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Sensitivity Calculations of High-Speed Optical
Receivers Based on Electron-APDs

Vladimir Shulyak , Majeed M. Hayat , Fellow, IEEE, and Jo Shien Ng , Member, IEEE

Abstract—Sensitivity of high-speed optical receivers is heavily
influenced by the performance of the optical detectors used in
the receivers, the data rate, and the target bit-error-rate (BER).
A simulation model for sensitivity of optical receivers based on
electron-avalanche photodiodes (e-APDs) is presented. It allows
for the optimization of avalanche width and operating voltage to
achieve the optimum receiver sensitivity for given bit rate and
target BER. The effects modelled include inter-symbol interference
(ISI), various dark current components (tunnelling, diffusion, and
generation), current impulse duration, avalanche gain, and am-
plifier’s noise. The model was demonstrated through simulations
of Indium Arsenide (InAs) e-APDs. For 10−12 target BER, the
receiver’s sensitivities were found to be −30.6, −22.7, −19.2, and
−16.6 dBm, for 10, 25, 40, and 50 Gb/s data rate, respectively.
Desirable avalanche properties of InAs e-APDs are counteracted
by detrimental effects of high dark currents. Hence InAs e-APDs
with lower dark currents are required to be more competitive with
other optical detector technologies for high-speed optical receivers.
The data reported in this article is available from the ORDA digital
repository (DOI: 10.15131/shef.data.9959468).

Index Terms—Avalanche photodiodes (APDs), bit-error rate
(BER), dead space, impact ionization, indium Arsenide (InAs),
intersymbol interference (ISI), noise, receiver sensitivity.

I. INTRODUCTION

AVALANCHE photodiodes (APDs) are widely used optical
detectors in the domain of high-speed optical receivers

for long-haul optical communication systems. They offer high
internal gain, which is the end result of numerous impact ion-
ization events taking place within the APDs. When used in
high-speed optical receivers, they reduce the dominance of noise
from post-detection amplifier, thereby increasing the overall
signal-to-noise ratio. In recent years there has been great interest
in developing highly sensitive 25 and 40 Gbps receivers with
acceptable bit-error rates.

The sensitivity of an optical receiver is defined as the min-
imum optical power required to reach a target bit-error rate
(BER) - the probability of an error in bit-identification by
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the receiver. Several APD-related characteristics determine the
performance of APD-based optical receivers, including (i) the
excess noise factor; (ii) the stochastic avalanche duration, which
increases with gain and decreases the APD’s speed; (iii) the
APD’s dark current.

Analytical simulation models of APD-based receivers have
been developed to determine their sensitivity [1]–[3]. These
models assume both electrons and holes will impact ionize
(indeed the case for important avalanche materials for optical
receivers, such as InP and InAlAs), whereby the random
avalanche buildup time within the APD is not deterministic.
Hence, they cannot be applied without modification to an im-
portant sub-class of APDs known as an electron-APDs (e-APD).
InAs [4] and HgCdTe [5] based APDs are examples of e-APDs.
In these diodes, only the electrons undergo impact ionization,
which leads to a unique impulse response function whose dura-
tion is deterministic and hence needs to be treated carefully in
the receiver-sensitivity model. Unlike regular APDs, where each
avalanche event has a different duration, an avalanche within an
e-APD ends after two carrier transit times within the avalanche
region, providing avalanche gain with little excess noise. Thus,
eAPDs have potential in high-speed, low noise optical receivers.

In this paper we present a model that can be applied to
any e-APD, capturing effects which include; inter-symbol inter-
ference (ISI), tunnelling current, diffusion current, generation
current, avalanche pulse duration, avalanche gain, and amplifier
noise. Sensitivity calculations obtained using our model for InAs
e-APDs, which have excellent excess noise characteristics but
relatively high dark currents, are also reported here to demon-
strate the model’s functionality.

II. MODEL DETAILS

A. Review of the Model Reported in [2]

The model in this paper is based on the bit-error-rate (BER)
model developed in [1] and [2], although there are some signif-
icant differences and modifications which need to be discussed.
The unique impulse response of an e-APD means that many
of the equations previously developed cannot be used, and a
revision of the model must be carried out.

According to [1], the calculation of an analytical expression
for the receiver sensitivity requires knowledge of analytical
expressions for the stochastic photocurrent’s mean and variance
as a function of time following a single trigger of the avalanche
process. (Such photocurrent is also referred to as the APD’s
stochastic impulse response function.) This task requires the
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adoption of a simplifying approximate exponential form for the
mean and the autocorrelation functions. However, this approxi-
mation implicitly assumes a non-deterministic (and unbounded)
duration of the mean and autocorrelation functions of time, an
assumption that is justified when both electrons are capable
of ionizing. Unfortunately, this assumption is incorrect for e-
APDs because only electrons can impact ionize. The e-APD’s
stochastic impulse response function has a deterministic and
finite duration. Hence, a new functional form for the mean and
the auto correlation function of the stochastic impulse response
is required for use in the framework described in [1]. In this
paper we do just that.

We emphasize, however, that the limitation of the model in [2]
arises only when an analytical formula for the receiver sensitivity
is sought; the model in [2] remains valid for the numerical
calculation of the sensitivity for electron APDs, though this
would require significantly more computing resources to match
the accuracy provided by a more analytical model. Although the
analytical expressions for the mean and variance of the APDs
stochastic impulse response function from [2] are no longer
valid, the defining integrals for the mean and the variance are
still valid and can still be used.

The formulae for the mean and variance of the ISI contribu-
tions (μISI,n and σ2

ISI,n) to receiver output from the nth past bit
with duration T are given by equations (A3) and (A7) from [2]:

μISI,n = φ0

∫ T

0

∫ −nT+T

−nT

〈Ip(t− τ)〉dτdt, (1)

σ2
ISI,n = φ0

∫ T

0

∫ T

0

∫ −nT+T

−nT

× 〈Ip(μ− ξ)Ip(ν − ξ)〉dξdμdν, (2)

where φ0 is a constant photon flux present between times −nT
and −nT + T , while 〈Ip(t)〉 is the mean impulse response
function.

When considering an arbitrary past bit pattern Ij of length L,
the total contributions from all ISI terms, dark current mean and
variance (μdark and σ2

dark), and Johnson noise σJ , the mean and
variance for a “0” bit (μ0 and σ2

0) are given by

μ0(Ij) =

L∑
n=1

(an(Ij)μISI,n) + μdark, (3)

and

σ2
0(Ij) =

L∑
n=1

(
an(Ij)σ

2
ISI,n

)
+ σ2

dark + σ2
J , (4)

which are (9) and (11) in [2]. Here an(Ij) = 1 when the nth bit
in the pattern Ij is a “1,” and 0 otherwise. The mean and variance
when the current bit is a “1” (μ1 and σ2

1) are then obtained by
adding these contributions to μISI,0 and σ2

ISI,0, with n = 0:

μ1(Ij) = μ0(Ij) + μISI,0 (5)

and

σ2
1(Ij) = σ2

0(Ij) + σ2
ISI,0 (6)

Following [2], the pattern specific BER for Ij = 1, . . . , 2L is
given by

BER(Ij) =
1

4

[
erfc

(
θ − μ0(Ij)√

2σ0(Ij)

)
+ erfc

(
μ1(Ij)− θ√

2σ1(Ij)

)]
,

(7)
where θ is the decision threshold. The overall BER is then given
by (14) from [2]:

BER =
1

2L

2L∑
j=1

BER(Ij). (8)

The threshold, θ, is adjusted to minimize the overall BER.

B. Modification of the Model for Optical Receivers
based on e-APD

We use the asymptotic analytical mean impulse response (9)
as seen in [6], developed by Saleh et al. as the basis of our
model, which include dead-space and are valid for e-APDs [6].
In addition, we use the asymptotic expression

〈Ip(t1)Ip(t2)〉 ≈ c′

c2
〈I(t1)〉〈I(t2)〉 (10)

for variance calculation, given by (41) in [6]. The terms in (9)
and (10) are given by 1/v′ = (1/ve + 1/vh), τe = d/ve, τ

′ =
d/v′, Te = w/ve, Tf = w/v′, d is dead-space, w is avalanche
width, ve and vh are electron and hole drift velocities respec-
tively. c and c′ are constants defined by (23) and (24) in [6],
calculated using

c =
α+ β

2β(αd+ βd+ 1)
(11)

and

c′ =
c2(β/α+ 1)2

1 + 2β/α− (β/α)2
, (12)

where α is the impact ionization coefficient for electrons that
have already travelled a distance of dead-space d, and β is
derived from the so-called scaled Malthusian parameter, solution

〈Ip(t)〉 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

qve

w for 0 ≤ t ≤ τe
cq
w

(
(ve + vh)

(
eβvet − eβd

)
+ ve

c

)
for τe < t ≤ τ ′

cq
w

(
(ve + vh) e

βvet − vhe
βv′t − vee

βd + ve

c

)
for τ ′ < t ≤ Te

cq
w vh

(
eβw − eβv

′t
)

for Te < t ≤ Tf

0 otherwise

(9)
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to the equation

2e−αd − β/α = 1. (13)

This asymptotic result is valid when w � d. Validation of these
formulae for estimating gain and excess noise was recently
performed by Jamil et al., who were able to accurately predict
these characteristics in InAs APDs with avalanche widths as low
as 500 nm [7].

Using an analytical expression for mean and variance as a
function of time allows for reduced computation time, in contrast
to using a Random Path Length (RPL) model to generate the
mean impulse response [8]. As in [2], we consider the past bit
stream as well as the state of the present bit. A crucial difference
is that we are able to determine the required bit stream length,
L, precisely with L defined analytically using

L =

⌈
Tf

T

⌉
, (14)

where the brackets represent the ceiling function. Since L is
known analytically (and depends on w/v′), it is possible to
capture the full contribution to mean and variance from ISI
(previously the maximum L had to be deduced through trial
and error). This also allows for the precise calculation of dark
current components on the current detection bit for an impulse
with duration Tf , using modified forms of (1) and (2);

μdark = φdark

∫ T

0

∫ 0

−Tf

〈Ip(t− τ)〉dτdt (15)

and

σ2
dark = φdark

∫ T

0

∫ T

0

∫ 0

−Tf

× 〈Ip(μ− ξ)Ip(ν − ξ)〉dξdμdν (16)

where φdark is the number of charges caused by dark currents;
it is given by

φdark =
Itunn + Ibulk

q
, (17)

where q is electron charge, Itunn is the tunneling current, and
Ibulk is combined diffusion and generation currents. Ibulk is
given by experimental value of J0A, where J0 is bulk dark
current density and A is device area [9]. Itunn is given by [10]

Itunn =
(2m∗)0.5q3FV A

h2E0.5
g

exp

(
−2πσT (m

∗)0.5E1.5
g

qhF

)
,

(18)
where m∗ is the effective electron mass, F is electric field, V is
voltage,A is device area,h is Planck’s constant,k is Boltzmann’s
constant, Eg is band-gap, and σT is the tunnelling parameter.

After substitution of (15) and (16) into (3) and (4), the pattern
specific and overall BER can be calculated. The integrals are
evaluated using the QUADPACK numerical method [11].

TABLE I
MODEL PARAMETERS FOR INAS E-APDS

Fig. 1. Simulated electron drift velocity of InAs [18] and experimental hole
drift velocity of GaAs [19]. Fittings (lines) to these data are used in our
simulations of optical receivers based on InAs e-APDs.

III. RESULTS

A. Model Parameters for InAs e-APDs

Some of the material-dependent parameter values used
for our room temperature InAs e-APD simulations are sum-
marized in Table I. In the simulations, the Johnson noise
due to the transimpedance amplifier (TIA) was given by
σJ = (

√
BTIAi2n/q)(1/Rb), where in and BTIA are the input

noise current density and bandwidth of a typical TIA at a given
bit rate Rb [2]. For impact ionization, we used the electron ion-
ization coefficient from [4] and assumed that holes do not impact
ionize. For electron drift velocity, due a lack of experimental
reports at electric fields above 10 kV/cm (the relevant fields for
impact ionization in InAs) [20], our fitting to simulated values
from [18], as shown in Fig. 1, was used. Similarly, we used GaAs
hole drift velocity from [19] (also plotted in Fig. 1) for holes in
InAs e-APDs, since room temperature experimental hole mobil-
ities in InAs are similar to those of GaAs (460 and 400 cm2/Vs,
respectively [21]). With these parameters, an example mean
impulse response is calculated and shown in Fig. 2. Overall
dark current is calculated based on experimental bulk dark
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Fig. 2. Calculated mean impulse response for an InAs e-APD with
w = 3.0 µm reverse biased at 18 V. The different stages of the mean impulse
response function are indicated by the dashed lines in the figure.

current [9], tunneling current [17], and avalanche gain (which
can be calculated from impact ionization coefficients [4]). In our
calculations, the ratio of the dead-space to the avalanche width
ranges from 0.016 to 0.037 at the operational gains; hence, the
assumption is valid, which justifies the use of the asymptotic
approximation in (9) and (10) in all of the results reported in
this paper.

Using these parameters and the equations discussed in
Section II, calculations of overall system’s sensitivity for target
BER ranging from 10−12 to 10−3 and 1550 nm wavelength were
performed for InAs e-APDs. The simulation conditions covered
a range of avalanche widths at data rates of 10, 25 and 40 Gbit/s.
The electric field profiles of the e-APDs were assumed to be
constant across the avalanche region, with negligible depletion
into the p and n regions. For a given avalanche width and data
rate, a full set of field-dependent parameters was calculated
for each reverse voltage. The minimum avalanche widths used
exceeded 1 μm to ensure approximations related to impulse
response currents are valid.

B. Effects of Gain, Bandwidth, and Dark Current

For a given e-APD avalanche width, as the reverse voltage
increases, there are changes in gain, bandwidth, and dark current,
all of which contribute to the final BER values. This is illustrated
in Fig. 3, which plots the results from the w = 3.0 μm (optimal
for 10 Gbit/s operation) InAs e-APD as functions of reverse
voltage, for a 10 Gbit/s data rate and 10−12 target BER. As
reverse voltage increases, gain and bandwidth increase, which
together improve the sensitivity. On the other hand, the bulk
dark current increases due to increased gain and/or tunneling
current (depending on the reverse voltage), limiting the bene-
ficial effect of gain on sensitivity somewhat. Eventually, rising
tunneling current causes the sensitivity to degrade. This trend is
consistent with observations from earlier BER simulations for
other avalanche materials [2], [3], although the magnitude of
tunneling current is more pronounced in our results for InAs
e-APDs due to the material’s small, direct bandgap. Indeed, to
avoid significant tunneling current, it is not desirable to use an
InAs e-APD with w < 1 μm.

Fig. 3. Gain, 3 dB bandwidth, dark current, and sensitivity simulation data for
a w = 3.0 µm InAs e-APD operated at 10 Gb/s bit rate and 1× 10−12 target
BER. Its optimal operating voltage (−18 V) is indicated by the dotted line.

Observing Fig. 3, the 3 dB bandwidth does not decrease with
increasing gain in the w = 3.0 μm e-APD thanks to a lack of
hole impact ionization, thus avoiding the usual gain-bandwidth
product limitation in other APDs [22]. This is supported by
results of 3 dB bandwidth versus gain from two other e-APDs
(w = 1.6 and 2.3 μm), as shown in Fig. 4. The gradual increase
in the bandwidth values at low gains is caused by the field
dependence of drift velocities assumed for InAs e-APDs.

C. Sensitivity at Different Avalanche Widths and Bit Rates

Simulated characteristics of sensitivity versus reverse voltage
for different InAs e-APDs (w = 2.5, 3.0, 3.5 and 4.0 μm)
are compared in Fig. 5 for 10 Gb/s data rate and 10−12 target
BER. The optimal avalanche region width for an InAs e-APD
for these conditions can be found at the sensitivity minimum.
As avalanche width increases, the e-APD is able to reach a
higher operating voltage before sensitivity begins to degrade.
This is due to the combined beneficial effects of larger gain and
reduced tunneling current, for a given reverse voltage. At large
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Fig. 4. Bandwidth versus avalanche gain characteristics of three simulated
InAs e-APDs. Unlike other materials, bandwidth does not decrease with gain.

Fig. 5. Sensitivity versus APD reverse bias as function of avalanche width for
10 Gb/s data rate and 1× 10−12 target BER.

avalanche widths, these benefits are however outweighed by the
reduced bandwidth (longer impulse duration) and the increased
intersymbol interference.

As previously mentioned, since in an e-APD gain is no longer
limited by bandwidth, there is no single optimum operating
gain across widths, unlike in InP and InAlAs APDs [2], [3].
This, compounded with the shorter impulse duration, means
that optimum operating widths are much larger than for regular
APDs. This demonstrates how design considerations for high
speed, highly sensitive e-APDs differ from other diodes, and is
a key contribution of this work.

Results of sensitivity versus avalanche width for data rate
of 10, 25, and 40 Gb/s (all at a BER of 10−12) are compared in
Fig. 6. This yields a minimum sensitivity of−30.60,−22.74, and
−19.17 dBm for 10, 25, and 40 Gb/s operation, respectively. The
corresponding optimal avalanche widths are 3.0, 2.3 and 1.5μm.
In general, avalanche width of e-APDs should be maximized
(subject to the bandwidth constraint) to maximize avalanche
gains and avoid significant tunneling current. At higher data
rates, more stringent bandwidth constraint causes smaller opti-
mal avalanche width for e-APDs, in order to achieve the best
possible sensitivity.

Calculations were also performed to yield plots of target
BER versus sensitivity for InAs e-APDs detecting 1550 and
1310 nm wavelength photons, as shown in Fig. 7(a) and (b),
respectively. The results are for data rates of 10, 25 and 40 Gb/s.

Fig. 6. Gain-optimized sensitivity for each simulated avalanche width for a
1× 10−12 target BER.

Fig. 7. Variable target BER versus optimum sensitivity for InAs APD-TIA
combinations for (a) 1550 nm and (b) 1310 nm wavelength operation. The data
rates are 10 (black circles, w = 3 µm), 25 (grey circles, w = 2.3 µm), and
40 Gb/s (open circles, w = 1.5 µm). Other high speed detector systems (other
symbols, using identical color scheme for the different bit-rates), such as InAlAs
APDs [23], [24], Ge/Si APD [25], and SOA-PIN combinations [26]–[28] are
included for comparison.

Relevant reports of optical receivers based on other APD tech-
nologies [23]–[25] or Semiconductor Optical Amplifier (SOA)-
PIN combinations [26]–[28] are included for comparison. For
1550 nm wavelength systems, at 10 and 25 Gb/s data rate, the
InAs e-APDs compare favorably with receivers based on InAlAs
APDs [23], [24]. At 40 Gbps, the performance of InAs eAPDs
is worse than those of SOA-PIN from [26]–[28], except at more
demanding BER. Note that optical receivers based on Ge/Si
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APDs at 25 Gb/s are absent in Fig. 7(a) because their values at
1550 nm wavelength (−16 dBm at 1× 10−12 BER [25]) are out
of range.

Observing Fig. 7(b), for 1310 nm wavelength systems, op-
tical receivers based on Ge/Si APDs generally provide better
sensitivity than InAs e-APDs. It is however emphasized that
these comparisons will evolve depending on the future perfor-
mance of each of these technologies. For InAs e-APDs, reducing
their tunneling current density through engineering of a more
parabolic tunneling barrier shape, and reducing their bulk dark
current density could lead to improved performance for optical
receivers.

To test the effects of various dark current components on
sensitivity values, a separate set of calculations were carried
using Ibulk = 0 (retaining Itunn with σT = 1.16). There was no
significant improvement in sensitivity values for the optimum
avalanche widths and voltages, although the sensitivities at
non-optimum avalanche widths do improve by up to 0.5 dBm
for 25 Gbps bit rates. Further simulations were performed using
Itunn with σT = 1.88, which corresponds to a parabolic tunnel-
ing barrier rather than a triangular barrier when σT = 1.16 [10].
This showed a marked improvement in optimum sensitivities
with the 40 Gbps value becoming −20.6 dBm. It is important
to note, however, that engineering such a barrier would require
a graded doping profile through the avalanche region, which
would negatively impact on the magnitude of avalanche gain,
the effects of which were not modelled in these additional
simulations. There may be a middle ground to be explored which
would lead to improved sensitivity overall. Simulations were
also performed at 50 Gbps for key target BERs of 10−3, 10−9,
and10−12, with resulting optimum sensitivities of−20.6,−17.3,
and −16.6 dBm (w = 1.4 μm) for 1550 nm operation.

IV. CONCLUSION

A model for sensitivity of optical receivers based on e-APDs,
in which only the electrons contribute to impact ionization,
has been presented. The new model was demonstrated through
optical receiver’s sensitivity calculations of room temperature
InAs e-APDs, using current performance parameters of InAs
e-APDs. From the calculation results, the best sensitivity values
for InAs e-APDs are −30.6, −22.7, −19.2, and −16.6 dBm, at
10, 25, 40, and 50 Gb/s data rate, respectively. Although InAs
e-APDs offer improved sensitivity compared to InAlAs APDs
at 10 and 25 Gb/s, they are not as competitive as SOA-PIN
combinations at 40 Gb/s for 1550 nm wavelength systems. For
1310 nm systems, the Ge/Si APDs offer better sensitivity than
InAs e-APDs. Thus InAs e-APDs will need to have lower dark
currents for a more optimized performance in high-speed optical
receivers.
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