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Abstract 

Background 
Simultaneous functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) 

measurements may represent activity from partially divergent neural sources, but this factor is seldom 

modeled in fMRI-EEG data integration. 

New method 
This paper proposes an approach to estimate the spatial overlap between sources of activity measured 

simultaneously with fMRI and EEG. Following the extraction of task-related activity, the key steps 

include, 1) distributed source reconstruction of the task-related ERP activity (ERP source model), 2) 

transformation of fMRI activity to the ERP spatial scale by forward modelling of the scalp potential field 

distribution and backward source reconstruction (fMRI source simulation), and 3) optimization of fMRI 

and ERP thresholds to maximize spatial overlap without a priori constraints of coupling (overlap 

calculation). 

Results 
FMRI and ERP responses were recorded simultaneously in 15 subjects performing an auditory oddball 

task. A high degree of spatial overlap between sources of fMRI and ERP responses (in 9 or more of 15 

subjects) was found specifically within temporoparietal areas associated with the task. Areas of non-

overlap in fMRI and ERP sources were relatively small and inconsistent across subjects. 

Comparison with existing method 
The ERP and fMRI sources estimated with solely jICA overlapped in just 4 of 15 subjects, and strictly in 

the parietal cortex. 

Conclusion 
The study demonstrates that the new fMRI-ERP spatial overlap estimation method provides greater 

spatiotemporal detail of the cortical dynamics than solely jICA. As such, we propose that it is a superior 

method for the integration of fMRI and EEG to study brain function. 

Keywords 
fMRI, EEG, ERP, Joint independent component analysis (jICA), Auditory, Oddball, P300 

1. Introduction 
The neuroimaging of brain activity with simultaneous functional magnetic resonance imaging (fMRI) 

and electroencephalography (EEG) capitalizes on the complementary strengths of the methods, but 

poses challenges with respect to cross-method data integration and interpretation (Ahlfors and 

Hamalainen, 2012; Dale et al., 2000; Kujala et al., 1995; Liu and He, 2008; Mangalathu-Arumana et al., 

2012). FMRI measures the hemodynamic response related to neural activity at high spatial (millimeter) 

but low temporal (on the order of seconds) resolution, whereas EEG provides a high temporal (on the 

order of milliseconds) but low spatial resolution (centimeter) measurement of large-scale neural 

activity. Due to the differences in spatiotemporal resolution and type of measurement, fMRI and EEG 



provide complementary information but may reflect the activity of partially divergent neural sources in 

the brain. 

Both the blood-oxygen-level-dependent (BOLD) fMRI and scalp event related potential (ERP) responses 

are thought to be near-linearly correlated with local field potentials (LFPs), but only scalp ERPs are also 

correlated with fast spiking activity (Logothetis, 2008; Logothetis et al., 2001; Mathiesen et al., 

1998; Mazzoni et al., 2010; Viswanathan and Freeman, 2007). Second, depending on the location and 

orientation, synchronous electric sources may summate or attenuate one another, resulting in a 

potential mismatch with the BOLD response. Third, because the primary generators of ERP activity are 

presumed to be large pyramidal cells in the neocortex that have a highly regimented structure and 

orientation relative to the cortical surface, the source activity is typically modeled by electrical dipoles 

limited to the neocortical layer and with an orientation perpendicular to the cortical surface (Ahlfors 

and Hamalainen, 2012). Thus, there may be a mismatch between the imaging modalities, for example 

if subcortical sources are measured only with fMRI. 

We propose a data-driven approach to estimate the spatial overlap between maps of brain activity 

generated from fMRI and ERP measurements that assumes that overlapping, but not identical, sources 

of neural activity contribute to each measurement. That is, different from fMRI-informed integration 

approaches that limit or bias the ERP source reconstruction to regions detected as active with fMRI 

(Aftanas et al., 1998; Bobes et al., 2018; Dale et al., 2000; Huster et al., 2012; Ou et al., 2009; Xu et al., 

2018), or ERP-informed integration approaches that use predefined ERP features to analyze the fMRI 

data (Liebenthal et al., 2003; Bénar et al., 2007; Debener, 2005; Jann et al., 2009; Mizuhara et al., 

2005; Murta et al., 2015; Portnova et al., 2018), the approach presented here does not impose 

coupling between the neuroimaging measurements. Neurogenerative approaches that model the 

generation of EEG and fMRI signals to estimate the sources that best explain experimental data allow 

uncoupling between the measurements (Huster et al., 2012; Rosa et al., 2010a, b; Sotero and Trujillo-

Barreto, 2008, 2007). However, neurogenerative modeling does not explicitly inform on the extent of 

coupling and uncoupling between the modalities. 

The proposed fMRI and ERP spatial overlap estimation (fMRI-ERP SOE) method is applied to task-

related activity extracted from individual data and consists of the following key steps: 1) distributed 

source reconstruction of the task-related ERP activity (ERP source model), 2) transformation of the 

volumetric fMRI activity to the ERP spatial scale by forward modelling of the scalp potential field 

distribution and backward source reconstruction (fMRI source simulation), and 3) optimization of fMRI 

and ERP thresholds to maximize spatial overlap without a priori constraints of coupling (overlap 

calculation). The representation of both fMRI and ERP signals in a common ‘nonnative’ source imaging 

space enables the fMRI-ERP SOE approach to maximize the ability to spatially correlate fMRI and ERP 

sources of activity while minimizing assumptions regarding neuroimage coupling. 

In this study, the extent to which simultaneous BOLD fMRI and ERP measurements reflect common 

versus distinct sources of neural activity was estimated in an auditory oddball paradigm with 

parametric variation of the deviant size. The results indicate that approximately 73% of the activity 

measured with ERPs overlapped spatially with that recorded with fMRI, and vice versa. Most, but not 

all, of the regions in which activity was recorded with only fMRI or only ERPs were adjacent to areas of 



joint activity, suggesting a relatively tight but imperfect coupling between the neuroimaging measures 

in this paradigm. 

2. Methods 
EEG and fMRI were acquired simultaneously from 24 subjects as they performed an auditory oddball 

discrimination task with five levels of tone frequency deviants. Details of the experiment design, image 

acquisition, pre-processing and jICA were reported previously (Mangalathu-Arumana et al., 2012) and 

are briefly summarized here. 

2.1. Subjects 
Twenty fours subjects, ages 18–40, participated in the original study (Mangalathu-Arumana et al., 

2012). Of these, seven subjects were excluded from the analysis because their anatomical MR-images 

did not cover the entire skull (as needed to construct a head model). Two additional subjects were 

excluded from the group analysis during preprocessing because jICA returned components with non-

physiological data structures (z-scores >30 and no spatiotemporal variation across electrodes), 

indicating a failure of jICA to parse the signals into independent components. Data from the remaining 

fifteen subjects (8 females and 7 males) were used in the current analyses. All subjects provided 

written informed consent according to the Institutional Review Boards of the Medical College of 

Wisconsin and Marquette University, and were compensated for their participation in the study. 

2.2. Experimental design 
The experiment consisted of an auditory oddball paradigm with four-tone sequences, each composed 

of three standard 1000 Hz tones and one deviant tone (in 3rd or 4th position), presented binaurally. The 

task consisted of pressing one of two buttons to indicate whether the deviant tone sounded higher or 

lower in frequency than the standard tones (Mangalathu-Arumana et al., 2012). The tones were 

100 ms duration with rise/fall times of 5 ms and were presented at 800 ms stimulus onset asynchrony. 

The deviant tone frequencies (five lower, and five higher, than the standard tone frequency) were 

selected individually to correspond to 50, 65, 75, 85, and 95% task performance accuracy (as 

determined in a prescan test). 144 trials were presented per task level, for a total of 720 trials, broken 

into 12 runs, acquired in 2 sessions on separate days. The onset of each tone sequence was jittered 

relative to the time of image acquisition, such that the deviant tone was always presented 4 s before 

the middle of the next image acquisition block, and the image acquisition coincided with the estimated 

peak of the BOLD response (Hall et al., 1999). Auditory stimuli were delivered using a pneumatic, MRI-

compatible headphone system (Avotec, Inc., Stuart, FL), and the sequence of stimulus presentation 

was controlled with the Presentation software (Neurobehavioral Systems Inc., San Pablo, CA). 

2.3. Data acquisition and preprocessing 
The study was conducted on a GE 3 T Signa Excite scanner (GE Health Care, Milwaukee, WI). High-

resolution whole brain anatomical images were acquired first in each session, using a 3D spoiled 

gradient-echo (SPGR) sequence (0.9 × 0.9 × 1 mm voxels). Functional MR images consisted of axially-

oriented T2*-weighted, gradient-echo, echo planar images acquired using a clustered volume 

acquisition and covering the whole brain (TE = 25 ms; flip angle = 77°; TR = 2 s; stimulus blocks = 7 s; 

3 × 3 × 3.5 mm voxels), such that a single functional volume was acquired during each trial 4 s after 

stimulus onset. EEG was recorded continuously during fMRI, at 500 Hz sampling rate, using an MRI-



compatible MagLink system consisting of a 64-channel MagLink cap (62 monopolar electrodes, and 2 

bipolar leads for ECG and VEOG), SynAmps amplifier, and a Scan 4.4 Workstation (Compumedics 

Neuroscan, Inc., TX). Sintered Ag/Ag-Cl electrodes were positioned per the extended International 10–

20 system, with a hard-wired reference at CPz. 

MR image preprocessing was performed in AFNI (Cox, 1996). The raw fMRI 2D image slices at each 

time point were transformed to 3D and spatially registered to the third functional image in the first 

run. The functional image series was then registered to the anatomical image (consisting of an average 

of the anatomical images from sessions 1 and 2, to obtain higher anatomical accuracy) using 

the align_epi_anat.py program in AFNI. Multiple regression was performed to estimate the BOLD 

activity associated with the response to the deviant in each task level, using level 1 (corresponding to 

50% performance accuracy) as a baseline, and translation and rotation motion parameters estimated 

during registration were used as noise covariates. 

The raw EEG was preprocessed with the Scan 4.4 Edit module (Compumedics Neuroscan, Inc. TX). 

Channels with a variance > 20μV in the baseline period (-200 to −50 ms) were excluded from further 

analysis. An average of 7 (range 0–9) channels per subject were excluded. The EEG was filtered using a 

0.1–30 Hz zero-phase bandpass FIR filter with a 48 dB/octave roll-off. The ballistocardiogram artifact 

introduced by the MR environment was corrected (Ellingson et al., 2004). Removal of MR gradient 

artifacts was unnecessary because the clustered functional image acquisition design for simultaneous 

fMRI/EEG (Liebenthal et al., 2003) prevented the epochs of interest from being contaminated. 

ERPs were computed for each task level using an epoch time from −200 ms to 800 ms relative to 

deviant onset. The epochs were demeaned to compensate for slow drifts occurring during EEG 

acquisition. Epochs in which the signal exceeded ±200 μV were deemed to contain artifacts and were 

discarded. The remaining epochs were sorted and averaged by task level. The average number of 

accepted epochs per subject and level was 86%. 

As with the fMRI preprocessing, the ERP response to task level 1, the hardest task level, was subtracted 

from the ERP responses to the other four task levels. The resulting fMRI and ERP responses associated 

with task levels 2–5 were used as input for jICA. 

2.4. Joint-ICA 
The fMRI and ERP datasets were submitted to within-subject jICA, as described previously 

(Mangalathu-Arumana et al., 2012). The datasets were vectorized and concatenated by level. The input 

to jICA consisted of four features, each containing the fMRI and ERP responses for one of the four task 

levels, such that the resulting components represented within-subject fMRI and ERP responses that co-

varied across task levels (known as Multi-run jICA). 

Components containing task-relevant activity were identified in each imaging modality as those 

exceeding an amplitude threshold of p < 0.05 relative to the distribution of activity across all 

components in that modality. The joint (multimodal) component containing the most active samples 

(either ERP time points or fMRI voxels) was used to define a component activity threshold. The 

threshold (in samples) for including components in the subsequent analyses was set 

to 
#𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑖𝑛𝑚𝑜𝑠𝑡𝑎𝑐𝑡𝑖𝑣𝑒𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝑡𝑜𝑡𝑎𝑙#𝑜𝑓𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
, based on a monte carlo simulation of the random distribution of 



active samples across components when task-related activity is constrained to a single component. 

This approach set a permissive (low) threshold for the inclusion of task-related activity from other 

components by underestimating the number of active samples per component when no task-related 

activity is present. In 12 subjects, only one joint component passed the threshold. In the remaining 3 

subjects, there were 2 suprathreshold joint components, which were summed for subsequent analysis 

to avoid losing activity of interest. 

2.5. FMRI and ERP spatial overlap estimation (fMRI-ERP SOE) method 
A schematic overview of the fMRI and ERP spatial overlap estimation (fMRI-ERP SOE) method is shown 

in Fig. 1. The approach includes three main components, 1) distributed source reconstruction of the 

task-related ERP activity (ERP source model), 2) transformation of the volumetric fMRI activity to the 

ERP spatial scale by forward modelling of the scalp potential field distribution and backward source 

reconstruction (fMRI source simulation), and 3) optimization of fMRI and ERP thresholds to maximize 

spatial overlap without a priori constraints of coupling (overlap calculation). It is important to note that 

the proposed analysis pipeline can be applied to data that is not processed using jICA. It can also be 

applied separately to the individual jICA components, which would be recommended in studies where 

the task-related activity is consistently parsed to several components (e.g., studies with more 

experimental levels). 

 

Fig. 1. Workflow for fMRI and ERP spatial overlap estimation (fMRI-ERP SOE) method. The functional imaging 
measurements used as input to jICA, and the anatomical images used to create the head and cortical surface 
models, are shown in orange. The structural/functional pre-processing steps used to create the anatomical 
model and extract task-related activity are shown in green. Processing steps for the task-related ERP activity are 
shown in red and those for the fMRI activity, including projection to the common source space, are shown in 
blue. The steps for ERP and fMRI threshold optimization, and characterization of source map spatial overlap, are 
shown in purple. 

 

2.5.1. ERP source model 

Distributed source reconstruction was used to localize the cortical areas contributing to the scalp ERPs 

(see steps in red, Fig. 1). For each subject, models of the head and pial surface were created in 

Freesurfer (https://surfer.nmr.mgh.harvard.edu/) using the recon-all script on the subject’s averaged 

MR anatomy. The head model was then imported into Brainstorm 

(http://neuroimage.usc.edu/brainstorm/), the pial surface was down sampled to 15,000 vertices, and a 

boundary element model (BEM) of the cortical surface was created. Whitened and depth-weighted 

linear L2-minimum norm estimates were used to estimate the amplitude of source activity at each 

vertex oriented perpendicular to the cortical surface. Finally, the absolute value of source activity at 



each vertex and time point was converted to z-scores computed relative to the baseline period 

(−200 ms to −50 ms). 

2.5.2. FMRI source simulation 

To facilitate comparisons in the spatial domain, the fMRI volumetric activity was simulated as ERP 

activity by projection to the cortical surface, forward construction of the scalp potential field 

distribution, and backward source reconstruction (see steps in blue, Fig. 1). For each subject, the 

volumetric fMRI component was projected orthogonally onto the inflated pial surface in Freesurfer 

using mri_surf2vol and smoothed with a 6 mm full width half maximum Gaussian kernel to fill in small 

spatial discontinuities resulting from the projection. The map of surface activity was imported into 

Brainstorm and down sampled to 15,000 vertices. The amplitude of activity at each vertex was 

multiplied by a 400 ms unit amplitude square-wave to simulate a time course and the resulting 

spatiotemporal activity was forward projected to the scalp electrodes using the lead field matrix. 

Gaussian noise was added to each electrode to match the noise covariance of the experimentally-

measured EEG. The fMRI activity was then submitted to the same source localization procedures used 

for the ERP analysis. 

2.5.3. Overlap calculation 

The estimate of overlap between fMRI and ERP source maps may vary as a function of individual 

differences in activation, and the statistical threshold defining significant activity. In the present work, 

we opted to identify on an individual basis, the amplitude threshold for the fMRI source map and the 

temporal and amplitude thresholds for the ERP source map that maximized their spatial overlap on the 

cortical surface (see steps in purple, Fig. 1). This individualized optimization procedure assumes that 

simultaneous fMRI and ERP measurements largely reflect the local field potential activity of the same 

neural sources, with partial divergence driven primarily by differences in the spatiotemporal resolution 

of the measurements. 

The thresholds were optimized on a vertex-wise basis. The amplitude thresholds spanned the range [0, 

95] % of the maximum amplitude (steps of 0.01), and the ERP temporal thresholds spanned the range 

[20, 800] ms (20 ms steps). Thresholds were optimized using a class membership function (O) based on 

the vertex-wise correspondence between the ERP and fMRI source maps, 

O = (Intersection*Union2*Exclusion3)/(total_vertices/2)^6 

where the intersection corresponds to the number of vertices with significant activity in both imaging 

modalities, the union corresponds to the number of vertices with significant activity in at least one 

imaging modality, and the exclusion is defined by the difference between the union and the total 

number of vertices. The denominator scales the membership function to one when the ERP and fMRI 

maps overlap completely and the union is balanced by the exclusion. Optimization of the membership 

function within the threshold space was used to maximize the spatial overlap between fMRI and ERP 

sources while promoting sparsity in the activation map. 

The optimized thresholds were applied to create binary ERP and fMRI source maps, with edge 

correction to account for stochastic variations in the boundaries of active regions. Vertices that were 

inactive but surrounded by active vertices in one imaging modality, and were active in the other 

modality, were labeled as active in both modalities. 



To determine the statistical significance of the optimized ERP temporal threshold, a Monte Carlo 

simulation with 1000 iterations was used to determine the likelihood that a phase-randomized signal 

with the same power spectrum would exceed the temporal threshold. The distribution of consecutive 

data points in the phase-randomized signal that met or exceeded the ERP amplitude threshold at each 

vertex was calculated to determine the 0.05 confidence interval. A Šidák correction was applied to 

adjust for multiple comparisons across vertices (Sidak, 1967). Vertices in which the activity did not 

exceed the temporal threshold were marked as inactive in the binary maps. In a second Monte Carlo 

simulation with 1000 iterations, the spatial distribution of active vertices in the fMRI and ERP source 

maps was randomized to estimate the probability of obtaining the observed spatial overlap between 

source maps. 

2.5.4. Overlap estimation 

Regions of overlap (and nonoverlap) between ERP and fMRI source maps were estimated within, and 

across, subjects. For the analysis across subjects, the individual cortical surface models were aligned to 

Freesurfer's FSaverage anatomy using spherical transformations, and the same alignment transform 

was applied to the individual signed Z-score and binary overlap maps. The individual binary maps were 

summed at each vertex to determine the number of subjects with supra-threshold activity across 

imaging modalities. 

Regions of interest (ROIs) were created that corresponded to the areas of overlap in ERP and fMRI 

activity across the group. First, an ERP-fMRI overlap mask was created by thresholding the group 

overlap count map at 9 subjects, and applying a cluster threshold of 3 vertices, resulting in a corrected 

p < 0.05 (computed using a 1000 iteration Monte Carlo simulation of expected cluster sizes based on a 

randomized distribution of the vertices with overlapping fMRI/ERP activity in the source projection 

space). The overlap mask was then grown by one vertex in every direction to smooth the boundaries 

and account for 99% of the fluctuations in the spatial extent of backward projected ERP sources 

simulated using the experimentally measured electrode noise covariance. 

The final ERP-fMRI overlap mask consisted of six distinct ROIs, in the right and left superior temporal 

planes, right lateral superior temporal sulcus, right and left inferior parietal lobules, and right ventral 

central sulcus. Within in each ROI, the number of vertices per time point that exceeded the global 

(p < 0.05) amplitude threshold were counted in each subject and averaged across subjects to create 

mean time courses of activation. 

The degree of fMRI-ERP overlap obtained with the SOE approach was compared to the degree of fMRI-

ERP overlap obtained with strictly jICA, that is, without simulating the fMRI as ERP activity, and with 

independent thresholding of the components in each modality. When the SOE approach was not used, 

the ERP amplitude threshold in each subject was set leniently (p < 0.1) using the amplitude distribution 

across all components to maximize spatial overlap and monte carlo simulations were used to set the 

temporal threshold ( = 50 ms) resulting in a corrected map-wise threshold of p < 0.05. The volumetric 

fMRI in each jICA component was projected onto the cortical surface. The fMRI amplitude threshold 

was set to p < 0.05 using the amplitude distribution across all components and monte carlo simulations 

were used to set the vertex cluster threshold resulting in a corrected map-wise threshold of p < 0.05. 

Counts of the number of subjects with activity at each vertex were computed as detailed above, for 

ERP, fMRI, and ERP - fMRI overlap. 



3. Results 
Table 1 summarizes the results of the optimal (i.e., maximizing the overlap) threshold calculation and 

the ERP and fMRI spatial overlap estimation in each subject. Across the group, the mean amplitude 

threshold of the ERP maps was a z-score of 2.68 (standard deviation – SD = 2.14). The mean temporal 

threshold of the ERP maps was 442 ms (SD = 258.2 ms). The mean amplitude threshold of the fMRI 

maps was 9 (SD = 2.1). The optimized ERP amplitude and temporal thresholds were negatively 

correlated across subjects (R= -0.85). FMRI amplitude thresholds were not correlated with ERP 

amplitude or temporal thresholds (R=-0.01 and R = 0.23, respectively). 

Table 1. Individual ERP (amplitude and temporal) and fMRI (amplitude) threshold values that maximize 

the overlap between ERP and fMRI source maps. 

Subject 
Number 

ERP 
amplitude 
threshold (Z-
score) 

ERP 
temporal 
threshold 
(ms) 

fMRI 
amplitude 
threshold (Z-
score) 

Extent of fMRI 
activity 
overlapped by 
ERP activity (%) 

Extent of ERP 
activity 
overlapped by 
fMRI activity (%) 

4009 0.37 740 5.71 69.1 73.03 

4018 4.53 20 3.92 70 73.5 

4137 1.44 640 18.58 76.3 74.3 

4138 0.25 740 5.24 79.2 66.8 

4170 2.39 660 7.29 80 84 

4177 0.66 620 12.4 65.9 67.3 

4192 1.22 720 9.78 74.5 76.8 

4237 1.57 420 6.75 81.4 76.1 

4282 1.05 580 9.7 69.8 71.3 

4283 3.76 440 21.63 82.2 85.5 

4284 6.14 260 7.79 58.15 65 

4287 3.12 300 5.35 69.9 78.01 

4296 4.39 60 5.71 64.7 62.6 

4410 2.06 400 5.34 79.5 78.3 

4498 7.3 40 10 66.7 68.3 

 

Fig. 2 shows an example of the class membership function following an exhaustive search of the ERP 

amplitude and temporal threshold space for a representative subject. The figure illustrates the trade-

off between the ERP amplitude and temporal thresholds that resulted in similar levels of overlap 

between ERP and fMRI source maps. 



 
Fig. 2. Example of the ERP threshold optimization map for a representative subject (#4287) at an fMRI 
amplitude threshold of 5.35. The colormap depicts the output from the overlap class membership function as a 
function of ERP amplitude and temporal threshold for the subject. The extended region of of dark red indicates a 
trade-off between amplitude and temporal thresholds to mazimize the spatial overlap between the ERP and 
fMRI source maps. 

 

The extent of spatial overlap between ERP and fMRI source maps across subjects is shown in Fig. 3. For 

the fMRI source maps, the extent of overlap with the ERP source maps ranged from 58.15% to 82.2%, 

with a mean overlap of 72.5% (SD = 7.2%). For the ERP source maps, the extent of overlap with the 

fMRI source maps ranged from 62.6% to 85.5%, with a mean overlap of 73.4% (SD = 6.7%). Across 

subjects, the extent of ERP activation overlapped by fMRI activation and extent of fMRI activation 

overlapped by ERP activation were positively correlated (R = 0.73). For the sample population, the 

slope of the best fit line (=0.68x+23.85) was not significantly different from a unit line (ANCOVA, F 

(1) = 1.37, p = 0.187). 

 
Fig. 3. Spatial overlap between ERP and fMRI source maps computed with the fMRI-ERP SOE method. The 
percentage of ERP activation overlapping with fMRI activation is plotted against the percentage of fMRI 
activation overlapping with ERP activation (blue squares). The two measurements were positively correlated 
(R = 0.73), and their relationship was well described by the line y = 0.68x+23.85 (in black). The unit line is shown 



in green. The percentage overlap obtained with a randomized spatial distribution of ERP and fMRI activity is 
represented by the red square dot (red circle denotes +5 standard deviations). 

 

Fig. 4 shows the ERP and fMRI source maps, and areas of activity overlap, in a representative subject. 

For this subject, the suprathreshold fMRI activity overlapped with 84% of the suprathreshold ERP 

activity, and the suprathreshold ERP activity overlapped with 80% of the fMRI activity. 

 
Fig. 4. Example of the spatial overlap estimation between ERP and fMRI source maps in a representative subject 
(#4237). Activity exceeding the significance threshold only in the ERP source map is shown in red, only in the 
fMRI source map is shown in blue, and in both the ERP and fMRI source maps is shown in green. 

 

Fig. 5A shows the count of subjects with suprathreshold activity in both imaging modalities at each 

vertex on the cortical surface mesh. Regions of consistent ERP and fMRI overlap in activity (in 9 or 

more subjects) were observed in the bilateral insula and inferior parietal lobule, and in the right 

superior temporal gyrus and ventral central sulcus. Additional regions with less consistent ERP and 

fMRI overlap (in 6–8 subjects) were observed in the middle temporal, frontal, and superior parietal 

cortices (primarily in the right hemisphere). Fig. 5B shows six ROIs in which there was consistent ERP 

and fMRI overlap, and the time course of activation within the ROIs measured as the mean (across 

subjects) number of suprathreshold vertices. In the early (<300 ms) period of the ERP, there was only 

weak activity in the superior temporal cortex, peaking in the bilateral insula at 140 ms, and in the right 

superior temporal sulcus and insula at 242 ms. The later (>300 ms) ERP activity, which was stronger 

and sustained, originated from the perisylvian ROIs. 



 
Fig. 5. Group fMRI and ERP spatial overlap estimation (fMRI-ERP SOE) map. (A) Colormap representing the 
number of subjects with overlapping fMRI and ERP activity at each vertex. For visualization, the maps were 
thresholded at 6 subjects. B) ROIs with consistent (in 9 or more subjects) ERP and fMRI activity overlap, and the 
time course of activity in each ROI. The time course was measured as the mean (across subjects) number of 
suprathreshold vertices at each time point. 

 

Fig. 6 shows regions in which there was significant activity in one imaging modality but not the other, 

in 6 or more subjects. Small regions of non-overlap between fMRI and ERP activity were observed in 

the Sylvian fissure, and in the posterior superior temporal and orbitofrontal cortex. The maximal 

number of subjects with activity in only one modality was 8. 



 
Fig. 6. Non-overlap between fMRI and ERP source maps, computed with the fMRI-ERP SOE method. Non-
overlap is expressed as the number of subjects with activity in one modality (ERP, top; fMRI, bottom) but not the 
other. For visualization, the maps were thresholded at 6 subjects. The color bar indicates the number of subjects 
with non-overlap at that location. 

 

For comparison with a generic method (using only jICA), the spatial overlap between fMRI and ERP 

joint components that were thresholded independently is shown in Fig. 7. A high degree of spatial 

overlap was observed across subjects within each imaging modality (up to 8 subjects), in 

temporoparietal regions implicated in the auditory oddball response. However, between ERP and fMRI 

maps, the regions of maximal overlap were limited to 4 subjects (Fig. 7c). 



 
Fig. 7. Group spatial overlap in (A) ERP, (B) fMRI, and (C) both ERP and fMRI, estimated using strictly jICA, and 
independent thresholding of source maps in each neuroimaging modality. Overlap is expressed as the number of 
subjects with activity at each vertex. For visualization, the maps were thresholded at an overlap of 2 subjects 
(note the different scale of 2–8 subjects in this Figure). 

 

The benefits of jICA with fMRI-ERP SOE versus just jICA can be seen from a comparison of Figs. 5a 

and 7 c. Fig. 5a shows the spatial overlap across subjects between ERP and fMRI source maps 

calculated with the fMRI-ERP SOE method. Fig. 7c shows the spatial overlap across subjects between 

fMRI and ERP source maps without SOE correction of the spatial bias related to the ERP source 

localization. The spatial overlap peaks at 13 subjects for the fMRI-ERP SOE method and at only four 

subjects for just jICA. 

4. Discussion 
In this paper, we present a data-driven method to estimate the spatial overlap between maps of brain 

activation originating from simultaneous fMRI and ERP measurements, termed fMRI-ERP SOE. The 

fMRI-ERP SOE method is based on the parsimonious assumption that simultaneous fMRI and ERP 

responses largely reflect local field potentials generated by the same neural sources. However, a 

distinctive feature of the fMRI-ERP SOE method is that it allows divergence in the sources of activity 

contributing to the measurements in each modality. 

FMRI-ERP SOE of sources of the auditory oddball response revealed regions of consistent (in 9 or more 

of 15 subjects) activity overlap between imaging modalities in the insula, superior temporal, and 

inferior parietal cortices, in-line with previously reported sources of this response (Arumana, 

2012; Justen and Herbert, 2018; Liebenthal et al., 2003; Linden et al., 1999; Polich, 2007). Strong 

activity in these areas was observed predominantly after 300 ms, in the time window of the P3 ERP 



response associated with cognitive processing during attentive oddball detection (Picton, 1992; Polich, 

2007). The earlier (<300 ms) and weaker (due to subtraction of the level 1 response) activity coincided 

with the latencies of the N1 and mismatch negativity (MMN) responses associated with automatic 

auditory processing and oddball detection (Campbell et al., 2007; Näätänen et al., 2007; Naatanen and 

Picton, 1987). The magnitude of the P3 is influenced by the cognitive context and demands of the task, 

whereas that of the N1 and MMN is influenced primarily by the physical properties of the stimuli. In 

the present experimental design in which the baseline (level 1) corresponded to chance deviant 

detection, the variation in deviant responses across the experimental levels (2–5, corresponding 

roughly to 65–95% deviant detection) reflected primarily a change in attentive perceptual and 

cognitive processing of the deviants, as indexed by P3, and minimally a change in subliminal auditory 

processing of sound frequency, as indexed by N1 and MMN. 

The fMRI-ERP SOE method displayed important benefits relative to strictly jICA of fMRI and ERP. JICA 

with fMRI-ERP SOE revealed a greater extent of reliable activation in the right superior temporal 

cortex, considered to contribute to the generation of the auditory oddball response, than just jICA of 

the same data. Consistent activity was detected in the right superior temporal sulcus in both modalities 

when estimated with fMRI-ERP SOE (Fig. 5A), but not when estimated strictly with jICA. Activity in the 

right superior temporal sulcus was observed in the jICA-fMRI map (Fig. 7B) but not the jICA-ERP map 

(Fig. 7A), resulting in no overlap in this area with jICA. The weak EEG sensitivity to sources of activity in 

the superior temporal cortex may be due to incomplete (and inconsistent across subjects) coverage of 

this area by EEG electrodes especially in the ventral portion. Indeed, a study comparing fMRI and ERP 

activation maps in visual and auditory paradigms reported fMRI-ERP uncoupling specifically in auditory 

superior temporal areas, and attributed it to sparse EEG coverage (Minati et al., 2008). 

The advantages of using fMRI-ERP SOE to characterize the spatial relationships between fMRI and ERP 

sources center on the 1) projection of both datasets into a common (non-native) source space that 

accounted for the effects of spatial bias during source localization; and 2) the optimization of the fMRI 

and ERP thresholds to maximize the overlap between the sources measured with each method. In this 

sense, the considerably lower overlap of using jICA alone (i.e., when assumptions of neuroimage 

coupling are minimized), could be related to the spatial error associated with ERP source localization, 

as well as the arbitrary nature of neuroimaging data thresholding. 

The fMRI-ERP SOE also revealed brain regions in which activity was less consistent across subjects, 

notably in the right inferior frontal cortex (Fig. 5A). The right inferior frontal cortex is considered to be 

part of a ventral attention network involved in stimulus-driven orientation and deviance detection 

(Justen and Herbert, 2018; Knight, 1984; Pardo et al., 1991; Posner, 1992, 1990; Soltani and Knight, 

2000). The variability in activation of right frontal areas could reflect attentional fluctuations and 

individual differences in cognitive control during task performance. However, differences in 

measurement quality could also contribute to inconsistent signal amplitudes in frontal cortex. 

Specifically, frontal activity measured with EEG could in some instances be generated by tangentially 

oriented sources in bilateral temporal cortex as opposed to radially oriented frontal sources (Ahlfors 

and Hamalainen, 2012). In line with the possibility of ‘ghost’ frontal sources in the present ERP data, 

the most consistent activation across subjects in the jICA-ERP map was in the right inferior frontal 



cortex (8 subjects, Fig. 7A), but this area was inconsistently activated in the jICA-fMRI map (2 

subjects, Fig. 7B). 

Across the group, approximately 73% of the activity at each brain location was measured with both 

neuroimaging modalities, and the remainder 27% was measured in one modality but not the other 

(Table 1, Fig. 3). The activity measured in only one of the modalities largely fell adjacent to areas of 

ERP-fMRI spatial overlap (see Fig. 4, in a representative subject) and was in the same vicinity in both 

modalities (e.g., sylvian fissure), suggesting that it reflected primarily differences in the extent of 

overlapping activation rather than complete uncoupling between the modalities. However, there were 

also regions of single modality activity that were not adjacent to areas of overlap; for example, activity 

measured only with EEG in the right inferior frontal cortex and bilateral parietotemporal cortex in the 

representative subject. The non-overlap group map (Fig. 6), however, showed that areas of non-

overlap were largely inconsistent across subjects. Taken together, the present results suggest the 

existence of comparatively small areas of modality uncoupling, in variable brain locations. The results 

demonstrate the potential utility of the fMRI-ERP SOE method to investigate the factors contributing to 

uncoupling between the fMRI and EEG measurements. The strong positive correlation, with a near 

unit-slope, between the extent of fMRI and ERP spatial overlap (Fig. 3) is also indicative of limited 

uncoupling between the measurements in each modality. In this analysis, uncoupling between the 

modalities, i.e., activity measured with one neuroimaging modality but not the other, would be 

observed as a positive correlation with a steeper slope (reflecting more extensive ERP activity), or a 

shallower slope (reflecting more extensive fMRI activity). 

The optimal amplitude and temporal thresholds for maximizing the spatial overlap between imaging 

modalities spanned a wide range, with ERP z-scores between 0.25 and 7.3, ERP temporal thresholds 

between 20 and 740 ms, and fMRI z-scores between 3.9 and 21.6. The amplitude and temporal ERP 

thresholds were found to be negatively correlated, suggesting a trade-off between them. The 

amplitude thresholds were generally higher for fMRI than ERP, likely because of the additional 

temporal threshold applied strictly to ERP signals. The threshold values identified as optimal for 

maximizing overlap were in some subjects well outside the range typically used for neuroimaging data 

analysis, yet their application resulted in statistically significant and biologically plausible activation 

maps. Thus, the proposed threshold optimization and fMRI-ERP SOE analysis may have value for 

exploring data more comprehensively than possible with more typical analysis approaches. 

The fMRI-ERP SOE approach shares some similarities with neurogenerative modeling approaches. Both 

use statistical methods to investigate the relationship between fMRI and EEG without imposing a 

constraint of coupling between the signals. However, neurogenerative approaches attempt to reduce 

the errors associated with EEG source reconstruction by informing the forward generative model with 

physiological parameters. Our approach on the other hand, attempts to reduce the spatial 

discrepancies between EEG and fMRI by forward modeling the fMRI as an EEG scalp distribution and 

applying the same source reconstruction procedure to both modalities (i.e., biasing the fMRI to the 

EEG spatial scale). While the accuracy of neurogenerative approaches depends on the accuracy of the 

EEG forward model, our approach accepts that EEG source reconstruction is imprecise and applies the 

same bias to the fMRI. Thus, the methods can perhaps best be seen as complementary. For example, 



the fMRI-ERP SOE can be used to identify areas of coupling and uncoupling, and this information can 

be used to constrain and improve the precision of a neurogenerative source model. 

The fMRI-ERP SOE is a data-driven method to quantitatively estimate the spatial relationship between 

sources of brain activity measured with fMRI and EEG. The present study demonstrated that the 

addition of this method provides greater spatiotemporal detail of the cortical dynamics than solely 

jICA, a common method for multimodal integration (Arumana, 2012; Ma et al., 2013; Mangalathu-

Arumana et al., 2012; Moosmann et al., 2008). Furthermore, the fMRI-ERP SOE method provides a 

means to estimate the degree of non-overlap between the sources measured with each neuroimaging 

modality, and this aspect could be useful to study uncoupling. As such, we propose that the addition of 

fMRI-ERP SOE provides a more comprehensive method for the integration of data from the two 

neuroimaging modalities. The fMRI-ERP SOE method could be used to study the conditions under 

which uncoupling can occur. For example, at high stimulation rates in healthy individuals (Goense and 

Logothetis, 2008; Lachaux et al., 2007; Muthukumaraswamy and Singh, 2008; Nagarajan et al., 1999) 

and in individuals with compromised neurovascular coupling (Faraci et al., 1990; Kazama et al., 

2003; Mackert et al., 2008). 

One limitation of the approach is the long computation time. The exhaustive search of the amplitude 

and temporal threshold space performed to maximize spatial overlap is computationally demanding, 

requiring several hours of processing per subject. In experimenting with optimization approaches, we 

consistently found that the fMRI-ERP overlap metric plateaued for different ERP amplitude and 

temporal threshold combinations (see Fig. 2 for an example in one subject). Due to this, gradient based 

approaches that would have sped-up the optimization process were inadequate because they would 

not consistently converge to the global maximum. To ensure detection of the threshold combination 

that maximized the spatial overlap between fMRI and ERP measures, it was necessary to employ an 

exhaustive search of the threshold space in the present study. 

In the future, the fMRI-ERP SOE method could be refined and expanded in several ways. First the 

exhaustive search to optimize thresholds could be made more efficient by refining the class 

membership function to emphasize sensitivity to a global solution in the amplitude/temporal threshold 

space. This would in turn facilitate more efficient searches for the optimal thresholds using, for 

example, gradient-based approaches. The fMRI-ERP SOE approach could be applied to continuous 

EEG/fMRI data by convolving the fMRI timeseries with the simulated evoked time course. Finally, the 

fMRI-ERP SOE could also be examined when subcortical sources are also modeled. 

In summary, the new fMRI-ERP SOE analysis pipeline for estimating the overlap of sources of activity 

measured simultaneously with fMRI and ERP revealed the dynamics of perisylvian regions associated 

with auditory oddball detection at a spatiotemporal detail not available with measurements from just 

one of the imaging modalities, or strictly jICA of measurements from both modalities (Mangalathu-

Arumana et al., 2012). The fMRI-ERP SOE suggested that areas of non-overlap in sources of activity 

between the modalities were relatively small and inconsistent across subjects, at least in this paradigm. 

Future research should examine the factors contributing to uncoupling between fMRI and ERP 

measurements, whether physiological (e.g., due to individual differences in neuroanatomy or 

function), and/or methodological (e.g., due to modality differences in imaging sensitivity in specific 

brain regions). 
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