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Abstract 
Detection of 3D object-motion trajectories depends on the integration of two distinct visual cues: translational 

displacement and looming. Electrophysiological studies have identified distinct neuronal populations, whose 

activity depends on the precise motion cues present in the stimulus. This distinction, however, has been less 

clear in humans, and it is confounded by differences in the behavioral task being performed. We analyzed 

whole-brain fMRI, while subjects performed a common time-to-arrival task for objects moving along three 

trajectories: moving directly towards the observer (collision course), with trajectories parallel to the line of sight 

(passage course), and with trajectories perpendicular to the line of sight (gap closure). We found that there was 

substantial overlap in the pattern of activation associated with each of the three tasks, with differences among 

conditions limited to the human motion area (hMT+), which showed greater activation extent in the gap closure 

condition than for either collision or passage courses. These results support a common substrate for temporal 

judgments of an object’s time-to-arrival, wherein the special cases of object motion directly toward, or 

perpendicular to, the observer represent two extremes within the broader continuum of 3D passage trajectories 

relative to the observer. 

Introduction 
Many activities of daily living require the ability to detect how objects are moving around an observer. This 

ability is critical to safely negotiate the environment during walking, navigating a car in traffic, or to intercept 

and catch a moving object. In many such circumstances, it is not sufficient to detect solely an object’s translation 

across the retina, since displacement across perceived visual space indicates only an object’s frontoparallel 

motion (the motion within a plane perpendicular to the line of sight). Rather, it is critical that displacement be 

integrated with visual cues indicating motion-in-depth, such as looming. The combination of both translational 

and depth motion cues allow observers to infer a true 3D object trajectory, thus enabling them to accurately and 

effectively interact with their surroundings. 

The need to integrate two disparate sources of visual information to determine an object’s 3D trajectory raises 

the question of whether object motion is extracted by a single motion-responsive mechanism, or by a two-stage 

process in which all cues are first detected separately and then integrated. This is mirrored by a question of the 

underlying neuronal substrate, specifically, whether the same brain areas are used to estimate both 

translational and depth motion, or whether these cues are computed independently in the visual cortex, before 

being integrated, perhaps in yet another brain area. Here, we address this question using fMRI to determine 

whether separate neuronal substrates are recruited when subjects assess the motion of objects moving along 

different trajectories. 

While a single object-motion detector would be neurologically efficient (the motion components are nearly 

always co-present when viewing real world scenes, so processing them together and simultaneously seems 

logical), there are several lines of evidence against it. The first reason stems from known motion detection 

capacities of early visual areas. Motion detected by area V1 neurons is insufficient to characterize how an object 

is moving in space (3D). For example, a rightward moving edge is consistent with both an object moving to the 

right, or with the right edge of an expanding object (or the left edge of a contracting one). Determining the 3D 

trajectory of an object, therefore, depends on the integration of motion along the object boundary and a 

determination of how this boundary changes, either in its location across space or in its size and shape. While 

both position and size computations depend on the integration of motion along an object’s boundary and/or 

surface, they constitute distinct computations: translational motion can be estimated when solving the aperture 

problem (Marr 1982; Hildreth 1983), since all points along the contour have the same direction of motion, while 

looming requires the integration of different directions of motion along the object’s boundary. This is especially 

complex for non-colliding looming trajectories, because the expanding motion is non-symmetric. Thus, the 
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differences intrinsic to computing translational and looming motion may be reflected in different computational 

and/or neuronal substrates. 

Psychophysical evidence suggests a dissociation between translational motion and motion-in-depth when based 

on monocular and binocular (i.e., disparity) cues, respectively (Gray and Regan 1998), but less direct evidence 

exists when the different trajectories are based on monocular motion cues alone. We have shown that when 

estimating the arrival time for an object moving perpendicular to the line of sight (“gap closure”), observers 

relied on angular (translational) motion alone, and were not affected by the presence of looming motion, but 

when estimating the arrival time for objects on collision or passage courses, both translational and angular 

motion affected performance, and observers’ performance was explained best by a weighted combination of 

the two (Calabro et al. 2011). This suggests the involvement of trajectory-specific mechanisms, and raises the 

question of whether there is a similar dissociation in the neuronal mechanisms. 

Another piece of evidence that argues against the view that a single mechanism is used stems from 

psychophysical and functional imaging studies that have suggested that the detection of looming objects (those 

moving on a direct collision course with the observer) are associated with specialized collision–detection 

mechanisms in the human visual system. Psychophysical studies have shown that observers have a strong bias 

for detecting approaching objects, with detection rates significantly higher than for comparable receding objects 

(Georgeson and Harris 1978; Ball and Sekuler 1980). In fMRI, Field and Wann (2005) have showed different 

cortical areas recruited depending on the trajectory of perceived motion, with sensorimotor areas specifically 

recruited in the case of approaching objects. However, their experimental conditions compared motion types 

across different tasks, and it remains unclear to what extent different activations are present across motion 

conditions when matched with a common, temporal arrival task. Billington et al. (2011) have shown that in 

addition to cortical regions, the superior colliculus and thalamus respond preferentially to approaching objects. 

However, they did not dissociate whether the responses were specific to objects on a colliding path with the 

observer, or simply to the presence of looming (an expanding object boundary, which may be present on an 

object moving on either a collision or passage course). Nevertheless, both psychophysical and neuroimaging 

evidences support the notion that specialized processing occurs for looming motion detection relative to 

translational motion. 

Here, we used fMRI to characterize cortical responses to monocular cues resulting from a range of 3D object-

motion trajectories. We operationalize 3D object motion as the implied movement of objects in 3D space, 

although we focus on only 2D cues for these trajectories based on combinations of retinal motion and changes 

in object size (looming). We identified the neuronal substrate of object-motion detection for objects containing 

translational motion only (gap closures), looming motion only (collision courses), or both (passage courses). We 

use a common task based on time-to-arrival estimation in different motion planes to identify differences in brain 

activation among these three motion conditions that cannot be attributed to differences in the task 

requirements. This allowed us to dissociate looming (i.e., expansion)-specific responses from collision-specific 

responses and to determine which brain areas respond to object motion independently of the specific visual 

information present. Our results show that despite computational differences employed to solve each task 

condition, the same cortical regions are in general recruited regardless of the 3D trajectory of the object. A 

single cluster consistent with left MT+ showed a difference in its magnitude of activation, indicating greater 

response in the gap closure condition, which may suggest specificity in motion-processing areas to the 3D 

trajectory of the object. 
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Materials and methods 

Subjects 
Ten right-handed neurologically healthy volunteer subjects from the Boston University student community (18–

24 years, mean 20.3 years; 4 female) participated in the experiment. To ensure adequate performance, 

participants practiced in the task in the Brain and Vision Research Laboratory at Boston University prior to the 

fMRI-scanning session. All participants had normal or corrected to normal vision and were screened for their 

ability to maintain fixation. Participants were screened for MRI contraindications and written informed consent 

was obtained according to the approved procedures of the Massachusetts General Hospital and Boston 

University Institutional Review Boards have been performed in accordance with the ethical standards as laid 

down in the 1964 Declaration of Helsinki and its later amendments. 

Apparatus 
Imaging data were collected at the Athinoula A. Martinos Center for Biomedical Imaging, using a 3T Siemens 

TrioTim 60 cm (RF coil ID) whole-body MRI. Stimuli were generated on and presented by a MacBook Pro running 

Matlab using in-house code based on the Psychophysical Toolbox (Brainard 1997; Pelli 1997) and OpenGL 

libraries, and projected by a Notevision6 LCD projector onto a translucent acrylic screen. Subjects viewed the 

screen through a Buhl Optical collimating lens placed on the head coil. A USB trigger code was sent from the 

imaging acquisition computer to the stimulus presentation computer to start each fMRI run and ensure accurate 

synchronization between the stimulus presentation and imaging systems. Subjects responded in a two 

alternative forced choice task using an MRI compatible button box with their right hand. 

Stimulus and task 
The stimulus was the same as in a previous psychophysical study (Calabro et al. 2011). Two blue spherical 

objects were positioned along the horizontal midline on either side of a red central fixation mark. On every trial, 

the initial eccentricity of each object was chosen randomly (between 2.8° and 9.5°) to randomize both the 

distances between the objects and their collision point as well as their speeds (by changing the distance traveled 

while maintaining a fixed time-to-arrival). Both objects had an initial size of ~ 1.5°, a mean luminance of 

28 cd/m2 on a low-luminance background (0.3 cd/m2), and were labeled “1” and “2” throughout each trial. 

Object “1” was always to the left of fixation, and object “2” was always to the right of fixation; thus, subjects 

were not encouraged to saccade to the target to identify them (by number). The motion of each object was 

calculated, so that it crossed the medial plane (moving toward the fixation mark; gap closure, GC), or the frontal 

plane, either moving on a collision course directly toward the observer (time-to-contact, TTC), or on a passage 

course parallel to the observer’s line of sight, (time-to-passage, TTP), as illustrated in Fig. 1. The mean expansion 

rate (TTC and TTP only; in GC, the objects did not expand) was 2.7° s−1, and the mean speed during translational 

motion (in GC) was 5.4° s−1. 

https://link.springer.com/article/10.1007%2Fs00221-019-05613-z#CR5
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Fig. 1 Object-motion trajectory conditions. a Screenshot of the test showing the two objects on either side of a 
red fixation dot. (Fixation dot enlarged for clarity). b Schematic view of the three trajectory conditions used in 
the time-to-arrival task (from left to right): head-on collision (time-to-contact, TTC), gap closure (GC) and 
passage (time-to-passage, TTP) courses. Conditions are illustrated from a zenithal view, with the viewer’s 
position indicated by the small open circle, and the line of sight (as maintained by fixation on the red dot) shown 
with the solid vertical line 
 

During each trial, participants were instructed to fixate the central red fixation mark and determine which object 

would have crossed the medial plane (i.e., the fixation mark, for GC), or passed through the observer’s frontal 

(depth) plane (TTC, TTP) first. Subjects responded with a keypress using an MR compatible button box after the 

object disappeared. Each imaging run lasted 300 s and consisted of 80 trials (0.5 s each) of a single trajectory 

condition (GC, TTC, or TTP). Two runs were acquired for each trajectory, for a total of six runs per subject. 

Subjects were told which experimental condition was being tested prior to the start of each acquisition to make 

the appropriate judgement (GC: arrival at the midline, TTC: arrival at the observer; and TTP: arrival at the 

observer’s depth plane). 

On each trial, subjects viewed the two objects simultaneously for 0.5 s. Object speeds were calculated, so that 

the first-arriving object would reach the collision point 1 s after stimulus onset. The later-arriving object’s speed 

was determined, such that it reached the collision point 0.3 s later. Thus, the extrapolation times (time between 

when the objects disappeared and when they would have reached their target point) were 0.5 and 0.8 s, 

respectively. This time difference, chosen based on previously collected psychophysical data from each 

participant, made the task difficult enough, so that subjects had to actively engage, but not so hard that they 

would be unable to perform the task accurately. Furthermore, task difficulty (difference in arrival times) was 

chosen to produce approximately equal performance among subjects across the three task conditions. 

Timing of task presentations was determined based on an optimized event-related imaging sequence (optseq) 

(Burock et al. 1998; Burock and Dale 2000). Events were coded specific to the task being performed and the 

resulting sequence was used to determine the stimulus presentation times. Each trial was shown for 500 ms, 

and subjects were given 1.5 s to respond, with the instruction to respond as quickly as possible. The 

interstimulus interval (ISI) was pseudo-random, ranging from 2 to 14 s, as determined by the optseq sequence. 

During this time, the screen was blank, except for the red fixation mark which subjects were instructed to fixate 

on. 

MR scanning and data analysis 
Two high resolution, T1-weighted (T1w) structural MRI scans were first obtained for registering the functional 

data using a 3D magnetization-prepared rapid acquisition gradient echo (MPRAGE) sequence (TR 2530 ms, TE 
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3.39 ms, inversion time 1100 ms, and flip angle 7°) with 128 slices of 1.33 mm thickness, and 256 × 256 in-plane 

sampling (1 × 1 mm resolution). Functional volumes were acquired using an interleaved, gradient echo EPI 

sequence every 2 s for each 5 min run (TR 2000 ms, 150 TRs; TE 30 ms, flip angle 90°). Six runs were obtained for 

each subject (two per task condition). Functional volumes were acquired using 33 axial slices of 3.6 mm 

thickness with in-plane sampling of 64 × 64 (resolution of 3.125 × 3.125 mm). Slice locations were positioned 

based on an AutoAlign sequence (van der Kouwe et al. 2005). 

Preprocessing of functional images was based on an established pipeline designed to minimize the effects of 

head motion (Hallquist et al. 2013). Images were first simultaneously slice time and motion corrected, then 

underwent wavelet despiking to reduce motion related artifacts. We used an affine registration to the subject’s 

T1w volume to align each volume and obtain motion estimates, together with a combined linear/non-linear 

(based on FSL’s FLIRT and FNIRT) registration of the structural volume to MNI standard space. Functional data 

were smoothed using a 5 mm Gaussian kernel and high-pass filtered based on a 100 s cutoff (f > 0.01 Hz). 

Motion estimates were used to censor volumes with excessive head motion (framewise displacement > 0.9 mm 

or DVARS > 20) (Smyser et al. 2011). 

Functional analysis was performed in AFNI (Cox 1996). Level 1 analysis (per subject, per condition) used 

3dDeconvolve to model the response timecourse (24 s TENT response) of the full hemodynamic response 

function (HRF) relative to each (TR-locked) trial. Previous studies have implicated both cortical (Field and 

Wann 2005) and sub-cortical (Billington et al. 2011) regions, which may have different patterns of HRF 

responses (Aguirre et al. 1998; Handwerker et al. 2004). Furthermore, differences in response latency across 

conditions could affect the shape of the HRF (Henson et al. 2002; Lewis et al. 2018). Thus, since it was unclear 

whether a canonical HRF fit would be appropriate for all conditions and brain regions, this modeling approach 

was agnostic as to the predicted HRF response, allowing us to estimate responses without making assumptions 

about the shape of the HRF. Analyses were limited only to the correct responses, since incorrect trials could 

represent lapses in attention or awareness (e.g., eyes-closed), and because correct response rates varied slightly 

among conditions (see “Behavioral performance” section). Incorrect responses were modeled with a separate 

set of regressors which were ignored in subsequent analyses. 

Group analysis was performed based on the resulting response functions using a linear mixed effects model 

(with AFNI’s 3dMVM). This approach performs a repeated measures ANOVA for each voxel with main effects of 

task condition and TR, as well as their interaction. A main effect of TR indicates at some TR which was common 

across conditions. A significant condition × TR interaction indicates that at some time(s) after stimulus onset, the 

response differed among conditions. This approach is highly sensitive to response differences in both amplitude 

and shape, and does not assume a canonical HRF (Chen et al. 2014). 

Cluster correction was performed using the residuals of each subject’s first-level analysis as described above. 

This was used to assess spatial correlation (FWHM) among nearby voxels, and smoothness was estimated based 

on the residuals using AFNI 3dfWHMx tool. We used a mixed-model correction for spatial autocorrelation (ACF) 

to account for non-normal smoothness which could otherwise lead to false-positve cluster results (Eklund et 

al. 2016). Smoothness parameters were averaged across subjects, and used as the basis for cluster simulation 

(based on AFNI’s 3dClustSim) to assess clusterwise significance as a function of cluster size and voxelwise 

threshold. To determine overall activation independent of the experimental condition, we identified voxels with 

a significant main effect of TR (timecourse changed from baseline) at p < 0.001 (T > 7.2), with cluster simulation 

performed within a gray matter mask to consider the entire cortex, with n > 26 contiguous voxels for a 

clusterwise p < 0.05. To determine brain regions that differed among conditions, we first computed task-specific 

activation maps by determining the main effect of TR independently for each condition. We used this to create a 

conjunction mask of voxels with FDR-corrected significant activation in any condition. We used this as a mask for 

the analysis of the TR × condition effect from the main mixed effects model. Within this mask, clusters were 
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identified with a clusterwise p < 0.05, based on a voxelwise p < 0.001 threshold, and n > 41 contiguous voxels. To 

characterize differences among conditions, post hoc analyses were performed by visualizing the mean time 

course for each of the three task conditions extracted and averaged across all voxels within significant clusters, 

and performing post hoc statistical tests among pairs of conditions at each time course of the response. 

Results 

Behavioral performance 
During the fMRI runs, there was a significant difference in performance by condition (repeated measures 

ANOVA, F = 8.5, df = 2, p = 0.0025). A post hoc test indicated that subjects performed slightly better on the GC 

task (91.6% ± 5.5% s.d. across subjects) than TTC (86.4% ± 5.4%) and TTP (80.7% ± 7.9%) conditions (two-tailed 

paired t test for performance across subjects showed GC significantly better than 

TTC, b = 0.052, T(df = 9) = 2.35, p = 0.04, and TTP, b = 0.108, T(9) = 3.54, p = 0.006, with the difference between 

TTC and TTP just failing to meet significance, b = 0.056, T(9) = 2.21, p = 0.054). Furthermore, a comparison of 

activation between correct and incorrect trials did not reveal any significant clusters of activation, and suggest 

that the differences in task accuracy are unlikely to produce significant differences in activation. 

Shared neuronal substrate of TTC, GC, and TTP tasks 
We analyzed task and subject-specific hemodynamic responses as the basis for group analyses. Time courses 

were assessed in a repeated measures ANOVA (AFNI’s 3dMVM) with effects of TR and condition. We first 

investigated parametric maps corresponding to the main effect of TR, indicating which voxels showed task-

evoked responses, independent of the task condition (Fig. 2). This revealed widespread activation across the 

cortex, corresponding to a network of primarily occipital and parietal regions, as well as motor and motor 

planning areas (particularly in the LH) and insula. Individual regions were identified based on discrete peaks of 

activation (T > 15.0) separated by a minimum of 20 mm (using AFNI’s 3dMaxima; Table 1). 

 

 
Fig. 2 Main effect of TR, indicating regions that showed a significant task-related activation, independent of the 
task condition. Regions of activation are labeled based on nearest anatomical location (MOG middle occipital 
gyrus, MTG middle temporal gyrus, SOG superior occipital gyrus, SPL superior parietal lobule, STG superior 
temporal gyrus, Thal thalamus, Ins insula, PoCG post-central gyrus) 
 

Table 1 Clusters defined by local maxima in overall activation analysis 
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MNI 
coordinate 

        

x y z # Voxels Anatomical location Brodmann area 

− 9.42 − 73.7 10.49 5639 Precuneus BA 23 

34.68 − 72.68 − 4.8 3372 Left inferior occipital gyrus BA 19 

18.65 − 67.42 45.86 2475 Left superior parietal lobule BA 7 

− 39.87 − 61.94 − 7.08 2918 Right inferior occipital gyrus BA 19 

− 30.5 − 49.26 51.56 1361 Right superior parietal lobule BA 7 

5.56 − 25.59 4.77 1758 Thalamus   

43.34 − 22.48 53.02 2440 Left precentral gyrus BA 3 

− 44.22 − 1.73 35.02 1449 Right precentral gyrus BA 6 

0.87 6.5 50.92 1852 Superior frontal gyrus/SMA BA 32 

38.46 17.24 13.79 323 Left insula BA 13 

− 27.93 42.56 25.95 329 Right superior frontal gyrus BA 47 

 

Task-specific activation differences 
To determine whether any regions within the main activation map exhibited task-specific activation, we 

examined the TR*condition interaction. Significant effects in this interaction would suggest that the response 

across conditions diverged for at least one TR during the response. A single region (n = 42 voxels) survived the 

cluster correction (see Fig. 3), and was situated in the left middle temporal sulcus (MNI center of mass 44, 

− 68,4; peak response F = 7.21). This location is commonly identified with area V5/hMT+. The visualize the sign 

of this effect, mean time courses extracted for each condition from this cluster revealed an elevated peak 

activation in the gap closure condition and nearly identical time courses of activation for the TTC and TTP 

conditions (Fig. 3). A post hoc Wald Chi-square test among pairs of conditions revealed that this effect was 

driven by elevations in activation in the GC condition compared to both TTC (χ2= 4.26, p = 0.039) and TTP 

(χ2 = 6.21, p = 0.013) occurring two TRs (4 s) after stimulus onset. No differences between TTC and TTP were 

observed at this point (χ2 = 0.01, p > 0.9). Importantly, no clusters were identified with activation that was 

unique to individual task conditions. 

 
Fig. 3 Activation differences by task. Cluster-corrected voxels showing a significant TR × task condition 
interaction. Time courses showing the estimated HRF for each condition averaged across the cluster, indicate an 
elevated activation peak in the gap closure condition. Time points with significant post hoc differences among 
conditions (p < 0.05) are indicated by a star 

Discussion 
We compared the activation elicited by three different object-motion conditions: gap closure (GC) containing 

angular motion only, time-to-collision (TTC) for objects on collision courses containing only looming motion, and 

time-to-passage (TTP) for objects moving along passage courses containing both looming and angular motion. 

We were interested in determining whether different brain regions mediate object-motion perception based on 

the visual cues present in the stimulus. Our paradigm controlled for many variables among tasks (e.g., 
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randomization of initial position meant there was no systematic difference in the location of the objects, 

extrapolation times were matched across conditions, etc.), so that differences among the conditions could be 

associated with the low level features (i.e., the speed of translational and/or looming motion) and high level 

interpretation (i.e., computation of arrival time in egocentric/allocentric coordinates) of performing each of the 

three tasks. We thus hypothesized that differences in the motion computations required could lead to task-

specific activations. For example, translational motion detection (e.g., as present in the GC condition) has been 

extensively linked to area MT/V5 in the macaque monkey, since this area is one of the first shown to solve the 

aperture problem (Movshon and Newsome 1996; Pack and Born 2001). TTC, on the other hand, depends on the 

detection of looming, that is, each point along the surface of the object is moving in a different direction, which 

together form a radial pattern of motion. Perception of radial motion patterns such as these have been linked to 

area MST (Tanaka et al. 1986; Duffy and Wurtz 1991), though typically for large stimuli thought to be 

representative of self-motion (MSTd neurons have receptive fields on the order of 80° diameter, Tanaka and 

Saito 1989). Additional posterior parietal regions have been linked to approaching object-motion trajectories in 

both humans (Paradis et al. 2000; Vanduffel et al. 2002; Claeys et al. 2003) and non-human primates (Duhamel 

et al. 1998). 

Consistent with the previous reports of activation on similar TTC and GC tasks (Field and Wann 2005), we found 

visual cortex activation in an inferior region of the lateral occipital complex, an area that has been found to be 

recruited during object and shape perception (Grill-Spector et al. 2001), and in MT+, a region critical for motion 

processing and perception (Tootell et al. 1995; Amano et al. 2009). While all three task conditions recruited 

activation in MT+, there was a difference in the magnitude of activation among task conditions, apparent as a 

change in the peak amplitude of response, with the GC condition having greater activation than TTC or TTP. Area 

MT/V5 in monkeys has typically been linked to translational, rather than looming, motion perception, while 

MSTd has been associated with perception of optic flow (wide field motion) rather than object motion. These 

areas are thought to constitute M+ in humans (Dukelow et al. 2001; Huk et al. 2002). Our results suggest that 

the MT complex overall is engaged by moving objects regardless of their trajectory, consistent with previous 

studies showing object representations in MT+ (Kourtzi et al. 2002), but that it is activated to a greater extent 

during the GC condition. 

Consistent with the previous reports on TTC-driven activation (Field and Wann 2005; Billington et al. 2011), in all 

task conditions, we found significant bilateral activation of the anterior insula, a region which plays a role in 

judgments and comparison of short time intervals (Kosillo and Smith 2010). Contrary to the suggestion of a 

lateralization of temporal processing in the insula (Brunia and Damen 1988; Rao et al. 2001; Ferrandez et 

al. 2003), we found largely symmetric activation across hemispheres, consistent with reports of insular 

involvement in a bilateral timing circuit (Livesey et al. 2007; Stevens et al. 2007). 

We used a single task for all three experimental conditions based on the comparison of arrival times of two 

objects placed symmetrically about a central fixation mark, so that any trajectory-dependent activation 

differences could not be attributed to differences in the temporal judgement task being performed by the 

observers. Despite this, we identified one notable difference in activation among conditions in a region 

corresponding to left V5/hMT+ (compared to probabilistic mapping, Malikovic et al. 2007). This region showed 

an elevated extent of activation in the GC condition. One possible explanation of why gap closure elicited 

stronger activation in this area is related to the relatively lower speed of movement of the object boundaries in 

the TTC or TTP conditions (e.g., the mean translation speed in GC, 5.4° s−1, was four times higher than the speed 

of each edge in TTC, 1.3° s−1). This would suggest that 2D features, rather than the 3D object speed or arrival 

time (which were matched among conditions), could contribute to differences in the extent of MT+ activation. 

Alternatively, the response may have been suppressed by the motions in opposite directions (i.e., in an 

expanding object one edge moves leftward and another moves rightward), creating a de facto translational 
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object-motion detector, since the opposite directions of motion found along each edge of a moving object 

would prevent responses to motion-in-depth. Either case suggests that the response in the putative MT+ region 

is maximized by an object translating across space, rather than in depth relative to the observer. A possible 

counter to this interpretation is that we did not observe any differences between the TTC and TTP conditions, 

despite differences in their 2D motion cues. However, the differences between the motion cues of these 

conditions were small, and may be below the sensitivity of our imaging acquisition. 

Interestingly, we did not identify any regions with activation that was unique to particular experimental 

conditions. Thus, activation across all higher level brain regions, likely associated with the interpretation of 

motion in three dimensions and temporal judgements, appears to be recruited similarly across conditions. These 

points to a shared functional–neuroanatomical substrate of the mechanisms involved in the detection of object 

motion across 3D motion trajectory conditions. This suggests that while many areas in the visual motion-

processing stream undoubtedly prefer different motion features, at the level observable by fMRI, these 

differences are diminished when carefully matching stimulus features, task instructions, and decision processes. 

Our study has several notable limitations. First, while we attempted to match the task as closely as possible 

among conditions, the different trajectories necessitated slightly different instructions to the observers. Namely, 

in the GC condition, subjects assessed arrival at the midline, in TTC, they assessed arrival at the observer, and in 

TTP, they assessed arrival at their own depth plane. While the trajectory differences are themselves of interest, 

the need for slightly different instructions suggests that observers may employ different strategies among 

conditions. Relatedly, a second limitation is that eye movements were not assessed during the scan. While 

subjects had been trained with an eye tracker behaviorally, it is possible that their eyes were not successfully 

fixating during the scan, and instead could have fixated on one object or the other, or tracked objects with 

retinal motion. Recent reports have characterized the effect of free eye movements in fMRI (Son et al. 2019), 

but importantly, the pattern of activation that they have identified does not closely match the conditionwise 

differences that we report, so this is an unlikely source of the differences that we have identified. 

Based on these results, we suggest that while the precise computations involved in each task may differ (Calabro 

et al. 2011), the overall similar nature of the three task conditions (all are discrete moving objects, whose 

motion must be computed and integrated along its edge) and task (a temporal judgement of motion 

trajectories) results in the recruitment of a largely overlapping neuronal substrate. This is compatible with a 

view of object-motion processing in which GC and TTC represent two special cases (containing exclusively 

horizontal or looming motion, respectively) of a broader continuum of possible trajectories (e.g., TTP). 
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