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ABSTRACT 
Parametric study of Hypoplasticity Constitutive Model for Granular Media via the 

Discrete Element Method 
 

Yufei Zhou, B.S.M.E 

Marquette University, 2018 

 

Granular media, as a general definition, includes a large class of materials, such as cereal 
grains; pharmaceutical tablets and capsules; geomaterials, such as sand; and the masses of 
rock and ice in planetary rings. Alternatively, a granular material could consist of highly 
fractured rock masses regarded as cracked elastic solids. In all cases, a very important 
property of granular media is their ability to yield, that is, exhibit irreversible deformation 
properties. Because the granular elastic modulus ‘G’ is the key relevant stress parameter, 
there is an interesting and nagging question as to the microscopic origins of the stress scales 
assumed in various empiricisms associated with critical-state soil mechanics and 
Hypoplasticity. This question may reflect a philosophical divide, separating those 
concerned with the relation of constitutive equations to micromechanics, from those whose 
primary concern is correlation of data from laboratory and field tests. 

The goal of this research is to first understand how hypoplastic constitutive equation works 
to account for the granular material behavior. From the original Hypoplastic constitutive 
equation which was introduced by Kolymbas, Lade-Duncan, Mohr-Coulomb and 
Matsuoka-Nakai yield surfaces (which are regarded as the significant approach for yield 
prediction in elastoplasticity theory) are generated. Then, with the Discrete Element 
Method (DEM) true triaxial test results, the parametric study is processed by the developed 
inverse hypoplastic constitutive equation.  

The results show the concept of inverting the hypoplastic constitutive model is capable of 
generating the actual and effective non-dimensional material parameters. Due to the input 
of the improved stress and strain obtained from the true-triaxial test, the improved method 
is shown to be improved from original experimental data. Also, the Hypoplastic method 
performs as effective as the other previous method such as elastoplastic. 
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NOMENCLATURE 

B         second order tensor rewritten from Hypoplastic constitutive equation 

𝐶௜         material constants for specific granular material, where i = 1,2,3,4. 

D          EULER’s stretching (strain rate) tensor 

F          the deformation gradient tensor 

R          orthogonal rotation tensor 

T          stress tensor 

𝑇∗        deviatoric stress tensor 

𝑇̇          stress rate tensor 

𝑇̈          JAUMANN stress tensor 

U          right stretch tensor 

V          left stretch tensor 

W         CAUCHY’s spin tensor 

𝑥௜         position with the spatial (or EULER) coordinates, where i = 1,2,3. 

𝑋௝         position with the material (or LAGRANGE) coordinates, where j = 1,2,3. 

α          Lode angle 

φ         friction angle 
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1 Introduction 

Granular media, as a general definition, includes a large class of materials, such as 

cereal grains; pharmaceutical tablets and capsules; geomaterials, such as sand; and the 

masses of rock and ice in planetary rings. [1] Alternatively, a granular material could 

consist of highly fractured rock masses regarded as cracked elastic solids. [2] And the 

elastic behavior will vanish in a critical state. In all cases, a very important property of 

granular media is their ability to yield. And in the theory of elastoplasticity the condition 

in terms of stress state is called the yield surface. [1]  

The current research on granular mechanics as the phenomenological continuum 

models is mainly concerned with dry granular materials, or else with those completely 

saturated by an interstitial fluid, in which capillary forces and other forms of cohesion are 

largely negligible. Hence, the above restrictions rule out applications to the fine powders, 

colloidal systems, and clayey soils discussed in other works [3,4]. Because of the granular 

elastic modulus ‘G’ is the only relevant stress scale, there is an interesting and nagging 

question as to the microscopic origins of the stress scales assumed in various empiricisms 

associated with critical-state soil mechanics and hypoplasticity (e.g., [4-8]). This question 

may reflect a philosophical divide, separating those concerned with the relation of 

constitutive equations to micromechanics from those whose primary concern is correlation 

of data from laboratory and field tests ([6], p. 13). [1] 

As a mathematical method connecting stress and strain for a specific material, the 

constitutive equation is introduced. It is important to predict the stability of a slope or to 

predict the deformation around an excavation etc. with using the constitutive equation of 

soil. As for soil with continued loading, an elastoplasticity constitutive equation is released 
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to determine the initial elastic deformation whereas the plastic deformation later. But do 

the elastoplasticity constitutive equation is the best or the only way to depict the soil 

behavior? The present work evaluates, through different numerical simulation and 

theoretical analysis, hypoplastic constitutive equation is the better model which avoid the 

shortcoming with the elastoplastical method (the detail will be mentioned later). 

In this thesis, a hypoplastic constitutive equation which aims to describe the 

anelastic phenomena without using extra notions introduced by elastoplasticity is 

introduced to match results of the true-triaxial test simulation. [10] 

The remainder of this thesis is as follows. Chapter1, Chapter2, Chapter3 

1.1 Problem Summary 

Regarding the hypoplasticity, many studies have been performed previously to 

validate its effect on granular mechanics. Kolymbas introduced an incrementally nonlinear 

constitutive equation for soils which was generalized by hypoelasticity in 1977. As the 

prototype of hypoplastic constitutive equation, this model already included the main 

ingredient of hypoplasticity, i.e. incremental nonlinearity by the norm of the strain rate. 

[11] After that various kinds of hypoplastic constitutive equation was proposed with main 

concept, i.e. the constitutive equation was separated to two parts, linear part and nonlinear 

part. The research for this thesis will perform studies on the advanced models from [9] and 

test them to understand the connection between the hypoplasticity and hypoelasticity.  

Another problem is also addressed in this research. As significant approach was 

achieved by Dr. Fleishman, the yield criterion has proven itself to be a main method for 

predicting the continuum-based failure of non-cohesive granular materials (soils in this 

thesis) with elastoplasticity theory. There are several yield criterions i.e. Lade-Duncan, 
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Matsuoka-Nakai, Mohr-Coulomb, Drucker-Prager etc. From them, the Lade-Duncan yield 

surface has been validated as the best one in recent decades by hundreds of numerical 

simulations of true-triaxial tests performed using the Discrete Element Method (DEM). [10] 

Since its great job in elastoplasticity, it will be fun to get the Lade-Duncan yield surface in 

hypoplasticity with the data from the numerical simulations of true-triaxial tests. At the 

same time, other kinds of yield surfaces i.e. Matsuoka-Nakai, Mohr-Coulomb, Drucker-

Prager etc. will be generated.  

 

1.2 Literature Review 

1.2.1 Constitutive Equation 

As a great mathematical relation connecting stress and strain for a particular 

material, a constitutive equation helps to understand the behavior of this material. The 

stress and strain are tensorial quantities here. There are also some additional quantities, the 

material constants such as the YOUNG’s modulus in a constitutive model. The value of 

the material constants depends on the specific material, i.e. they make possible to 

distinguish e.g. between an elastic rubber and an elastic steel. [9] Here, a question is raised, 

i.e. ‘what for is a constitutive equation useful?’. The soil’s constitutive equation is needed 

to predict the stability of a slope or a cut, or to predict the loads applied on the lining of a 

basement or a tunnel. Previously, we use the balance laws of mechanics (balance of mass 

and momentum) to answer these aforementioned questions. But it is insufficient to solve 

the problem with the balance laws. In order to collect more additional needed information, 

the constitutive equation become extremely necessary. 

1.2.2 Early theory to describe the behavior of granular media (e.g. soil)  
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The property of elasticity is given if the stress (or strain) depends on the strain (or 

stress). As the definition of the path-independence, it means that the strain (or stress) 

history is immaterial and only the actual value of stress (or strain). In other word, the 

previous history can be conceived as a strain- (or stress-) path. Another version is that 

elasticity means that the stress is a function of strain (or the strain is a function of stress). 

And the elastic materials do not show the irreversible deformation after unloading. 

However, as we all know that if we walk on a sandy beach we leave trace behind. And in 

some materials, such as steel, plastic deformations are only occurred if the stress exceeds 

a particular limit. [9] Hence it is inappropriate to describe the behavior of soil only with 

the theory of elasticity. A cycle of loading and unloading leaves always an irreversible or 

plastic deformation behind (figure1-1). 

 
 

 
Figure 1-1 loading, unloading and reloading 
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Then, a question was raised that ‘how to describe anelastic deformations?’. It is 

integrant to provide different stiffnesses for loading and unloading in a constitutive 

equation. Here, a widespread mathematical framework for aforementioned irreversible 

deformations is introduced, so-called elastoplasticity. According to elastoplasticity, a 

material behaves in the initial stage of deformation elastically, while plastic deformations 

set on later in process of a continued loading. [9] And the beginning of plastic deformation 

is identified by a surface in stress space, so-called the yield surface. The direction of plastic 

deformations can be obtained with the plastic potential, whereas demands that a stress point 

carries behind the yield surface, while loading. Therefore, lots of additional notions (mainly 

of geometric nature) is requested to characterize the elastoplasticity. Aforementioned 

shortcoming makes that various elastoplasticity constitutive equations are totally hardly 

tractable, not easy to be performed in FEM-code and highly sensitive to parameters 

controlling the various involved numerical algorithms. [9]  

1.2.3 Hypoplasticity 

Aims to determine the above anelastic phenomena without using the additional 

notions, hypoplasticity is introduced. The ostensible difference between hypoplasticity and 

elastoplasticity is that anelastic deformations may start the very beginning of the loading 

process in hypoplasticity. It does not a priori distinguish between elastic and plastic 

deformation. It means that the distinction between loading and unloading is automatically 

accomplished by the equation itself.  

Before the hypoplasticity, some historical remarks should be mentioned. In his 

article in 1952, Truesdell drew attention to a concept for constitutive equations by 

expressing the stress rate as a function of strain rate as follow: (equation 1) where 𝑇̈ is the 
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Jaumann stress rate; L is an isotropic tensorial function of its arguments and is linear in D. 

This concept was then detailed in a voluminous paper entitled ‘Hypoelasticity’ in 1955. 

[11] Packed with numerous graphical representations produced at graphic art division of 

the US Navy, which was rather unusual for such purely theoretical treatises. In this sense, 

Truesdell’s concept was a pioneer work and the great work in using computer in the 

research of constitutive equations. [11] And later the physical relevance of hypoelasticity, 

specially its relation to plasticity theory, was pursued by Thomas (1955) and Green (1956a, 

1956b). They found that the behavior upon reversal of strain rate cannot be described with 

a single hypoelastic equation. Then, Green introduced a rate of stress work as the loading 

criterion to solve the previous problem with remaining the constitutive equation but adding 

different coefficients (used for loading and unloading). In the next two decades later, the 

theory of hypoplasticity experienced a renaissance in modelling the behavior of pressure 

dependent materials. Here, some progress in applying hypoplasticity to metallic materials 

notably made by Tokkuoka (1971,1977,1982), was supposed to be the beacon, in particular 

the ideas of failure. And some theoretical foundation of hypoplasticity was made by 

Krawietz (1979). And the model included main ingredient of hypoplasticiy was proposed 

by Kolymbas in 1977. [Kolymbas 1978]  

In this research, a formal definition of hypoplasticity provided by Wu and 

Kolymbas 1990 is used. The hypoplastic constitutive equation shows the stress 

increasement as a function of a given strain increasement and of the actual stress and void 

ratio. It defines that the hypoplastic constitutive model by assuming that exists a tensorial 

function H. Function H consist with two variables, stretching (strain rate) and Jaumann 

stress rate. (equation 2) Elastoplastic and hypoplastic equations are both of this general 
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form. There are various hypoplastic constitutive equations developed by different pioneers, 

e.g. Kolymbas, Gudehus, Bauer, Von Wolffersdorff and Wu. (Kolymbas1995, Gudehus 

1996, Bauer1996, Von Wolffersdorff1996, Wu1999b) These models are all on account of 

the concept above (separate linear and nonlinear part) and will be mentioned in detail later.  

1.2.4 Summary 

The performed literature review has associated with sketching the historical 

remarks and means for achieving the goals of this research. Researchers for decades have 

been exploring hypoplastic constitutive equation to mechanics investigation. In this 

research, the hypoplastic constitutive equations matched with the true-triaxial test 

simulation DEM [10] will be explored, further, the parameters work of constitutive model 

will be discussed. These parameters will be the critical factor in both stress path and yield 

surface. 

1.3 Objectives and Methodology 

From extensive literature review, the goal of this research is to first understand how 

hypoplastic constitutive equation works to account for the granular materials. With the 

concept introduced by Kolymbas [9], the simple model should be known well. In brief, the 

concept which the constitutive equation was separated by two parts (linear part and 

nonlinear part) is easier to be implemented into numerical algorithms and is also easier to 

be grasped. [9] From this understanding, the yield surface which was already proved to be 

the significant approach in elastoplastic theory can be investigated with hypoplastic 

constitutive equation. Simulating a yield surface on pi_plane (pressure-dependent, which 

will be detailed description in the later section) required to match the results did in the true 
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triaxial DEM simulation [10]. This challenge has been addressed by making use of a 

simulation framework for hypoplasticity expatiated later in this thesis. 

The present study has the following objectives: 

1. Learn the fundamentals of hypoplasticity method. 

2. Utilizing hypoplasticity constitutive equation to simulate the normal constitutive 

model. 

3. Establish the framework within the simulation of hypoplasticity constitutive 

model and match the Lade-Duncan, Mohr-Coulomb, Matsuoka-Nakai yield surface. 

4. Get the different parametric results from the fitted hypoplastic constitutive 

equation. 

5. Explore the physical significance of the different parametric in the same 

hypoplastic framework.  

6. Use response envelope method to simulate the several yield criterions as the most 

hypoplasticity research paper procedure. 

7. Research and implement improvements to the optimal hypoplasticity constitutive 

model. 

From aforementioned literature research, this hypoplastic theory has been verified 

that it can successfully describe the granular media. However, there are several different 

kinds of hypoplastic constitutive equations in the past almost three decades and it is really 

tough to make the decision (which one is the best). Every equation has the same concept 

we already mentioned above but combined lots of personal decisions. Therefore, the 
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hypoplastic constitutive equation will be investigate based on Kolymbas [9] and combined 

with the experimental data from a true-triaxial test [10] in this thesis. After matching the 

DEM simulation result made by Fleischman, the investigation about parametric work will 

be discussed in the end of this thesis. 
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2 THEORETICAL BACKGROUND 

This chapter provides an overview of theoretical topics relate to this research. To 

accomplish the objectives of this study, some fundamentals of continuum mechanics 

should be mentioned. And then the details of hypoplastic constitutive equation are 

presented. In this chapter, an exhaustive process of formula derivation about hypoplastic 

constitutive equation will be made. Also, the theoretical knowledge with the yield surface 

in elastoplasticity which will be digested with the hypoplasticity theory used in this 

research is the case to be emphasized as well. 

2.1 Fundamentals of Continuum Mechanics 

Here we simply present the deformation, stretching, Cauchy stress, changing in 

observer and time rates in continuum mechanics which are just the tip of the iceberg but 

will be used later in this research. 

Let the motion of a granular material point be referred to the fixed rectangular 

Cartesian coordinates. And the material points with the material (or LAGRANGE) 

coordinates 𝑋௜ (i = 1,2,3) move into a position with the spatial (or EULER) coordinates 𝑥௝ 

(j = 1,2,3). [9] And the motion and the deformation gradient are defined as equation 2.1 

and equation 2.2 separately, 

x = x (X, t) --------------------------------------------------------------------------(2-1) 
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Figure 2-1 x is the position vector at time t for the particle P, and X is the position at time 

𝑡଴. 
 

F = 𝐹௜௝ = 𝑥௜௝ = 
డ௫೔

డ௑ೕ
 = 

డ௫

డ௑
 -------------------------------------------------------------(2-2) 

where F is the deformation gradient and can be decomposed into  

F = RU = VR --------------------------------------------------------------------(2-3) 

Here, the rotation R is a properly orthogonal tensor (it means that RT = R-1 and 

det(R) = 1). U and V are the right and left stretch tensors, separately.  

EULER’s stretching tensor D, 

D = 𝐷௜௝ = 
ଵ

ଶ
(𝑣௜,௝ + 𝑣௝,௜) = 

ଵ

ଶ
(𝑥̇௜,௝ + 𝑥̇௝,௜) = 𝑥̇(௜௝) -------------------------------------(2-4) 

CAUCHY’s spin tensor is obtained as the antimetric part of the velocity gradient 

as follow, 

W = 𝑊௜௝ = 
ଵ

ଶ
(𝑣௜,௝  −  𝑣௝,௜) = 

ଵ

ଶ
(𝑥̇௜,௝  −  𝑥̇௝,௜) = 𝑥̇[௜௝] -------------------------------------(2-5) 

And the other two static and kinematic quantities are also used in this paper, the 

CAUCHY stress tensor and the logarithmic strain tensor. Considering there is a particular 

point of the cutting surface with the unit normal n and the stress vector t. The relationship 

above can be account for the equation 2-6, i.e. both vectors are connected by the linear 
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transformation T, so-called CAUCHY stress tensor. CAUCHY stress tensor can be 

decomposed in a deviatoric stress tensor (𝑇∗) and a hydrostatic part (
ଵ

ଷ
𝑡𝑟𝑇1) as equation 2-

7. [9] The logarithmic tensor is defined as equation 2.8, where V is the left stretch tensor 

as aforementioned and follows from the polar decomposition of the deformation gradient. 

As a useful strain measure in one dimension and also in two and three dimensions when 

the principal axes of strain are fixed, the logarithmic tensor can be considered as the time 

rate of the strain measure in this thesis (special case i.e. W=0, D is the time rate of 

logarithmic strain 𝜀௜௝). [12]  

t = Tn --------------------------------------------------------------------------(2-6) 

T = 𝑇∗ + 
ଵ

ଷ
(𝑡𝑟𝑇)1 ------------------------------------------------------------(2-7) 

E = lnV ------------------------------------------------------------------------(2-8) 

At this point, a material behavior should be mentioned. If the stress is transformed 

according to 𝑇∗  =  𝑄𝑇𝑄், where Q is regarded as the rotation, this material behavior can 

be called independent of the observer (all tenors transformed according this relationship 

are so-called independent of the observer). Here, introducing the JAUMANN stress rate as 

follow: 

𝑇̈  =  𝑇̇  + TW − WT ----------------------------------------------------------(2-9) 

where 𝑇̈ is the co-rotational or ZAREMBA (often attributed to JAUMANN) stress 

rate and W denotes the spin tensor. 𝑇̈ is the stress change that arise exclusively from the 

deformation of the considered material, whereas any other apparent parts are removed, 

because of rotations of the observer or of the reference frame. And the principle of material 
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frame-indifference, so-called objectivity, requires that the stress T in a constitutive equation 

should be determined through the equivalent motion above, i.e. 𝑇∗  =  𝑄𝑇𝑄் . In brief, 

derivation of vectorial and tensorial quantities with respect to time imposes problems if 

they refer to a material (or so-called ‘concomitant’) vector basis: the only change of the 

reference frame gives rise to a non-vanishing time derivative of the considered quantity. 

(p.26 in [9]) Therefore, we introduce several methods to describe the objective time rates, 

i.e. time rates that are free of apparent terms [13]. In this paper, we select JAUMANN 

stress rate as the fundamental method to describe the objective time rates which will be 

expended in later sections. 

 

JAUMANN 𝑇̈ ∶=  𝑇̇  + TW − WT 

OLDROYD ℒT ∶=  𝑇̇  −  T𝐿்  − LT 

Convected stress rate 𝑇∆ ∶=  𝑇̇  + TL + 𝐿்T 

GREEN-MCINNIS-NAGHDI 𝑇∎ ∶=  𝑇̇  + TΩ − ΩT 

 

2.2 Hypoplasticity Background 

2.2.1 Rate Equation 

A constitutive equation is aim at illustrating stress due to a strain (or deformation) 

history starting from some specific reference state. (p33 in [9]) In order to represent history 

(or path) dependence in physics the general method is introduced, which is to use non-

integrable differential forms (PFAFFEAN forms). It is equation 2-10, representing y by the 

differential equation and connecting increments 𝑑𝑥ଵ, 𝑑𝑥ଶ,…with dy.  
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dy =  𝑎ଵ𝑑𝑥ଵ + 𝑎ଶ𝑑𝑥ଶ+. . . 𝑎௡𝑑𝑥௡ ------------------------------------------------(2-10) 

It can also be rewritten as dy = f(𝑑𝑥௜) (it is not integrable), as the general way to 

procced soil mechanics. When it represents the stress increment as a non-integrable 

function of the strain increment, here stress “σ” and strain “ε” are substituted into the 

equation above, then, as equation 2-11: 

dσ = f(dε) ------------------------------------------------(2-11) 

𝜎̇ =
ௗఙ

ௗ௧
 --------------------------------------------(2-12) 

𝜀̇ =
ௗఌ

ௗ௧
 --------------------------------------------(2-13) 

With dividing all increment by dt, equation 2-12 and 2-13 show the time rates. Then, 

substituting “𝜎̇” and “𝜀̇” into equation 2-11, 𝜎̇ = f(𝜀̇) is obtained, so-called rate equation. 

Thus, with the tensor notation, previous rate equation will be obtained as 𝑇̈ = 𝑓(𝐷), where 

𝑇̈ denotes the JAUMANN stress rate which is defined as equation 2-9. 

As aforementioned, a formal definition of hypoplasticity has been provided by Wu 

and Kolymbas [1990]. Defining that the hypoplastic constitutive model is assumed by the 

tensorial function H (equation 2-14),  

𝑇̈  =  𝐻(𝑇, 𝐷) ----------------------------------------------------------(2-14) 

where T denotes the Cauchy stress tensor and D denotes the stretching (strain rate). 

And we assume that the function H (2-14) is continuously differentiable for all D except at 

D = 0.  
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Herein, the point should be noted that function H is a rate-equation. Generally, we 

define the stress as the function of strain, but it also means that the stress does not depend 

on the deformation history which is so-called elastic behavior. [9] Due to soil’s behavior 

(aforementioned in chapter 1), plastic property can’t be disregarded in the constitutive 

equation for soil. The general method to introduce history dependence in physics is to 

utilize the non-integrable differential forms. [9]  

Therefore, the constitutive equation is introduced in this version (equation 2-15), 

where 𝑇̇ = T̈, note that, should be the special case in this paper (refer to equation 2-9, W = 

0), and D denotes the time rate of logarithmic strain as aforementioned. And equation 2-15 

can be expanded as equation 2-17, where 𝜑௜ are scalar function of invariants and joint 

invariants of T and D. (p.38 in [9])  

𝑇̇  =  ℎ(𝑇, 𝐷) -----------------------------------------------------------(2-15) 

2.2.2 Restriction on the Constitutive Equation 

Here, it should be emphasized that T and D should be homogeneous (in order to 

describe proportional stress paths in case of proportional strain paths and describe the rate-

independent material respectively), here, λ is a scalar quantity which is greater than zero.  

ℎ(𝜆𝑇, 𝐷)  =  𝜆௡ℎ(𝑇, 𝐷) ------------------------------------------------(2-16) 

Since the equation 2-15 is too abstract to represent a specific constitutive model, 

some restrictions are necessary to be imposed on the function h in equation 2-15. Equation 

2-17 is introduced as the general representation theorem. [9] 
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h(T, D) = 𝜑ଵ 1 + 𝜑ଶ 𝑇 + 𝜑ଷ𝐷 + 𝜑ସ𝑇ଶ + 𝜑ହ𝐷ଶ + 𝜑଺(𝑇𝐷 + 𝐷𝑇) + 𝜑଻(𝑇𝐷ଶ + 𝐷ଶ𝑇) +

𝜑଼(𝑇ଶ𝐷 + 𝐷𝑇ଶ) + 𝜑ଽ(𝑇ଶ𝐷ଶ + 𝐷ଶ𝑇ଶ) --------------(2-17) 

where 𝜑௜ are scalar functions of invariants and joint invariants of T and D. 

Otherwise, hypoplasticity linear in both T and D. Equation 2-18 is one case of 

various hypoplasticity constitutive equation from [11] 

𝑇̈  = 𝑇̇ =  𝐶ଵ(𝑇𝐷 + 𝐷𝑇) + 𝐶ଶ
௧௥(்஽)

௧௥்
𝑇 + 𝐶ଷ

்య

௧௥்మ
√𝑡𝑟𝐷ଶ + 𝐶ସ

(்∗)మ

௧௥்
√𝑡𝑟𝐷ଶ ------------(2-18) 

2.3 Yield Surface 

From previous literature review, the yield surface was known as a significant 

method to predict macro-scale failure. And Drucker-Prager, Mohr-Coulomb, Matsuoka-

Nakai and Lade-Duncan yield surfaces played the great roles in the investigating 

mechanism of granular materials. And it was verified that Lade-Duncan yield surface has 

the best performance in all four yield surfaces aforementioned by empirically experiment. 

Figure 2-2(b) shows the intersection of all four yield surfaces with the plane (also called π-

plane) of constant hydrostatic pressure p. All four yield surfaces projected on the π-plane 

are calibrated to match in pure compression as illustrated in Figure 2-2(a) and (b).  
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Figure 2-2 (a)(b) (a). Yield surface viewed as cones in principal stress space and (b). 
intersection of Mohr-Coulomb, Drucker-Prager, Matsuoka-Nakai and Lade-Duncan yield 

surfaces with the π-plane. 
 
 

Mohr-Coulomb yield criterion is the oldest yield criteria for particulate materials in 

general, and for geomaterials in particular. [10] And it can be characterized in terms of 

three main items (p, s and α), which are hydrostatic pressure, the scalar magnitude of the 

deviatoric stress and the lode angle respectively. As a simple cycle projected on the π-plane, 

Drucker-Prager yield surface is the most imprecise one, which is the pressure dependence 

only (compared with Mohr-Coulomb yield criterion, it is no lode angle dependence), as 

showed in Figure 2-2(a) and (b).   

For non-cohesive materials (or granular materials), the Matsuoka-Nakai yield 

surface [14] is characterized in principal stress space by surface 𝐼ଵ𝐼ଶ/𝐼ଷ = 𝐶ெே, where the 

𝐼ଵ,  𝐼ଶ and 𝐼ଷ are the principal stress invariants (invariants are given in terms of the principal 

stresses by 𝐼ଵ = 𝜎ଵ + 𝜎ଶ + 𝜎ଷ ,  𝐼ଶ = 𝜎ଵ𝜎ଶ + 𝜎ଶ𝜎ଷ + 𝜎ଷ𝜎ଵ  and 𝐼ଷ = 𝜎ଵ𝜎ଶ𝜎ଷ  ). Lade-

Duncan yield surface [15] is defined with 𝐶௅஽, which is given by 𝐼ଵ
ଷ/𝐼ଷ = 𝐶௅஽. Compared 

with the material strength parameter of Matsuoka-Nakai yield criterion, Lade-Duncan’s 

parameter has the same denominator, and the similar combination of numerator (as 𝐼௜𝐼௝). 

Then, the parameter which generalized the Drucker-Prager yield surface is characterized 

in principal stress space by surface 𝐼ଵ
ଶ/𝐼ଶ = 𝐶஽௉. [10]  
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3 EXPERIMENTAL SET UP 

This chapter introduce the hypoplastic constitutive model for granular materials. 

Based on the original hypoplastic constitutive equation (proposed by D. Kolymbas 

aforementioned in previous chapter), the improved model is developed to match four yield 

criterions (Drucker-Prager, Mohr-Coulomb, Matsuoka-Nakai and Lade-Duncan) which 

were generated by elasto-plastic method.  

3.1 Yield Surface in Elasto-plasticity 

3.1.1 Material Strength Parameters 

As simply aforementioned in chapter 1.2.3, the elasto-plastic method has been a 

good way to predict the behavior of granular material with the similar constitutive model 

(i.e. decomposition of strain into elastic and plastic parts, but in hypoplastic decomposition 

of stress rate into linear and non-linear parts) before hypoplastic theory was proposed. It is 

not necessary to say which method is the best, but to take the advantage from each method.  

Through the numerical elasto-plastic continuum-based methods, all four yield 

surfaces are projected on the SMP i.e. spatially mobilized plane [14]. The Mohr-Coulomb 

failure state is defined by the “Coulomb friction” criterion which can be simply 

characterized by equation3.1, 

max ൬
หఙ೔ିఙೕห

ଶඥఙ೔ఙೕ
൰ = 𝜇௠௔௖௥௢ , 𝑖, 𝑗 = 1,2,3 -----------------------(3-1) 

𝜇௠௔௖௥௢ = ቀ
ఙ೟

ఙ೙
ቁ

௠௔௫
-------------------------(3-2) 
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Where μ  is the coefficient of (Coulomb) friction corresponding to the ratio of 

tangential to normal stress on any plane. And this marcro-scale coefficient μ is obtained by 

𝜇 = tan 𝛷, where Φ is the material friction angle. In contrast to the Mohr-Coulomb yield 

surface, the Drucker-Prager yield criterion which is pressure dependence only can be 

characterized in principal stress space by the surface 𝑠/𝑝 = 𝑘 , where s is the scalar 

magnitude of the deviatoric stress tensor, p is the hydrostatic pressure, and k is a material 

strength parameter. And in this paper, k can be obtained in term of equation 3-3. 

𝑘 = ට
ଶ

ଷ
∗

଺ ୱ୧୬ ః

ଷିୱ୧୬
 ------------------------(3-3) 

And as already mentioned in previous chapters, Matsuoka-Nakai yield criterion and 

Lade-Duncan yield criterion are characterized in principle stress space by the surface 

𝐼ଵ𝐼ଶ/𝐼ଷ = 𝐶ெே  and by the surface 𝐼ଵ
ଷ/𝐼ଷ = 𝐶௅஽ , respectively, where 𝐼ଵ, 𝐼ଶ and 𝐼ଷare the 

principal (scalar) stress invariants. For the objective of comparison, parameter of Drucker-

Prager yield criterion can be rewritten as 𝐼ଵ
ଶ/𝐼ଶ = 𝐶஽௉, where 𝐶஽௉ is a material strength 

parameter specific to this form of the model. [10] Table 3-1 shows all four parameters 

which will be used to characterize the yield surface. Here, these four parameters should not 

be confused with the hypoplastic parameter 𝐶௜ , 𝑖 = 1,2,3,4, even though the notation of 

these parameter are all with capital ‘C’.   

 
 

Table 3-1. Material strength parameters for Mohr-Coulomb, Drucker-Prager, Matsuoka-
Nakai, and Lade-Duncan criteria. 
 

𝐶ெ஼ 𝐶஽௉ 𝐶ெே 𝐶௅஽ 
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μ 𝐼ଵ
ଶ

𝐼ଶ
 

𝐼ଵ𝐼ଶ

𝐼ଷ
 𝐼ଵ

ଷ

𝐼ଷ
 

 
3.1.2 Calibration 

With all four material strength parameters, four yield surfaces can be generated. 

Nevertheless, these four criterions are not useful without calibration i.e. adapting together 

with several fixed points or specific points on the projected Spatially Mobilized Plane. Two 

specific positions which are pure compression and pure extension should be emphasized. 

And some shape factors are necessary to be introduced here, i.e. α, b and λ, where λ can be 

characterized through equation 3-4, α is the Lode Angle and b can be obtained by the 

equation in term of λ (equation 3-5). 

λ =
௦మ

௦య
 --------------------------(3-4) 

b =
ଵାଶ஛

ଶା஛
 ------------------(3-5) 

where s is the deviatoric stresses and these stresses are ordered from smallest to 

largest such as 𝑠ଵ ≤ 𝑠ଶ ≤ 𝑠ଷ ; α = tanିଵ[(1 + 2𝜆)/√3] by −1/2 ≤ λ ≤ 1  and 0 ≤ α ≤

60௢, as defined in [16] and the intermediate stress ratio b = (𝑠ଶ − 𝑠ଵ)/(𝑠ଷ − 𝑠ଵ) = (𝜎ଶ −

𝜎ଵ)/(𝜎ଷ − 𝜎ଵ) where 0 ≤ b ≤ 1 characterized by equation 3.5, (where 𝜎ଵ, 𝜎ଶ and 𝜎ଷ must 

all be positive in a structurally-stable non-cohesive particulate or granular material), as 

defined in [17].  

It exists two significant limit positions or loading states, one is the pure or simple 

compression which is corresponded with the minimal values of three parameters i.e. λ =

−1/2, α = 0 and b = 0, the other is the pure or simple extension with the maximal values 
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of three metrics, λ = 1, α = 60௢ and b = 1. Also, limit positions result the corresponding 

deviatoric stresses, as 𝑠ଵ = 𝑠ଶ = −𝑠ଷ/2  where 𝑠ଵ = 𝑠ଶ < 0 < 𝑠ଷ  during the pure 

compression. And under the pure extension condition, 𝑠ଵ < 0 < 𝑠ଶ = 𝑠ଷ and 𝑠ଶ = 𝑠ଷ =

−𝑠ଵ/2.  

 
 
Table 3-2. Specific Lode Angle correspond with the limit condition. 

α 0 16௢ 30௢ 44௢ 60௢ 

Condition 

Description  

Pure 

Compression 

   Pure 

Extension 

 
 

Here, all four yield criterions should be matched at the point i.e. pure compression 

in other words: α = 0. And all yield surfaces must be independent of the sign (±) of the 

Lode angle α, and posses 120௢ rotation symmetry on the π-plane as already showed in 

Figure 2-2b.  

 
 

 
Figure 3-1. Calibrated four yield surfaces through Elasto-plastic Method 
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Therefore, in order to explore how the Hypoplasticity can work with the yield 

criterion, all these four yield criterions which calibrated as figure 3-1 should be generated 

to the yield surfaces through the hypoplastic method.  

3.2 Hypoplastic Model Description 

The hypoplastic constitutive model is developed based on the original concept 

model equation 2-10 which is generated to the more detailed version equation 2-14 

aforementioned in 2.2.2. And it is capable of capturing some salient features of granular 

materials, e.g. nonlinearity, failure and dilatancy. As already detailed description in section 

2.2.2, in analogy to two main variables in this paper stress (σ) and strain (ε), it can be 

assumed that the constitutive equation 2-14 can be decomposed into these two variables 

and representing the linear and non-linear part as equation 3-6, 

𝜎̈ = 𝐿(𝜎, 𝜀̇) + 𝑁(𝜎, 𝜀̇) ---------------(3-6) 

Where term of L is linear in 𝜀̇ and term of N is non-linear in 𝜀̇. Concrete expressions 

for 𝐿(𝜎, 𝜀̇) and 𝑁(𝜎) can be obtained by invoking the representation theorem for isotropic 

tensorial functions. [11] Therefore, the tensor notation T and D is substituted in equation 

3-6 as  

𝑇̈  =  𝐿𝐷 + 𝑁|𝐷| ----------------(3-7) 

Here, in terms of linear part, “L” is regarded as the linear operator applied to “D”. 

And it is to summarize non-linear terms by 𝑁|𝐷| with |𝐷| = √𝑡𝑟𝐷ଶ. Then, in order to not 

be confused with the notation of stress or strain, here, some aforementioned notations will 
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be recalled. 𝑇̈  denotes the JAUMANN stress rate which is defined as equation 2-9, T 

denotes the Cauchy stress tensor, D denotes the stretching (strain rate). [9]  

Another important factor is that, strictly speaking, D is not the time rate of any 

strain measure and it is the time rate of logarithmic strain tensor. There is the particular 

process of proof in Anne Hoger’s dissertation 1986. The result of proof i.e. ln(V)∗ = D 

(where V is the left stretch tensors and D) is used directly in this paper (in other words, the 

corotational and JAUMANN derivatives of ln(V), and establish conditions under which 

these logarithmic strain rates are equal to the stretching tensor). [12]  

Thus, the linear operator should be the fourth order tensor and 𝑇̈, D and N are 

second order tensors. It seems much more obvious with the tensorial notation i.e. 𝑇̈௜௝  =

 𝐿௜௝௞௟𝐷௞௟ + 𝑁௜௝|𝐷|. Then, the constitutive equation can be recast in the form by virtue of 

Euler’s theorem for homogeneous functions, 

𝑇̈  =  𝐻𝐷 -------------(3-8) 

where 

H: = L + N ⊗ 𝐷଴---------(3-9) 

In which 𝐷଴  is the normalized stretching and 𝐷଴: =
஽

|஽|
 and the symbol “ ⊗ ” 

denotes an outer product in matrix multiplication (or tensor multiplication). It is worth 

noting that the forth order tensor L is, in analogy to the elastic stiffness matrix. And the 

forth order tensor H represents the tangential stiffness matrix. It shows that tangential 

stiffness is not only stress dependence but also standing for the direction of strain rate. And 

there is not necessary to distinguish between loading and unloading in hypoplasticity due 

to the non-linear part is always active for both loading and unloading. [11]  



24 
 

3.3 Hypoplastic Constitutive Model 

3.3.1 General Model 

Then, in this section, a similar constitutive equation (equation 3-10) with the same 

components is introduced, which was obtained in Wu’s dissertation 1992. The reason for 

preferring the equation 3-10 is that it is quite simple (comparing with equation 2-14) and 

it is as satisfactory as equation 2-14. (And some further exploration with equation 2-14 will 

be mentioned in later chapter 4) Thus, 𝑇∗ denotes the deviatoric stress (equation 3-10) and 

𝐶௜ where 𝑖 = 1,2,3,4 are the material constants (will be discussed in chapter 4) in equation 

3-7. 

𝑇̈ =  𝐶ଵ(𝑡𝑟𝑇)𝐷 + 𝐶ଶ
௧௥(்஽)

௧௥்
𝑇 + 𝐶ଷ

்మ

௧௥்
√𝑡𝑟𝐷ଶ + 𝐶ସ

(்∗)మ

௧௥்
√𝑡𝑟𝐷ଶ ----------------(3-10) 

𝑇∗ = T - 
ଵ

ଷ
(𝑡𝑟𝑇)1 ----------------(3-11) 

Due to the stress rate 𝑇̇ which already mentioned in previous chapter 2.2.1, the 

stress path can be obtained through equation 3-12. It should be noted that the JAUMANN 

stress 𝑇̈ is equivalent to the stress rate 𝑇̇ under circumstances (due to rotations of observer 

or of the reference frame, the rotation tensor W parts are removed).  

𝑇௜ାଵ = 𝑇௜ + 𝑇̇௜ ∗ 𝑡, i = [0, ∞] ----------------(3-12) 

3.3.2 Limit States of Hypoplasticity   

There is a quote from W. WU and D. KOLYMBAS, “we have to bother about the 

definition for a phenomenon that is nearly as soil mechanics itself, since failure is defined 



25 
 

in the context of the constitutive equation in concern”. As one of the most important 

property of the granular materials, the ability to yield (or flow) should be emphasized here. 

The ability to yield, it is to undergo large deformations without stress change, as 

soon as the stresses and the void ratio obtain their critical values. And this sort of flow 

should be regarded as ‘plastic’ flow and distinguished from the flow of fluids. [9]  

When a material element is said to be at the limit state (or failure), for the given 

stress σ, there exists a strain rate 𝜀̇ fulfil the equation as follow, 

𝜎̈  =  𝐻(𝜎, 𝜀̇) = 0 ---------------- (3-13) 

With the tensorial notation, equation can be recast as, 

𝑇̈ = h(T, D) = 0 -----------------(3-14) 

Here, equation 3-13 is the yield function which is also contained in a hypoplastic 

formulation 𝑇̈ = h(T, D), i.e. the yield function f(T) can be obtained from the constitutive 

relationship. Therefore, combined with yield function, the equation 3-7 can be rewritten as 

𝑇̈ = L(T)[𝐷] + 𝑁(𝑇)|𝐷| = 𝐿(𝑇)[𝐷 + 𝐵|𝐷|]-----------(3-15) 

Where 𝐷଴: =
஽

|஽|
 is defined as 

஽

|஽|
= −B. Here, if 𝑇̈ = 0, it occurs 𝐷 + 𝐵|𝐷| = 0, 

where L(T) is a matrix operator applied to its tensorial argument (two factors part in 

equation 3-15).  

Consequently, the function f(T) reads 

f(T) = tr𝐵ଶ − 1 = 0 ------------------------------(3-16) 

As the definition of B, the constitutive equation 3-10 can be recast as 
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B =  𝐿ିଵ𝑁 =
஼య்మ

஼భ(௧௥்)మ
+

஼ర்∗మ

஼భ(௧௥்)మ
− ൬

஼మ஼య

஼భ

௧௥(்య)

(௧௥்)మ
+

஼మ஼ర

஼భ

௧௥(்்∗మ
)

(௧௥்)మ
൰ ×

்

஼భ(௧௥்)మା஼మ௧௥(்మ)
 -------(3-

17) 

Because of homogeneity of B in T, the surface f(T) = tr𝐵ଶ − 1 = 0 is a cone with 

apex at the origin T = 0 [9], which is in analogy to elastoplastic yield surface [10].  

3.3.3 Specific Model  

From previous chapter, the hypoplastic model and the limit states are introduced. 

And the parameters 𝐶௜ , 𝑖 = 1,2,3,4, are the specific material constants. In this chapter, some 

specific material coefficients are introduced to validate the effect of the hypoplastic 

constitutive model.   

Table 3-3. Parameters of material constants for specific granular material. [9] 

𝐶ଵ 𝐶ଶ 𝐶ଷ 𝐶ସ 

-106.5 -801.5 -797.1 1077.7 

 

With the material coefficient (showed in Table 3-3) for one specific granular 

material provided by D, Kolymbas 1999, most of general material mechanism (i.e. stress 

history.) is determined through aforementioned hypoplastic constitutive model, e.g. with 

the initial condition such as initial stress state equation 3-18 and constant D equation 3-19, 

stress path can be determined (showed in figure 3-2). 

T = ൭
150 0 0

0 100 0
0 0 100

൱ (𝑘𝑁/𝑚ଶ) ------------------(3-18) 
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D = ቌ

− cos 𝛼 0 0

0 − sin 𝛼 /√2 0

0 0 − sin 𝛼 /√2

ቍ ------------(3-19) 

 
Figure 3-2. Stress History by Hypoplasticity Model with initial condition Equation 3-18 
& 3-19 
 

 

Figure 3-3. Partial yield cone formed by the stress paths corresponding to the true-triaxial 
test for the DEM simulation in [10] 
 
 

Comparing the stress path determined from hypoplastic constitutive model with the 

stress path obtained from the DEM true-triaxial test simulation, it is obviously that 

hypoplasticity model has the capacity to fully describe the granular materials. As the 

geometric definition of the yield surface which is that the yield surface can be viewed as 

the intersecting surface of the stress path in 3-D rectangular coordinate system (or the cone 

in the Figure 2-2a) with the π-plane at the specific hydrostatic pressure, the success of 
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matching the stress path as a cone is all-important. Note that, the purpose of this section 

which aforementioned in previous chapter, is to match the yield criterion with hypoplastic 

model and DEM simulation. Therefore, due to the validation of the hypoplasticity, the 

further work with the failure surface can be proceeded.   

3.3.4 Improved Yield Surface with Hypoplasticity  

The existing yield surface characterized with elasto-plastic method projects three 

principal stress directions onto the π-plane, which corresponding with three shape factors 

i.e. λ, α and b aforementioned in the chapter 3.1. Due to the validation that the hypoplastic 

stress path was generated in the previous section, it should exist a closed “cycle” or a 

“triangle” with radians on the π-plane corresponding with the hydrostatic pressure p.  

According to the limit states of hypoplasticity, the constitutive equation B which is 

the second order tensor can be rewritten as follow,  

𝐵 = ቌ

𝐵(1) 0 0

0 𝐵(2) 0
0 0 𝐵(3)

ቍ --------(3-20) 

Substituting 𝐼ଵ = 𝜎ଵ + 𝜎ଶ + 𝜎ଷ = 𝑡𝑟(𝑇) into equation 3.17, where 𝜎௜ , 𝑖 = 1,2,3 are 

the components of the second order tensor T (also can be denoted by T(i)). 

B(1) =
஼య(்(ଵ))మ

஼భ(ூభ)మ
+

஼ర்∗మ

஼భ(ூభ)మ
− ൬

஼మ஼య

஼భ

௧௥(்య)

(ூభ)మ
+

஼మ஼ర

஼భ

௧௥(்்∗మ
)

(ூభ)మ
൰ ×

்(ଵ)

஼భ(ூభ)మା஼మ௧௥(்మ)
 --------(3-21) 

B(2) =
஼య(்(ଶ))మ

஼భ(ூభ)మ
+

஼ర்∗మ

஼భ(ூభ)మ
− ൬

஼మ஼య

஼భ

௧௥(்య)

(ூభ)మ
+

஼మ஼ర

஼భ

௧௥(்்∗మ
)

(ூభ)మ
൰ ×

்(ଶ)

஼భ(ூభ)మା஼మ௧௥(்మ)
 --------(3-22) 

B(3) =
஼య(்(ଷ))మ

஼భ(ூభ)మ
+

஼ర்∗మ

஼భ(ூభ)మ
− ൬

஼మ஼య

஼భ

௧௥(்య)

(ூభ)మ
+

஼మ஼ర

஼భ

௧௥(்்∗మ
)

(ூభ)మ
൰ ×

்(ଷ)

஼భ(ூభ)మା஼మ௧௥(்మ)
 --------(3-23) 
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where 𝑇∗ = T − (𝐼ଵ/3)I or 𝑇∗(𝑖) = 𝑇(𝑖) − 𝐼ଵ/3, 𝑖 = 1,2,3. In addition, because 

of second order tensor B and T are both diagonal tensors, tr(𝑇ଷ), 𝑡𝑟(𝑇𝑇∗ଶ) and 𝑡𝑟(𝑇ଶ) 

can be defined as follow, 

tr(𝑇ଷ) = [𝑇(1)]ଷ + [𝑇(2)]ଷ + [𝑇(3)]ଷ --------(3-24) 

 𝑡𝑟(𝑇𝑇∗ଶ) = T(1) ∗ [𝑇(1) − 𝐼ଵ/3]ଶ + 𝑇(2) ∗ [𝑇(2) − 𝐼ଵ/3]ଶ + 𝑇(3) ∗ [𝑇(3) − 𝐼ଵ/3]ଶ --

-(3-25) 

 𝑡𝑟(𝑇ଶ) = [𝑇(1)]ଶ + [𝑇(2)]ଶ + [𝑇(3)]ଶ --------(3-26) 

Then, substitute all the equations above into equation 3-27 which is known as the 

yield function in hypoplasticity. 

tr(𝐵ଶ) = 0 --------(3-27) 

[𝐵(1)]ଶ + [𝐵(2)]ଶ + [𝐵(3)]ଶ = 0 --------(3-28) 

Note that, parameters 𝐶௜ , 𝑖 = 1,2,3,4 are references to Table 3-3 first. With 

solving the function 3-28, the hypoplastic yield surface is generated as figure 3-4.  

 
Figure 3-4. Hypoplasticity yield surface in terms of 𝐶௜ , 𝑖 = 1,2,3,4 in Table 3-3, matching 

with Drucker-Prager, Matsuoka-Nakai and Lade-Duncan yield surface in elasto-
plasticity. 
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It is obvious that the shape of hypoplastic yield surface is similar with the shape of 

both Matsuoka-Nakai and Lade-Duncan yield surfaces, not like Drucker-Prager version 

which the cross-section of the yield surface with the π-plane is a cycle. Without calibrating 

at the so-called pure compression point, this hypoplastic yield surface over-predicts the 

strength of the granular material for any loading state. But under-prediction is pronounced 

for Lode angle α = 60௢ or pure extension comparing with Lade-Duncan yield surface.  

Due to the definition of hypoplastic theory, the shape of yield surface can be 

calibrated by adjusting the parameters 𝐶௜. Nevertheless, there is not have a clue that ‘how 

to get these parameters?’. From the [18], it says that 𝐶௜ are the dimensionless constants 

which can be calibrated with triaxial compression tests. But in this chapter, it is totally 

empirical way to obtain 𝐶௜. According to the permutation and combination, there are 16 

combinations of 𝐶௜, where i equal 4, as Table 3-4. 

 
 
Table 3-4 Sixteen probabilities of 𝐶௜, where i equal 4, are used to calibrate pure 

compression.  

Probability 𝐶ଵ 𝐶ଶ 𝐶ଷ 𝐶ସ 

Case 1 Increase Increase Increase Increase 

Case 2 Increase Increase Increase Decrease 

Case 3 Increase Increase Decrease Increase 

Case 4 Increase Increase Decrease Decrease 

Case 5 Increase Decrease Increase Increase 

Case 6 Increase Decrease Increase Decrease 
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Case 7 Increase Decrease Decrease Increase 

Case 8 Increase Decrease Decrease Decrease 

Case 9 Decrease Increase Increase Increase 

Case 10 Decrease Increase Increase Decrease 

Case 11 Decrease Increase Decrease Increase 

Case 12 Decrease Increase Decrease Decrease 

Case 13 Decrease Decrease Increase Increase 

Case 14 Decrease Decrease Increase Decrease 

Case 15 Decrease Decrease Decrease Increase 

Case 16 Decrease Decrease Decrease Decrease 

 
 

Here, the improvement is starting from the case showed in table 3-3, where the case 

is needed to be calibrated. Setting up the variable Δ, then the table 3-4 can be fulfilled with 

sixteen different cases e.g. 𝐶௜ =  𝐶௜
଴ ± 𝛥, where 𝐶௜

଴ refers the parameter in table 3-3. The 

result as Figure 3-5 is the result of the cases aforementioned.  
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Figure 3-5. Sixteen cases (Δ=20) calibrated with Hypoplastic model in [9], Drucker-
Prager, Matsuoka-Nakai and Lade-Duncan yield surface in elasto-plasticity  

 
 

And each case is detailed in Figure 3-6, as follow, 
 
 

 

Figure 3-6. illustration of sixteen cases on the π-plane   
 
  

It is easy to figure out that the yield closed shape expands in cases 9-16 where 𝐶ଵ 

is decreased in each case i.e. 9-16. Then, considering the cases 1-8, it is clearly that cases 

1,2,5and 6 did great jobs, relatively speaking. Note that, the results above have the 

precondition i.e. Δ=20 which is hard to convince that parameter 𝐶௜  should be changed 

through case 1,2,3 and 6. Therefore, the calibration is also operated with Δ=1, 10, 15 and 

25.  
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(a)                                                           (c) 

 

(b)                                                          (d) 

Figure 3-7(a)(b)(c)(d) illustration of sixteen cases on the π-plane with (a)(b) Δ=1 and 
(c)(d) Δ=10. 
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(e)                                                         (g) 

 

(f)                                                         (h) 

Figure 3-7(e)(f)(g)(h) illustration of sixteen cases on the π-plane with (a)(b) Δ=15 and 
(c)(d) Δ=25. 

 
 

Then, it is not hard to find that all the cases shifted inconspicuously on both sides 

at the beginning, where Δ=1, in figure 3-7(a)&(b). And cases 1-8 start to approach the 

calibrated point (pure compression) showed in figure 3-7(c)&(d), which illustrated as small 

blue ring i.e. marked as Drucker-Prager yield criterion, where Δ=10. In this initial condition, 

the shapes of all the cases yield surfaces are still overpredicted at the pure compression 

point or Lode angle α = 0, but it keeps the shapes that seem like Lade-Duncan and 

Matsuoka-Nakai yield surfaces. Increasing with the number of Δ i.e. variable equal 15, it 

shows that cases 3,4,7 and 8 start to match the Drucker-Prager yield surface at the peak 

point on the π-plane. Comparing with the results in figure 3-6, cases 3,4,7 and 8 shrank too 

much when Δ=20, and cases 1,2,3 and 6 do not start to approach peak point before that the 

value of Δ is as big as 20. Moreover, it is less-predicted when the number of Δ is too large, 

such as 25, showed in figure 3-7(g)&(h).  

 It is interesting that not only considering about the addition and subtraction relation 

but also the exponential relation will impact the shape of the yield surface. Table 3-4 can 
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be substituted in terms of 𝐶௜ =  𝐶௜
଴ ∗ 𝛥 𝑜𝑟 𝐶௜ =  𝐶௜

଴/𝛥, where 𝐶௜
଴ refers the parameter in 

table 3-3. Then, the results are generated and shown in figure 3-8(a)(b)(c)(d)(e)(f) where 

𝛥 = 10 in figure 3-8(a)(b), 𝛥 = 100 in figure 3-8(c)(d) and 𝛥 = 1000 in figure 3-8(e)(f). 

Drucker-Prager yield criterion is still displayed as the reference substance in each condition. 

And it is tracked that the shapes of yield surface are shrunk very small and are transforming 

much smaller with the increasing of the variable 𝛥 in cases 5,6,9,10,11,13,14 and 15 (it is 

obvious in figure 3-8(a)(c)(e), red close figure trail off as a small cycle in figure (e)). 

 

(a)                                  (c)                                   (e) 

 

(b)                                                              (d) 
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(f) 

Figure 3-8(a)(b)(c)(d)(e)(f) illustration of sixteen cases on the π-plane with (a)(b) 
Δ=10, (c)(d) Δ=100, (e)(f) Δ=1000 (exponential relation). 

 
 

In addition, case 2 and 3 are both out of shape and cases 1,4, 7, 8, 12 and 16 are 

particularly captivating. In figure 3-8(b)(d)(f), case 4, 7 and 8 are presented as a cycle, just 

like the small blue rings i.e. Drucker-Prager yield surface. From these three cases, case 7 

is the closest one to the Drucker-Prager yield criterion, and it slightly approaching the 

Drucker-Prager yield surface during the value of Δ is tenfold increasing each condition. 

Case 4 and 8 matches well under three Δ initial conditions, and displays as cyan rhombus 

and red inverted triangle, respectively. The shapes of these two cases are the same as the 

Drucker-Prager one but are much bigger than it and they are over-predicted than original 

case hypoplastic yield surface in table 3-3. And it keeps the original shape of the yield 

surface (table 3-3) in case 1,12 and 16. Here, case 12 is a little over-predicting which is 

compared with the original hypoplastic one. Note that, from case 1 and 16, it can be 

concluded that there is no shape transformation existed if all four 𝐶௜ , 𝑖 = 1,2,3,4  are 

multiplied at the same time with the same variable Δ. It shows that the red ‘*’, the green 

‘*’ and the green ‘o’ are coincided in figure 3.8(b)(d)(f) with three different variables Δ.  

Therefore, an empirical conclusion can be made as that it is effectively to multiple 

𝐶ଵ and 𝐶ଶ and multiple 𝐶ଷ and 𝐶ସ with a different number at the same time. This result also 

coincides the concept of hypoplasticity which is separating the constitutive equation into 

two part linear and non-linear part. Summarizing the results aforementioned, the 

parameters 𝐶௜ , 𝑖 = 1,2,3,4 can be generated as follow, 

 



37 
 

 
Table 3-5 Parameters of material constants for matched hypoplastic Lade-Duncan and 
Hypoplastic Matsuoka-Nakai 
 

 𝐶ଵ 𝐶ଶ 𝐶ଷ 𝐶ସ 

Lade-Duncan -8.95 -80.15 -79.71 107.77 

Matsuoka-

Nakai 

-87 -801.5 -797.1 1250 

 

As shown in table 3-5, these two groups of parameters are generated from the 

𝐶௜ , 𝑖 = 1,2,3,4 in table 3-3 [9]. Some traces can be dimly tracked that parameters above are 

calculated by the conclusion aforementioned e.g. 𝐶ଶ
௅஽ =  𝐶ଶ

ெே/10. With doing multiple 

and addition operation, two constitutive models are obtained with corresponding constants 

and can be plotted as figure 3-9(a) & (b). Here, Drucker-Prager yield criterion is denoted 

with blue rings, Lade-Duncan is black rings, Matsuoka-Nakai is the red one and two 

hypoplastic yield surfaces are displayed with green and cyan rings. It is obviously that all 

four yield surfaces are calibrated well at the point which represents the pure compression 

or so-called the point Lode angle equal zero.  

         

(a)                                                                    (b) 
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Figure 3-9(a)(b) Hypoplastic Lade-Duncan and Hypoplastic Matsuoka-Nakai yield 
surface matched with original Drucker-Prager, Lade-Duncan and Matsuoka-Nakai 

yield surface  

 
 

The hypoplastic Lade-Duncan yield surface (Green one) matched with original 

Lade-Duncan one (Black one) well in figure 3-9(b) but is slightly over-predicting the 

strength. In contrast, the shape of the hypoplastic Matsuoka-Nakai is a little bit smaller 

than the original one.  
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4 PARAMETER STUDY WITH DEM TRUE-TRIAXIAL TEST 

The improved hypoplastic yield surface introduced in chapter 3 has developed the 

hypoplastic Lade-Duncan and Matsuoka-Nakai yield surfaces which were matched the 

elastoplastic ones in [10] well, with two groups of parameters 𝐶௜ , 𝑖 = 1,2,3,4. But these 

parameters were totally obtained through the empirical method. As already mentioned in 

lots of article about hypoplastic constitutive model e.g. [11], it says that the dimensionless 

material parameters can be calibrated with triaxial compression test in [13]. In order to 

investigate a more accurate explanation of the parameters 𝐶௜ , 𝑖 = 1,2,3,4, the study will be 

discussed in this chapter with introducing the DEM true-triaxial test data in [10] and the 

procedures are shown as table 4-1. 

 
 

Table 4-1 Flow chart for the parameter study with the DEM true-triaxial test. 
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4.1 DEM true-triaxial test 

The DEM true-triaxial test is processed based on the concept which is mentioned 

in [10] that the micromechanical phenomena have been illustrated in Figure 4-1(p.11 in 

[10]).  

 
 

                                                                             

Figure 4-1(a) Three dimensional micromechanical effects involving inter-particle contact 
and motion on macro-scale slip plane. [10] The effects have been analyzed in detail in 

[19]   
 
 

These true-triaxial DEM simulations were performed on the assemblies of about 

3000-30000 mono-disperse spheres. Controlled by the strain paths 𝜀ଵ̇, 𝜀ଶ̇, 𝜀ଷ̇, where 𝜀ଵ̇ +

𝜀ଶ̇ + 𝜀ଷ̇ = 0, the test devotes to measure (principal) stresses corresponding to Lode angles 

varying between 0 ≤ α ≤ 60௢ in roughly 4௢ increments (similar with table3-2). Otherwise, 

six randomly packed specimens were assigned uniform inter-particle friction coefficients 

ranging between 0.01 ≤ 𝜇௠௜௖௥௢ ≤ 0.8  and particle rotation was also included in the 

simulation but would not be introduced in the hypoplastic constitutive model, due to the 

elimination of rotation tensor W which was aforementioned in chapter 3.3.1. [10] Here, 

108 yield surfaces were obtained via the DEM true-triaxial simulation in [20,21]. The DEM 

simulations were performed using a modified version of the open-source codes LAMMPS 

(Large-scale Atomic/Molecular Massively Parallel Simulator) [22,23] and its derivative 
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LIGGGHTS (LAMMPS Improved for General Granular Heat Transfer Simulation) [24,25], 

with post-processing performed with the open-source code ParaView [26,27]. [10]  

As the result of the DEM simulation, there are 9 cases which was substituted three 

different μ into three specimens showed in table 4-2. And each case has sixteen assemblies 

of strain rate respectively. All these outputs will be set up as the input of the hypoplastic 

parameter study in the later section.  

 
 

Table 4-2 Three specimens combined with three different μ. 

Specimen 𝜇 = 0.2 𝜇 = 0.5 𝜇 = 0.8 

Specimen 4 Case1 Case2 Case3 

Specimen 5 Case4 Case5 Case6 

Specimen 6 Case7 Case8 Case9 

 
 

Furthermore, the same true-triaxial simulation process can be applied on assemblies 

of poly-disperse spheres. As shown in figure 4-2, the assembly of 125000 spherical 

particles is considered here. And spheres consist with four different diameters specimens 

which is d = {0.3,0.4,0.6,0.8}  mm, with a log-normal particle size distribution 

corresponding to ASTM C 778-06 standard well-graded (Ottawa) sand, with 𝑑ହ଴ ≈

0.35 𝑚𝑚. (p.15 in [10]) The density of the sphere is 𝜌 = 3000 𝑘𝑔/𝑚ଷ (for quartz) and the 

inter-particle Coulomb friction coefficient 𝜇௠௜௖௥௢ = 0.5  (specially for dry quartz-on-

quartz contact). And the initial yield ratio of the specimen was about 𝑒 ≈ 0.66, which 

corresponds to the initial volume density can be denoted as 𝑣 = 1/(1 + 𝑒) ≈ 0.6. And the 

side length of initial cubical assembly of spheres as figure 4-2 was roughly 1.9 cm. 

Described in [21], the inter-particle rolling friction was not included, and tangential sliding 
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was computed using the true tangential displacement history contact model detailed in 

[28,29]. Any other parameters which was used in the DEM simulation can be referenced 

in [30].  

 

 
Figure 4-2 125000-sphere cubical DEM specimen for true-triaxial test simulation. (p.15 

in [10]) 
 
 

Otherwise, the initial setting of the 125000-spheres DEM simulation which 

corresponds assemblies of poly-disperse spheres is shown in the table 4-3. The result of 

the true-triaxial DEM simulation which will be used in the later section is in term of the 

length of each side and the force in the three-dimension at each time step.  

 
 
Table 4-3 Five strain rate combinations were applied in true-triaxial test simulation with 
125000-sphere cubical DEM specimen, (𝜀௜̇ , λ and α were mentioned in chapter3.1.2).  

 𝜀ଵ̇ 𝜀ଶ̇ 𝜀ଷ̇ λ α 

(1) −0.05 𝑠ିଵ −0.05 𝑠ିଵ 0.1 𝑠ିଵ −1/2 0௢ 

(2) −0.075 𝑠ିଵ −0.025 𝑠ିଵ 0.1 𝑠ିଵ −1/4 16௢ 

(3) −0.1 𝑠ିଵ 0 𝑠ିଵ 0.1 𝑠ିଵ 0 30௢ 

(4) −0.1 𝑠ିଵ 0.025 𝑠ିଵ 0.075 𝑠ିଵ 1/3 44௢ 
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(5) −0.1 𝑠ିଵ 0.05 𝑠ିଵ 0.05 𝑠ିଵ 1 60௢ 

 
 

4.2 Parameter of hypoplastic constitutive model study 

Here, as aforementioned in chapter 3.3.1, the equation 3-10 is introduced as the 

hypoplastic constitutive model which will be generated in this section. It can be rewritten 

as the tensor version as follow,  

𝑇̇ଵଵ = 𝐶ଵ(𝑡𝑟𝑇)𝐷ଵଵ + 𝐶ଶ
௧௥(்஽)

௧௥(்)
𝑇ଵଵ + 𝐶ଷ

√௧௥஽మ

௧௥(்)
𝑇ଵଵ

ଶ + 𝐶ସ
√௧௥஽మ

௧௥்
(𝑇ଵଵ

∗)ଶ-------------(4-1) 

𝑇̇ଶଶ = 𝐶ଵ(𝑡𝑟𝑇)𝐷ଶଶ + 𝐶ଶ
௧௥(்஽)

௧௥(்)
𝑇ଶଶ + 𝐶ଷ

√௧௥ మ

௧௥(்)
𝑇ଶଶ

ଶ + 𝐶ସ
√௧௥஽మ

௧௥்
(𝑇ଶଶ

∗)ଶ-------------(4-2) 

𝑇̇ଷଷ = 𝐶ଵ(𝑡𝑟𝑇)𝐷ଷଷ + 𝐶ଶ
௧௥(்஽)

௧௥(்)
𝑇ଷଷ + 𝐶ଷ

√௧௥஽మ

௧௥(்)
𝑇ଷଷ

ଶ + 𝐶ସ
√௧௥஽మ

௧௥்
(𝑇ଷଷ

∗)ଶ-------------(4-3) 

As the original definition of the hypoplastic constitutive equation, 𝐶௜ is regarded as 

the initial constants, stress T and logarithmic strain rates D are the inputs and stress rate 𝑇̇ 

is considered as the output. In contrast, in order to investigate the value of the non-

dimensional material parameter i.e. 𝐶௜ , 𝑖 = 1,2,3,4, stress T, logarithmic strain rates D and 

the stress rate 𝑇̇ should be reversely regarded as the input. Then, the question can be viewed 

as the linear equation with four variables. Inspire by the method which was used in [31], 

Wu. W and Erich Bauer set up two equation (as equation 4-4, 5) which was applied on 

initial condition for the triaxial test as the table 4-4.  

 
Table 4-4 Expressions of stress, strain rate, stress rate and spin tensors for triaxial test in 

[31].  
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Notion σ ε̇ σ̇ ω̇ 

Triaxial test 
൭

𝜎ଵ 0 0
0 𝜎ଷ 0
0 0 𝜎ଷ

൱ ൭

𝜀ଵ 0 0
0 𝜀ଷ 0
0 0 𝜀ଷ

൱ ൭

σ̇ଵ 0 0
0 σ̇ଷ 0
0 0 σ̇ଷ

൱ ൭
0 0 0
0 0 0
0 0 0

൱ 

 
 

Note that, Wu and Bauer use the different notations in [31], but the same version 

of hypoplastic constitutive equation. Four linear equations were generated to calculate the 

parameters 𝐶௜ with equation 4-4&5 which applied with two group of data from the triaxial 

test in table 4-4. 

𝜎̇ଵ = 𝐶ଵ(𝜎ଵ + 2𝜎ଷ)ε̇ଵ + 𝐶ଶ
ఙభఌ̇భାଶఙయఌ̇య

ఙభାଶఙయ
σଵ + ቂ𝐶ଷ𝜎ଵ

ଶ +
ସ

ଽ
𝐶ସ(𝜎ଵ − 𝜎ଷ)ଶቃ

ටఌ̇భ
మାଶఌ̇య

మ

ఙభାଶఙయ
 -------------

(4-4) 

𝜎̇ଷ = 𝐶ଵ(𝜎ଵ + 2𝜎ଷ)ε̇ଷ + 𝐶ଶ
ఙభఌ̇భାଶఙయఌ̇య

ఙభାଶఙయ
σଷ + ቂ𝐶ଷ𝜎ଷ

ଶ +
ଵ

ଽ
𝐶ସ(𝜎ଵ − 𝜎ଷ)ଶቃ

ටఌ̇భ
మାଶఌ̇య

మ

ఙభାଶఙయ
 ------------

-(4-5) 

Therefore, the equations can be set up as follow, where 𝑥௜௝ and 𝑌௜௜ 𝑖&𝑗 = 1,2,3,4, 

and these factors will all be the input from the results of DEM simulation. 

𝐶ଵ𝑥ଵଵ + 𝐶ଶ𝑥ଵଶ + 𝐶ଷ𝑥ଵଷ + 𝐶ସ𝑥ଵସ = 𝑌ଵଵ -------------------------------------(4-6) 

𝐶ଵ𝑥ଶଵ + 𝐶ଶ𝑥ଶଶ + 𝐶ଷ𝑥ଶଷ + 𝐶ସ𝑥ଶସ = 𝑌ଶଶ -------------------------------------(4-7) 

𝐶ଵ𝑥ଷଵ + 𝐶ଶ𝑥ଷଶ + 𝐶ଷ𝑥ଷଷ + 𝐶ସ𝑥ଷସ = 𝑌ଷଷ -------------------------------------(4-8) 

𝐶ଵ𝑥ସଵ + 𝐶ଶ𝑥ସଶ + 𝐶ଷ𝑥ସଷ + 𝐶ସ𝑥ସସ = 𝑌ସସ -------------------------------------(4-9) 

Then, to eliminate 𝐶ଵ, equation 4-6,7,8,9 can be rearranged as equation 4-

10,11,12,13. 
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𝑥ଵଵ𝐶ଵ = 𝑌ଵ − 𝑥ଵଶ𝐶ଶ − 𝑥ଵଷ𝐶ଷ − 𝑥ଵସ𝐶ସ -------------------------------------(4-10) 

𝑥ଶଵ𝐶ଵ = 𝑌ଶ − 𝑥ଵଵ𝐶ଶ − 𝑥ଵଵ𝐶ଷ − 𝑥ଵଵ𝐶ସ -------------------------------------(4-11) 

𝑥ଷଵ𝐶ଵ = 𝑌ଷ − 𝑥ଵଵ𝐶ଶ − 𝑥ଵଵ𝐶ଷ − 𝑥ଵଵ𝐶ସ ------------------------------------(4-12) 

𝑥ସଵ𝐶ଵ = 𝑌ସ − 𝑥ଵଵ𝐶ଶ − 𝑥ଵଵ𝐶ଷ − 𝑥ଵଵ𝐶ସ ------------------------------------(4-13) 

Let the equation 4-11 be divided by 4-10 and the same as (4-11)/ (4-12) and (4-

12)/ (4-13), then, the equation 4-14, 4-15 and 4-16 can be generated respectively. 

(𝑥ଵଵ/𝑥ଶଵ) ∗ (Yଶ − 𝑥ଶଶ𝐶ଶ − 𝑥ଶଷ𝐶ଷ − 𝑥ଶସ𝐶ସ) = Yଵ − 𝑥ଵଶ𝐶ଶ − 𝑥ଵଷ𝐶ଷ − 𝑥ଵସ𝐶ସ --------------

(4-14) 

(𝑥ଷଵ/𝑥ସଵ) ∗ (Yସ − 𝑥ସଶ𝐶ଶ − 𝑥ସଷ𝐶ଷ − 𝑥ସସ𝐶ସ) = Yଷ − 𝑥ଷଶ𝐶ଶ − 𝑥ଷଷ𝐶ଷ − 𝑥ଷସ𝐶ସ --------------

(4-15) 

(𝑥ଶଵ/𝑥ଷଵ) ∗ (Yଷ − 𝑥ଷଶ𝐶ଶ − 𝑥ଷଷ𝐶ଷ − 𝑥ଷସ𝐶ସ) = Yଶ − 𝑥ଶଶ𝐶ଶ − 𝑥ଶଷ𝐶ଷ − 𝑥ଶସ𝐶ସ --------------

(4-16) 

It is necessary to factorize three equations above as the standard version (such as 

equation 4-6),  

(𝑥ଵଶ −
௫భభ

௫మభ
∗ 𝑥ଶଶ)𝐶ଶ + (𝑥ଵଷ −

௫భభ

௫మభ
∗ 𝑥ଶଷ)𝐶ଷ + (𝑥ଵସ −

௫భభ

௫మభ
∗ 𝑥ଶସ)𝐶ସ =  𝑌ଵ −

௫భభ

௫మభ
𝑌ଶ----------

(4-17) 

(𝑥ଶଶ −
௫మభ

௫యభ
∗ 𝑥ଷଶ)𝐶ଶ + (𝑥ଶଷ −

௫మభ

௫యభ
∗ 𝑥ଷଷ)𝐶ଷ + (𝑥ଶସ −

௫భభ

௫మభ
∗ 𝑥ଷସ)𝐶ସ =  𝑌ଶ −

௫మభ

௫యభ
𝑌ଷ----------

(4-18) 
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(𝑥ଷଶ −
௫యభ

௫రభ
∗ 𝑥ସଶ)𝐶ଶ + (𝑥ଷଷ −

௫యభ

௫రభ
∗ 𝑥ସଷ)𝐶ଷ + (𝑥ଷସ −

௫యభ

௫రభ
∗ 𝑥ସସ)𝐶ସ =  𝑌ଷ −

௫యభ

௫రభ
𝑌ସ----------

(4-19) 

and rearrange three equations as follow. 

(𝑥ଵଶ −
௫భభ

௫మభ
∗ 𝑥ଶଶ)𝐶ଶ = 𝑌ଵ −

௫భభ

௫మభ
𝑌ଶ − (𝑥ଵଷ −

௫భభ

௫మభ
∗ 𝑥ଶଷ)𝐶ଷ − (𝑥ଵସ −

௫భభ

௫మభ
∗ 𝑥ଶସ)𝐶ସ---------(4-

20) 

(𝑥ଶଶ −
௫మభ

௫యభ
∗ 𝑥ଷଶ)𝐶ଶ = 𝑌ଶ −

௫మభ

௫యభ
𝑌ଷ − (𝑥ଶଷ −

௫మభ

௫యభ
∗ 𝑥ଷଷ)𝐶ଷ − (𝑥ଶସ −

௫భభ

௫మభ
∗ 𝑥ଷସ)𝐶ସ---------(4-

21) 

(𝑥ଷଶ −
௫యభ

௫రభ
∗ 𝑥ସଶ)𝐶ଶ = 𝑌ଷ −

௫యభ

௫రభ
𝑌ସ − (𝑥ଷଷ −

௫యభ

௫రభ
∗ 𝑥ସଷ)𝐶ଷ − (𝑥ଷସ −

௫యభ

௫రభ
∗ 𝑥ସସ)𝐶ସ---------(4-

22) 

Let the equation 4-21 be divided by 4-20 and the same as (4-21)/ (4-22), then, the 

equation 4-23 and 4-24 can be generated, respectively. 

ቀ௫భమି
ೣభభ
ೣమభ

∗௫మమቁ

ቀ௫మమି
ೣమభ
ೣయభ

∗௫యమቁ
∗ ቂ𝑌ଶ −

௫మభ

௫యభ
𝑌ଷ − ቀ𝑥ଶଷ −

௫మభ

௫యభ
∗ 𝑥ଷଷቁ 𝐶ଷ − ቀ𝑥ଶସ −

௫భభ

௫మభ
∗ 𝑥ଷସቁ 𝐶ସቃ =

ቂ𝑌ଵ −
௫భభ

௫మభ
𝑌ଶ − ቀ𝑥ଵଷ −

௫భభ

௫మభ
∗ 𝑥ଶଷቁ 𝐶ଷ − ቀ𝑥ଵସ −

௫భభ

௫మభ
∗ 𝑥ଶସቁ 𝐶ସቃ -----(4-23) 

ቀ௫మమି
ೣమభ
ೣయభ

∗௫యమቁ

ቀ௫యమି
ೣయభ
ೣరభ

∗௫రమቁ
∗ ቂ𝑌ଷ −

௫యభ

௫రభ
𝑌ସ − (𝑥ଷଷ −

௫యభ

௫రభ
∗ 𝑥ସଷ)𝐶ଷ − (𝑥ଷସ −

௫యభ

௫రభ
∗ 𝑥ସସ)𝐶ସቃ =

ቂ𝑌ଶ −
௫మభ

௫యభ
𝑌ଷ − ቀ𝑥ଶଷ −

௫మభ

௫యభ
∗ 𝑥ଷଷቁ 𝐶ଷ − (𝑥ଶସ −

௫భభ

௫మభ
∗ 𝑥ଷସ)𝐶ସቃ -----(4-24) 

Equation 4-23 and 4-24 are factorized as follow,  
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ቊ(𝑥ଵଷ −
௫భభ

௫మభ
∗ 𝑥ଶଷ) −

ቀ௫భమି
ೣభభ
ೣమభ

∗௫మమቁ

ቀ௫మమି
ೣమభ
ೣయభ

∗௫యమቁ
∗ (𝑥ଶଷ −

௫మభ

௫యభ
∗ 𝑥ଷଷ)ቋ ∗ 𝐶ଷ = 𝑌ଵ −

௫భభ

௫మభ
𝑌ଶ −

ቀ௫భమି
ೣభభ
ೣమభ

∗௫మమቁ

ቀ௫మమି
ೣమభ
ೣయభ

∗௫యమቁ
∗ ቀ𝑌ଶ −

௫మభ

௫యభ
𝑌ଷቁ + ቊ

ቀ௫భమି
ೣభభ
ೣమభ

∗௫మమቁ

ቀ௫మమି
ೣమభ
ೣయభ

∗௫యమቁ
∗ ቀ𝑥ଶସ −

௫భభ

௫మభ
∗ 𝑥ଷସቁ − ቀ𝑥ଵସ −

௫భభ

௫మభ
∗ 𝑥ଶସቁቋ ∗

𝐶ସ -----(4-25) 

ቊቀ𝑥ଶଷ −
௫మభ

௫యభ
∗ 𝑥ଷଷቁ −

ቀ௫మమି
ೣమభ
ೣయభ

∗௫యమቁ

ቀ௫యమି
ೣయభ
ೣరభ

∗௫రమቁ
∗ ቀ𝑥ଷଷ −

௫యభ

௫రభ
∗ 𝑥ସଷቁቋ ∗ 𝐶ଷ = 𝑌ଶ −

௫మభ

௫యభ
𝑌ଷ −

ቀ௫మమି
ೣమభ
ೣయభ

∗௫యమቁ

ቀ௫యమି
ೣయభ
ೣరభ

∗௫రమቁ
∗ ቀ𝑌ଷ −

௫యభ

௫రభ
𝑌ସቁ + ቊ

ቀ௫మమି
ೣమభ
ೣయభ

∗௫యమቁ

ቀ௫యమି
ೣయభ
ೣరభ

∗௫రమቁ
∗ ቀ𝑥ଷସ −

௫యభ

௫రభ
∗ 𝑥ସସቁ − ቀ𝑥ଶସ −

௫భభ

௫మభ
∗ 𝑥ଷସቁቋ ∗

𝐶ସ -----(4-26) 

Here, in order not to mess up, the equation 4-25 and 4-26 are simplified as 

equation 4-27 and 4-28, where 𝐴ଵ, 𝐴ଶ, 𝐵ଵ, 𝐵ଶ, 𝐷ଵ and 𝐷ଶ are used to replace the long 

terms in previous two equations. 

𝐴ଵ ∗ 𝐶ଷ = 𝐷ଵ + 𝐵ଵ ∗ 𝐶ସ -----(4-27) 

𝐴ଶ ∗ 𝐶ଷ = 𝐷ଶ + 𝐵ଶ ∗ 𝐶ସ -----(4-28) 

Where 𝐴ଵ = (𝑥ଵଷ −
௫భభ

௫మభ
∗ 𝑥ଶଷ) −

ቀ௫భమି
ೣభభ
ೣమభ

∗௫మమቁ

ቀ௫మమି
ೣమభ
ೣయభ

∗௫యమቁ
∗ (𝑥ଶଷ −

௫మభ

௫యభ
∗ 𝑥ଷଷ), 𝐴ଶ =

ቀ𝑥ଶଷ −
௫మభ

௫యభ
∗ 𝑥ଷଷቁ −

ቀ௫మమି
ೣమభ
ೣయభ

∗௫యమቁ

ቀ௫యమି
ೣయభ
ೣరభ

∗௫రమቁ
∗ ቀ𝑥ଷଷ −

௫యభ

௫రభ
∗ 𝑥ସଷቁ , 𝐵ଵ =

ቀ௫భమି
ೣభభ
ೣమభ

∗௫మమቁ

ቀ௫మమି
ೣమభ
ೣయభ

∗௫యమቁ
∗

ቀ𝑥ଶସ −
௫భభ

௫మభ
∗ 𝑥ଷସቁ − ቀ𝑥ଵସ −

௫భభ

௫మభ
∗ 𝑥ଶସቁ , 𝐵ଶ =

ቀ௫మమି
ೣమభ
ೣయభ

∗௫యమቁ

ቀ௫యమି
ೣయభ
ೣరభ

∗௫రమቁ
∗ ቀ𝑥ଷସ −

௫యభ

௫రభ
∗ 𝑥ସସቁ −
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ቀ𝑥ଶସ −
௫భభ

௫మభ
∗ 𝑥ଷସቁ , 𝐷ଵ = 𝑌ଵ −

௫భభ

௫మభ
𝑌ଶ −

ቀ௫భమି
ೣభభ
ೣమభ

∗௫మమቁ

ቀ௫మమି
ೣమభ
ೣయభ

∗௫యమቁ
∗ ቀ𝑌ଶ −

௫మభ

௫యభ
𝑌ଷቁ 𝑎𝑛𝑑 𝐷ଶ = 𝑌ଶ −

௫మభ

௫యభ
𝑌ଷ −

ቀ௫మమି
ೣమభ
ೣయభ

∗௫యమቁ

ቀ௫యమି
ೣయభ
ೣరభ

∗௫రమቁ
∗ ቀ𝑌ଷ −

௫యభ

௫రభ
𝑌ସቁ. 

On solving all the equation above, the non-dimensional material parameter 𝐶௜ , 𝑖 =

1,2,3,4 can be summarized as the equation which are substituted with the stress, the 

logarithmic strain rates and the stress rate.  

𝐶ସ =
஺భ஽మି஺మ஽భ

஺మ஻భି஺భ஻మ
 -----(4-29) 

𝐶ଷ =
஺భ஻భ஽మି஺భ஻మ஽భ

஺భ஺మ஽భି஺భ஺భ஻మ
 -----(4-30) 

𝐶ଶ = ቀ𝑌ଵ −
௫భభ

௫మభ
𝑌ଶ − (𝑥ଵଷ −

௫భభ

௫మభ
∗ 𝑥ଶଷ)𝐶ଷ − (𝑥ଵସ −

௫భభ

௫మభ
∗ 𝑥ଶସ)𝐶ସቁ / ቀ𝑥ଵଶ −

௫భభ

௫మభ
∗ 𝑥ଶଶቁ -----

(4-31) 

𝐶ଵ = (𝑌ଵ − 𝑥ଵଶ𝐶ଶ − 𝑥ଵଷ𝐶ଷ − 𝑥ଵସ𝐶ସ)/𝑥ଵଵ-----(4-32) 

But it is hard to solve the four variables problem with three equation such as 

equation 4-1,2 and 3. Therefore, the Moore-Penrose inverse method is introduced to solve 

this problem. Here, the matrix is considered to be generated as follow. Letting the factors 

of the forth lateral row of the tensor H be number 0, and the forth vertical factor be zero as 

well. 

H = ቌ

𝑥ଵଵ 𝑥ଵଶ 𝑥ଵଷ 𝑥ଵସ

𝑥ଶଵ 𝑥ଶଶ 𝑥ଶଷ 𝑥ଶସ

𝑥ଷଵ 𝑥ଷଶ 𝑥ଷଷ 𝑥ଷସ

0 0 0 0

ቍ --------------------------(4-33) 

T = (𝑌ଵ 𝑌ଶ 𝑌ଷ 0)ᇱ -----(4-34) 
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Then, with substituting the four by four matrix H and the four by one matrix T into 

equation 4-35 as follow, the four parameters can be obtained, where C is the four by one 

matrix. In addition, the least square method is used to obtain the unique matrix solution 

from the equation 4-35. 

C = 𝐻ିଵ ∗ 𝑇 ---------------------(4-35) 

In summary, all four parameters 𝐶ଵ, 𝐶ଶ, 𝐶ଷ and 𝐶ସ can be obtained through solving 

the equation system above with inputting the result from the DEM true-triaxial test. 

Compared with the totally empirical method model in chapter 3, both can generate the non-

dimensional material parameters C. However, the parameter obtained in chapter 4 is much 

more convictive because of they are generated from the actual triaxial test (DEM version). 

From lots of literature review, it is the only and the best method to get these material 

constants. The more concrete results will be displayed in chapter 5. Therefore, solving the 

improved hypoplastic constitutive model for the parameter calculation will tend to get the 

more accurate results C than the model in previous chapter. 
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5 Results and Discussion  

This chapter presents results from the improved hypoplastic constitutive model, 

which incorporates the improved non-dimensional material parameters 𝐶௜ , 𝑖 = 1,2,3,4 

obtained through the data from the DEM true-triaxial test. Both 3000-30000 mono-disperse 

spheres and 125000 spherical poly-disperse spheres are considered in the DEM true-triaxial 

test. Otherwise, comparison between the hypoplastic constitutive model with the old 

parameters and the model with the improved data will be displayed and will also be used 

to compare with the Lade-Duncan, Matsuoka-Nakai and Mohr-Coulomb yield surface 

which was shown in previous chapter.  

5.1 3000-30000 mono-disperse spheres 

The parameter C with three different mono-disperse particles under three μ 

conditions can be obtained by solving the inverse hypoplastic constitutive equation. And 

each condition was under sixteen combinations of initial strain rate in three-dimension 

which is shown in table5-1. 

 
 
Table 5-1 Sixteen strain rate combinations with applied in true-triaxial test simulation 
with 3000-30000 mono-disperse spheres 
 

media 𝜀ଵ̇ 𝜀ଶ̇ 𝜀ଷ̇ media 𝜀ଵ̇ 𝜀ଶ̇ 𝜀ଷ̇ 

1 0.005 0.005 -0.01 9 -0.005 -0.005 0.01 

2 0.0057 0.0043 -0.01 10 -0.0057 -0.0043 0.01 

3 0.0064 0.0036 -0.01 11 -0.0064 -0.0036 0.01 

4 0.0071 0.0029 -0.01 12 -0.0071 -0.0029 0.01 

5 0.0079 0.0021 -0.01 13 -0.0079 -0.0021 0.01 
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6 0.0086 0.0014 -0.01 14 -0.0086 -0.0014 0.01 

7 0.0093 0.0007 -0.01 15 -0.0093 -0.0007 0.01 

8 0.01 0 -0.01 16 -0.01 0 0.01 

 

Then, 144 groups of non-dimensional material parameters C are generated through 

the method aforementioned in chapter4 with inputs which are 144 groups of results from 

DEM true-triaxial test. The group of parameter C is generated with the least square method, 

because of each time step will generate specific parameter C, which is totally useful to get 

the approximate the solution from the inverse hypoplastic constitutive equation system. 

Figure 5-1 shows the value of the non-dimensional material parameters C for specimen 4 

in each case.  
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Figure 5-1. The parameter C for specimen 4 under μ = 0.2, 0.5, 0.8 with each media case. 
Here, 𝐶ଵ is by blue curve, 𝐶ଶ, 𝐶ଷ and 𝐶ସ are displayed by orange, gray and yellow, 

respectively. 
 
 

It shows that each case has the similar variation tendency that 𝐶ଵ is approximately 

similar to the straight line; 𝐶ଶ decreases at the beginning and reaches the lowest point at 

media 9, then increases around the mid value; 𝐶ଷ is similar as 𝐶ଵ but it is easy to figure out 

that 𝐶ଷ increases at  beginning; 𝐶ସ increases at first and is stable around the mid value until 

case 9 point, then decrease and settles in the position where a little higher than the mid 

value. Here, the case which μ=0.8, is different with other two cases that 𝐶ସ start from the 

positive number and is always above the axis-x. Note that, media 1-8 should be totally 

opposite to the media 9-16.  
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Figure 5-2. The parameter C for specimen 5 under μ = 0.2, 0.5, 0.8 with each media case. 
Here, 𝐶ଵ is by blue curve, 𝐶ଶ, 𝐶ଷ and 𝐶ସ are displayed by orange, gray and yellow, 

respectively. 

 
 

Figure 5-2 shows the parameter value for specimen 5 in each case. It looks similar 

with the cases which were shown in figure 5-1 for specimen 4. Note that, it exists that some 

wave which was produced by some input error. 

 

 
Figure 5-3. The parameter C for specimen 6 under μ = 0.2, 0.5, 0.8 with each media case. 

Here, 𝐶ଵ is by blue curve, 𝐶ଶ, 𝐶ଷ and 𝐶ସ are displayed by orange, gray and yellow, 
respectively. 

 
 

Specimen 6’s parameters looks like the same alignment as previous two specimens, 

but it’s not hard to know that the value of 𝐶ସ at media 1 increases with the enhancement of 
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μ value. This phenomenon is the same with specimen 5, but not specimen 4. Note that, it 

is positive in compression. 

Next step, all the parameter obtained above are substituted back to the model i.e. 

equation 4-1, 4-2, 4-3, as the non-dimensional material constants. Otherwise, the 

parameter C under each time step, will also be used to put back into the equation 4-1,4-

2,4-3 which is useful to detect whether the parameter generated from inverse hypoplastic 

concept works or not. Note, the well-matched parameter C which was generated through 

the method mentioned in chapter 3 (begin with the number obtained from the DEM data) 

is concerned as well.  

 

 



55 
 

Figure 5-4 Stress path for Specimen 4 contained the DEM original, stress paths with each 
time step parameter C, re-substituted hypoplastic and well-matched constant C value. μ =

0.2,0.5,0.8 (from upper left to lower one). 
 
 

In figure 5-4 it shows the stress path in 𝑇ଵଵ -𝑇ଶଶ  dimension working with the 

specimen 4 under the initial conditions μ = 0.2,0.5,0.8. The shape of the stress paths 

matched the generally shape of the stress paths, as the cone, but not totally coupling. It is 

clearly noticed that some data clutter exists in the DEM true-triaxial test value. Especially, 

the yellow curve which represented the media 1, displays the traceless shape, which not 

like the small wave (can be detected when zooming in). Coincided with the results 

discovered from figure 5-1, 5-2, 5-3, it can be easily found that 𝐶ଶ and 𝐶ସ at media 1 point 

with μ = 0.2 & 0.5, were far away from the intermediate value. Here, several reasons can 

be hypothesized, that the input data from DEM true-triaxial test was not stable or the least 

square method was not measured the relative accurate value. As the lower one in figure 5-

4, the least square method generated the curve which was not traceless as upper two, the 

probability of the former reason is preferred in this chapter.  
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Figure 5-5 Stress path for Specimen 5 contained the DEM original, stress paths with each 
time step parameter C, re-substituted hypoplastic and well-matched constant C value. μ =

0.2,0.5,0.8 (from upper left to lower one). 
 
 

Same as specimen 4, specimen 5 plots the traceless curve when μ = 0.2 & 0.5 at 

media 1 point and the curve under μ = 0.8 is better. And it matches good at media 9 point 

for all the μ = 0.2,0.5,0.8, even though lower and upper right curve in figure 5-5, it extends 

towards as the straight line. It can be imagined that the point on the curve media 9 is 

projected on the π-plane, will not be large deviation when compared with DEM yield 
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surface. The figure 5-6 shows the stress path for specimen 5 with μ = 0.5 & 0.8 at media 

9 point. 

 
 

 
Figure 5-6 Stress path for Specimen 5 with μ = 0.5 & 0.8 (media 9) 

 
 

In figure 5-6, the cone whose μ = 0.8  looks slightly bigger than the other. It 

seems that the yield starts earlier if μ is small.  
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Figure 5-7 Stress path for Specimen 6 contained the DEM original, stress paths with each 
time step parameter C, re-substituted hypoplastic and well-matched constant C value. μ =

0.2,0.5,0.8 (from upper left to lower one). 
 
 

In figure 5-7, same conclusions aforementioned in this chapter are also suitable 

for specimen 6.  

From the visible outcome above, the available parameter C without data clutter, 

are collected. Then, all these parameters which are assumed useful, will be substituted 

into the hypoplastic yield model, i.e. equation 3-21, 3-22, 3-23.  
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(a)                                                                (b) 

 
(c)                                                                (d) 
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(e) 

Figure 5-8 Stress paths for specimen 4 where (a) μ = 0.2 media 9 (b) μ = 0.2 media 11 
(c) μ = 0.2 media 12 (d) μ = 0.5 media 14 (e) μ = 0.8 media 11 

 
 

In terms of specimen 4, four cases showed in figure 5-8 are selected to re-input to 

the hypoplastic yield model. Similar with figure 5-6, figure 5-8 (a) and (b) showed that the 

hypoplastic curve is closed to the DEM curve which was coupling with the hypoplastic 

curve (each time rate) but corner part the DEM one is much smoother than hypoplastic did 

for each case (a) and (b). Other three ones are matching or close to the DEM curve which 

is the results from original true-triaxial test, e.g. (d) shows that the hypoplastic curve is 

coincided with the DEM one, but stop before the corner, and (c) and (e) are close to the 

curves from the test. And the value of parameter C is showed as follow, (a) 𝐶ଵ = 7.9274, 

𝐶ଶ = −51.2522, 𝐶ଷ = 3.5784, 𝐶ସ = 293.9323 (b)  𝐶ଵ = 3.6982, 𝐶ଶ3.8184, 𝐶ଷ = −6.5076, 

𝐶ସ = 109.9211  (c)  𝐶ଵ = 2.4662 , 𝐶ଶ = 5.6438 , 𝐶ଷ = −3.7731 ,  𝐶ସ = 72.0196  (d) 𝐶ଵ =

0.6579 ,  𝐶ଶ = 1.5587 , 𝐶ଷ = 0.1355 ,  𝐶ସ = 27.3685  (e) 𝐶ଵ = 4.5526 , 𝐶ଶ = 0.9456 ,  𝐶ଷ =

−5.9557, 𝐶ସ = 72.5039. 

Then, the same steps will be processed as follow. 
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(a)                                                                (b) 

 
(c)                                                                (d) 

Figure 5-9 Stress paths for specimen 5 where (a) μ = 0.2 media 9 (b) μ = 0.5 media 10 
(c) μ = 0.8 media 10 (d) μ = 0.8 media 11  

 
 

In figure 5-9, the upper left one matches the best in all four cases for specimen 5, 

and the value of parameter C is as follow, (a) 𝐶ଵ = 9.9217, 𝐶ଶ = −62.5279, 𝐶ଷ = 6.0032, 

𝐶ସ = 357.0266  (b)  𝐶ଵ = 9.0349 , 𝐶ଶ = 5.8059 , 𝐶ଷ = −17.7538 , 𝐶ସ = 152.786 (c)  𝐶ଵ =

9.8768 , 𝐶ଶ = −2.6651 , 𝐶ଷ = −13.9561 ,  𝐶ସ = 145.5293  (d) 𝐶ଵ = 3.4862 ,  𝐶ଶ = 0.5534 , 

𝐶ଷ = −0.4368, 𝐶ସ = 60.4213. 
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(b)                                                                (b) 

 
(c) 

Figure 5-10 Stress paths for specimen 5 where (a) μ = 0.2 media 9 (b) μ = 0.2 media 10 
(c) μ = 0.8 media 14  

 
 

According to specimen 6, three cases were picked and showed in figure 5-10. And 

parameter C for each case in figure 5-10 is as follow, (a) 𝐶ଵ = 10.2099, 𝐶ଶ = −60.7115, 

𝐶ଷ = 4.5806 , 𝐶ସ = 362.4224  (b)  𝐶ଵ = 7.0528 , 𝐶ଶ = −0.6799 , 𝐶ଷ = −12.4261 , 𝐶ସ =

223.9126 (c) 𝐶ଵ = 1.1538, 𝐶ଶ = 24.8831, 𝐶ଷ = −11.7323, 𝐶ସ = 33.9546. 

As already grabbed from 144 cases of parameter C, these parameter C showed above will 

be substituted back to the hypoplastic yield model B.  
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(a)                                                                (b) 

 
(c)                                                                (d) 
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(e) 

Figure 5-11 Hypoplastic yield surface in terms of specimen 4 with different non-
dimensional material parameters 𝐶௜ , 𝑖 = 1,2,3,4 (a) μ = 0.2 media 9 (b) μ = 0.2 

media 11 (c) μ = 0.2 media 12 (d) μ = 0.5 media 14 (e) μ = 0.8 media 11, compared 
with Lade-Duncan, Matsuoka-Nakai and Mohr-Coulomb yield surface. 

 
 

In figure 5-11a, hypoplastic yield surface calibrated to match the numerically 

determined yield surface in pure compression (lode angle equal 0), with φ = 21 where φ is 

the macro-scale friction angle. The shape of the hypoplastic yield surface is not the cycle 

which is not the Drucker-Prager yield surface (the shape is always displayed as a cycle on 

the π-plane) but over-predicts the strength for Lade-Duncan (black ring in the figure5-11) 

yield surface at the point (lode angle α = 60, so-called pure extension). It shows that yield 

surfaces which corresponded with parameter C for cases (b), (c), (d) and (e), calibrated to 

match the other yield surface in vertex point with φ = 29, 33, 23 and 33 respectively. Here, 

in case (b), the hypoplastic yield surface match Matsuoka-Nakai yield surface; in case (c), 

the hypoplastic one match the pure compression point at the beginning and shrink very fast, 

that is known to under-predict the strength in pure extension point (compare with other 
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three yield criterion); in case (d) and (e), the hypoplastic yield surface are both close to 

Lade-Duncan curve by surprise (note that, figure 5-11e calibrated with φ = 33 due to the 

Mohr-Coulomb yield surface which will blow up if φ > 34).  

 
 

 
(a)                                                               (b) 

 
(c)                                                                (d) 

Figure 5-12 Hypoplastic yield surface in terms of specimen 5 with different non-
dimensional material parameters 𝐶௜ , 𝑖 = 1,2,3,4 (a) μ = 0.2 media 9 (b) μ = 0.5 

media 10 (c) μ = 0.8 media 10 (d) μ = 0.8 media 11, compared with Lade-Duncan, 
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Matsuoka-Nakai and Mohr-Coulomb yield surface (Drucker-Prager yield surface in 
d). 

 
 

Figure 5-12 (a), (b), (c) and (d) show that hypoplastic yield surface was calibrated 

to coincide at a lode angle of α = 0 with φ = 20.5  , φ = 38 , φ = 33.5 and φ = 28  , 

respectively. Hypoplastic yield surfaces (a), (c) and (d) are over-predicted at the point 

where lode angle α = 60(pure extension). Distinguishing from Drucker-Prager, the shape 

projected on the π-plane of all these three yield surfaces are not as simple as a cycle. 

Specially, the Drucker-Prager yield surface was considered in lower right figure to make 

the comparison with the hypoplastic one for μ = 0.8  media 11. It is clear that the 

hypoplastic one is close to the Drucker-Prager but still not a perfect cycle. It is worth 

mentioning that in figure 5-12b, both the hypoplastic yield surface and Lade-Duncan one 

was coincided well not only at the calibrating point (α = 0), but also the pure extension 

condition. Unfortunately, the Mohr-Coulomb yield surface was fitted when φ = 38. But it 

is obviously that hypoplastic yield surface matched the Lade-Duncan one but not the 

Matsuoka-Nakai one in this special case.  

In a word, the two curves of hypoplastic yield surface and Lade-Duncan yield 

surface are closer to each other than other two curves for specimen 5 under each four 

conditions. 
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(a)                                                                 (b) 

 
(c) 

Figure 5-13 Hypoplastic yield surface in terms of specimen 6 with different non-
dimensional material parameters 𝐶௜ , 𝑖 = 1,2,3,4 (a) μ = 0.2 media 9 (b) μ = 0.2 

media 10 (c) μ = 0.8 media 14, compared with Lade-Duncan, Matsuoka-Nakai and 
Mohr-Coulomb yield surface. 

 
 

Then, looking at the specimen 6, all four yield surfaces are calibrated to match at 

pure compression point with φ = 20 , φ = 24  and φ = 33.5 , respectively for each 
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condition in figure 5-13 (a)(b)(c). The curves in (a) and (b) are similar with the results in 

figure 5-12(a), (c) and (d) that both hypoplastic yield curves over-predict the strength of 

specimen 6 than Lade-Duncan (Matsuoka-Nakai and Mohr-Coulomb as well) but under-

predict when compared with Drucker-Prager yield surface. And the lower case in figure 5-

13, the shape of hypoplastic yield surface looks ‘lanky’ than any other yield surface (other 

hypoplastic yield surface which were generated in this paper are counted as well). It seems 

that the hypoplastic constitutive model for specimen 6 μ = 0.8 media 14 is not as well as 

other two constitutive model which was showed in figure 5-10.  

In sum, most of hypoplastic yield surfaces aforementioned which were substituted 

with non-dimensional material parameters 𝐶௜ , 𝑖 = 1,2,3,4 for 3000-30000 mono-disperse 

spheres are close to the Lade-Duncan yield curve (some of them are coincided well and the 

others are close and under-predict when match the Drucker-Prager one). But it still exists 

some unmatched yield surfaces and the stress path as well. Note that, all the results from 

the very early part of this section are substituted back to the hypoplastic yield model B, 

some of these hypoplastic yield surfaces which were not displayed in this paper coincide 

the Lade-Duncan yield surface well at pure extension point and also the point lode angle α 

near 60, but not match the general calibrating point. Due to this reason it is hard to estimate 

whether the hypoplastic yield surface are calibrated successfully or not. In order to fix these 

problems, some optimization will be processed in next section which will work with 

125000 spherical poly-disperse spheres. 

 

5.2 125000 spherical poly-disperse spheres  
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As already did in section 5.1, the same procedure will be operated in this section 

with the output from the DEM true-triaxial test for 125000 spherical poly-disperse spheres. 

The strain rate combinations for 125000 spherical poly-disperse spheres which will be 

applied to the reverse hypoplastic model are displayed in table 5-2. 

 
Table 5-2 Seven strain rate combinations with applied in true-triaxial test simulation with 
125000 spherical poly-disperse spheres. 
 

Lode angle 𝜀ଵ̇ 𝜀ଶ̇ 𝜀ଷ̇ 

0 -0.001 -0.001 0.002 

10 -0.0005 -0.0015 0.002 

20 0 -0.002 0.002 

30 0.00025 -0.002 0.00175 

40 0.0005 -0.002 0.0015 

50 0.00075 -0.002 0.00125 

60 0.001 -0.002 0.001 

 
 

Then, seven groups of non-dimensional material parameters 𝐶௜ , 𝑖 = 1,2,3,4 are 

generated from seven samples for seven cases in table 5-2. All seven groups of parameter 

C are presented as follow. 

 
 
Table 5-3 Seven groups non-dimensional material parameters 𝐶௜ , 𝑖 = 1,2,3,4 

Lode angle 𝐶ଵ 𝐶ଶ 𝐶ଷ 𝐶ସ 

0 2.1279 53.8426 -55.918 395.0334 

10 3.9597 93.7937 -49.1817 132.5976 
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20 3.2384 83.3375 -35.9898 91.7782 

30 3.2366 81.8352 -32.4868 90.8295 

40 4.1385 97.4922 -40.1754 112.7138 

50 5.3817 75.2097 -32.7274 189.6429 

60 16.5304 -6.9414 -36.5571 746.5925 

  

 

By comparing with the parameter C which was obtained from the DEM true-triaxial 

test for 3000-30000 mono-disperse spheres, 𝐶ଵ , 𝐶ଶ , 𝐶ଷ  and 𝐶ସ  displayed in table 5-3 

become much more stable that 𝐶ଵ , 𝐶ଶ  and 𝐶ଷ  do not fluctuate greatly, but 𝐶ସ  decreases 

from a large number in the beginning and goes up to a big value (nearly twice as large as 

the number at lode angle equal 0). The fluctuation of the value of parameter C will be 

visually to display with the figure as follow.  

 

2.1279 3.9597 3.2384 3.2366 4.1385 5.3817 16.5304
53.8426

93.7937 83.3375 81.8352 97.4922 75.2097

-6.9414
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Figure 5-14 The parameter C for 125000 spherical poly-disperse spheres 
 

 

In figure 5-14, it is clear that both cures for 𝐶ଶ and 𝐶ସ are not as gently as the curves 

for 𝐶ଵ and 𝐶ଷ. And it is not fit that the description of the input which is that the same 

material with same parameter (not like the input in section 5.1 that nine samples contained 

different material behaviors) should generate the material parameter such as 𝐶ଵ and 𝐶ଷ in 

figure 5-14.  

In order to fix the problem above, the input data which was obtained from the DEM 

true-triaxial test for 125000 spherical poly-disperse spheres should be optimized. Through 

the MATLAB code for smoothing noise data, the optimized data is showed as follow.  

 
Figure 5-15 The parameter C for 125000 spherical poly-disperse spheres both smoothed 

(solid line) and the original (dotted line) 
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It can be easily found that the data for smoothed 𝐶ଵ and 𝐶ଷ are nearly the same as 

the original ones, and 𝐶ଶ and 𝐶ସ are better than the raw results. Especially 𝐶ଶ, in figure 5-

15, the curve for 𝐶ଶ do not sharp ups and downs as before. And the point in 𝐶ସ curve for 

lode angle equal zero is not as higher as the point (dotted line) in original 𝐶ସ curve in the 

beginning; therefore, the point in 𝐶ସ curve for lode angle equal sixty is smaller than the 

original one.  

Then, both the previous generated parameter C and the smoothed parameter C will 

be substituted into both the hypoplastic constitutive equation and the yield equation. 

 
 

 
(a)                                        (b)                                          (c) 
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(d)                                       (e)                                          (f) 
 

 
(g) 

Figure 5-16 Hypoplastic yield surface in terms of original DEM true-triaxial test data 
for 125000 spherical poly-disperse spheres with different non-dimensional material 
parameters 𝐶௜ , 𝑖 = 1,2,3,4 under seven lode angle α condition (a) α = 0 (b) α = 10 

(c) α = 20 (d) α = 30 (e) α = 40 (f) α = 50 (g) α = 60 (calibrate with Lade-Duncan 
and Drucker-Prager yield surface at pure compression point) 

 
 

It shows that the hypoplastic yield surfaces are calibrated Lade-Duncan and 

Drucker-Prager yield surface at pure compression point with φ =

27.5,29.3,31.5,34.4,35,41,20.3 (from a to g, respectively). Most of the yield surface in 

figure 5-16 such as the yield surface with case (b), (c), (d) and (e) keep the same shape. It 

coincides the result generated from figure 5-14&15, which is that the curves of parameter 

C in case (b) to (e) were stable. And in case (a), the shape of the hypoplastic yield surface 

is over-shrank and distorted, which is under-predict too much when it is compared with the 

Lade-Duncan yield surface. And the shape of the yield surface in figure 5-16f, the macro-

scale friction angle φ is too large which will lead the shape of Lade-Duncan yield surface 

to be distorted. But it still not hard to figure out that the shape of the hypoplastic yield 

surface in that figure is similar as the one in (b) to (e).  
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Note that it is interesting that in the figure 5-16g, the shape of the hypoplastic yield 

surface match the Lade-Duncan yield surface well which was slightly over-predict 

(compared with Lade-Duncan yield surface). 

Looking for the parameter C with the smoothed results from DEM true-triaxial test 

for 125000 spherical poly-disperse spheres, the hypoplastic yield surfaces are generated as 

follow (which are calibrated with Lade-Duncan and Drucker-Prager yield surface at pure 

compression point). 

 
 

 

(a)                                       (b)                                          (c) 

 
(d)                                       (e)                                          (f) 
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(g) 

Figure 5-17 Hypoplastic yield surface in terms of smoothed DEM true-triaxial test 
data for 125000 spherical poly-disperse spheres with different non-dimensional 

material parameters 𝐶௜ , 𝑖 = 1,2,3,4 under seven lode angle α condition (a) α = 0 (b) 
α = 10 (c) α = 20 (d) α = 30 (e) α = 40 (f) α = 50 (g) α = 60. (calibrate with 

Lade-Duncan and Drucker-Prager yield surface at pure compression point) 
 
 

All seven hypoplastic yield surfaces are calibrated with Lade-Duncan and Drucker-

Prager yield surface in pure compression with φ = 26.5,28,29.8,31.7,32,39,30.5 , 

respectively. It can be observed that the shapes of the yield surface are uniform in figure 

5-17 which is one of the most gratifying, even though the curve of the parameter C in figure 

5-15 are not one hundred percent coincided. Note that, it is slightly under-predicted under 

the pure extension for the case (f) compared with another six samples. It may cause by the 

macro-scale friction angle φ for case (f), which is larger than any φ in seven hypoplastic 

yield surfaces. The same assumption is can be obtained from result in figure 5-16f with the 

raw DEM data. It shows that compared with the yield surface all the optimized hypoplastic 

yield surfaces are under-predict in pure-extension and even under-predict when it is 

compared with the Matsuoka-Nakai’s. And it can be found that parameter 𝐶ଵ and 𝐶ଷ can 

be easily generated from both smoothed and original data and these two parameters do not 

impact the change of hypoplastic yield surface’s shape due to the stable curve in figure 5-

15. 
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In sum, fortunately, the shapes of hypoplastic yield surface for same specimen are 

coincided, which conform to the comprehension of hypoplastic model in general. 
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6 Conclusion and future work 

6.1 Conclusion 

The groups of the non-dimensional material parameters 𝐶௜ , 𝑖 = 1,2,3,4 with the 

input from the DEM true-triaxial test for both 3000-30000 mono-disperse spheres and 

125000 spherical poly-disperse spheres, are obtained from the improved hypoplastic 

method in this paper. This method can be used to calculate the material parameter C which 

can be substituted into the hypoplastic constitutive model. The method introduced in 

chapter 3 has the ability to generate the parameter  𝐶௜ , 𝑖 = 1,2,3,4 which can be used to plot 

the yield surface matching with the Lade-Duncan, Matsuoka-Nakai, Mohr-Coulomb, 

Drucker-Prager etc. From them, the Lade-Duncan yield surface through the complicated 

mathematics calibration. It can only summarize the law of mathematics or so-called 

random probability which is hard to persuasive when these parameters C should be 

correlated with the material. In contrast, the improved method which is inspired by the Wu. 

W and Erich Bauer which was setting up two equations applied with initial condition for 

the triaxial test, can generate the attributive material parameter C. Due to the input of the 

improved method which is the stress and strain obtained from the true-triaxial test, the 

improved method is convinced to be material corresponded.  

And it is different from the mentor (the idea from Wu. W and Erich Bauer), the 

complete true-triaxial test data is applied to generate parameter C. With the Moore-Penrose 

inverse method, hypoplastic constitutive model can be optimized to be the calculator for 

the parameter C. The totally inverse equation from original hypoplastic constitutive 

equation is successful match the size of the input which was the output from the DEM true-

triaxial test for each specimen. Otherwise, the procedure for smoothing the DEM raw data 
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successfully eliminate most of the noisy data. And it is valid for the later process which is 

re-substituted the parameter C back into the hypoplastic constitutive equation. More than 

150 cases of different specimen from DEM true-triaxial tests were discussed in this paper. 

Collaborating with the optimized inverse hypoplastic model for the parameter C study and 

the hypoplastic constitutive model, most of these cases were successfully produce the 

parameter C. And the least square method is applied to approximate the unique solution of 

the parameter 𝐶௜ , 𝑖 = 1,2,3,4. The concept of inverse the hypoplastic constitutive model is 

convinced to generate the actual and effective non-dimensional material parameters 𝐶௜ , 𝑖 =

1,2,3,4.  

6.2 Future work 

Right now, due to the noisy data, the result of the hypoplastic yield surface was not 

coincided with the Lade-Duncan yield surface which was considered as the most accurate 

one empirically, in pure extension. It is interested to further add different test data into the 

inverse hypoplastic parameter equation. Meanwhile, the more effective noisy eliminating 

procedure should be employed to smooth the stress path from the test. Otherwise, the input 

from the DEM true-triaxial can be added more options which was processed in [31]. Even 

though the hypoplastic parameter model can be processed well with the least square method 

for approximating the unique solution of the C, some more detailed algorithm can be 

applied on the model (e.g. GLS, RLS etc.). 

Otherwise, as for hypoplastic theory, the constitutive equation introduced in this paper is 

just a drop in the ocean. It exists huge amount of different constitutive models which are 

corresponding with such as the nonidentical void ratio can generate more detailed 
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correlation between the hypoplastic yield surface and the Lade-Duncan yield surface. Due 

to the emphasis of this paper which is the parameter study, more work such as the response 

envelops especially useful tool in hypoplastic theory should be discussed. It should contain 

the ability for explaining the reason why Lade-Duncan yield surface, is such a good method, 

in the future.   
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