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Abstract 
Two model-based algorithms for edge detection in spectral imagery are developed that specifically 

target capturing intrinsic features such as isoluminant edges that are characterized by a jump in color 

but not in intensity. Given prior knowledge of the classes of reflectance or emittance spectra 

associated with candidate objects in a scene, a small set of spectral-band ratios, which most 

profoundly identify the edge between each pair of materials, are selected to define a edge signature. 

The bands that form the edge signature are fed into a spatial mask, producing a sparse joint 

spatiospectral nonlinear operator. The first algorithm achieves edge detection for every material pair 

by matching the response of the operator at every pixel with the edge signature for the pair of 

materials. The second algorithm is a classifier-enhanced extension of the first algorithm that adaptively 

accentuates distinctive features before applying the spatiospectral operator. Both algorithms are 

extensively verified using spectral imagery from the airborne hyperspectral imager and from a dots-in-

a-well midinfrared imager. In both cases, the multicolor gradient (MCG) and the hyperspectral/spatial 

detection of edges (HySPADE) edge detectors are used as a benchmark for comparison. The results 

demonstrate that the proposed algorithms outperform the MCG and HySPADE edge detectors in 

accuracy, especially when isoluminant edges are present. By requiring only a few bands as input to the 

spatiospectral operator, the algorithms enable significant levels of data compression in band selection. 

In the presented examples, the required operations per pixel are reduced by a factor of 71 with respect 

to those required by the MCG edge detector. 

SECTION I. Introduction 
Image segmentation and edge detection for multispectral (MS) and hyperspectral (HS) images can be 

an inherently difficult problem since gray-scale images associated with individual spectral bands may 

reveal different edges. Segmentation algorithms for gray-scale images utilize basic properties of 

intensity values such as discontinuity and similarity [1]. Popular gray-scale edge detectors include 

Canny [2], Sobel [3], and Prewitt [1], to name just a few. The transition from a gray-scale to a 

multicolor image complicates edge detection significantly: the standard definition of a gray-scale edge 

as a “ramp” or “ridge” between two regions [1], p. 573 is no longer appropriate because a multicolor 

image has multiple image planes (channels) corresponding to different spectral bands. Moreover, 

depending on the composition of the scene, two distinct spectral (color) regions may exhibit the same 

intensity for one or more bands and, in this case, the edge between the two regions is 

termed isoluminant. An isoluminant edge is therefore characterized by a jump in color rather than a 

jump in intensity. As a result, isoluminant edges cannot be detected easily by a standard gradient-

based operator because they usually do not exhibit an intensity ramp that can be estimated by the 

magnitude of such an operator [4]. (Examples of isoluminant edges will be shown in Section III-B). 

The extension of gray-scale edge detection to multicolor images has followed three principal paths [5]. 

A straightforward approach is to apply differential operators, such as the gradient, separately to each 

image plane and then consolidate the information to obtain edge information [6]. Sapiro [7], Sandberg 



and Chan [8] identified several key drawbacks of such a straightforward approach. First, edges can be 

defined by combinations of different image planes and these edges may be missing in some of the 

image planes. Second, processing image planes separately disregards potential correlation across 

image planes. Third, integration of information from separate image planes is not trivial and is often 

done in an ad hoc manner. Moreover, in cases when an edge appears only in a subset of image planes, 

there are no standard ways to fuse the information from different planes. In recent years, new gray-

scale algorithms were presented in the community (see, for example, [9]–[10][11][12]) but they all 

suffer from the scalability problem when applied to multicolor images. 

A second approach for multicolor edge detection is to embed the variations of all color channels in a 

single measure, which is then used to obtain the edge maps [5]. Typically, this approach is developed 

by starting from a given gray-scale operator, which is then consistently extended to multicolor images. 

Two representative examples of this approach are the multicolor gradient (MCG), proposed by Di 

Zenzo [13], and the morphological color gradient (MoCG) of Evans and Liu [14]. The MCG operator 

represents a consistent extension of the standard gradient operator to multicolor images and it 

measures the local steepness of the multicolor image considered as a manifold embedded in the 

Euclidean space. (A hyper-pixel belongs to a multicolor edge if the local steepness of the manifold, as 

measured by MCG, exceeds a given threshold [13]). Similarly, the MoCG operator is a consistent 

extension of the morphological gray-scale gradient operator to multicolor images [14], [15]. Such an 

operator is defined as the difference of the dilation and the erosion operators applied to a given 

structuring element [16]. Because the MCG and the MoCG edge detectors simultaneously utilize spatial 

and spectral information, they are examples of joint spatio-spectral image-processing algorithms. The 

MCG algorithm and its related algorithms have been used with great success in digital image 

processing [7], [17], [18]; however, as shown by the complexity estimates in Section IV, for spectral 

images with a large number of bands, the number of operations required by the MCG algorithm can be 

prohibitively high. 

Another approach that falls into the category of joint spatio-spectral algorithms is the order-statistics 

approach [19] and its extensions presented by Toivanen et al. [20] and Jordan and Angelopoulou [21]. 

In general, these algorithms consider the data as a discrete vector field and they utilize an R-ordering 

method to define a color edge detector using the magnitudes of linear combinations of the sorted 

vectors. Another algorithm, presented by Yu et al. [22], performs a mapping of the color image into a 

feature space, which considers features such as the local contrast, the edge connectivity, the color 

contrast similarity and the orientation consistence. These features are merged together to create a 

single feature that is compared to a threshold to generate the final edge map. Similar approaches can 

be found in [23] and [24] and more sophisticated estimators of the color gradient can be found in [25]. 

A third approach for multicolor edge detection is to aim the algorithm to detect solely the changes 

between the materials present in the imaged scene. For example, the HySPADE (Hyperspectral/Spatial 

Detection of Edges) algorithm transforms the data cube into a spectral angle (SA) cube by calculating 

the SA between each hyperpixel in the cube with every other pixel [26]. As a result, the third 

dimension in the original cube is replaced by the SA results, where jumps in the SA represent changes 

in the materials. The positions of these jumps are mapped back in to the original data cube, and the 

final edge map is derived upon statistical accumulation of edge information contained in every SA-



cube. One important distinction between the MCG algorithm and the HySPADE algorithm is that the 

former utilizes both spectral and spatial information to detect the edges, while the HySPADE utilizes 

solely spectral information to unveil the boundaries of the material composition. 

In this paper, we propose two novel joint spatio-spectral algorithms based on the concept of spectral-

bands ratios. By judiciously selecting the few and most relevant spectral bands to maximize the 

contrast between pairs of materials, we define a small set of ratios of spectral-band features that most 

profoundly identify edges between each pair of materials. In order to obtain the collection of relevant 

bands and the corresponding ratios, a collection that we term the edge signature, we utilize prior 

knowledge of the spectral characteristics of the materials in the scene, obtained, for example, from a 

library of spectral data. Through this stage, the proposed algorithms achieve substantial levels of data 

compression as compared with the MCG or HySPADE algorithms. In conjunction with a spatial mask, 

the few spectral bands from the edge signature give rise to a multispectral operator that can be viewed 

as a sparse, three-dimensional (3D) mask, which is at the heart of the two proposed edge-detection 

algorithms. The 3D mask does not operate on a single image plane but instead it fuses spectral 

information from multiple image planes with spatial information. The first algorithm, termed the 

Spectral Ratio Contrast (SRC) edge detection algorithm, defines the edge map of a spectral image by 

matching the output of the 3D mask with the ratios from the edge signature. The second algorithm is 

an extension of the SRC algorithm and utilizes spectral classification to further enhance the detection 

of edges that are solely due to material (not intensity) changes. We term this extension the Adaptive 

Spectral Ratio Contrast (ASRC) edge detection algorithm since it adaptively changes the SRC algorithm 

sensitivity to edges (at each pixel) by considering the material-classification results of the neighboring 

pixels. The first algorithm detects edges that arise from both intensity and spectral changes while the 

second algorithm detects edges based on spectral changes only. 

The sparse spatio-spectral mask used in the SRC and the ASRC algorithms is an important mark of 

distinction from the MCG-based edge detector and other multispectral edge-detection algorithms. A 

second key distinctive mark of the proposed two algorithms is that they are not derivative-based: edge 

detection is effected by matching an edge signature rather than by measuring the gradient's 

magnitude. Moreover, the application of spectral ratios to define multispectral operators for edge 

detection is a novel and a previously unexplored research direction. However, spectral ratios have 

been previously used in many techniques for quantitative vegetation monitoring [27]–[28][29], 

regional seismic discrimination [30]–[31][32][33] and deblurring of noisy multichannel images [34]. 

The paper is organized as follows. In Section II we present the SRC and the ASRC algorithms. In Section 

III we present results of applying the algorithm to real data from the Airborne Hyperspectral Imager 

(AHI) [35] and a quantum dots-in-a-well (DWELL) mid-infrared (IR) imager [36] and compare the 

performance to those resulting from the Canny, MCG and HySPADE edge detectors. In Section IV we 

present a complexity analysis of the algorithms. Our conclusions are presented in Section V. 

SECTION II. Spectral Ratio Contrast Algorithm for Edge Detection 
An MS or HS image, also termed an image cube, is a 3D array of real numbers that we denote by 𝐮 ∈

𝕀ℝ𝐼×𝐽×𝐾, where 𝐼 and 𝐽 represent the number of horizontal and vertical pixels, respectively, in the 

spatial domain, and 𝐾 represents the number of spectral bands. We denote any element of the 



cube 𝐮 as 𝑢𝑘(𝑖, 𝑗), where 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝐽 and 1 < 𝑘 ≤ 𝐾 . The value of 𝑢𝑘(𝑖, 𝑗) is referred to as 

the intensity of the 𝑘th band at spatial location (𝑖, 𝑗) . For a fixed spatial location (𝑖, 𝑗) , the 𝐾 -

dimensional vector 𝐮(𝑖, 𝑗) = (𝑢1(𝑖, 𝑗), … , 𝑢𝐾(𝑖, 𝑗)) is termed a hyper-pixel. Meanwhile, for a fixed band 

index 𝑘 , the two-dimensional array 𝑢𝑘(⋅,⋅) defines the 𝑘 th image plane (color slice) of the spectral 

image. 

The goal of this paper is to define an edge map, 

ℱ : 𝕀ℝI×J×K ↦ {0, 1}I×J, 

that assigns the value 1 to the pixel location (𝑖, 𝑗) if 𝐮(𝑖, 𝑗) belongs to an edge, while assigning the 

value 0 otherwise. In this paper we define an edge to be either a jump in the broadband intensity (as in 

the conventional definition of an edge for gray-scale images) or a change in the material that exhibit 

color contrast but not necessarily luminance contrast (as in isoluminant edges). The SRC algorithm is 

designed with the objective of detecting both types of edges. To reduce the detection of false edges 

triggered by noise, and to improve the detection of isoluminant edges, the ASRC algorithm is designed 

to detect edges that are purely due to changes in the material. 

For two types of materials A and B, we build the edge map ℱAB in three stages: (i) model-based edge 

signature identification, (ii) sparse spatio-spectral mask development, and (iii) edge discrimination. The 

SRC and the ASRC algorithms share the first two stages, but they differ in the third stage, where the 

latter involves spectral classification before discriminate the edges. For simplicity, we first describe 

both algorithms assuming only two distinct materials A and B in scenes, and later we describe the 

extensions to multiple materials. 

A. Model-Based Edge Signature Identification 
Given two distinct materials A and B in a scene that is probed by a sensor, we seek those bands for A 

and B whose ratios can best identify the spatial locations that correspond to the boundary points 

between the two materials. Let 𝐸AB denote the set of all spatial indices (in the cube resulting from 

imaging the scene containing materials A and B) that are boundary points between materials A and B, 

and let 𝐚 = (𝑎1, … , 𝑎𝐾) and 𝐛 = (𝑏1, … , 𝑏𝐾) denote hyper-pixels corresponding to materials A and B, 

respectively. For example, the vector a can be obtained by taking the average of all hyper-pixels as 

material A is probed by the sensor. We next define the spectral ratio index between materials A and B 

as the 𝐾 × 𝐾 matrix 

A/B ≜ ൮

𝑎1

𝑏1
⋯

𝑎1

𝑏𝐾

⋮ ⋱ ⋮
𝑎𝐾

𝑏1
⋯

𝑎𝐾

𝑏𝐾

൲(1) 

We define the signature of the edge between materials A and B as a small collection of size R , 

where R≪K , of elements of (1) that can reliably identify, as described below, the edge's spatial 

indices, ℰ𝐴𝐵. We denote the edge signature by 

𝜀𝐴𝐵 = {൫𝑝{1}, 𝑞{1}, 𝜌{1}൯, … , ൫𝑝{𝑅}, 𝑞{𝑅}, 𝜌{𝑅}൯}, (2) 

https://ieeexplore.ieee.org/document/#deqn1


where 𝑝𝑟 and 𝑞𝑟 are the band indices associated with the ratios 𝜌𝑟 = 𝑎𝑝𝑟
/𝑏𝑞𝑟

, 𝑟 = 1, … , 𝑅. The 

integer 𝑅 is the length of the edge signature. 

The selection of the triplets (𝑝𝑟 , 𝑞𝑟 , 𝜌𝑟), 𝑟 = 1, … , 𝑅, is made as follows. First, we 

select 𝑆 bands {𝑖1, … , 𝑖𝑆}, where the materials A and B exhibit maximum separation, i.e., 

𝑖1  =  arg 
max

1 ≤ 𝑖 ≤ 𝐾
 |𝑎𝑖  −  𝑏𝑖  |,

𝑖2  =  arg 
max
1≤𝑖≤𝐾

𝑖≠𝑖1

 |𝑎𝑖  −  𝑏𝑖  |,

⋮

𝑖𝑆  =  arg 
max
1≤𝑖≤𝐾

𝑖≠𝑖1,...,𝑖𝑆−1

 |𝑎𝑖 −  𝑏𝑖 |.

  

Clearly, in the case of HS imagery the search for the best S bands will be in a larger space compared to 

the case of MS imagery, but the same procedure is utilize in both types of imagery. Hence, once the 

edge signature is obtained the complexity associated with processing MS and HS imagery are identical. 

Next, we compute the spectral ratios using all possible band combinations: 𝜌𝑝𝑞 = 𝑎𝑖𝑝
/𝑏𝑖𝑞

, 1 ≤ 𝑝, 𝑞 ≤

𝑆. Without loss of generality, we may assume that all ratios are less than or equal to unity. (If 𝜌𝑝𝑞 >

1 for some 𝑝 and 𝑞, we simply replace it by its reciprocal.) Finally, we define ℰAB by selecting 

the 𝑅 ratios that exhibit the strongest spectral contrast between the classes. To rank the ratios 

according to their spectral contrast, we note that owing to the convention that 𝜌𝑝𝑞 ≤ 1, the ratios 

closest to zero correspond to the strongest spectral contrast between any two bands. Thus, we select 

the first pair of bands, {𝑝1, 𝑞1}, as the pair corresponding to the smallest ratio, 

𝜌1 = 𝜌𝑝1𝑞1
= arg

min

1 ≤ 𝑝, 𝑞 ≤ 𝑆
𝜌𝑝𝑞 , 

the second pair of bands {𝑝2, 𝑞2} as the pair corresponding to the next smallest ratio, 

𝜌2 = 𝜌𝑝2𝑞2
= arg

min

1 ≤ 𝑝, 𝑞 ≤ 𝑆
𝑝 ≠ 𝑝1

𝑞 ≠ 𝑞1

𝜌𝑝𝑞, 

and so on. We combine the ordered band indices and the corresponding ranked ratios to define 

the 𝑅 triplets in the edge signature (2). Since all the ratios are less than or equal to unity, it can be 

easily shown that the definition of the edge signature is invariant under the change in the order of the 

materials A and B. 

B. Sparse Spatio-Spectral Mask Development 
We denote a spatial mask, ℳ, at a pixel (𝑖, 𝑗) as a list of pixel pairs surrounding the pixel of interest. 

More precisely, ℳ(𝑖, 𝑗) is the union of 𝑀 neighborhoods of pixels, ℳ(𝑖, 𝑗) =  𝒩𝑚(𝑖, 𝑗),𝑀
𝑚=1 where 

each neighborhood consists of two distinct pixels surrounding (𝑖, 𝑗), i.e., 𝒩𝑚(𝑖, 𝑗) =

{𝑢𝑚−(𝑖, 𝑗), 𝑢𝑚+(𝑖, 𝑗)}. For example, one can define a 3×3 mask centered at the pixel (𝑖, 𝑗) that 
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excludes the center pixel by taking the union of four neighborhoods, 𝒩1 = {𝑢1−(𝑖, 𝑗), 𝑢1+(𝑖, 𝑗)} =

{𝑢(𝑖 − 1, 𝑗), 𝑢(𝑖 + 1, 𝑗)}, 𝒩2 = {𝑢2−(𝑖, 𝑗), 𝑢2+(𝑖, 𝑗)} = {𝑢(𝑖, 𝑗 − 1), 𝑢(𝑖, 𝑗 + 1)}, etc. 

Next, we define the operation of the joint spatio-spectral mask at the (𝑖, 𝑗) -th pixel by computing the 

ratios between each of the 𝑀 pixel pairs of the spatial mask ℳ, at each of the 𝑅 band pairs given in 

the edge signature ℰ𝐴𝐵. For example, using the pair of hyper-pixels defined by 𝒩1 and the pair of bands 

given by first triplet of the edge signature, (𝑝1, 𝑞1, 𝜌1), one can define the ratios 𝑢𝑝1
1−(𝑖, 𝑗)/

𝑢𝑞1
1+(𝑖, 𝑗) and 𝑢𝑝1

1+(𝑖, 𝑗)/𝑢𝑞1
1−(𝑖, 𝑗). Namely, the application of the spatio-spectral mask to each 

location (𝑖, 𝑗) results in a 2𝑀 × 𝑅 matrix of “features.” (Compare this to a gray-scale image when the 

application of a spatial mask to a pixel results in a scalar). Now the application of the spatio-spectral 

mask to the entire image cube defines the mapping 

𝒦AB ∶ 𝕀ℝ𝐼×𝐽×𝐾 ↦ (𝕀ℝ2𝑀×𝑅)𝐼×𝐽, (3) 

where the (𝑖, 𝑗) th entry of 𝒦AB(𝐮) will be a 2𝑀 × 𝑅 feature matrix of spectral ratios given by 

𝒦AB(𝐮)(𝑖, 𝑗) =

ۉ

ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۇ

𝑢𝑝1
1−(𝑖,𝑗)

𝑢𝑞1
1+(𝑖,𝑗)

⋯
𝑢𝑝𝑅

1−(𝑖,𝑗)

𝑢𝑞𝑅
1+(𝑖,𝑗)

⋮ ⋱ ⋮
𝑢𝑝1

𝑀−(𝑖,𝑗)

𝑢𝑞1
𝑀+(𝑖,𝑗)

⋯
𝑢𝑝𝑅

𝑀−(𝑖,𝑗)

𝑢𝑞𝑅
𝑀+(𝑖,𝑗)

𝑢𝑝1
1+(𝑖,𝑗)

𝑢𝑞1
1−(𝑖,𝑗)

⋯
𝑢𝑝𝑅

1+(𝑖,𝑗)

𝑢𝑞𝑅
1−(𝑖,𝑗)

⋮ ⋱ ⋮
𝑢𝑝1

𝑀+(𝑖,𝑗)

𝑢𝑞1
𝑀−(𝑖,𝑗)

⋯
𝑢𝑝𝑅

𝑀+(𝑖,𝑗)

𝑢𝑞𝑅
𝑀−(𝑖,𝑗)ی

ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۊ

. (4) 

 

For convenience, we denote the entries of the matrix 𝒦AB(𝐮)(𝑖, 𝑗) as 

𝜅AB(𝐮)(𝑖, 𝑗; 𝑚−, 𝑟) = 𝑢𝑝𝑟
𝑀−(𝑖, 𝑗) 𝑢𝑞𝑟

𝑀−(𝑖, 𝑗)ൗ , 

and 

𝜅AB(𝑖, 𝑗; 𝑚+, 𝑟) = 𝑢𝑝𝑟
𝑀+(𝑖, 𝑗) 𝑢𝑞𝑟

𝑀−(𝑖, 𝑗)ൗ , 

The use of both 𝜅AB(𝑖, 𝑗; 𝑚−, 𝑟) and 𝜅AB(𝑖, 𝑗; 𝑚+, 𝑟) in (4) is required to account for the two possible 

material configurations at the m th hyper-pixel pair. Specifically, the first ratio captures the case when 

the hyper-pixel 𝑢𝑚−(𝑖, 𝑗) is, for example, from material A and 𝑢𝑚+(𝑖, 𝑗) is from material B, whereas the 

second ratio is needed to account for the possibility that 𝑢𝑚−(𝑖, 𝑗) is from material B and 𝑢𝑚+(𝑖, 𝑗) is 

from material A. Therefore, the use of the two ratios removes dependence on the direction of the 

transition between A and B, and it is similar to the use of the magnitude in the gradient operator to 

achieve its rotational invariance. 

To illustrate the functionality of the joint spatio-spectral mapping 𝒦AB, consider a simple example for 

which the spatial mask is comprised of the simple neighborhoods 𝒩1 and 𝒩2 described earlier and an 
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edge signature whose length is unity (𝑀 = 2 and 𝑅 = 1). Note that in this example 𝒦AB(𝐮)(𝑖, 𝑗) is a 

4×1 matrix given by 

𝒦AB(𝐮)(𝑖, 𝑗)

ۉ

ۈ
ۇ

𝑢𝑝1
1−(𝑖, 𝑗) 𝑢𝑞1

1+(𝑖, 𝑗)ൗ

𝑢𝑝1
2−(𝑖, 𝑗) 𝑢𝑞1

2+(𝑖, 𝑗)ൗ

𝑢𝑝1
1+(𝑖, 𝑗) 𝑢𝑞1

1−(𝑖, 𝑗)ൗ

𝑢𝑝1
2+(𝑖, 𝑗) 𝑢𝑞1

2−(𝑖, 𝑗)ൗ ی

ۋ
ۊ

. (5) 

A visual illustration of the computation of the rows elements in this matrix is shown in Fig. 1. This 

figure shows that, unlike a conventional mask, 𝒦AB(𝐮) does not operate on a single image plane of the 

image cube but instead it fuses information from different planes in a nonlinear fashion. Note that the 

spatio-spectral mask is generally non-separable, i.e., it cannot be written as the product of an operator 

acting solely in the spatial domain and another operator acting in the spectral domain. 

 
Fig. 1. Representative joint spatio-spectral mask, 𝒦AB(𝐮)(𝑖, 𝑗), for the neighborhoods 𝒩1 and 𝒩2 
described in the text and edge signature ℰ𝐴𝐵 of length 1 (𝑀 = 2 and 𝑅 = 1). We utilize bold arrows to 
represent the first two ratios and regular arrows to represent the last two ratios in the presented 
example. 
 

Next, we develop the edge discrimination stage for the SRC algorithm. Later, the same stage is 

modified to generate the ASRC algorithm. 

C. Edge Identification 
The third stage of the SRC algorithm is the utilization of the sparse spatio-spectral mask, 𝒦AB, to 

identify the edges between materials A and B. The proposed edge-identification process is based on 

the following rationale. In the ideal case when no noise is present and the image under test is 

comprised only of hyper-pixels with the exact same value of the characteristic hyper-pixels 𝐚 and 𝐛, 
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the output of the spatio-spectral mask will perfectly match the values of the ratios obtained from the 

edge signature. To illustrate this point, assume the same example given earlier, where the spatio-

spectral mask is given by (5). When we have a horizontal edge, the second and fourth ratios will have a 

value that is not meaningful, but the first or third ratio will match the ratio from the edge 

signature, 𝜌𝑝1𝑞1
= 𝑎𝑝1

/𝑏𝑞1
. Indeed, if the upper pixel is from material A and the lower pixel is from 

material B, then the first entry of (5) will be 𝑢𝑝1
1−(𝑖, 𝑗)/𝑢𝑞1

1+(𝑖, 𝑗) = 𝑎𝑝1
/𝑏𝑞1

 (which matches 𝜌𝑝1𝑞1
) and 

the third entry will be 𝑢𝑝1
1+(𝑖, 𝑗)/𝑢𝑞1

1−(𝑖, 𝑗) = 𝑏𝑝1
/𝑎𝑞1

. Conversely, when the upper pixel is from material 

B and the lower pixel is from material A, the computed ratios are switched, which means that the third 

entry of (5) will match 𝜌𝑝1𝑞1
. This example shows that if an edge is present then at least one row 

of 𝒦AB(𝐮)(𝑖, 𝑗) will perfectly match the ratios from the edge signature. 

When noise is present, we allow a matching tolerance to account for the similarity between the 

outcome of the mask and the edge signature ratios. This can be accomplished by defining the mapping 

∆: (𝕀ℝ2𝑀×𝑅)𝐼×𝐽 ↦ ({0,1}𝑀×𝑅)𝐼×𝐽, 

where the (𝑖, 𝑗) th entry of 𝒦AB(𝐮) is used to form the 𝑀 × 𝑅 binary indicator matrix 

∆൫𝒦AB(𝐮)൯(𝑖, 𝑗) =

𝛿1
1(𝑖, 𝑗) ⋯ 𝛿𝑅

1(𝑖, 𝑗)

𝛿1
2(𝑖, 𝑗) ⋯ 𝛿𝑅

2(𝑖, 𝑗)
⋮ ⋱ ⋮

𝛿1
𝑀(𝑖, 𝑗) ⋯ 𝛿𝑅

𝑀(𝑖, 𝑗)

 (6) 

and the entries 𝛿𝑟
𝑚(𝑖, 𝑗) are assigned the values of 0 or 1 according to the rule 

𝛿𝑟
𝑚(𝑖, 𝑗) = ቐ

1, if |𝜅AB(𝑖, 𝑗; 𝑚−, 𝑟) − 𝜌𝑟| < 𝜖,

1, if |𝜅AB(𝑖, 𝑗; 𝑚+, 𝑟) − 𝜌𝑟| < 𝜖,
0, otherwise.

 (7) 

Here, the tolerance parameter, 𝜖, accounts for both the natural variability and the presence of noise in 

the spectral data for materials A and B. 

Ideally, if the 𝑚 th hyper-pixel pair belongs to the same material type, then the test in (7) will return 

the value of zero. Conversely, if the hyper-pixels forming the pair are from the two different materials, 

either the entry 𝜅AB(𝑖, 𝑗; 𝑚−, 𝑟) or 𝜅AB(𝑖, 𝑗; 𝑚+, 𝑟) will be equal to the corresponding ratio 𝜌𝑟 from the 

edge signature ℰ𝐴𝐵. As a result, the above test will return the value 1 for the elements 𝛿𝑟
𝑚 in the 𝑚 th 

row of (6). As such, for a given pair of pixels, the number of non-zero elements in the associated 𝑚 th 

row of the indicator matrix reveals the number of times the response of the mask 𝒦AB(𝐮)(𝑖, 𝑗) has 

matched (within the specified tolerance 𝜖) the spectral ratios from the edge signature ℰ𝐴𝐵. 

Because the pixel pairs used to form the rows of the mask correspond to different edge orientations 

(horizontal, vertical or diagonal), the number of ones in each row of (6) indicates the strength of the 

edge at position (𝑖, 𝑗) for that particular direction. One way to account for such strength is by 

computing the matrix infinity norm of (6). Specifically, we define the mapping 

Φ: ({0,1}𝑀×𝑅)𝐼×𝐽 ↦ ({0,1}𝐼×𝐽) , 
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which converts the indicator matrix (6) into an edge map by 

Φ ቀ∆൫𝒦AB(𝐮)൯ቁ (𝑖, 𝑗) = ቊ1, if ‖Δ(𝒦AB(𝐮))(𝑖, 𝑗)‖∞ ≥ 𝑅
~

0, otherwise,
 (8) 

where for any matrix 𝐀, ‖𝐀‖∞ = 𝑚𝑎𝑥
1≤𝑖≤𝑀

 |𝑎𝑖𝑗|
𝑅

𝑗=1
, and 𝑅

~

≤ 𝑅 is a specified threshold. With the 

definition in (8), the (𝑖, 𝑗) location will belong to the collection ℰ𝐴𝐵 of edges if the edge strength in at 

least one direction, as measured by the number of ones in the rows of (6), exceeds the threshold 𝑅
~

. If 

none of the edge strengths exceeds 𝑅
~

, then the (𝑖, 𝑗) site does not belong to ℰ𝐴𝐵. The value of the 

threshold 𝑅
~

 can be used to adjust the sensitivity of the edge detector to noise. For example, 

increasing 𝑅
~

 makes the algorithm less sensitive to noise but more restrictive. 

Finally, we define the edge map as the composition 

ℱAB = Φ ∘ ∆ ∘ 𝒦AB. 

Note that 𝒦AB is the only problem-specific component in ℱAB; the functions Δ and Φ are not problem 

specific. Because the edge signatures are determined independently for each pair of materials and the 

information from different color slices is properly fused, the SRC algorithm is particularly well-suited 

for scenes that contain both weak edges (e.g., isoluminant edges) and strong edges. In contrast, an 

MCG-based edge detector would require, for the detection of weak edges, reducing the threshold at 

the expense of producing false edges, as discussed in Section III. 

In Section II-D we present an extension of the edge identification stage of the SRC algorithm to benefit 

from locally-adaptive thresholding based on material classification. 

D. Classifier-Enhanced Edge Discrimination 
As shown in Section III, the SRC algorithm is capable of detecting edges that are due to intensity 

changes and edges that are due to spectral changes. In this subsection, we develop the ASRC 

algorithm, which is restricted to capturing edges that are due solely to material changes (and not 

intensity changes). By specializing the algorithm to material changes, we increase its tolerance to noise 

and the corresponding false edges are minimized. 

In order to capture solely the changes between materials in the ASRC algorithm, we utilize material 

classification of neighboring pixels to adaptively pre-qualify the spectral ratios before computing the 

indicator matrix (6). The use of classification to enhance other tasks such as segmentation is an area 

that has already been studied [37], [38]. For example, Loog and Ginneken [37] utilized a k -nearest 

neighbor classifier to generate an initial segmentation of ribs in chest radiographs, which is iteratively 

updated using other features such as spatial distribution of the pixels by means of different classifiers. 

Here, we fuse classification into the SRC algorithm to minimize the effect of the misidentified pixels 

from the former algorithm and improve the edge identification stage of the latter. 

Let us consider the feature matrix of the (𝑖, 𝑗) th location, 𝒦AB(𝐮)(𝑖, 𝑗), as given in (4). We want to 

rank the entries 𝜅AB(𝑖, 𝑗; 𝑚∓, 𝑟) of the feature matrix with the following two objectives in mind: (i) 
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promoting the thresholding of ratios (as edge candidates) when the spatio-spectral mask contains 

hyper-pixels from two distinct materials and (ii) discouraging the thresholding of ratios when the mask 

contains hyper-pixels from only one type of material. To do so, we embed the data-dependent 

multiplicative factors 𝛾𝑚,𝑟
𝑖,𝑗

 with the tolerance ϵ in (7), which results in its redefinition as 

𝛿𝑟
𝑚(𝑖, 𝑗) =

1, if |𝜅AB(𝑖, 𝑗; 𝑚−, 𝑟) − 𝜌𝑟| < 𝛾𝑚,𝑟
𝑖,𝑗

𝜖,

1, if |𝜅AB(𝑖, 𝑗; 𝑚+, 𝑟) − 𝜌𝑟| < 𝛾𝑚,𝑟
𝑖,𝑗

𝜖,

0, otherwise,

 

where we use the same multiplicative factor, 𝛾𝑚,𝑟
𝑖,𝑗

, for both tests in order to maintain the 

independence on the direction of the transition between materials. The mathematical definition of the 

multiplicative factors 𝛾𝑚,𝑟
𝑖,𝑗

 is as follows. Let 𝒩𝑢(𝑖, 𝑗), 𝒩𝑙(𝑖, 𝑗), 𝒩𝑟(𝑖, 𝑗) and 𝒩ℓ(𝑖, 𝑗) denote four 

neighborhoods surrounding the (𝑖, 𝑗) th hyper-pixel of interest. The subscripts 𝑢, 𝑙, 𝑟 and ℓ stand for 

upper, lower, right and left neighborhoods, respectively. The understanding is that 𝒩𝑢(𝑖, 𝑗) contains 

neighboring pixels above the hyper-pixel (𝑖, 𝑗) , 𝒩ℓ(𝑖, 𝑗) contains neighboring pixels to the left of 

pixel (𝑖, 𝑗) , and so on. We do not impose any restrictions on the four neighborhoods at this point. Let 

the function 𝒞: 𝕀ℝ𝑆 ↦ {0,1} be a classifier that maps each hyper-pixel to a class of materials, where 

outputs 0 and 1 represent classes A and B, respectively. Now for any collection of indices 𝒩, we 

denote the class of 𝒩 by 𝒞(𝒩), which is defined according to a certain prescribed classification rule. 

Next, define 

𝛾𝑚,𝑟
𝑖,𝑗

= ൫𝒞(𝒩𝑢) ⊕ 𝒞(𝒩𝑙)൯⋁൫𝒞(𝒩𝑟)⨁𝒞(𝒩ℓ)൯, (9) 

where ⊕ denotes the “exclusive OR” operation and the symbol “⋁” represents the “OR” operation. For 

simplicity of the notation, we have discarded the (𝑖, 𝑗) dependence of each neighborhood 

set 𝒩 in (9) with the understanding that each neighborhood is defined on a pixel-by-pixel basis. 

From (9), 𝛾𝑚,𝑟
𝑖,𝑗

 will be unity (in which case the (𝑚, 𝑟) th pixel-band pair at the (𝑖, 𝑗) location qualifies for 

thresholding as usual) if at least one of the opposite neighborhoods are classified as two different 

materials. On the other hand, 𝛾𝑚,𝑟
𝑖,𝑗

 will be zero (in which case the (𝑚, 𝑟) th pixel-band pair at 

the (𝑖, 𝑗) location does not qualify for thresholding) if the declared class of each neighborhood is in 

agreement with the declared class of its opposite neighborhood. As a consequence, the ASRC will 

operate as the the SRC algorithm only if the outcome of the classifier indicates the possible presence of 

an edge, suppressing edges that are due to an intensity change. This will also reduce the detection of 

false edges. 

The fact that the ASRC algorithm is restricted to identifying edges based on color only is similar to that 

of the HySPADE algorithm [26]; however, the algorithms are conceptually different. A key difference 

between the ASRC and the HySPADE algorithms is that the former utilizes the sparse, 3D mask of ratios 

to fuse spectral and spatial information to nonlinearly extract edge information while the latter 

algorithm utilizes only spectral information to compute spectral angles, which are linear spatio-spectral 

features. Even though the HySPADE algorithm performs equally well compared to the SRC algorithm, 

its performance is worse than that of the ASRC algorithm in the presence of isoluminant edges (see, for 
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example, Fig. 6). Moreover, as presented in the Section IV, the HySPADE algorithm requires a high 

number of operations per pixel (> 109 operations per pixel in our examples), as compared with the 

operations required by the proposed algorithms (< 90 operations per pixel in our examples). 

E. Extension of the Algorithms to Multiple Materials 
We limit the description of the extension of the algorithm to multiple materials to the case of three 

distinct materials A, B and C. The extension to the general case is straightforward. Due to the 

invariability of the detector for the order of the materials, for three distinct materials A, B and C there 

are three possible edges: 𝐸AB, 𝐸𝐴𝐶  and 𝐸𝐵𝐶. In this case we obtain three edge 

signatures, ℰ𝐴𝐵, ℰ𝐴𝐶  and ℰ𝐵𝐶, from which we define three joint spatio-spectral masks 𝒦AB, 𝒦CB, 

and 𝒦BC. We then use these masks to identify the hyper-pixels belonging to the edge 𝐸AB between 

materials A and B, the hyper-pixels from the edge 𝐸𝐴𝐶  between materials A and C, and the hyper-pixels 

from the edge 𝐸𝐵𝐶  between materials B and C. The final edge map is obtained by the union of the 

three edges: 

𝐸𝐴𝐵𝐶 = 𝐸𝐴𝐵 ڂ 𝐸𝐴𝐶 ڂ 𝐸𝐵𝐶 . 

SECTION III. Experimental Results 
In our study, we employ raw HS imagery from the AHI sensor, and raw MS imagery from the DWELL 

sensor (more details to follow). In order to create a more challenging scenario for the algorithms, we 

normalize the data by their broadband intensity [39]. The normalization minimizes the role of 

broadband emissivity in the discrimination process and emphasizes the spectral contrast. 

For the AHI dataset, we only perform a qualitative comparison of the algorithms since the ground-truth 

information is not available for this dataset. On the other hand, for the data from the DWELL sensor we 

perform both qualitative and quantitative assessment of the proposed algorithms and the benchmark 

algorithms as the ground-truth information is available. 

We compare the outcome of our algorithms with the edge maps obtained by the Canny 

algorithm [2] (applied to selected bands), the MCG algorithm [13] and the HySPADE algorithm [26]. We 

restrict our attention to edge signatures with unity length using two bands (i.e., 𝑆 = 2 and 𝑅 = 1), 

which is the minimum value required by the algorithms. Moreover, we utilize a 3×3 spatial mask to 

construct the joint spatio-spectral mask, 𝒦AB. Within the spatial mask, we identify four directions 

(each one associated with a pair of pixels): horizontal, vertical and the two diagonals, i.e., 𝑀 = 4. For 

the ASRC algorithm, we select the distance-based Euclidean classifier for its simplicity and the good 

results observed; the neighborhood sets 𝒩𝑢(𝑖, 𝑗), 𝒩𝑙(𝑖, 𝑗), 𝒩𝑟(𝑖, 𝑗) and 𝒩ℓ(𝑖, 𝑗) are defined within the 

same 3×3 spatial mask used in the SRC algorithm. This choice of spatial mask, classifier and 

neighborhood sets is also considered for the complexity analysis in Section IV. 

A. Edge Detection Using AHI Imagery 
The AHI sensor consists of a long-wave IR (7 𝜇m –11.5 𝜇m ) pushbroom HS imager and a visible high-

resolution CCD linescan camera. The HS imager has a focal-plane array (FPA) of 256× 256 elements 

with spectral resolution of 0.1 𝜇m [35]. For this study, we utilize AHI data that contains three different 

classes: building (B), ground (G) and road (R). We utilize the 200 low-noise bands out of the 256 



available bands. The calculated edge signatures (band indices and the corresponding responding ratios) 

for each pair of materials are summarized in Table I. 

TABLE I The Edge Signatures Between Classes B, G and R Obtained for the AHI Data 

Signatures Triplets (𝑝1, 𝑞1, 𝜌1)  

 Raw data Normalized data 

𝜀𝐵𝐺 (17, 16, 0.6941) (3, 4, 0.8609) 

𝜀𝑅𝐺 (47, 46, 0.7949) (3, 4, 0.8949) 

𝜀𝐵𝑅 (17, 16, 0.8706) (16, 17, 0.9588) 

 

Fig. 2 shows a comparison among the edge maps obtained by the Canny, the HySPADE, the MCG, the 

SRC and the ASRC algorithms for the raw sensor data (first and second columns) and for the normalized 

data (third and fourth columns). The Canny algorithm is applied to the same depicted image, which 

corresponds to the image plane at band 14. Recall that the MCG and the SRC algorithms detect edges 

characterized by both intensity and spectral changes. The HySPADE and ASRC algorithms, on the other 

hand, detect edges that exhibit a change in the spectral content only. 
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Fig. 2. Comparison between the SRC and ASRC edge detectors with the edge signatures defined 
in Table I on the one hand, and the Canny, MCG and HySPADE edge detectors on the other hand, for 
the raw sensor data (columns a and b) and the normalized sensor data (columns c and d) for the AHI 
imagery. First row, columns a to d: raw AHI data (band 14); Canny edge map for raw AHI data at band 
14; normalized AHI data at band 14; Canny edge map for AHI normalized data at band 14; Second row, 
columns a to d: MCG and SRC edge maps for AHI raw dataset; MCG and SRC edge maps for AHI 
normalized dataset; Third row, columns a to d: HySPADE and ASRC edge maps for AHI raw dataset; 
HySPADE and ASRC edge maps for AHI normalized dataset. 
 

From the results presented in Fig. 2 we observe that the Canny edge detector performs very well when 

applied to the AHI raw image for spectral band 14 (row I, column b). However, when the algorithm is 

applied to the intensity-normalized image, the performance of the Canny algorithm significantly 

degrades (row I, column d). This degradation is a result of the fact that the Canny algorithm detects 

intensity changes only, and it is expected to perform optimally for high intensity contrast images such 

as the image in row I, column a. 

The MCG and the SRC algorithms produce virtually the same edge maps when applied to raw sensor 

data (second row, columns a and b), with a clear computational advantage seen in the SRC algorithm 

by requiring only two spectral bands, whereas the MCG algorithm requires all the 200 available bands. 

When normalized data is used (second row, c and d columns), few edges in some areas are missed 

either by the SRC or the MCG algorithms. Nonetheless, the edge maps between the two algorithms are 

again comparable. Moreover, the results for the normalized case are very similar to those for the raw 

data case. These results show the advantage of the methods that utilize both intensity and spectral 

information over purely gray-scale algorithms such as Canny. 

The ASRC algorithm (row III, column b) performs significantly better compared to the HySPADE 

algorithm (row III, column a) when applied to the AHI raw data. The edge map obtained by HySPADE 

exhibits noise and some of the edges that were detected by SRC, MCG and ASRC are missed by 

HySPADE. The advantage of ASRC over HySPADE continues to be pronounced when both algorithms 

are applied to the normalized data (row III, columns d and c). The edge maps obtained by the ASRC 

algorithm applied to raw and normalized data (row III, columns b and d) are virtually identical. This is 

due to the fact that the ASRC algorithm detects edges based on changes of the spectral content only. 

As for HySPADE, the application of the algorithm to the normalized AHI data results in a slight 

degradation of the edge detection but overall reduction of the noise in the edge map compared to 

application to the raw AHI data (row III, column a); however, as in the case of ASRC, the edge maps are 

comparable. It is important to note that the edge maps obtained by the MCG, the SRC and the ASRC 

algorithms are very similar for both raw and normalized AHI data cases. 

One important conclusion can be drawn from the results presented so far. By choosing only a few 

bands with maximum spectral separation and by allowing unrestricted band combinations to form the 

ratios, the SRC and ASRC algorithms (with edge signatures that use the minimal possible length) 

perform as well as the MCG algorithm and outperform the HySPADE algorithm. This is an important 

result because it lends itself to substantial data compression, compared to MCG, as well as fast 

processing, as compared to HySPADE. 



The SRC and ASRC algorithms offer a performance advantage over the Canny, the MCG and the 

HySPADE algorithms for images that contain isoluminant edges as seen next for the DWELL imagery. 

B. Edge Detection Using Dwell Imagery 
The DWELL sensor used in these experiments was designed and fabricated at the Center for High 

Technology Materials at the University of New Mexico [36], [39]. The DWELL photodetector offers a 

unique property of spectral tunability that is continuously controllable through the applied bias 

voltage. This feature of the DWELL is a result of the quantum-confined Stark effect [40]. In essence, a 

single DWELL photodetector can be thought of as a continuously tunable MS spectral detector, albeit 

with overlapping spectral bands [39]. 

In these experiments we utilize a 320× 256 DWELL FPA to image two different arrangements of rocks, 

as shown in Fig. 3 (first column). The first arrangement (top-left) is comprised of granite (G) and 

limestone (L) rocks (approximately 1–2 inch in diameter). The surrounding background (B) in this image 

corresponds to the opening of a blackbody source. The second arrangement (bottom-left) is comprised 

of the rocks phyllite (P), granite (G) and limestone (L), surrounded by the same background (B) as that 

in the first arrangement. Both examples contain an invisible isoluminant edge between the granite and 

the limestone rocks that exists on the tip of the black arrows. The edge maps shown in Fig. 3 were 

obtained by using the Sobel (second column) and the Canny (third column) edge detectors applied to 

raw DWELL-sensor data when the FPA is operated at 1.0 V. The corresponding spectral response of the 

sensor at the applied bias of 1.0 V is shown in Fig. 4. Note that the Sobel edge detector has entirely 

missed the edge between granite and limestone rocks in both examples. Moreover, it has also failed to 

detect strong edges between both the granite-phyllite pair and the limestone-phyllite pair. However, 

the more sophisticated Canny edge detector picks up these strong edges, and it partially detects the 

isoluminant edge in the first examples. Nevertheless, it does not detect the isoluminant edge in the 

second example. 

 
Fig. 3. Two datasets used in the current study: the first dataset is comprised of B, G and L classes (top 
row) and the second dataset is comprised of B, G, L and P classes (bottom row). First column: images 
acquired with the DWELL FPA (with enhanced contrast to show details) operating at an applied bias of 
1.0 V. The isoluminant edges (not visible) are marked by the tips of the black arrows. Second column: 
edge map obtained by the Sobel gray-scale edge detector; third column: edge map obtained by the 
Canny gray-scale edge detector. 
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Fig. 4. Spectral response of the DWELL photodetector at an applied bias of 1.0 V. 
 

By operating the DWELL sensor at ten different bias voltages, we generated a multispectral cube to 

test the proposed algorithms. The obtained edge signature triplets for all the possible combinations of 

material pairs for both datasets are summarized in Table II. In what follows, we will term the DWELL 

imagery that contains background, granite and limestone classes, as shown in Fig. 3 (top-left), the first 

DWELL dataset, and we term the imagery that contains background, phyllite, granite and limestone, as 

shown in Fig. 3 (bottom-left), the second DWELL dataset. 

TABLE II Edge Signatures Among the B, P, G, and L Classes Obtained for the DWELL Datasets 

Signatures Triplets (𝑝1, 𝑞1, 𝜌1)  

 Raw data Normalized data 

𝜀𝐺𝐵 (6, 7, 0.2747) (1, 10, 0.1434) 

𝜀𝐿𝐵 (6, 7, 0.2636) (1, 10, 0.1395) 

𝜀𝐿𝐺 (5, 6, 0.7577) (9, 10, 0.9109) 

𝜀𝑃𝐿 (4, 5, 0.5703) (9, 10, 0.8444) 

𝜀𝑃𝐵 (6, 7, 0.3168) (1, 10, 0.2283) 

𝜀𝑃𝐺 (4, 5, 0.6006) (9, 10, 0.8590) 

 

The results for the first DWELL dataset for raw sensor data are shown in Fig. 5. The first row of edge 

maps shows the results of the application of the Canny edge detector to four randomly selected bands. 

It is important to note that some bands present a high number of false edges, whereas for other bands 

the isoluminant edges are detected. As such, the Canny algorithm can generate good edge maps, 

depending on the bands used. The second and third rows show the results for the MCG and HySPADE 

algorithms, respectively, at different threshold values in order to unveil the isoluminant edge between 

the granite and limestone rocks. The MCG algorithm second row) picks up the weak edge only after its 

tolerance is increased to a degree that results in the detection of a significant number of false edges 

(second row, fourth column). On the other hand, HySPADE offers a less-noisy edge map compared to 
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the MCG algorithm; nonetheless, the background-granite and granite-limestone edges are not well 

defined, as shown in the third row, fourth column. Moreover, the high computational cost of the 

HySPADE algorithm makes it hard for the user to fine tune its tolerances, which is a clear disadvantage 

of the HySPADE algorithm. (More details regarding computational costs are given in Section IV). We 

also observe that at the cost of a slight increase in the number of false edges, the SRC algorithm can 

clearly define the background-granite edge with respect to the granite-limestone edge (fourth row, 

fourth column). Finally, the results of the ASRC algorithm (fifth row, fourth column) are better than all 

the previous algorithms in terms of clearly defining both the strong and weak edges. The ASRC 

algorithm also discards all of the false edges in the the background. 

 
Fig. 5. Comparison between the Canny algorithm applied to individual bands (first row), MCG algorithm 
(second row), HySPADE algorithm (third row), SRC algorithm (fourth row) and ASRC algorithm (fifth 
row) for the dataset containing granite and limestone rocks (first dataset). The Canny algorithm was 
applied to the images at bands 1, 6, 8 and 9, respectively. The MCG and HySPADE results are presented 
for a sequence of increasingly permissive tolerances in order to unveil the isoluminant edge. Last two 
rows show the SRC and ASRC edge maps: first column, the edges 𝐸GB; second column, the edges 𝐸LB; 
third column, the edges 𝐸LG; fourth column, the combined edge maps. 
 

By utilizing the available ground-truth information for the DWELL datasets, we derived reference edge 

maps for the scenes under study. These edge maps are utilized to compute the empirical detection and 

false-alarm probabilities, 𝑃𝐷 and 𝑃𝐹, respectively, for the five algorithms (Canny applied on different 

bands, MCG, HySPADE, SRC and ASRC). The detection probability (also known as the sensitivity of the 

algorithm) corresponds to the probability that an actual edge (provided by the ground truth) is 

detected by the algorithm under evaluation. The false-alarm probability (also known as the 

complement of the specificity of the algorithm) is the probability that the algorithm detects a non-
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existing edge. For each algorithm, we have tuned the respective parameters in order to unveil the 

isoluminant edges (the assessment was made by visual inspection). We have conditioned the 

algorithms' parameters to detect isoluminant edges because they present one of the most challenging 

problems in multicolor edge detection. The metrics 𝑃𝐷 and 𝑃𝐹 were computed by comparing the 

ground-truth edge-map with the algorithm outcome on a pixel-by-pixel basis. 

From the results presented in Table III we see that the best performance achieved by the Canny 

algorithm is when it is applied to band 9 (𝑃𝐷 = 0.4533 and 𝑃𝐹 = 0.0082). It is important to note that 

the Canny algorithm, applied to this band, is capable to partially detect the isoluminant edge (see Fig. 

5, top-right). However, without previous knowledge of the scene and the results of the application of 

the Canny algorithm to every band, it would be difficult to guess which band gives the best results. The 

MCG algorithm, on the other hand, cannot detect the isoluminant edges without producing a high 

number of false edges. Indeed, when the isoluminant edge is detected (second row, fourth column) 

the MCG performance is given by a high detection ((𝑃𝐷 = 0.9600)) but also with a high false-alarm 

probability ((𝑃𝐹 = 0.6112)). At the cost of a tremendous increase of computation complexity 

(see Section IV), the HySPADE algorithm outperforms the Canny algorithm in terms of 

sensitivity ((𝑃𝐷 = 0.7867)) and the MCG algorithm in terms of low false alarm probability ((𝑃𝐹 =

0.0565)). In contrast, the SRC algorithm outperforms the previous algorithms in terms of both 

simplicity and sensitivity with 𝑃𝐷 = 0.9467, at the cost of a slight increase in the false-alarm 

probability (PF=0.0862) in comparison to HySPADE. The ASRC algorithm outperforms all the other four 

algorithm in terms of highest detection and lowest false-alarm probability, 𝑃𝐷 = 0.9733 and 𝑃𝐹 =

0.0244, respectively. 

TABLE III Comparison Table for the 𝑃𝐷 and 𝑃𝐹 Results of Five Algorithms (Canny, MCG, HySPADE, SRC 

and ASRC) for the Dataset Containing B, G and L Classes (Raw Data) 

Algorithm Detection probability False alarm probability 

Canny (band 9) 0.4533 0.0082 

MCG 0.9600 0.6112 

HySPADE 0.7867 0.0565 

SRC 0.9467 0.0862 

ASRC 0.9733 0.0244 
 

The edge-detection results for the second DWELL dataset are presented in Fig. 6 for intensity-

normalized data. Table IV summarizes the detection and false-alarm probabilities achieved by each one 

of the five algorithms for this dataset. The second dataset is more challenging than the first dataset 

because the two classes with the isoluminant edge (i.e., granite and limestone rocks) are now 

positioned against a phyllite backdrop that exhibits less contrast than the blackbody. Moreover, the 

data is intensity normalized. As before, the Canny edge detector achieves good performance when 

applied to band 9 (𝑃𝐷 = 0.7854 and 𝑃𝐹 = 0.0301). It is very interesting to note that (for this band) the 

Canny algorithm is capable detecting the isoluminant edge between the granite and limestone rocks 

almost fully. This is because the normalization process smooths some intensity peaks and improves the 

contrast between granite and limestone (for this particular band) as a secondary effect. This result 

proves that the first category of algorithms (those that do not use spectral information) can achieve 



good detection as long as the best band is identified through pre-processing of the data, which can be 

a very difficult requirement. 

 
Fig. 6. Comparison among the Canny algorithm applied to individual bands 1, 6, 8 and 9 (first row), 
MCG algorithm (second row), HySPADE algorithm (third row), SRC (fourth row) and ASRC (fifth row) for 
the dataset containing Phyllite, Granite and Limestone rocks (second dataset). The MCG and HySPADE 
results are presented for a sequence of increasingly permissive tolerances in order to unveil the 
isoluminant edge. Last two rows show the SRC and ASRC edge maps: first column, the edges 𝐸PG; 
second column, the edges 𝐸PL; third column, the edges 𝐸LG; fourth column, the combined edge maps. 
 

TABLE IV Comparison Table for the Results of Five Algorithms (Canny, MCG, HySPADE, SRC and ASRC) 

for the Dataset Containing B, P, G and L Classes (Normalized Data) 

Algorithm Detection probability False alarm probability 

Canny (band 9) 0.7854 0.0301 

MCG 0.8802 0.5046 

HySPADE 0.7445 0.0833 

SRC 0.8593 0.0873 

ASRC 0.8919 0.0652 

 

As for the MCG-generated edge maps, Fig. 6 (second row), the weak edge is detected only when the 

false-alarm probability reaches unacceptable levels. The HySPADE algorithm performs worst than the 

MCG algorithm (𝑃𝐷 = 0.7445 and 𝑃𝐹 = 0.0833) and it is not capable of detecting the isoluminant 

edge. In contrast, the SRC algorithm recovers the strong edges as well as the weak edge between the 

granite and limestone rocks. Indeed, Fig. 6 (fourth row) shows a high-resolution weak edge captured by 
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the SRC algorithm. The achieved detection and false-alarm probabilities of the SRC algorithm (𝑃𝐷 =

0.8593 and 𝑃𝐹 = 0.0873) corroborate this observation. It is important to note that event though the 

SRC algorithm is able to detect isoluminant edges for challenging scenarios, it still suffers from 

detecting false edges for each pair of materials, as observed in both examples. However, the ASRC 

algorithm reduces the detection of false edges substantially (𝑃𝐹 = 0.0652 for ASRC compared to 𝑃𝐹 =

0.0873 for SRC), owing to the fusion of material classification in the edge-detection process. The ASRC 

is also able to improve the detection of edges, as noted by the improved detection probability (𝑃𝐷 =

0.8919 for ASRC compared to 𝑃𝐷 = 0.8593 for SRC). 

From these results, we can conclude that the SRC algorithm outperforms the MCG and HySPADE 

algorithms for the task of detecting edges using spectral data with minimal intensity contrast. 

Moreover, it performs as good as the Canny edge detector without the difficult requirement for pre-

selecting the optimal band. Moreover, at the cost of a slight increase in computational cost, the ASRC 

algorithm outperforms all other four algorithms presented in this paper. 

Next, we compare the multicolor algorithms (SRC, ASRC, MCG and HySPADE) in terms of their 

computational costs. 

SECTION IV. Complexity Analysis 
In this section, we estimate the complexity of the feature extraction stage in the SRC and ASRC 

algorithms and compare it to those for the MCG and the HySPADE algorithms. Since the edge signature 

identification is made offline and before the edge-identification stage, we do not include its 

computational cost. For simplicity, in the cost estimates we will regard the cost of all operations (e.g., 

multiplication, addition, etc.) as equal. 

The SRC operations per pixel include the 2𝑀𝑅 ratios required to form the matrix 𝒦AB(𝐮)(𝑖, 𝑗) in (4), 

plus the 4𝑀𝑅 computations required to form Δ(𝒦AB(𝐮))(𝑖, 𝑗) in (6), plus the 𝑀𝑅 operations required 

to define the edges in (8). The total number of operations for the SRC algorithm is 7𝑀𝑅 operations per 

pixel. The ASRC computations include those from the SRC algorithm (7𝑀𝑅 operations per pixel) plus 

those required to compute and utilize the parameters 𝛾𝑚,𝑟
𝑖,𝑗

. To calculate these parameters, we first 

require the classification and label comparison of the pixels within the mask, a task that will cost 2𝑀 +

6𝑅 operations per pixel. Next, the computation of the 𝛾𝑚,𝑟
𝑖,𝑗

 parameter requires 11𝑀𝑅 operations per 

pixel (two XOR operations and one OR operation for each entry in (6)). The total number of operations 

for the ASRC algorithm is therefore 2𝑀 + 6𝑅 + 18𝑀𝑅 operations per pixel. 

Meanwhile, the MCG algorithm requires 10𝐾 − 3 operations to compute the first fundamental form 

for each hyper-pixel, nine operations to compute the corresponding eigenvalues, and three operations 

to compute the monitor function and apply the threshold. The total number of operations for the MCG 

algorithm is therefore 10𝐾 + 9 operations per pixel. Next, for each hyper-pixel, the HySPADE 

algorithm requires the computation of 𝐼𝐽 spectral angles (each spectral angle costs 6𝐾 + 1 operations), 

plus the 2𝐼𝐽 + 1 operations per pixel of the SA-cube to compute the one-dimensional derivative 

approximation, plus the 𝐼𝐽 + 1 operations required to account for the statistical accumulation of each 

pixel within the SA-cube. The total number of operations for the HySPADE algorithm is 

therefore 𝐼𝐽(3𝐼𝐽 + 6𝐾 + 3) operations per pixel. 
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In Table V we present a summary of the estimated values for the four algorithms considering the same 

AHI and DWELL experiments we previously discussed in Section III. The proposed algorithms do not 

change their respective computational costs for the two examples because the edge signature 

identification removes the dependency of the algorithms on the actual number of bands of the data. 

From the presented table, we can observe that the SRC algorithm gives a 71 fold gain in computational 

efficiency over the MCG algorithm for the two class edge detection problem over the AHI data, 

whereas the ASRC algorithm gives a 23 fold gain. 

TABLE V Comparison Table for the Total Number of Operations Required for the SRC, ASRC, MCG and 

HySPADE Algorithms 

  Total number of operations per pixel  

  Examples (𝑀 = 4 𝑎𝑛𝑑 𝑅 = 1)  

Algorithm General expression (𝐾 = 200) (𝐾 = 10) 

SRC 7𝑀𝑅 28 28 

ASRC 2𝑀 + 6𝑅 + 18𝑀𝑅 86 86 

MCG 10𝐾 + 9 2,009 109 

HySPADE 𝐼𝐽(3𝐼𝐽 + 6𝐾 + 3) > 109 > 1010 
 

SECTION V. Conclusions 
We have introduced two model-based, spatio-spectral edge-detection algorithms, termed the SRC and 

ASRC algorithms. The SRC algorithm enables the detection of edges that are due to either material 

change or intensity variation in scenes containing a prescribed set of materials. The ASRC algorithm is a 

specialized version of the SRC algorithm, aimed at detecting edges that are due to a change in the 

material only. The ASRC aims to reduce the detection of false edges due to unwanted changes in the 

intensity. 

Both algorithms utilize spectral library information to construct a sparse, non-separable and 3D edge 

operator while exploiting the concept of spectral ratio contrast. The reported SRC edge detector 

performs as well as the MCG edge detector for moderately challenging edges, with the advantage of 

requiring less operations than that required by the MCG algorithm (a reduction by a factor of 71 in our 

examples). However, for challenging imagery containing isoluminant edges, the SRC and ASRC edge 

detectors outperform the MCG and HySPADE edge detectors by a wide margin, as quantified by the 

detection and false-alarm probabilities. This provides a strong validation of the efficacy of the spectral 

ratio contrast concept by showing that the use of select band ratios can lead to reliable identification 

of weak edges in the presence of noise. Moreover, with a slight increase in the complexity (3 folds in 

our examples), the ASRC algorithm, which also involves classification-based step, is capable of 

minimizing the false-alarm edges, outperforming the SRC, MCG and HySPADE algorithms. 

The dramatic reduction in the number of operations with respect to other algorithms such as the MCG 

and the HySPADE algorithms is a key advantage of the proposed algorithms. The reduced number of 

operations is mainly due to the property that only a few bands are required to perform edge detection. 

In principle, this property can be exploited to reduce the spectral-image acquisition time substantially 

by requiring the sensing of only those bands that are most relevant to the set of materials within the 



scene. In particular, this band-reduction feature is particularly relevant to emerging spectral imaging 

sensors that are bias tunable, such as the DWELL sensor, where one can perform intelligent acquisition 

by programming the sensor electronically to sense only at the few prescribed bands. 

References 
1. R. Gonzalez, R. Woods, Digital Image Processing, Upper Saddle River, NJ, USA:Prentice-Hall, 2001. 

2. J. Canny, "A computational approach to edge detection", IEEE Trans. Pattern Anal. Mach. Intell., vol. 

8, no. 6, pp. 679-698, Nov. 1986. 

3. I. Sobel, G. Feldman, " A 3 \$times\$ 3 isotropic gradient operator for image processing ", 1968. 

4. P. Blomgren, T. F. Chan, "Color TV: Total variation methods for restoration of vector valued 

images", IEEE Trans. Image Process., vol. 7, no. 3, pp. 304-309, Mar. 1998. 

5. L. Lucchese, S. K. Mitra, "Color image segmentation: A state-of-the-art survey", Proc. Ind. Nat. Sci. 

Acad., vol. 67, no. 2, pp. 207-221, 2001. 

6. X. Chen, H. Chen, "A novel color edge detection algorithm in RGB color space", Proc. IEEE 10th ICSP, 

pp. 793-796, Oct. 2010. 

7. G. Sapiro, "Color snakes", Comput. Vis. Image Understand., vol. 68, no. 2, pp. 247-253, 1997. 

8. B. Sandberg, T. F. Chan, Logic operators for active contours on multi-channel images, pp. 2-12, 2002. 

9. P. Bao, D. Zhang, X. Wu, "Canny edge detection enhancement by scale multiplication", IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 27, no. 9, pp. 1485-1490, Sep. 2005. 

10. W. Jiang, K.-M. Lam, T.-Z. Shen, "Efficient edge detection using simplified Gabor wavelets", IEEE 

Trans. Syst. Man Cybern. B Cybern., vol. 39, no. 4, pp. 1036-1047, Aug. 2009. 

11. Y. Jing, J. An, Z. Liu, "A novel edge detection algorithm based on global minimization active contour 

model for oil slick infrared aerial image", IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 

2005-2013, Jun. 2011. 

12. P. Xu, Q. Miao, C. Shi, J. Zhang, M. Yang, "General method for edge detection based on the shear 

transform", IET Image Process., vol. 6, no. 7, pp. 839-853, Oct. 2012. 

13. S. Di Zenzo, "A note on the gradient of a multi-image", Comput. Vis. Graph. Image Process., vol. 33, 

no. 1, pp. 116-125, 1986. 

14. A. N. Evans, X.-U. Liu, "A morphological gradient approach to color edge detection", IEEE Trans. 

Image Process., vol. 15, no. 6, pp. 1454-1463, Jun. 2006. 

15. J.-F. Rivest, P. Soille, S. Beucher, "Morphological gradients", J. Electron. Imag., vol. 2, no. 4, pp. 326-

336, 1993. 

16. P. Soille, Morphological Image Analysis: Principles and Applications, Berlin, Germany:Springer-

Verlag, 2003. 

17. A. Cumani, "Edge detection in multispectral images", CVGIP: Graph. Models Image Process., vol. 53, 

no. 1, pp. 40-51, 1991. 

18. G. Sapiro, D. Ringach, "Anisotropic diffusion of multivalued images with applications to color 

filtering", IEEE Trans. Image Process., vol. 5, no. 11, pp. 1582-1586, Nov. 1996. 

19. P. E. Trahanias, A. N. Venetsanopoulos, "Color edge detection using vector order statistics", IEEE 

Trans. Image Process., vol. 2, no. 2, pp. 259-264, Apr. 1993. 

20. P. J. Toivanen, J. Ansamäki, J. P. S. Parkkinen, J. Mielikäinen, "Edge detection in multispectral 

images using the self-organizing map", Pattern Recognit. Lett., vol. 24, no. 16, pp. 2987-2994, 

2003. 



21. J. Jordan, E. Angelopoulou, "Edge detection in multispectral images using the n-dimensional self-

organizing map", Proc. 18th IEEE ICIP, pp. 3181-3184, Sep. 2011. 

22. M. Yu, G. Xiaodong, W. Yuanyuan, "Feature fusion method for edge detection of color images", J. 

Syst. Eng. Electron., vol. 20, no. 2, pp. 394-399, 2009. 

23. A. Mittal, S. Sofat, E. Hancock, M. Kamel, F. Karray, H. Hagras, "Detection of edges in color images: 

A review and evaluative comparison of state-of-the-art techniques" in Autonomous and 

Intelligent Systems, Berlin, Germany:Springer-Verlag, pp. 250-259, 2012. 

24. A. Koschan, M. Abidi, "Detection and classification of edges in color images", IEEE Signal Process. 

Mag., vol. 22, no. 1, pp. 64-73, Jan. 2005. 

25. E. Nezhadarya, R. K. Ward, "A new scheme for robust gradient vector estimation in color 

images", IEEE Trans. Image Process., vol. 20, no. 8, pp. 2211-2220, Aug. 2011. 

26. R. G. Resmini, "Hyperspectral/spatial detection of edges (hyspade): An algorithm for spatial and 

spectral analysis of hyperspectral information", Proc. SPIE, vol. 5425, pp. 433-442, Jan. 2004. 

27. J. Weier, D. Herring, Measuring Vegetation (NDVI and EVI), 2010, [online] Available: 

http://earthobservatory.nasa.gov/Features/Measuring Vegetation/. 

28. A. Huete, "A soil-adjusted vegetation index (SAVI)", Remote Sens. Environ., vol. 25, no. 3, pp. 53-70, 

1988. 

29. Y. Kaufman, D. Tanre, "Atmospherically resistant vegetation index (ARVI) for EOS-MODIS", Proc. 

IEEE Int. Geosci. Remote Sens. Symp., pp. 261-270, Mar. 1992. 

 Show Context View Article Full Text: PDF (892KB) Google Scholar  

30. K. Mayeda, A. Hofstetter, J. O'Boyle, W. Walter, "Stable and transportable regional magnitudes 

based on coda-derived moment-rate spectra", Bull. Seismol. Soc. Amer., vol. 93, pp. 224-239, 

Feb. 2003. 

31. K. Mayeda, L. Malagnini, W. Walter, "A new spectral ratio method using narrow band coda 

envelopes: Evidence for non-self-similarity in the Hector mine sequence", Geophys. Res. Lett., 

vol. 34, no. 11, pp. L11303, 2007. 

32. H. Hartse, S. Taylor, W. Phillips, G. Randall, Regional seismic discrimination in central Asia with 

emphasis on Western China, 1996. 

33. H. J. Patton, B. J. Mitchell, Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Regional Wave 

Propagation and Crustal Structure, Cambridge, MA, USA:Birkhäuser-Verlag, 2001. 

34. U. Al-Suwailem, J. Keller, "Multichannel image identification and restoration using continuous 

spatial domain modeling", Proc. Int. Conf. Image Process., vol. 2, pp. 466, 1997. 

35. P. G. Lucey, T. J. Williams, J. L. Hinrichs, M. E. Winter, D. Steutel, E. M. Winter, "Three years of 

operation of AHI: The University of Hawaii's Airborne Hyperspectral Imager", Proc. SPIE, vol. 

4369, pp. 112-120, Oct. 2001. 

36. J. Andrews et al., "Demonstration of a bias tunable quantum dots-in-a-well focal plane array", Infr. 

Phys. Technol., vol. 1, pp. 1-5, Jun. 2009. 

37. M. Loog, B. Ginneken, "Segmentation of the posterior ribs in chest radiographs using iterated 

contextual pixel classification", IEEE Trans. Med. Imag., vol. 25, no. 5, pp. 602-611, May 2006. 

38. T. Rohlfing, C. R. Maurer, "Multi-classifier framework for atlas-based image segmentation", Pattern 

Recognit. Lett., vol. 26, no. 13, pp. 2070-2079, 2005. 

https://ieeexplore.ieee.org/document/134076
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=134076
https://scholar.google.com/scholar?as_q=Atmospherically+resistant+vegetation+index+%28ARVI%29+for+EOS-MODIS&as_occt=title&hl=en&as_sdt=0%2C31


39. B. Pasakaleva, W.-Y. Jang, M. Hayat, Y. Sharma, S. Bender, S. Krishna, "Multispectral classification 

with bias-tunable quantum dots-in-a-well focal plane arrays", IEEE Sensors J., vol. 11, no. 6, pp. 

1342-1351, Jun. 2011. 

40. D. A. B. Miller et al., "Band-edge electroabsorption in quantum well structures: The quantum-

confined Stark effect", Phys. Rev. Lett., vol. 53, pp. 2173-2176, Nov. 1984. 


	Model-Based Edge Detector for Spectral Imagery Using Sparse Spatiospectral Masks
	Recommended Citation
	Authors

	tmp.1587660142.pdf.raqCT

