23 α=13α=13 α=0α=0 
PNEUMOTHORAX  

Blind Prior: 75% 35.13 29.65 26.74 24.86 24.44 26.82 25.36 24.20 23.39 
Seg Avg Prior: 75% 35.13 29.14 26.22 24.65 24.95 25.75 24.16 22.92 22.11 
Seg Min Prior: 75% 35.13 28.84 25.96 24.75 25.74 25.07 23.44 22.23 21.55 
Blind Prior: 62.5% 38.95 32.71 30.02 28.06 27.12 30.12 28.74 27.56 26.63 
Seg Avg Prior: 62.5% 38.95 32.33 29.62 27.83 27.30 29.43 27.99 26.78 25.84 
Seg Min Prior: 62.5% 38.95 31.99 29.27 27.67 27.61 28.66 27.13 25.88 24.97 
Pleural Effusion  

Blind Prior: 75% 27.40 24.82 24.43 25.94 29.23 25.44 25.54 26.13 27.20 
Seg Avg Prior: 75% 27.40 24.24 22.27 21.88 23.33 22.40 21.47 20.96 20.90 
Seg Max Prior: 75% 27.40 24.14 21.95 21.39 22.81 21.98 20.94 20.34 20.22 
Blind Prior: 62.5% 32.56 29.80 29.22 30.00 32.21 29.34 29.10 29.20 29.67 
Seg Avg Prior: 62.5% 32.56 29.18 27.66 27.22 28.08 27.53 26.80 26.35 26.21 
Seg Max Prior: 62.5% 32.56 28.87 27.01 26.24 26.80 26.77 25.85 25.20 24.87 
Industrial phantom  

Blind Prior: 100% 18.43 18.43 16.07 14.17 12.99 15.31 14.17 13.28 12.68 
Blind Prior: 75% 18.46 17.91 16.10 14.99 14.80 15.23 14.42 13.93 13.80 
Blind Prior: 62.5% 20.72 19.96 18.55 17.90 18.15 18.03 17.49 17.27 17.37 
Blind Prior: 50% 22.14 21.24 20.25 20.04 20.70 19.68 19.34 19.31 19.60 
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5.   Conclusions 
We have presented a novel technique in which a priori information is embedded into an ND D-bar method for 
partial boundary EIT imaging of 2-D conductivities. The new method has great flexibility to be used with a 
priori information obtained in a variety of different ways, including previous CT or other scans, atlas matching (in 
the case of human imaging), or design schematics (in the case of industrial imaging), allowing for wide 
applicability. 

To demonstrate the method's effectiveness in improving spatial resolution, we have presented the results of 
three test cases involving simulated partial boundary data with 0.2% relative added noise and varying 
percentages of available boundary data. The method was tested on both human thoracic phantoms with 
introduced pathologies, as well as an industrial phantom representing a nondestructive testing scenario. The 
success of the technique in these differing applications demonstrates the method's robustness and potential for 
adaptability to various real-world scenarios. In all cases presented, the new a priori method produced images 
exhibiting a significant increase in quality, specifically in sharpness of details and edges, over those from the 
partial data ND D-bar method. The blind priors only contain information that is likely to be known with high 
confidence based on a healthy or unblemished state. Nevertheless, changes to the subject that do no appear in 
the prior—such as the development of a pneumothorax or pleural effusion in human thoracic imaging, or the 
formation of a defect in industrial nondestructive evaluation—emerge with improved spatial resolution in the 
resulting reconstructions. This improvement was evident in all cases tested, even when available boundary data 
was decreased to 50% in the case of the industrial phantom. By updating the prior, based on information 
obtained from the EIT reconstructions, the conductivity reconstructions can be further improved. We have 
demonstrated how these updates may be accomplished using average regional conductivity values from the EIT 
reconstructions resulting in minimal introduced bias. In addition to conductivity reconstructions, we have 
provided relative ℓ2 errors to help quantify the increase in spatial resolution resulting from the application of 
the method. 

The ability to obtain high-quality EIT images in cases where only part of the boundary is accessible is important 
in a variety of applications. While an extensive study of how little partial data can be used to still produce 
informative images is outside the scope of this paper, we expect reasonable results near the area of data 
acquisition. Further study is also required to evaluate the method's clinical efficacy and industrial utility. 

A thorough analysis of the computational expense associated with the method is also beyond the scope of this 
work, and the computations used in this paper were not optimized for speed. However, the method is 
parallelizable in either the 𝑘𝑘 or 𝑧𝑧 variable. Furthermore, computation of the scattering prior 𝐭𝐭𝐏𝐏𝐏𝐏 and the 
asymptotic replacement term 𝜇𝜇int may be performed in advance offline, and it may be possible to use the same 
prior (or a small set of similar priors) for all frames in a sequence of images. Thus, we expect that real-time 
imaging (as demonstrated in13) will be achievable with this method if a prior or priors are computed in advance. 
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	Abstract
	Electrical Impedance Tomography (EIT) is a non-invasive imaging modality that uses surface electrical measurements to determine the internal conductivity of a body. The mathematical formulation of the EIT problem is a nonlinear and severely ill-posed inverse problem for which direct D-bar methods have proved useful in providing noise-robust conductivity reconstructions. Recent advances in D-bar methods allow for conductivity reconstructions using EIT measurement data from only part of the domain (e.g., a patient lying on their back could be imaged using only data gathered on the accessible part of the body). However, D-bar reconstructions suffer from a loss of sharp edges due to a nonlinear low-pass filtering of the measured data, and this problem becomes especially marked in the case of partial boundary data. Including a priori data directly into the D-bar solution method greatly enhances the spatial resolution, allowing for detection of underlying pathologies or defects, even with no assumption of their presence in the prior. This work combines partial data D-bar with a priori data, allowing for noise-robust conductivity reconstructions with greatly improved spatial resolution. The method is demonstrated to be effective on noisy simulated EIT measurement data simulating both medical and industrial imaging scenarios.
	Keywords: Electrical impedance tomography, partial boundary data, Neumannto-Dirichlet map, D-bar method, a priori information.
	1.   Introduction
	In Electrical Impedance Tomography (EIT), we measure the surface voltages resulting from the injection of currents on an array of electrodes placed on the surface of a body. These measured boundary currents and voltages are then used to reconstruct the internal electrical conductivity distribution via a mathematical inversion process, thus forming an image of the body's interior structures. Compared with other imaging modalities, EIT has advantages in its low cost, high contrast, portability, and absence of ionizing radiation. There is an ever-growing list of applications of EIT in diverse fields, including medicine and biology, geophysical imaging, process engineering, and nondestructive testing, just to name a few. Of special relevance to the examples studied in this paper are the use of 2-D EIT in human pulmonary imaging, as described for example in,8,16,32,43,44,45 along with the nondestructive testing and evaluation of concrete and other materials in industrial and engineering applications.10,18,25,26,33,34,46 In these applications, it is of immense interest to detect emerging pathologies when monitoring patients, or defects in industrial components.
	/
	Figure  1.  Example simulating a patient with a pneumothorax in the left lung. The simulated noisy measurement is collected from 75% ventral data. The first image displays the true conductivity with the position of electrodes indicated. Using a partial data D-bar approach alone results in a reconstruction with low spatial resolution, where the pathology can be hardly seen (second). Incorporating a priori data corresponding to a healthy patient directly into the reconstruction method significantly improves the spatial resolution (third). Refining the prior improves the reconstruction further, allowing even sharper visualization of the pathology (fourth)
	In 2-D EIT, electrodes are arranged in a plane around the perimeter of the domain, and the reconstruction occurs in the plane of the electrodes. Ideally, electrodes are positioned around the entire boundary, resulting in full boundary data. However, there are many practical applications in which only part of the domain boundary is accessible, and we must rely instead on partial boundary data. This often occurs in medical applications when a critically ill patient is lying on their back and cannot be moved, or in industrial testing applications when, for example, we wish to test a component that is attached to part of a larger structure. Direct D-bar inversion techniques for full boundary data are a well-established category of reconstruction methods based on the results of41 and.42 The first practical implementation was described in,47 the method was further developed,39,30,11 and a regularization strategy for D-bar methods was introduced and proven in.35 Furthermore, D-bar reconstruction methods preserve the nonlinearity of the inverse problem, have been proven to exhibit robustness to domain shape errors,40 and are capable of real time imaging.13
	D-bar methods for the partial boundary setting differ from the full boundary case in a few important ways. This study is based on a recently proposed approach in,22 where the authors use a formulation of the conductivity equation with Neumann boundary conditions corresponding to applied currents. For an open and bounded domain Ω⊂ℝ2, with an open (and not necessarily connected) subset Γ⊂∂Ωon which zero-mean current 𝜑∈𝐿2(∂Ω) is injected, the electric potential uu supported in Ω is modeled by
	For uniqueness we require ∂Ω𝑢𝑑𝑠=0, and due to conservation of charge ∂Ω𝜑𝑑𝑠=0.The resulting voltage distribution on the boundary, 𝑢|∂Ω, is assumed to be known only on Γ. In EIT, we wish to recover the conductivity σσ from the boundary measurements 𝑢|∂Ω and our knowledge of 𝜑.
	The boundary data for the EIT problem is given by the Neumann-to-Dirichlet (ND) map, which takes boundary currents to boundary voltages. In the case of full boundary data, where Γ=∂Ω, computation of the scattering transform, which is a nonlinear custom Fourier transform crucial to the method, depends instead on the Dirichlet-to-Neumann (DN) map. In the full boundary setting, the DN map is obtained by simply inverting the ND map. Since the ND data and the DN data are not equivalent for the partial boundary setting, due to the graphs of the operators representing different subsets of the Cauchy data, we cannot use the classical D-bar method that depends on the DN map. For this reason we compute the scattering transform directly from the ND map by an approximation. Details of our setting are discussed in §2. The uniqueness question for the Neumann-to-Dirichlet problem (1) has been addressed for coinciding measurement and input domains in ℝ2 in,29 and in higher dimensions in,21 for bisweep data in,28 and for different input and measurement domains in.7
	Regardless of the reconstruction method used, EIT imaging involves solving a nonlinear and extremely ill-posed inverse problem which requires regularization, so EIT images in general tend to exhibit a loss of sharp edges and finer detail in the presence of noisy measurements. In D-bar methods, this regularization involves low-pass filtering of the nonlinear scattering transform data. Higher scattering frequencies become unstable in the presence of noise and are therefore omitted from the reconstruction process. However, these higher frequencies also encode finer details and sharp edges, and thus the reconstructions suffer from a loss of spatial resolution. These problems are exacerbated in the case of partial boundary data, where, as shown in,22 the introduced error to the reconstruction depends linearly on the missing domain.
	One means of improving spatial resolution in EIT reconstructions is the inclusion of prior information in the reconstruction algorithm. This information, in the form of approximate shapes and locations of internal structures and/or regional conductivity estimates, may be obtained in various ways depending on the application. In the case of medical imaging, the approximate shapes, sizes, and locations of organ boundaries may be obtained from a previous CT or ultrasound scan, or by consulting an anatomical atlas. In particular, in cases where chronically ill patients must receive CT scans as part of a regular course of diagnosis and treatment, these prior scans may be used as a ready source of highly accurate anatomical information for follow-up EIT scans, which do not impart doses of ionizing radiation. For these known structures, conductivity estimates may also be obtained from literature. If instead the application is the nondestructive evaluation of a manufactured structure or machine, the configuration and composition of interior components is likely to be known, and design schematics may be readily available, so that we may obtain spatial information and conductivity estimates for interior structures with great confidence.
	In the case of iterative reconstruction algorithms, which typically involve minimizing a cost functional, the use of such a priori information—included as a penalty term in the regularization strategy—has been established as a means of enhancing spatial resolution in practical reconstructions, in both medical imaging2,3,6,12,14,15,31,48,49 as well as industrial or engineering applications.23,24 In the Bayesian framework the prior distribution is an essential part of the computational inversion. Recent studies employ domain truncation for the partial data problem,4,5 and region of interest approaches to nonlinear difference imaging.36,37 A technique for embedding a priori information into the D-bar algorithm for full boundary data was introduced in,1 where the method was also proven to be a nonlinear regularization strategy. An analogous method was applied to the D-bar method for full boundary complex admittivity reconstructions in.19 These methods have been demonstrated to provide noise-robust reconstructions with improved spatial resolution of full boundary simulated human thoracic data, while successfully preserving and enhancing the appearance of introduced pathologies that were not included in the priors.
	In this manuscript, the a priori D-bar method is extended to the case of conductivity reconstructions from partial boundary data. The purpose of this work is to demonstrate that, even in cases where only partial boundary data is available, a priori information can be incorporated into the D-bar method to achieve noise-robust EIT images with enhanced spatial resolution, while preserving data pertaining to previously unknown pathologies or defects, as illustrated in Figure 1. A presentation of the partial boundary problem and D-bar formulation is given in §2, and the new a priori method is described in §3. In §4, the effectiveness of the method is demonstrated on noisy data simulating both human thoracic imaging and industrial nondestructive evaluation scenarios. In the case of human thoracic imaging, EIT has been shown to provide information in cases of pneumothorax9 and pleural effusion,17 and both pathologies are simulated here. For the nondestructive evaluation case, an industrial structural component containing a defect is simulated. In all test cases, only prior information of approximate interior boundaries and conductivity estimates of known structures is included; we do not assume any prior knowledge of pathologies or defects. This corresponds to a setting in which only prior information pertaining to a healthy or unblemished state is known, but a pathology or defect has developed since the prior information was obtained. The reconstructions demonstrate the effectiveness of the new method to achieve enhanced spatial resolution of not only known internal structures, but also of pathologies and defects not included in the priors. Both full-data and partial-data cases are included for comparison. In §5, final thoughts and conclusions are presented.
	2.   The partial data problem
	2.1.   Modeling the measurement process
	2.2.   Reconstructing from partial boundary measurements

	The setting of the partial data problem, as we use it, has been introduced in the continuum case in.22 In the following we will combine this setting with the ideas in,27 such that we model a realistic electrode configuration. The key to the model is a set of well designed projections to the partial boundary, which is represented as a union of electrodes. We consider here a two-dimensional bounded domain Ω⊂ℝ2 representing the measured object covered by mutually disjoint electrodes 𝐸𝑚,𝑚=1,…,𝑀. In our computations, we will choose Ω to be the unit disk 𝔻. Each electrode is modeled as a connected and open subset of the boundary ∂Ω. The union of all electrodes is denoted as Γ=𝑚𝐸𝑚 and will serve as the domain of current input and voltage measurement. The problem of EIT can then be modeled by the conductivity equation with Neumann boundary conditions as stated in (1). The inverse problem is to recover the conductivity (𝑥,𝑦)∈Ω for (𝑥,𝑦)∈Ω from the applied current and resulting voltage measurements on the boundary. The measurement is modeled by the Neumann-to-Dirichlet map (ND map)
	where 𝐿⋄2(∂Ω) consists of 𝐿2-functions with zero mean. Thus, the ND map takes every possible current pattern (Neumann data) and maps it to the corresponding voltage distribution on the boundary (Dirichlet data) for a given conductivity distribution 𝜎 on Ω. This work focuses on restricted boundary access, only allowing for the measurement of a partial ND map as discussed in.22 The partial ND map is modeled as the composition of the full-boundary ND map and a bounded linear operator 𝐽 that maps current patterns 𝜑∈𝐿⋄2∂Ω to a subspace of functions only supported on Γ:
	The partial ND map in this setting is then defined as the composition
	and represents the resulting voltage distribution ideally known on the whole boundary. We will next discuss how to model the input and measurement in the case where the boundary is only partially covered by electrodes.
	Following the construction in,27 we use the concept of extended electrodes {𝐸~𝑚}𝑚=1𝑀 that we define here as open, connected and mutually disjoint subsets of ∂Ω, with the property that
	Typically, one can only apply discrete current values and, for each applied value, measure one corresponding value for the resulting voltage on each electrode. Thus, we need to produce piecewise constant functions to properly model the input and measurement for an electrode setting. The projections that are presented in the following were introduced in27 and serve exactly this purpose.
	Let 𝜒𝑚 denote the indicator function for electrode 𝐸𝑚, and analogously 𝜒~𝑚 for the extended electrodes 𝐸~𝑚. Then the partial boundary map that produces the current input is given by a nonorthogonal projection onto the area of each electrode
	This models the current input on each electrode. To model the voltage measurement process appropriately, we use a projection to extended electrodes with
	Let us point out the different behavior of the two operators. Each current pattern is produced by integration over the extended electrodes and projection onto the area of the electrodes 𝐸𝑚. This is in contrast with the measurement process, where the integration is over the area of each electrode and the result is projected onto the extended electrodes as illustrated in Figure 2. In fact, 𝑃 is the adjoint of 𝐽 in 𝐿2(∂Ω), which can be checked by straightforward calculations.
	/
	Figure  2.  Illustration of mappings involved in the measurement modeling. Top row: Neumann data with the basis function 𝜑(𝜃)=cos(𝜃)/𝜋 on the left and the nonorthogonal projection 𝐽𝜑 on the right. Bottom row: Dirichlet data where 𝑔=𝑢|∂Ω on the left is the solution of the partial differential equation (1) and on the right the orthogonal projection to the extended electrodes
	The measurement that we obtain is then modeled as
	The above construction is related to the gap model for EIT; see for instance38 for a discussion of the different measurement models. As discussed in §2.2, to reconstruct the conductivity with the D-bar algorithm, we also need the ND map ℛ1 corresponding to the case with the homogeneous conductivity 𝜎≡1; this can be obtained either by measurement (if possible), or careful simulation (e.g., using a finite element model).
	The classical full boundary data D-bar method is formulated in terms of the Dirichlet-to-Neumann map (DN map). If one is given Neumann-to-Dirichlet data, one can simply perform inversion of the ND measurement matrix to form the DN matrix and apply a D-bar algorithm. However, this approach does not extend to the case of partial boundary data, since the graphs of the ND and DN maps represent different subsets of the Cauchy data, hence inversion is not possible. Furthermore, even if one can perform numerical inversion of the ND matrix, the resulting matrix is not assured to coincide with the DN matrix. Also, these inverted partial boundary ND matrices tend to have large condition numbers, which alone will result in instabilities in the reconstruction process.
	Here we very briefly review the background for the D-bar method; the interested reader is directed to41 for further details. We begin with a change of variables that transforms the conductivity equation given in (1) into the 2-D Schrödinger equation with potential 𝑞=Δ𝜎/𝜎. This Schrödinger equation is smoothly extended to the entire plane under the assumption that 𝜎≡1 in a neighborhood of ∂Ω. We associate (𝑥,𝑦)∈ℝ2 with points 𝑧=𝑥+𝑖𝑦∈𝒞, introduce a complex frequency parameter 𝑘∈𝒞, and seek solutions 𝜓(𝑧,𝑘) to the Schrödinger equation satisfying the asymptotic property 𝑒−𝑖𝑘𝑧𝜓(𝑧,𝑘)−1∈𝑊1,𝑝~(ℝ2),𝑝~>2. The functions 𝜇𝑧,𝑘:=𝜓𝑧,𝑘𝑒−𝑖𝑘𝑧 can then be shown to have the property 𝜇(𝑧,0)=𝜎(𝑧). It can further be shown that 𝜇(𝑧,𝑘) can be recovered by solving a special D-bar equation involving the scattering transform 𝐭(𝑘). The scattering transform can be thought of as a nonlinear Fourier transform of the Schrödinger potential qq. In classical D-bar methods 𝐭(𝑘) is computed using a reformulation to a boundary integral equation involving the DN map.
	Our restrictions in the partial boundary setting motivate the reformulation of the D-bar method for ND measurement data and the direct use of the ND map as described in.22 The first step involves computation of an approximate scattering transform from the ND map for 𝑘∈ℂ by
	For the chosen geometry, i.e. the unit disk Ω=𝔻, this can be simply evaluated as
	𝐭ND(𝑘)=∂Ω𝑖𝑘𝑧𝑒𝑖𝑘𝑧(ℛ1−ℛ𝜎)𝑖𝑘𝑧𝑒𝑖𝑘𝑧𝑑𝑠(𝑧)=|𝑘|2∂Ω𝑧𝑒𝑖𝑘𝑧(ℛ𝜎−ℛ1)𝑧𝑒𝑖𝑘𝑧𝑑𝑠(𝑧).
	In practice, noise in the measurement data leads to blowup (in magnitude) of the scattering data for large |𝑘| frequencies. Therefore we employ a low-pass filtering of the scattering data by only computing 𝐭ND via (6) on a disk of radius 𝑅>0. In the case of full boundary data, low-pass filtering of the scattering data was proven in35 to be a regularization strategy, where the radius of the truncation depends on the noise level of the measurement data. For the partial boundary data case, a non-uniform truncation in the form of a thresholding (through the parameter 𝐶𝑡) may be needed to control the blowup, leading to the following definition for the computation of the partial ND scattering data:
	The non-uniform truncation parameter 𝐶𝑡 is largely influenced by the reduction to partial boundary ND data (see Figure 4 of22). In this work, the parameter 𝐶𝑡 was set to the largest magnitude of the real or imaginary component of the blind scattering prior 𝐭𝐏𝐑 described in Section 3 below.
	/
	Figure  3.  The A Priori D-bar Method with Partial Data
	/
	Figure  4.  Phantoms used in numerical examples with the corresponding boundaries of the priors outlined by white dots. Note that for each example, the prior does not assume a pathology/defect. Left: A simulated pneumothorax occurring near the heart in the left lung. Middle: A simulated pleural effusion occurring away from the heart in the left lung. Right: An enclosed diamond with an ovular defect
	The approximate scattering transform 𝐭𝑅ND is then used as a parameter in the D-bar equation
	where 𝑒𝑘(𝑧):=𝑒𝑖(𝑘𝑧+𝑘𝑧).The D-bar equation (8) is solved independently for each 𝑧∈Ω via its equivalent integral formulation
	(9) 𝜇𝑅(𝑧,𝑘)=1+1(2𝜋)2|𝑘|≤𝑅𝐭𝑅ND(𝑘′)𝑘′(𝑘−𝑘′)𝑒−𝑘′(𝑧)𝜇𝑅(𝑧,𝑘′)𝑑𝑘1′𝑑𝑘2′,
	and the conductivity is then computed by simply evaluating
	3.   The a priori partial data method
	In this section we outline the formulation of the new method, in which a priori information is embedded into the partial data D-bar algorithm, following the work in1 which was developed for full-data reconstructions. This a priori data comes in the form of a conductivity distribution 𝜎𝐏𝐑 that is approximated using previously known information. As discussed in §1, in many applications of EIT imaging, some prior information is known about the structure and electrical properties of the subject, and this information may be used to form 𝜎𝐏𝐑, which is incorporated into the regularized D-bar method in two distinct ways. Throughout this section, some mathematical and computational details have been abbreviated; we refer the interested reader to1 and to41 for further details.
	To begin, we form the Schrödinger potential
	In practice, we start with a piecewise-smooth a priori conductivity distribution 𝜎𝐏𝐑, which is then mollified to be at least 𝒞2 smooth to compute (10). We define the function 𝜇𝐏𝐑(𝑧,𝑘) to be the solution analogous to 𝜇(𝑧,𝑘) that corresponds to 𝜎𝐏𝐑. It is known from the theoretical work in41 that for each fixed 𝑘, the function 𝜇𝐏𝐑 satisfies the Lippmann-Schwinger equation
	where 𝜇𝐏𝐑(⋅,𝑘)−1∈𝑊1,𝑝~(ℝ2) for some 2<𝑝~<∞. The function 𝜇𝐏𝐑, obtained by solving (11), now encodes the a priori information.
	The first way 𝜇𝐏𝐑 is incorporated into the method involves extending the radius of admissible scattering data from 𝑅 to 𝑅2≥𝑅, by appending an annulus of stable prior scattering data outside the disk where 𝐭𝑅ND is supported. To this end, we compute the a priori scattering data 𝐭𝐏𝐑 using the alternate formulation
	which avoids computation of the ND map corresponding to 𝜎𝐏𝐑. See22 for a derivation of the ND form of the scattering transform as in (6) from a definition analogous to (12).The extended scattering data is then formed as
	If an additional threshold parameter is used to truncate the measurement scattering data 𝐭ND as in the formulation (7), the above definition of 𝐭𝑅,𝑅2 may be modified so that, for any 𝑘 such that |ℜ(𝐭ND)(𝑘)|>𝐶𝑡 where either ℜ𝐭ND𝑘>𝐶𝑡 or |ℑ(𝐭ND)(𝑘)|>𝐶𝑡, we assign 𝐭𝑅,𝑅2(𝑘):=𝐭𝐏𝐑(𝑘). Furthermore, in the definition of 𝐭𝑅,𝑅2, the influence of the prior on the resulting reconstruction can be controlled by choosing 𝑅2 smaller or larger as desired. In particular, it should be noted that if an additional thresholding is used, then selecting 𝑅2=𝑅 will not eliminate the prior completely from the definition of 𝐭𝑅,𝑅2, but will result in a weak expression of the a priori data in the resulting reconstruction.
	We next replace the asymptotic approximation 𝜇∼1 used in (9) with an improved approximation
	that approaches the asymptotic condition of 1 as 𝑅2→∞. We then choose a weighting parameter 𝛼∈[0,1] and for each 𝑧∈Ω, solve a modified version of (9), using the extended scattering data 𝐭𝑅,𝑅2 and asymptotic replacement term 𝜇int:
	(15) 𝜇𝑅2,𝛼𝑧,𝑘=𝛼+1−𝛼𝜇int𝑧+1(2𝜋)2|𝑘|≤𝑅2𝐭𝑅,𝑅2(𝑘′)𝑘′(𝑘−𝑘′)𝑒−𝑘′(𝑧)𝜇𝑅2,𝛼(𝑧,𝑘′)𝑑𝑘1′𝑑𝑘2′.
	This equation is then solved for 𝜇𝑅2,𝛼. The influence of the prior in the construction of 𝜇𝑅2,𝛼 can be controlled by modifying the parameter 𝛼, and in fact, choosing 𝛼=1 will result in 𝛼+(1−𝛼)𝜇int(𝑧)=1, so that the only influence of the prior will be from the scattering data 𝐭𝑅,𝑅2. Hence 𝛼=0 corresponds to the heaviest weighting of the 𝜇int term. Once we have obtained 𝜇𝑅2,𝛼, the updated conductivity is recovered as
	(16) 𝜎𝑅2,𝛼(𝑧)=(𝜇𝑅2,𝛼(𝑧,0))2..
	The steps of the new method are outlined in Figure 3. Note that steps 1a and 1b can be computed independently, allowing for the a priori data computation to take place ahead of time offline, if desired. Furthermore, steps 1a and 1b are each parallelizable in 𝑘, and step 2 is parallelizable in the spatial variable 𝑧, allowing for fast reconstructions.
	4.   Computational results
	We now demonstrate the effectiveness of the proposed method on simulated (noisy) EIT measurement data. We include two examples relevant to medical imaging (a simulated pneumothorax and a simulated pleural effusion), as well as an example of defect detection in a material, possibly relevant to an industrial setting. Figure 4 presents the phantoms used in the experiments, as well as the boundaries of their corresponding priors (represented by the white dots). Tables 1 and 2 give the conductivity values in each region of the phantoms and assigned priors. Note that a single prior is used for both thoracic examples, as it corresponds to a healthy patient with no pathology. Only information known with high confidence is included: e.g., approximate locations of heart, lungs, aorta, spine, major inclusions, etc. A common initial scattering radius of 𝑅=4 was used across all 𝜎ND reconstructions. To better visualize the nuances of the results and compare across examples, all conductivity reconstructions are displayed on a color scale maxed out at 𝜎=2, unless otherwise stated. The true maximum of each colormap is given in each image caption. The reader is advised to view the reconstructions on a computer screen if possible, to avoid color distortions and to visualize nuances likely masked in a printed version.
	Table 1.  Conductivity values of thoracic phantoms and assigned blind prior in S/m
	Background
	Spine
	Aorta
	Pathology
	Lungs
	Heart
	1
	0.25
	2.0
	0.15
	0.5
	2.0
	Pneumothorax
	1
	0.25
	2.0
	1.8
	0.5
	2.0
	Pleural Effusion
	1
	0.23
	2.05
	-
	0.45
	2.05
	Prior
	Table 2.  Conductivity values of industrial phantom and assigned blind prior in S/m
	Background
	Inclusion
	Diamond
	1
	1.4
	2.0
	Industrial
	1
	-
	2.05
	Prior
	4.1.   Simulation of measurement data
	4.2.   Computation of the prior
	4.3.   Thoracic EIT imaging
	4.3.1.   Example 1: A Simulated Pneumothorax
	4.3.2.   Example 2: A Simulated Pleural Effusion

	4.4.   An industrial phantom with a defect
	4.5.   Quantification of errors

	The construction for simulating the measurement data is described in §2.1. The ND map is represented using an orthonormal basis of 𝐿2(∂Ω), where Ω=𝔻 is our chosen domain. The full boundary case assumes 32 equidistant electrodes around the boundary with a width of |𝐸𝑚|=𝜋/32 each. In the partial data case a certain number of electrodes are deactivated and not attached to the object. We explore three scenarios: 24, 20, and 16 active electrodes, corresponding to 75%, 62.5%, and 50% of the boundary accessible, respectively.
	We simulate trigonometric current patterns for the basis functions 𝜑𝑛∈𝐿2(∂Ω) as
	where 𝑛∈{1,…,31}. Note that for 32 electrodes, there are only 31 linearly independent basis functions.38 Using the basis functions 𝜑𝑛, the applied current values on the electrodes are produced by the nonorthogonal projection (3), as illustrated in Figure 2. The projected basis function is then used as a boundary condition for the conductivity equation (1). We solve the boundary value problem using a FEM solver for elliptic partial differential equations. The voltages on the electrodes are computed from the continuous solution 𝑢|∂Ω by applying the orthogonal projection (4) to the boundary trace, 𝑔=𝑃𝑢|∂Ω. Noisy measurement data was produced by adding 0.2% relative Gaussian zero-mean noise to the voltage data (independent for each current pattern and electrode). The measurement matrix 𝑀∈ℝ31×31 was computed by evaluating the inner products for 𝑛,𝑚∈{1,…,31} as
	Figure 5(left) displays the piecewise-constant priors using the boundaries shown in Figure 4 and conductivity values in Tables 1 and 2. Note that the blind (healthy patient) thoracic prior is used for both the pneumothorax and pleural effusion examples, and neither prior (thoracic or industrial) assumes a pathology/defect. The conductivity priors were mollified (see Figure 5(right)) and the Schrödinger potential q𝐏𝐑=Δ𝜎𝐏𝐑𝜎𝐏𝐑 computed. The Lippmann-Schwinger equation (11) was solved for each desired 𝑘 and the associated scattering priors 𝐭𝐏𝐑 and integral replacement terms 𝜇int formed via (12) and (14), respectively. Figure 6 shows the μintμint term for various extended radii 𝑅2 for the blind thoracic prior.
	/
	Figure  5.  Blind priors used for the thoracic (top) and industrial (bottom) imaging examples. Take particular note that the priors do not assume any pathology/defect
	/
	Figure  6.  The real part of the 𝜇int data (shown in the 𝑧 plane for 𝑧∈𝒟) corresponding to the blind thoracic prior given in Figure 5(top) computed from extended radii 𝑅2=4.0, 6.5, and 9.0 in the 𝑘 plane. Note that as the radius increases, the integral term approaches its asymptotic behavior of 𝜇int∼1
	The combined scattering data 𝐭𝑅,𝑅2 were then formed by combining 𝐭ND (measurement data) with 𝐭𝐏𝐑 (prior) as described in (13); see Figure 7 for an illustration.
	/
	Figure  7.  Scattering data corresponding to the pneumothorax example using the blind prior given in Figure 5(top). The original radius is 𝑅=4 and extended radius 𝑅2=9. All scattering data is plotted on the same scale (real and imaginary, respectively)
	We explore two examples of interest in thoracic EIT imaging: a simulated pneumothorax and a simulated pleural effusion. In each case, we assume the same prior depicted in Figure 5(top). Although our phantoms here are on circular domains, the purpose of this introductory work is to demonstrate the improvements the new method offers over the existing partial data results for direct D-bar methods in 2D.22,20 Our thoracic imaging examples that follow correspond to 75% and 62.5% access to the boundary of the patient, simulating ventral data for a patient lying on their back.
	We begin with the simulated pneumothorax. Using only the partial data ND map, the conductivity 𝜎ND was recovered using a threshold of 𝐶𝑡=13.3528, the maximum magnitude of the scattering prior (see Section 2.2). The reconstruction for 75% ventral access boundary data is shown at the top of Figure 8. The maximum value of the partial data reconstruction 𝜎ND is 1.4397 and the minimum is 0.2663.
	While the partial data reconstruction 𝜎ND contains some quality information, the image exhibits fairly low spatial resolution. Using the prior depicted in Figure 5(top), which results in the corresponding extended scattering data (Figure 7) and asymptotic replacement term 𝜇int (Figure 6), the quality of the conductivity image improves greatly. Figure 8 shows the reconstructed conductivities 𝜎𝑅2,𝛼 using the new method, for varying extended radii 𝑅2=4.0,6.5,9.0 and parameters 𝛼=1,23,13,0. Recall that 𝛼=1 corresponds to the lowest weight of the 𝜇int term, while 𝛼=0 results in fullest expression of the prior. Notice that the reconstruction corresponding to 𝑅2=4.0 and 𝛼=1 (the upper left corner of Figure 8), which represents 𝜇int=1 and merely augmenting the missing scattering data for 𝐭ND to fill the 𝑘-disk of radius 4.0, already exhibits a significant improvement over the original partial data reconstruction 𝜎ND. As the value 𝑅2 of the extended scattering radius increases, the pnuemothorax becomes more pronounced. Similarly, as the μintμint term is weighted more heavily, the organs separate nicely and again the pathology is striking. We remind the reader that no pathology has been included in the prior and hence the visible low conductive area in the upper left lung results purely from the measured data.
	/
	Figure  8.  Pneumothorax example for 62.5% ventral data. TOP: The partial data ND D-bar reconstruction 𝜎ND. BOTTOM: The recovered conductivity 𝜎ND, using the blind thoracic prior. The maximum value is 2.25, occurring of 𝑅=4, 𝛼=0
	It is clear from the conductivity reconstructions in Figure 8 that there is a suspicious region in the upper left lung near the heart. This led us to update the spatial prior (in the spirit of1), as follows. We overlaid the organ boundaries of the blind thoracic prior on the 𝜎𝑅2,𝛼 reconstruction for 𝛼=1 and 𝑅2=9.0 and employed a segmentation inside the left lung. The chosen values correspond to no weight given to the μintμint term. The segmentation was implemented, such that only the position of the suspected pathology (organ/region) and a division value are needed as inputs. Based on that information alone, the lung was segmented into two parts. The boundaries of the updated prior are displayed in Figure 9 using a division value of 0.25 S/m.
	/
	Figure  9.  Left: Original prior. Right: Updated Pneumothorax prior. The left lung in the updated prior was segmented into two regions
	We then tested two new priors based on assigning the conductivity value of the suspicious region by using either the average value (0.2751 S/m) of the pixels in the region, or the minimum value (0.1754 S/m) of the pixels in the region since the value is clearly below the assigned value of 0.45, indicating an area of lower conductivity. In an effort to avoid bias, the average pixel value of the lower left lung (0.3894 S/m) was used in both new priors. The resulting conductivity reconstructions 𝜎𝑅2,𝛼 from the segmented priors are shown in Figure 10.
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	Figure  10.  Pneumothorax example with 75% Ventral data and segmented prior. The corresponding partial data ND D-bar reconstruction 𝜎ND is shown in Figure 8. Here we display the recovered conductivity 𝜎𝑅2,𝛼 for 𝑅2=4,6.5 and various αα using the SEG AVG or SEG MIN segmented thoracic priors. The maximum value is 2.70 and occurs in the 𝑅2=4, 𝛼=0 recon using the SEG MIN prior.
	Figure 11 shows reconstructions using the blind thoracic prior with 62.5% ventral data, which corresponds to 20 active electrodes. The maximum value of the partial data reconstruction 𝜎ND is 1.4407 and the minimum is 0.2728. Figure 12 compares reconstructions from partial boundary data to full boundary data. The segmented priors for the full data case were extracted from 𝜎𝑅2,𝛼 using 𝑅2=9 and 𝛼=1, with the average value (0.2657 S/m) or minimum value (0.1563 S/m) for the top region and the average value (0.4480 S/m) in the bottom. For 62.5% ventral data, the segmented priors were formed from 𝜎𝑅2,𝛼 for 𝑅2=4.0 and 𝛼=1 with the extracted average value (0.3290 S/m) or minimum (0.2176 S/m) in the top region and the average pixel value (0.3724 S/m) in the lower lung region. Notice that the pneumothorax is clearly visible regardless of whether the average or minimum pixel value is used in the segmented prior. All of the reconstructions using the a priori method (original prior as well as from the segmented prior) are vast improvements over the partial data ND map D-bar image 𝜎ND, thus supporting the case for incorporating prior data directly into the method.
	/
	Figure  11.  Pleural effusion example for 75% ventral data. TOP: The partial data ND D-bar reconstruction 𝜎ND. BOTTOM: The recovered conductivity 𝜎𝑅2,𝛼 using the blind thoracic prior. The maximum value is 2.90, occurring of 𝑅=4, 𝛼=0
	/
	Figure  12.  Pneumothorax Example. Results for 𝑅2=9.0 and 𝛼=0.67. The maximum is 2.71 and occurs in the 100% boundary data, BLIND prior reconstruction
	Next we explore the thoracic example of a simulated pleural effusion in the lower region of the left lung. The recovered conductivity 𝜎ND, using only the 75% ventral data partial ND map, is shown in the top of Figure 13. The maximum value of the partial data reconstruction 𝜎ND is 1.5663 and the minimum is 0.3498. Notice that the fluid is visible as a region of higher conductivity, however the organs have little to no sharpness. Again, we employ the blind thoracic prior given in Figure 5(top) to produce the new conductivity reconstructions 𝜎𝑅2,𝛼 shown in Figure 13(bottom). As the blind prior is weighted more heavily, an artifact of higher conductivity between the lungs near the spine develops. This could be due to the prior trying to force the left lung to have a much lower conductivity in the lower region than it truly does. Nevertheless, we see that even the weakest expression of the prior (𝑅2=4 and 𝛼=1) produces a conductivity image that is greatly improved over the partial data ND reconstruction 𝜎ND.
	/
	Figure  13.  Pleural effusion example for 62.5% ventral data. The partial data ND D-bar reconstruction 𝜎ND is shown at the top. Below, the recovered conductivity 𝜎𝑅2,𝛼 is shown using the blind thoracic prior. The maximum value is 2.74, occurring of 𝑅=4, 𝛼=0
	It is evident that there is a suspicious region in the left lung, indicating an update to the prior is needed (see1 for a description of methods to update the prior). Using the 𝑅2=4 and 𝛼=1 reconstruction, we overlaid the boundaries of the organs from the blind thoracic prior, and segmented the left lung (see Figure 14), as described in the pneumothorax example, using a division value of 0.9 S/m. New values for the bottom of the left lung were assigned from the average pixel value (1.1204 S/m) in the region, and the maximum pixel value (1.3444 S/m) in the region. The conductivity in the top of the left lung was set to the average pixel value in the region (0.6129 S/m) to avoid bias.
	/
	Figure  14.  Left: Original prior. Right: Updated Pleural Effusion prior with the left lung segmented into two regions
	Following the last example, the extended scattering data was formed from the updated priors and the new 𝜇int terms computed. The new conductivities 𝜎𝑅2,𝛼 using the updated priors are shown in Figure 15. The reconstructions clearly demonstrate that by using either the average pixel value or maximum pixel value in the updated prior immensely improves the conductivity reconstructions.
	/
	Figure  15.  Pleural effusion example for 75% ventral data and segmented prior. The corresponding partial data ND D-bar reconstruction 𝜎ND is shown in Figure 13. Here we display the recovered conductivity 𝜎𝑅2,𝛼 for 𝑅2=4 and various αα using the SEG AVG or SEG MAX segmented thoracic prior. The maximum value is 2.83 and occurs in the 𝑅2=4, 𝛼=0 reconstruction using the SEG MAX prior
	The previous artifact seen in the conductivity reconstruction using the blind thoracic prior (Figure 13) is reduced, especially when using the SEG MAX prior. This could be due to the area of higher conductivity now being allowed to be absorbed into the lower lung region where it belongs.
	Figure 16 presents reconstructions from 62.5% ventral data and the blind thoracic prior. The maximum and minimum of the partial data reconstruction 𝜎ND are 1.48 and 0.42, respectively.Figure 17 compares reconstructions from partial boundary data to full boundary data. The segmented priors for the full data case were extracted from 𝜎𝑅2,𝛼 using 𝑅2=9 and 𝛼=1, with the average value (1.2389 S/m) or maximum value (1.4796 S/m) for the top region and the average value (0.6077 S/m) in the bottom. The new segmented priors for 62.5% boundary data were created using 𝜎𝑅2,𝛼 for 𝑅2=4.0 and 𝛼=1 with the extracted average value (0.8234 S/m) or maximum (1.0462 S/m) in the bottom region and the average pixel value (0.6372 S/m) in the top region. Note that for all levels of data, if the blind prior is used, a conductive artifact (not present in the D-bar reconstructions 𝜎ND) appears in the lower left of the image, near the bottom of the left lung, yet when the lung is segmented the artifact is significantly reduced, supporting the case for updating the prior and demonstrating what an artifact may look like when the prior is a bad match.
	/
	Figure  16.  Pleural effusion example for 62.5% ventral data. The partial data ND D-bar reconstruction 𝜎ND is shown at the top. Below, the recovered conductivity 𝜎𝑅2,𝛼 is shown using the blind thoracic prior. The maximum value is 2.74, occurring of 𝑅=4, 𝛼=0
	/
	Figure  17.  Pleural Effusion Example. Results for 𝑅2=6.5 and 𝛼=0.67. The maximum is 2.65 and occurs in the 100% boundary data, BLIND prior reconstruction
	Lastly we explore an example of potential interest to industry, a material with a defective region of lower conductivity. Here we compare D-bar ND reconstructions 𝜎ND from full, 75%, 62.5% and 50% boundary data (centered at π/2π/2 degrees), to those including a priori data. The prior used here is shown in Figure 5(bottom) and assumes no defect. The D-bar reconstructions 𝜎ND were obtained as before using the (partial) ND map.
	Figures 18 and 19 compare reconstructions for each level of boundary data with an extended scattering radius of 𝑅2=4 and 𝑅2=6.5, respectively. Observe that even with full boundary data the defect is not visible without the introduction of the prior (which, we remind the reader, does not assume any defect). As the prior is weighted more heavily, the diamond becomes better formed and the defect is clearly visible even in the first extension of the radius of the scattering data to 𝑅2=6.5 (see Figure 19). For the partial data ND cases, we see that even the 𝑅2=4 and 𝛼=1 conductivity 𝜎𝑅2,𝛼 reconstructions are significant improvements over the partial ND D-bar reconstructions 𝜎ND. For each level of boundary data, the defect becomes visible in the first increase of the radius of the scattering data. The 𝜇int correction term itself is not enough with only 𝑅2=4.0 demonstrating the importance of both new pieces of information in the a priori method.
	/
	Figure  18.  Industrial Example: From top to bottom, conductivity reconstructions 𝜎𝑅2,𝛼 for 100%, 75%, 62.5%, and 50% boundary data are presented with scattering radius 𝑅2=4 and various weights αα. The first column displays the 𝜎ND reconstructions that do not include any a priori information. The maximum value (3.12) occurs for the 50% data reconstruction with strongest weight 𝛼=0
	/
	Figure  19.  Industrial Example: From top to bottom, conductivity reconstructions 𝜎𝑅2,𝛼 for 100%, 75%, 62.5%, and 50% boundary data are presented with extended scattering radius 𝑅2=6.5 and various weights αα. The first column displays the 𝜎ND reconstructions that do not include any a priori information. The maximum value (3.13) occurs for the 50% data reconstruction with strongest weight 𝛼=0
	Our results demonstrate that conductivity reconstructions from partial boundary data using only 𝐭ND carry quality information, but suffer from a severe loss of spatial resolution. Incorporating a priori information in the reconstruction process can immensely enhance the visual impression of the image. The improvement is also clear from a decrease in the overall ℓ2 relative errors (see Figure 20) and regional ℓ2 relative errors (see Figure 21). In each plot, the error of the initial reconstruction 𝜎ND is displayed in the top left corner. Filling in the lost information in the scattering transform for the radius 𝑅2=4 already increases accuracy (see 𝛼=1). In general, one can see that as the radius 𝑅2 increases, or weighting of 𝜇int increases (i.e. αα decreases from 1 to 0), the relative error in the overall reconstruction decreases. The extended radius 𝑅2=12 is included here to demonstrate that only a slight improvement in the error may be expected for larger regularization radii. Reconstruction errors for all presented examples in §4 are displayed in Table 3.
	/
	Figure  20.  Relative ℓ2-error of reconstructions from 75% ventral data of the pneumothorax example. The horizontal axis represents αα-values for increasing regularization radii 𝑅2. Recall that 𝛼=0 corresponds to the heaviest weighting of the 𝜇int term, while 𝛼=1 to the weakest expression of the prior. Errors from 𝜎ND are compared to the new reconstructions 𝜎𝑅2,𝛼 for the blind and segmented priors
	/
	Figure  21.  Relative ℓ2-error in the lung region within the boundary of the pathology, for 75% ventral data for the pneumothorax example. The horizontal axis represents αα-values for increasing regularization radii 𝑅2
	Table 3.  Relative ℓ2-errors (%) for the conductivity reconstructions from §4, for the extended regularization radii 𝑅2=4 and 6.5
	R2=6.5R2=6.5
	R2=4R2=4
	D-BAR
	α=0α=0
	α=13α=13
	α=23α=23
	α=1α=1
	α=0α=0
	α=13α=13
	α=23α=23
	α=1α=1
	RECON
	PNEUMOTHORAX
	23.39
	24.20
	25.36
	26.82
	24.44
	24.86
	26.74
	29.65
	35.13
	Blind Prior: 75%
	22.11
	22.92
	24.16
	25.75
	24.95
	24.65
	26.22
	29.14
	35.13
	Seg Avg Prior: 75%
	21.55
	22.23
	23.44
	25.07
	25.74
	24.75
	25.96
	28.84
	35.13
	Seg Min Prior: 75%
	26.63
	27.56
	28.74
	30.12
	27.12
	28.06
	30.02
	32.71
	38.95
	Blind Prior: 62.5%
	25.84
	26.78
	27.99
	29.43
	27.30
	27.83
	29.62
	32.33
	38.95
	Seg Avg Prior: 62.5%
	24.97
	25.88
	27.13
	28.66
	27.61
	27.67
	29.27
	31.99
	38.95
	Seg Min Prior: 62.5%
	Pleural Effusion
	27.20
	26.13
	25.54
	25.44
	29.23
	25.94
	24.43
	24.82
	27.40
	Blind Prior: 75%
	20.90
	20.96
	21.47
	22.40
	23.33
	21.88
	22.27
	24.24
	27.40
	Seg Avg Prior: 75%
	20.22
	20.34
	20.94
	21.98
	22.81
	21.39
	21.95
	24.14
	27.40
	Seg Max Prior: 75%
	29.67
	29.20
	29.10
	29.34
	32.21
	30.00
	29.22
	29.80
	32.56
	Blind Prior: 62.5%
	26.21
	26.35
	26.80
	27.53
	28.08
	27.22
	27.66
	29.18
	32.56
	Seg Avg Prior: 62.5%
	24.87
	25.20
	25.85
	26.77
	26.80
	26.24
	27.01
	28.87
	32.56
	Seg Max Prior: 62.5%
	Industrial phantom
	12.68
	13.28
	14.17
	15.31
	12.99
	14.17
	16.07
	18.43
	18.43
	Blind Prior: 100%
	13.80
	13.93
	14.42
	15.23
	14.80
	14.99
	16.10
	17.91
	18.46
	Blind Prior: 75%
	17.37
	17.27
	17.49
	18.03
	18.15
	17.90
	18.55
	19.96
	20.72
	Blind Prior: 62.5%
	19.60
	19.31
	19.34
	19.68
	20.70
	20.04
	20.25
	21.24
	22.14
	Blind Prior: 50%
	5.   Conclusions
	We have presented a novel technique in which a priori information is embedded into an ND D-bar method for partial boundary EIT imaging of 2-D conductivities. The new method has great flexibility to be used with a priori information obtained in a variety of different ways, including previous CT or other scans, atlas matching (in the case of human imaging), or design schematics (in the case of industrial imaging), allowing for wide applicability.
	To demonstrate the method's effectiveness in improving spatial resolution, we have presented the results of three test cases involving simulated partial boundary data with 0.2% relative added noise and varying percentages of available boundary data. The method was tested on both human thoracic phantoms with introduced pathologies, as well as an industrial phantom representing a nondestructive testing scenario. The success of the technique in these differing applications demonstrates the method's robustness and potential for adaptability to various real-world scenarios. In all cases presented, the new a priori method produced images exhibiting a significant increase in quality, specifically in sharpness of details and edges, over those from the partial data ND D-bar method. The blind priors only contain information that is likely to be known with high confidence based on a healthy or unblemished state. Nevertheless, changes to the subject that do no appear in the prior—such as the development of a pneumothorax or pleural effusion in human thoracic imaging, or the formation of a defect in industrial nondestructive evaluation—emerge with improved spatial resolution in the resulting reconstructions. This improvement was evident in all cases tested, even when available boundary data was decreased to 50% in the case of the industrial phantom. By updating the prior, based on information obtained from the EIT reconstructions, the conductivity reconstructions can be further improved. We have demonstrated how these updates may be accomplished using average regional conductivity values from the EIT reconstructions resulting in minimal introduced bias. In addition to conductivity reconstructions, we have provided relative ℓ2 errors to help quantify the increase in spatial resolution resulting from the application of the method.
	The ability to obtain high-quality EIT images in cases where only part of the boundary is accessible is important in a variety of applications. While an extensive study of how little partial data can be used to still produce informative images is outside the scope of this paper, we expect reasonable results near the area of data acquisition. Further study is also required to evaluate the method's clinical efficacy and industrial utility.
	A thorough analysis of the computational expense associated with the method is also beyond the scope of this work, and the computations used in this paper were not optimized for speed. However, the method is parallelizable in either the 𝑘 or 𝑧 variable. Furthermore, computation of the scattering prior 𝐭𝐏𝐑 and the asymptotic replacement term 𝜇int may be performed in advance offline, and it may be possible to use the same prior (or a small set of similar priors) for all frames in a sequence of images. Thus, we expect that real-time imaging (as demonstrated in13) will be achievable with this method if a prior or priors are computed in advance.
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