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ABSTRACT  

COMPARISON OF CPU AND PARABRICKS GPU ENABLED BIOINFORMATICS SOFTWARE  

FOR HIGH THROUGHPUT CLINICAL GENOMIC APPLICATIONS  

 

 

Stefano Rosati, B.A.  

 

Marquette University, 2020 

 

In recent years, high performance computing (HPC) has begun to revolutionize 

the architecture of software and servers to meet the ever-increasing demand for speed 

& efficiency.  One of the ways this change is manifesting is the adoption of graphics 

processor units (GPUs).  Used correctly, GPUS can increase throughput and decrease 

compute time for certain computational problems.  Bioinformatics, an HPC dependent 

discipline, is no exception.  As bioinformatics continues advance clinical care by 

sequencing patient’s DNA and RNA for diagnosis of diseases, there is an ever-increasing 

demand for faster data processing to improve clinical sequencing turnaround time.    

 Parabricks, a GPU enabled bioinformatics software is one of the leaders in ‘lifting 

over’ common CPU bioinformatics tools to GPU architectures.  In the present study, 

bioinformatics pipelines built with Parabricks GPU enabled software are compared with 

standard CPU bioinformatics software.  Pipeline results and run performance 

comparisons are performed to show the impact this technology change can have for a 

medium sized computational cluster.  

 The present study finds that Parabricks’ GPU workflows show a massive increase 

in overall efficiency by cutting overall run time by roughly 21x, cutting overall 

computational hours needed by 650x. Parabricks GPU workflows show a 99.5% variant 

call concordance rate when compared to clinically validated CPU workflows.  

Substitution of Parabricks GPU alignment into a clinically validated CPU based pipeline 

reduces the number of compute hours from 836 hours to 727 hours and returns the 

same results, showing CPU and GPU’s can be used together to reduce pipeline 

turnaround time & compute resource burden.  Overall, integration of GPUs into 

bioinformatic pipelines leads to massive reduction of turnaround time, reduction of 

computation times, and increased throughput, with little to no sacrifice in overall output 

quality.  The findings of this study show GPU based bioinformatic workflows, like 

Parabricks, could greatly improve whole genome sequencing accessibility for clinical use 

by reduction of testing turnaround time. 
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INTRODUCTION 

Background 

The fields of bioinformatics and clinical genomics have grown rapidly with the 

rise of next generation sequencing and the subsequent increase in publicly available 

data and decrease in the cost to generate genomic data.  Despite the growth of the 

clinical genomics, clinical sequencing still faces challenges in becoming a routine 

diagnostic test, causing it to remain a last-ditch effort to end a diagnostic odyssey.  Of 

the major challenges facing whole genome sequencing (WGS), the high cost and long 

turnaround time (TAT), the time from test order through results reporting, remain the 

largest hurdles to making whole genome sequencing (WGS) a staple of diagnostic 

testing (Manolio, 2017).  While advances in sequencing technology and testing 

availability have improved clinical WGS TAT, bioinformatic computation and variant 

analysis remain a challenge due to the volume of data and amount of hands on time 

required by analysts (Miller, 2015).  Within this study, a new graphics processor unit 

(GPUs) based bioinformatics toolset called Parabricks is assessed against standard 

bioinformatics pipelines using central processing units (CPUs), showing drastic reduction 

of TAT with no sacrifice in clinical efficacy.    

Clinical Genomics 

Since the start of the Human Genome Project, integration of computer science 

into genetic sequencing has played a key role in the growth of genomics for research 

and clinical applications (Lander, 2001), (Hood, 2003).  As computer science and data 
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analysis have become more intertwined, the cost of sequencing has reduced drastically.  

Estimates published in 2018 show clinical whole exome sequencing (WES) ranges from 

$555 to $5,169 and clinical whole genome sequencing (WGS) from $1,906 to $24,810 

(Schwarze, 2018).  While current WES and WGS costs are still prohibitive for most 

patients, the current price is a drastic reduction from the 2.7 billion dollar price tag of 

the first human genome in 2003 (National Institute of Health, n.d.).  The decrease in 

sequencing cost is driven by technological innovations allowing for high throughput 

sequencing of many samples in parallel called Next Generation Sequencing (NGS) 

(Schwarze, 2018).  As the cost of sequencing continues decreases, NGS has continually 

showed its ability to transforming the diagnostic methods for finding causes of both rare 

& common mendelian diseases, as well as providing accurate diagnosis and targeted 

treatment of cancer (Cirulli, 2010) (Willig, 2015).  

Despite the price decrease of WES and WGS testing in recent years, the world of 

clinical genomics still faces challenges.  The largest challenges remain turnaround time 

(TAT), variant interpretation and data management (Rossen, 2018) (Meienberg, 2016).  

A single patient’s WGS data can result in hundreds of gigabytes of data and can take 

thousands of hours of server time (Muir, 2016).  In recent years, the growth of cloud 

computing and storage has decreased the cost of maintaining servers and have made it 

easier to scale up workflows, but has not done much to increase the use of WGS over 

using smaller exome and genome panels (Muir, 2016). At present, it remains much more 

effective for clinicians to order smaller gene panels and WES than WGS due to the lower 

cost and faster TAT (Muir, 2016).  Smaller gene panels are attractive to clinicians and 
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patients due to their lower cost, as they require less sequencing, less computation and 

less hands-on analytical time.   

Despite the drawbacks of high data volume, long compute time, and costly 

hands variant curation requirements, there is little disagreement that WGS is a highly 

effective method for clinical diagnostics.  Many clinicians argue that WGS should be a 

front line defense for neonatal crises and should be utilized in the management of acute 

medical care (Miller, 2015) (Saunders, 2012) (Manolio, 2017).  WGS has been shown to 

help in these scenarios by assisting in diagnosing rare and new diseases, diagnosing 

cases with atypical presentation and can help in cases where standard treatments are 

ineffective (Miller, 2015). WGS findings additionally assist clinicians in managing and 

treating diseases by giving insights into a disease’s etiology, offering clinicians insights 

into treatment as opposed to long term management of symptoms (Clark, 2019).  WGS 

sequencing also has the ability to show clinicians when irremediable damage is done to 

the genome, allowing them to begin palliative care knowing they have done all they can 

for their patients without prolonging suffering (Willig, 2015). 

WGS additionally provides methodological benefit by superior data to target 

sequencing methodologies such sequencing by exome capture or PCR amplification.  

WGS’ indiscriminate method of genome surveillance and variant detection can lead to 

detection of previously unknown pathogenic disease origins (Lionel, 2018).  Whole 

genome sequencing also has better resolution for calling copy number variants (CNVs), 

large genomic deletions or insertions, by increasing the probability of sequencing over 
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breakpoints and by giving better resolution of large genomic events (Lionel, 2018).  By 

contrast, exome and targeted panels have difficulty detecting CNVs, due to the finite 

targets, and limited resolution (Zhao, 2013).  Perhaps counterintuitively, a negative 

result from a WGS test is more significant result than a negative targeted panel.  This 

means that a negative result from WGS testing is less likely to leave clinicians and 

patients wondering if they need to order a more comprehensive or advanced test. 

Another scenario in which WGS sequencing has utility is neonatal crisis, where 

any of an estimated 500-1000 different genes can drive newborns to rapidly deteriorate 

(Kingsmore, 2012).  Neonatal crises account for around 20% of newborn deaths in the 

US and up to 18% of newborn hospitalizations (Kingsmore, 2012).  Many these 

syndromes and metabolic conditions are reversible and preventable if detected early 

and treatment is administered within a reasonable amount of time.  Two such examples 

of preventable & manageable diseases include phenylketonuria (PKU) and congenital 

hypothyroidism which effect 1 in 10,000 and 1 in 2,000 newborns respectively 

(Kingsmore, 2012).  While the cost of WGS testing might seem cost prohibitive for 

routine use in diagnoses of rare diseases, the cost of testing is much more reasonable 

when compared to a daily price tag of $3,500+ in the Neonatal Intensive Care Unit 

(NICU) (Muraskas & Parsi, 2008).  However, current WGS turnaround times of 1-2 

months remain woefully insufficient to make an impact in many cases (Thiffault, 2019).  

The speed of WGS sequencing and analysis continues to prevent the power of the 

method from being brought into everyday clinical use.  
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Computational Challenges 

Central processing units (CPUs) are the standard calculator that perform 

computations within a computer.  Throughout the rise of computers, the driving force 

increasing computer performance and software speed was the advancement of CPU 

speed.  This concept has termed “Moore’s Law”, named after the author of the 

landmark 1965 paper, posits, “The complexity for minimum component costs has 

increased at a rate of roughly a factor of two per year” (Moore, 1998).   This phrase was 

come to be understood that computational power of standard CPUs would double every 

12-18 months and has been remarkably accurate over the last half century.  

 More recently, Moore’s law has run out of runway.  While transistors per chip 

continues to double every 12-18 months, speeds of processors have reached a plateau 

(Waldrop 2016) (Figure 1).  The driver of this plateau is that CPU hardware is 

approaching fundamental physical limitations, in which speeds cannot improve the 

speed without employing super cooling or involving massive power consumption 

(Markov, 2014). The consequences of this phenomenon are far reaching.  Previously, if a 

developer wrote a piece of software, all they would need to do to make it go faster is 

wait for a faster generation of processers to come out.  Now, to achieve greater 

performance developers need to get more creative in their coding or must look to new 

computer architectures to increase efficiency.   
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One such architectural solution is the multi-core processor, in which multiple 

processors work in sync to accomplish tasks. Provided the software used can operate 

with multiple CPUs, this improvement allows for large tasks to be spread across many 

CPUs to accomplish the task sooner.  While multicore processing can increase the 

number of computations that can be done in a given amount of time, it has some 

notable drawbacks.  One of the most important predictors of a computational task’s 

speed increase is parallelizability, termed “f”.   

Each unique combination of computational task, operating system and hardware 

combine to create a unique f value.  In general, each additional CPU assigned to a task 

increases the speed but depending on the parallelizability of the task (f), there is a 

Figure 1: A plot showing the relationship between clock speed and transistors per chip over the last 50 
years. (Waldrop, 2016) 
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diminishing return in overall CPU efficiency (Figure 2).  This diminishing return on CPU 

resource investment is known as Ahmdal’s law (Sun, 2010).  This means that efficiency 

and fold speed up of adding more CPUs to speed up a computation is gated by f.  As f 

decreases, so does the return on investment for each CPU added to a computation.  As 

bioinformaticians and software engineers look to increase the speed of WGS pipelines, 

they are forced to re-design how their code functions, break tasks into many parts, or 

look to other computational architecture in order to increase the parallelizability.  

 

Figure 2: A representation of the relationship between the parallelizability (f) of a 

computational job, the number of CPU cores assigned to it, and the fold speedup of the 

job’s completion (Sun, 2010)  

   

 

 

 

 

 

 

 

 

Graphics processor units (GPUs) represent another of the solution to HPC 

throughput.  GPUs initial purpose were specifically for high resolution screens- where 

computations must be performed to render millions of pixels hundreds of times per 
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second.  GPUs are rapidly being adopted into HPC workflows as they can outperform 

CPUs for tasks that require many simple computations at once (Nickolls, 2010).  By using 

code specifically designed for GPUs, GPU architectures can work in synergy with CPUs to 

massively speed up computational jobs.  While GPUs can represent a large performance 

upgrade, the drawback is increased difficulty in code design and great difficulty involved 

in troubleshooting.   

Bioinformatics as a discipline is extremely familiar with high complexity HPC 

problems.  For example, in alignment of a single sequencing ‘read’ consisting of a string 

of 200-300 As, Ts, Cs, and Gs to the human genome, must compute the ‘optimal’ 

placement of the read into to a genome 3.2 billion bases in length.  This matrix 

multiplication must be performed one or more times for each sequencing read in a 

genome.  A standard clinical WGS sequencing can produce upwards of 500 million reads.  

Meaning this N x M computation could be performed 500 million times to create a 

single base alignment map file (BAM file).  Even divided across many different CPU 

processors, this computation can take hours or days to complete.  Fortunately, genome 

alignments matrix multiplication is what many in the computer science industry call a 

“ridiculously parallel” problem, meaning no single computation is dependent on any 

other.  This makes alignment and many bioinformatic tasks perfectly suited to GPU 

workflows.  Until now, one of the greatest drawbacks to implementing GPU workflows is 

the difficulty of troubleshooting errors when they arise, and the difficulty of 

implementing GPU workflows into pipelines.   
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GATK & Parabricks Bioinformatics Tool Suites 

The Genome Analysis Tool Kit (GATK) is a suite of open sourced highly versatile 

Java based bioinformatics tools from the Broad Institute is an (Van der Auwera, 2013).  

GATK has tools ranging from raw read trimming to de novo genome assembly to 

alignment of raw reads to reference genomes to somatic & germline variant calling 

(Rimmer, 2014) (Van der Auwera, 2013).  GATK’s wide user base and vast 

documentation makes is a favorite of bioinformaticians.  While extremely reliable, 

GATK’s major drawback is currently that it is CPU based and its distributed SPARK 

architecture has been for development use only since 2017. 

Parabricks, now a product of NVIDIA, is a commercially available tool which 

converts GATK based functions and algorithms their native CPU architecture to a GPU 

architecture (Figure 3).  Parabricks functions by keeping the underlying GATK tools the 

same, but adapts the most critical & parallelizable algorithms over to GPU enabled 

CUDA code (NVIDIA (Parabricks), 2020) (NVIDIA (CUDA), 2020).  The Parabricks software 

 

Figure 3: Currently available Bioinformatics tools within the Parabricks software suite. 

(Parabricks, 2020) 
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is specifically written for the NVIDIA DGX-1, a single unit that contains 8 separate GPUs.  

Parabricks boasts that their software can cut GATK pipeline turnaround times (TAT) by 

40-60 times (NVIDIA (Parabricks), 2020).  If true, this reduction in TAT poses a 

breakthrough in bioinformatics that has the ability to increase WGS throughput, cut 

WGS TAT and have a positive impact for patients and clinicians alike.  

Study Objective 

The goal of this study is to test Parabricks GPU enabled bioinformatic workflows 

and tools against clinically validated CPU bioinformatic workflows for efficacy of clinical 

whole genome sequencing (WGS).  Evaluations for each pipeline include overall 

bioinformatic workflow turnaround time (TAT), genome alignment TAT and 

performance assessment of variant calling on National Institute of Standards and 

Technology (NIST) Gold Standard Genome in a Bottle sample NA12878.  Parabricks 

claims to reduce pipeline TAT by 40x to 60x over standard GATK pipelines with no 

sacrifice in output quality.  If their claims are true, Parabricks has ability to revolutionize 

whole genome sequencing by reducing WGS TAT and increasing the clinical utility of 

WGS testing for labs, clinicians, and most importantly patients.  
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METHODS & MATERIALS 

Sequencing Data 

The comparisons performed within this document were performed on 3 de-

identified human samples from DNA. WGS-High Coverage (WGS-HC), a deeply 

sequenced genome sample with about 150x coverage of the genome, WGS-Normal 

Coverage (WGS-NC), 55x sequencing depth, and the Genome in a Bottle (GIAB) NA12878 

national reference sample purified from cell line (National Institute of Standards and 

Technology, 2020).  All samples had library preparation with Illumina’s TruSeq Nano 

Whole Genome preparation per manufacturer specifications (Illumina, 2020).  All 

samples were sequenced bi-directionally with 2x150 reads on the same Illumina 

NovaSeq using an SP flowcell.  Raw read data was prepared using of BCL2Fastq2 v2.20 

and was stored in fastq.gz format (Illumina, 2019).    

Pipelines Tested 

 3 Separate pipelines were tested within this study all aligning to Genome 

Reference Consortium Human Build 37 (GRCh37) genome (Church, 2011).  The three 

pipelines tested in this study were: 1) ‘Clinically Validated CPU’ based, Whole Genome 

Sequencing (WGS) pipeline based on GATK  2) ‘Parabricks Rapid’, a germline pipeline for 

WGS built only on the Parabricks tool suite, 3) ‘Parabricks hybrid’ pipeline, a 

combination of pipeline 1 and 2, in which the alignment is performed by Parabricks GPU 

BWA alignment algorithm. All other tasks are performed by the standard CPU Pipeline.  

The non-quality control pipeline features are summarized in Table 1. 
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Table 1: Non-Quality control steps and software performing them in CPU, Hybrid and GPU 

pipelines tested within this document. 

Pipeline Step CPU Pipeline Hybrid Pipeline 
Parabricks GPU 

pipeline 

Alignment GATK BWA-MEM 
Parabricks BWA-

MEM Align 
+ MarkDuplicates 

Parabricks BWA-
MEM Align 

+ MarkDuplicates 

Mark Duplicates 
Picard Mark 
Duplicates 

NA NA 

Quality Score 
Recalibration  

GATK Base 
Quality Score 
Recalibration 

(BQSR) 

GATK Base 
Quality Score 
Recalibration 

(BQSR) 

Parabricks BQSR 

Variant Caller 
GATK haplotype 

caller 
GATK haplotype 

caller 
Parabricks 

Haplotype Caller 

Genotype caller 
GATK genotype 

gVCF 
GATK genotype 

gVCF 
NA 

GATK Variant 
Normalization 

BCFtools Norm BCFtools Norm NA 

 

All GATK applications used within this study were performed on GATK version 

4.1.2.0 (DROAZEN, 2019).  Parabricks runs were performed on v2.4.6, using GATK 

functions were lifted over from GATK v4.1.2.0.  

Computation Environment 

CPU based computations were performed on a 15 node HPC cluster consisting  

340 Intel(R) Xeon(R) Gold 6154 3.00GHz CPUs, each node containing 6 TB of ddr3 

memory.  GPU computations are performed on a Nvidia DGX-One with 2-24 core 2x 

Xeon Gold 8268 CPUs, and 8 NVIDIA Tesla P100 GPUs, and 512GB DDR4-2133 + 128GB 

HBM2 memory.  All systems used Linux Centos 7 as the operating system. All CPU and 
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GPU compute jobs were managed by Torque v4.2.6 (Adaptive Computing, 2013) .  GPU 

computations were performed using CUDA v 10.1 (NVIDIA (CUDA), 2020).   

Alignment Benchmarking 

 As genomic alignment tends to be the rate limiting step of most genomic 

pipelines, an initial benchmarking of Parabricks Alignment + MarkDuplicates (BWA) 

algorithm was performed using 2, 4 & 8 of the dedicated GPUs each in quadruplicate.  

During the 2 and 4 GPU Parabricks alignment + mark duplicates assessments, all DGX 

GPUs not under assessment were assigned alignment jobs to simulate uniform input / 

output volume across the entire unit.  Using the same sample input data, A GATK BWA-

MEM alignment + Mark Duplicates was performed in quadruplicate with 8 CPUs 

dedicated using GATK best practices (GATK (Best Practices), 2020).  Turnaround times of 

2, 4 and 8 GPU Parabricks alignments were compared to CPU alignments. 

Pipeline TAT Benchmarking 

To test the turnaround time of the CPU, GPU and hybrid pipelines, each pipeline 

was run from fastq files using sample WGS-HC (150x genome coverage), WGS-NC (55x 

genome coverage), aligning to GRCh37.  Each pipeline was run in duplicate and the 

turnaround time was averaged.  Turnaround time was measured from pipeline start to 

completion.   

A second analysis was performed on the same pipeline runs to compare the 

Hybrid and CPU pipelines.  The TAT of each step of the critical path, or longest path of 

interdependent steps, was used to compare the difference Parabricks GPU alignment to 
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GATK CPU alignment when all other steps remain the same.  Job statistics were 

obtained from the Torque scheduler logs.  

Variant Calling Performance 

The variant calling output for all three pipelines were assessed using NIST GIAB 

sample NA12878 was used to assess variant calling performance of each pipeline.  The 

published NIST NA12878 ‘High Confidence’ variant call set was used to assess each 

pipeline’s output VCF file (Zook J. M., 2019).  The bed file for NA12878 high confidence 

variant call files was bed intersected over all pipeline VCF files (Quinlan, 2010).  The VCF 

files for each pipeline, restricted to the high confidence regions, were then compared to 

the NIST published high confidence variant calls from sample NA12878 using VCFtools’ 

vcf-compare (Danecek, 2011).  The definitions of true positives, true negatives, false 

positives and false negatives shown in Table 2 were used to assess performance. 

 

Table 2: Definitions of performance metrics as used to assess GPU, CPU and hybrid 

pipeline clinical efficacy. 

Term Definition 

True Positive (TP) 
Matching reference and alternate allele between pipeline 
output and published NA12878 high confidence call set  

True Negative (TN) 
Site within the NA12878 high confidence region bedfile, but 
with no variant calls in both pipeline VCF and NA12878 high 
confidence variant call file 

False Positive (FP) 
Site with variant call present in pipeline VCF output, but no 
matching call in the NA12878 high confidence variant call 
file 

False Negative (FN) 
Site with no call in pipeline results VCF and a variant present 
in NA12878 high confidence variant call  

Sensitivity TP / (TP + FN) 

Specificity TN / (FP + TN) 
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Positive predictive 
value (PPV) 

TP / (TP + FP) 

Negative Predictive 
value (NPV) 

TN / (FN + TN) 
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RESULTS 

CPU Alignment vs GPU Alignment 

To assess the efficiency of alignment by Parabricks, the same fastq files were run 

on the GATK based CPU pipeline, as well as the Parabricks pipeline, using 2, 4, and 8 

dedicated GPUs to align and mark duplicate reads (Figure 4).  All CPU alignments were 

performed given 8 CPUs.  All alignments on the CPU and GPU pipelines were performed 

using the same GATK alignment parameters.   

 

Figure 4: Alignment + Mark Duplicates comparison between Parabricks GPU alignment 

using 2, 4 and 8 dedicated GPUs and GATK CPU alignment with 8 CPUs allocated. 
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Comparing run times of the CPU and GPU architecture shows a stark difference 

the overall time it takes for the genomic alignment and duplication marking to 

complete.  Running with only two dedicate GPUs, the alignment and mark duplicates 

together runs twice as fast as the CPU duplicate marking alone.  Comparing GPU 

turnaround time of 150x depth WGS-High Coverage (WGS-HC) to the 55x depth WGS-

Normal Coverage (WGS-NC) shows that the GPU alignment time is linear to the sample’s 

sequencing depth 

Further comparison of the CPU and GPU Alignment + Mark Duplicates speed 

shows increase was highly correlated to the number of GPUs dedicated to the job.  Tests 

were run with 2, 4, 8 GPUs dedicated to the alignment job showed an 8x, 16x, 28x speed 

increase in alignment respectively (Figure 5).  Showing that the GPU architecture does 

not suffer from a diminishing return when increasing allocated processing units. 
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Figure 5: Fold speed increase of 2, 4, 8 GPUs dedicated to alignment of compared to standard 

CPU alignment of two separate WGS samples. 
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Turnaround Time Comparison: GPU vs CPU Pipeline 

To assess full pipeline turnaround time, all 3 pipelines were run on WGS-HC and 

WGS-NC samples.  The TAT is compared below to show TAT from job submission 

through completion for (Figure 6).  

 

Figure 6: Comparison of TAT of GPU, CPU and hybrid pipeline, for NGS-HC and NGS-NC 
samples 

 

The GPU pipeline speeds up the fastq to VCF TAT by about 25x when compared 

to the CPU pipeline. The hybrid pipeline shows roughly a 5x increase in TAT. 
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Turnaround Time Comparison: Hybrid Pipeline vs CPU Pipeline 

A hybrid pipeline was created by combining the Clinical CPU pipeline and 

Parabricks offloads alignment, mark duplicates, and bam sorting, 3 of the longest tasks 

in the Clinical CPU Pipeline.  The two pipelines were run on the WGS-NC and WGS-HC 

samples.  A comparison was performed of the critical path steps – or the steps that are 

dependent on a prior step before they can start (Figure 7).  

 

 
WGS-NC Hybrid WGS-NC CPU WGS-HC CPU 

Figure 7: Compute hours of the longest critical steps between CPU and Hybrid pipelines, 

showing TAT of each step in the pipeline’s critical step for the WGS-HC and WGS-NC 

samples. 

WGS-HC Hybrid 
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For the CPU pipeline, the alignment and mark duplicates took more than 75% of 

the compute time required to complete the critical steps of the pipeline.  During this 

time, the resources dedicated to those tasks are both unable to be used by other tasks, 

and other essential processes in the pipeline cannot proceed because they are 

dependent on the aligned, sorted bam file.  In the Hybrid pipeline, the alignment and 

duplicates complete 25-27 fold faster, allowing for all of the downstream tasks 

dependent on the completion of alignment and mark duplicate steps to complete to 

start hours sooner.  The hybrid pipeline completed overall 5 times faster than the CPU 

pipeline did alone.  

Pipeline Variant Calling Efficacy 

NA12878, the NIST reference sample, was run from fastq on the clinically 

validated CPU pipeline, GPU Rapid pipeline and the Hybrid pipeline.  The resulting 

variant call files were bed intersected using Bedtools with the NIST published high 

confidence (HC) regions bed file, where many sequencing technologies were employed 

to create a high confidence consensus VCF file for SNPs and small INDELs (Zook J. M., 

2019) (Quinlan, 2010). The high confidence region consists of 2,575,632,881 bases.  

Variants within each pipeline’s ‘high confidence’ VCF file was compared to the published 

high confidence variant call set using VCFTools’ VCF-compare function (Danecek, 2011).   

Variant calls from the 3 pipelines were filtered using BCFtools to only include variants 

greater than 8x depth and QUAL scores greater than 20, no other filters were used in 

order to compare all three pipelines on a level playing field (Li, 2011) (Table 3). 
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Table 3: Variant comparison between NIST NA12878 High Confidence variants and 

assessed pipeline VCF outputs in the same regions. 

Pipeline VCF file  
True 

Positives  
False 

Positives 
False 

Negatives 
True 

Negatives 

Clinical CPU pipeline 3,577,524 66,604 119,070 2,571,869,683 

Hybrid (GPU align 
only) 

3,577,532 67,597 118,950 2,571,868,802 

Rapid (GPU) 3,675,949 67,419 86,782 2,571,802,731 

 

Variant calling comparisons from all three pipelines to the NIST HC call set 

showed 95.25% variant concordance for the Clinical CPU pipeline & Hybrid pipelines, 

and 97.88% concordance for the GPU pipeline (Table 4).  The hybrid pipeline and CPU 

pipeline only had 8 different variants calls from one another, all at sites with less than 

eight total reads.  While the Rapid GPU pipeline had 98,417 and 98,425 more calls 

matching the NIST High confidence variant call set, than the Clinical CPU and Hybrid CPU 

pipeline, respectively. Performance metrics were calculated for the three pipelines to 

show the overall efficacy of variant calling between the three pipelines (Table 4).  

 

Table 4: Performance metrics showing the sensitivity, specificity, positive predictive 

values and negative predictive values of all three pipelines as compared to the NIST High 

Confidence Variant set. 

 

Pipeline 
Sensitivity Specificity 

Positive 

Predictive Value 

Negative 

Predictive Value 

Clinical CPU pipeline 0.96779 0.99997 0.98172 0.99995 

Hybrid (GPU align 
only) 

0.96782 0.99997 0.98146 0.99995 

Rapid (GPU) 0.97694 0.99997 0.98199 0.99997 
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All three pipelines return similar performance results, however, the GPU based 

Rapid pipeline displayed a slightly higher sensitivity.  All three pipelines show high 

quality sensitivity and positive predictive value and superb specificity and negative 

predictive value (Table 4).    

An analysis of the discordant variants was performed to understand the 

differences between each pipeline output.  VCF output differences between the GPU 

pipeline and the Hybrid pipeline were largely due to differences in their handling of 

multiple nucleotide polymorphism calling (MNPs) (Figure 8).   Functionally, the protein 

product of the calls between all 4 files shown in figure 8 remain the same as the variants 

are call as in-phase, meaning they occur on the same strand of DNA.  The difference is in 

the results format of the MNPs vs the SNPs is the format of the quality metrics produce 

by the variant caller.  SNPs each receive their own quality assessment, while MNPs have 

their quality data merged for the combined variant.



 
 

Figure 8: IGV Screenshot showing comparisons of NIST High Confidence Callset, VCF, GPU VCF, CPU VCF and Hybrid VCF files 
(top to bottom), showing the same nucleotide changes between sites, but with the Clinical and Hybrid pipelines joining the 
calls as a multiple nucleotide polymorphism, while the NIST and GPU pipelines call two separate MNPs.    



 
 

DISCUSSION 

Turnaround Time and Efficiency 

Implementation of Parabricks GPU enabled bioinformatic tools displays a clear 

advantage for process turnaround time.  Two samples were selected for test runs: an 

average depth genome WGS-NC (~55x), and WGS-HC (~150x).  The genomes were run 

on the Parabricks germline pipeline with 8 GPUs dedicated and CPU pipeline with 8 

CPUs dedicated to assessing the turnaround time of the two alignments.  The results 

were then used to create estimations below were made for a standard 35x coverage 

genome. 35x TAT assumptions were made under the assumptions that CPU and GPU 

compute hours are linear to the sequencing depth, and compute hours in Table 5 are 

available.  

 

Table 5:  Estimated CPU/GPU core hours available per year in the cluster described in 

this experiment. 

CPU core hours avail per year 2,978,400 

GPU core hours avail per year 70,080 

  

This analysis estimates that a 35x coverage genome sample will require a total of 

836 CPU hours per genome.  Using the estimations in table 5, this means the CPU cluster 

described in this document can run roughly 3,562 genomes annually (Table 6).   
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Table 6:  Estimated number of genomes able to be processed annually by the CPU 

pipeline alone on the cluster described in this document. 

 

 

 

Based on the results of this experiment implementation of the hybrid pipeline, 

hence offloading the alignment to the GPU, would offload roughly 101.8 CPU hours per 

whole genome pipeline run.  Using the core hour estimations described in Table 5, we 

can estimate how many more genomes can be run annually before saturating the 

system (Table 7).  Simply adding Parabricks GPU alignment and Mark Duplicates into 

CPU pipeline, the cluster described in this document can process 456 (11.3%) more 

genomes through the pipeline, with faster turnaround time.   

 

Table 7: An estimate of the number of 35x depth genomes that could be run annually on 

the CPU and GPU cluster described within this document via the Hybrid pipeline. 

CPU Hour 
estimation 
(Alignment 
excluded) 

GPU Hour 
estimation 

(Alignment + 
Mark 

duplicates 
only) 

Maximum CPU 
processing 

(all pipeline steps 
excluding alignment, 

mark duplicates, BQSR) 

Maximum 
GPU 

processing 
(alignment + 

Mark 
duplicates 

only) 

Maximum 
throughput 

per year 

727.9 4.36 4,092 4,018 4,018 

  

Running the Parabricks Rapid pipeline alone, assuming 35x coverage and 100% 

up time, a single DGX GPU system could process 2,037 genomes in a year (Table 8).   

Assay 
CPU Hour estimation 

(hours/sample) 
Maximum 

throughput per year 

WGS 836 3,562 
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Table 8: An estimate of the number of 35x whole genome pipeline runs that could be 

run annually on the CPU and GPU cluster described within this document via the 

Parabricks alone. 

   

 

 

It is worth noting that the CPU and hybrid pipelines have more quality control 

steps built in than the GPU pipeline.  Steps including GATK DepthOfCoverage, 

calculation of coverage for all gene regions and variant quality checks are extremely 

important steps for quality control and quality assurance in any clinical workflow.  These 

steps ensure that all regions of the genome are accurately represented within the 

sample, helping analysts ensure that lack of variation is not confounded with lack of 

sequencing data.  The power of the hybrid pipeline is the shortened of alignment, the 

longest step in the pipeline, combined with the added QC performed by the pipeline.  

Shortening required alignment time allows for all other dependent tasks start 

processing sooner, allowing for more efficient distribution of downstream jobs 

throughout the rest of the pipeline.  In contrast, the clinical CPU workflow has a major 

bottleneck at the alignment step.  While the CPU alignment is occurring, all other 

downstream jobs are waiting for alignment to complete, leading to an imbalance of CPU 

demand towards the end of the pipeline. 

Given the speed of the GPU pipeline, another potential method for reducing 

overall WGS TAT is using Parabricks for both alignment and variant calling, then using 

GPU Core Hour 
estimation (hours) 

Maximum WGS 
throughput per year 

17.20 2,037 
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slower CPU quality assessments while the clinical variant assessment of the resulting 

VCF begins. The prospect of this is extremely attractive, as it would allow a clinical to go 

from DNA to analysis within two days.  Allowing for one day on the sequencer, 2-5 hours 

for Parabricks to generate a VCF, and finally uploading to analysis software.  Meanwhile, 

QC steps performed on the BAM and VCF can occur simultaneously.  If any quality issues 

such as low coverage or low quality are found, clinical variant analysis can be halted, 

and sequencing can be repeated to improve quality. 

Variant Calling Efficacy 

A bioinformatic pipeline is only as useful as it is accurate. To ensure the pipelines 

tested herein produce accurate variant calls, whole genome sequencing of the NIST 

Gold Standard reference sample NA12878, was run on each pipeline (Zook J. M., 2019).  

The results for all pipelines showed a high degree of efficacy for use in a clinical setting.  

In comparison with the gold standard within the high confidence regions, the Clinically 

validated CPU pipeline showed the worst sensitivity and positive predictive value (PPV), 

at 96.78% and 98.17%, respectively.  The Hybrid pipeline showed slightly better 

sensitivity and PPV, at 96.78 and 98.15%, respectively.  The rapid pipeline showed by far 

the most robust sensitivity and PPV, at 97.69% and 98.19%, respectively.   

While all three pipelines show impressive results, it is notable that raw variant 

concordance can be slightly misleading.  As mentioned earlier, the Rapid pipeline has 

very little built in QC.  Figure 9 shows a single variant within a homopolymer repeat of 

the NIST High-Confidence Variant call set. The NIST high confidence variant set only 



28 
 

 
 

 

reports a single mutation within the region, at GRCh37 locus chr15:20,024,978.  With 

the exception of the Rapid pipeline calling two separate A > T mutations, rather than a 

multiple nucleotide polymorphism (MNP) of AAA>TAT, all three pipelines report the 

same variants within this region.  Notably in Figure 9, the hybrid and CPU pipelines show 

called variants with the exception the variant at site chr15:20,024,978 being ‘grayed 

out’, due to low quality flags being triggered in the GATK Variant Filtration quality 

control step (GATK (Best Practices), 2020).  These low-quality variants are reported in 

the VCF and are discordant from the NIST HC variants, the low-quality flag in the ‘FILTER’ 

column allows for an analyst or automated filter set to easily pass over these variants. 

Despite having the highest raw sensitivity, specificity, PPV, and NPV, the Rapid GPU 

pipeline has no such variant filtering step, meaning any doubtful variants must be 

scrutinized more by genomic analyst.  Given the superior speed of the GPU pipeline, it is 

more than reasonable to add an additional variant QC step to the end of the pipeline to 

reduce or flag low confidence variant calls in the resulting VCF.   



 
 

 
Figure 9: An IGV screenshot of a low complexity genomic region showing the High Confidence callset and all three pipeline 
outputs.  The clinical CPU and Hybrid pipelines show grayed out, ‘filtered’ variants that are called, but flagged as 
untrustworthy. 



 
 

Clinical Efficacy 

 All three pipelines display the sensitivity, specificity, PPV and NPV that is 

required of a clinical pipeline.  The Rapid GPU pipeline shows great promise for clinical 

work, showing the ability to decrease bioinformatic workflow turnaround times.  This is 

especially useful in cases of neo-natal crises, or other emergent situations where an 

early detection/diagnosis of diseases could prevent irreversible damage (Kingsmore, 

2012).  In these cases, whole genome sequencing has become a first line of defense for 

clinicians unable to diagnose disease by conventional diagnostic methods (Bodian, 

2014).  The largest draw back for these cases is the turnaround time for genome 

sequencing and reporting – which can take upwards of a month.  Implementing the 

Rapid GPU pipeline in these scenarios offers a massive speed up and could save lives in 

the process. 

 One of the notable drawbacks of the Rapid GPU pipeline as outlined in this study 

is the lack of built in quality control and quality assurance steps.  While this is true, the 

data outputs from the Rapid pipeline are in standard bioinformatic formats can easily be 

picked up by CPU based quality control methods.  CPU quality control steps can be 

applied to Parabricks GPU outputs, as demonstrated within the hybrid pipeline.  In the 

cases of neonatal crisis, genomic analysis of variants could even begin immediately upon 

the completion of the Rapid GPU pipeline.  Slower, CPU quality control steps could be 

performed in parallel to the initial clinical analysis.  Once quality control steps complete, 

the results can be assessed accordingly.  Combinations of the CPU and GPU methods 

could cut hours and even days from results generation for genomic workflows. 



 
 

CONCLUSIONS 

 GPU based workflows are rapidly transforming the landscape of many HPC 

processes, especially in fields dependent on getting results quickly.  Genomics and 

bioinformatics present a perfect application for using GPUs to speed up computational 

workflows due to their ‘ridiculously parallel’ nature.  This study shows that Parabricks 

and its suite of genomics tools provide massive speed boost to current state of the art 

clinical workflows, cutting the time from job submission to results by four to five-fold.  

Some additional work needs to be done to Parabricks add quality control steps into the 

germline workflow. The ‘Hybrid Pipeline’ discussed within this study presents a 

reasonable method to both reduce turnaround time and makes use of quality control 

features present within the CPU based pipeline by adding CPU tools such as GATK’s 

Variant filtration or VQSR (GATK (Best Practices), 2020).  

 Parabricks’ speed and throughput increase for WGS processing also may provide 

a roundabout solution to the massive data volume produced by WGS pipelines.  As 

Parabricks drastically reduces the compute time for creating and recreating genomic 

data, output data could be deleted after analysis and only the smaller, raw sequencing 

data files kept long term.  This method would result in a drastic reduction of overall 

clinical data burden on clinical labs.  By only keeping raw data and rapidly recreating 

results on request, clinical labs may be able to lower prices on WGS clinical tests and 

provide greater accessibility of WGS testing to patients.  



32 
 

 
 

 

In the context of clinical care, the speed of Parabricks GPU bioinformatic tools 

has been shown to reduce overall WGS bioinformatic pipeline processing time by days.  

Coupled with innovative analysis methods, such as starting variant analysis as soon as 

variant call files are ready, the processes Parabricks facilitates could cut up to a week 

from overall TAT.  While seemingly minimal, the reduced turnaround time can save lives 

by diagnosing diseases and starting treatments or clinical trials sooner or assist clinicians 

and families in the decision to start palliative care sooner.  The reduction in TAT can 

reduce the overall cost of treatment for patients by providing them a personalized care 

plan which can shorten inpatient hospital stays.  Finally, quicker results can reduce 

stress for families and clinicians alike by providing the most comprehensive test possible 

in a shorter time frame.   

Parabricks exhibits clinical efficacy showing high sensitivity, specificity, PPV and 

NPV that is ready for use right out of the box.  While minimal quality control is included 

in its standard workflow, the Parabricks suite of tools provides configurable modules 

that can be included in combined CPU and GPU pipelines.  Used wisely, Parabricks and 

GPUs can bring whole genome sequencing closer to a routine clinical test, rather than a 

last-ditch effort.  

Future Studies 

Future work surrounding the use of Parabricks and GPUs should be centered 

around applying additional quality control mechanisms to Parabricks Rapid GPU 

pipeline.  One such direction would be the application of variant filter fields such as 
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GATK’s VQSR, or GATK’s Filter variants (GATK (Best Practices), 2020).  Resulting Rapid 

GPU filtered VCFs then can be more meaningfully compared to one another compared 

against the filtered VCFs from the Clinical CPU pipeline.  The resulting comparison would 

give additional weight to the clinical efficacy of the GPU pipeline.  Another useful quality 

control feature that could be added to the GPU pipeline are DepthOfCoverage and Bam 

Statistics by BamTools (Barnett, 2011).  These additional comparisons and quality 

control steps would add the necessary quality control to go live with WGS bioinformatic 

analysis by Parabricks GPU pipelines.   

 

  



34 
 

 
 

 

BIBLIOGRAPHY 

Adaptive Computing. (2013, September). TORQUE Resource Manager. Retrieved from Adaptive 

Computing: http://docs.adaptivecomputing.com/torque/4-2-6/torqueAdminGuide-

4.2.6.pdf 

Barnett, D. W. (2011). BamTools: a C++ API and toolkit for analyzing and managing BAM files. 

Bioinformatics, 1691-1692. 

Bodian, D. L. (2014). Diagnosis of an imprinted‐gene syndrome by a novel bioinformatics analysis 

of whole‐genome sequences from a family trio. Molecular genetics & genomic medicine, 

2(6), 530-538. 

CAP. (2020). College of American Pathologists: Clinical data. Molecular Checklist. United States: 

CAP. 

Church, D. M. (2011). Modernizing reference genome assemblies. PLoS Biol, e1001091. 

Cirulli, E. T. (2010). Uncovering the roles of rare variants in common disease through whole-

genome sequencing. Nature Reviews Genetics, 415-425. 

Clark, M. M. (2019). Diagnosis of genetic diseases in seriously ill children by rapid whole-genome 

sequencing and automated phenotyping and interpretation. Science translational 

medicine. 

Danecek, P. A. (2011). The variant call format and VCFtools. Bioinformatics, 2156-2158. 

DROAZEN. (2019, April 23). broadinstitute / gatk. Retrieved from GITHUB: 

https://github.com/broadinstitute/gatk/releases/tag/4.1.2.0 

GATK (Best Practices). (2020). (How to) Map reads to a reference with alternate contigs like 

GRCH38. Retrieved from broadinstitute: https://gatk.broadinstitute.org/hc/en-

us/articles/360037498992--How-to-Map-reads-to-a-reference-with-alternate-contigs-

like-GRCH38 

Hood, L. (2003). Systems biology: integrating technology, biology, and computation. 

Mechanisms of ageing and development,, 9-16. 

Illumina. (2019, February). bcl2fastq2 Conversion Software v2.20. Retrieved from Illumina.com: 

https://support.illumina.com/content/dam/illumina-

support/documents/documentation/software_documentation/bcl2fastq/bcl2fastq2-v2-

20-software-guide-15051736-03.pdf 

Illumina. (2020). TruSeq DNA Nano. Retrieved from Illumina: 

https://www.illumina.com/products/by-type/sequencing-kits/library-prep-kits/truseq-

nano-dna.html 

Kingsmore, S. (2012). Comprehensive carrier screening and molecular diagnostic testing for 

recessive childhood diseases. PLoS currents, 4. 



35 
 

 
 

 

Lander, E. S. (2001). Initial sequencing and analysis of the human genome. Nature. 

Li, A. H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping 

and population genetical parameter estimation from sequencing data. Bioinformatics, 

2987-93. 

Lionel, A. C. (2018). Improved diagnostic yield compared with targeted gene sequencing panels 

suggests a role for whole-genome sequencing as a first-tier genetic test. Genetics in 

Medicine, 435-443. 

Loeber, J. G. (2013). Newborn screening programmes in Europe; arguments and efforts 

regarding harmonization. Part 1–From blood spot to screening result." Journal of 

Inherited Metabolic Disease: . Official Journal of the Society for the Study of Inborn 

Errors of Metabolism , 603-611. 

Manolio, T. A. (2017). Bedside back to bench: building bridges between basic and clinical 

genomic research. . Cell, 6-12. 

Markov, I. L. (2014). Limits on fundamental limits to computation. Nature, 147-154. 

Meienberg, J. B. (2016). Clinical sequencing: is WGS the better WES? Human genetics, 359-362. 

Miller, N. A. (2015). A 26-hour system of highly sensitive whole genome sequencing for 

emergency management of genetic diseases. Genome medicine, 1-16. 

Moore, G. E. (1998). Cramming more components onto integrated circuits. Proceedings of the 

IEEE, 82-85. 

Muir, P. L. (2016). The real cost of sequencing: scaling computation to keep pace with data 

generation. Genome biology, 1-9. 

Muraskas, J., & Parsi, K. (2008). The cost of saving the tiniest lives: NICUs versus prevention. 

AMA Journal of Ethics, 655-658. 

National Institute of Health. (n.d.). Human Genome Project FAQ. Retrieved from Genome.gov: 

https://www.genome.gov/human-genome-project/Completion-

FAQ#:~:text=In%201990%2C%20Congress%20established%20funding,billion%20in%20F

Y%201991%20dollars. 

National Institute of Standards and Technology. (2020, August 2). Genome in a Bottle. Retrieved 

from NIST: https://www.nist.gov/programs-projects/genome-bottle 

Nickolls, J. a. (2010). The GPU computing era. IEEE , 56-69. 

NVIDIA (CUDA). (2020, 6 23). CUDA Toolkit Release Notes. Retrieved from 

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html 

NVIDIA (Parabricks). (2020). Clara Parabricks. Retrieved from Clara Parabricks: 

https://developer.nvidia.com/clara-parabricks 



36 
 

 
 

 

Parabricks. (2020, 6 22). clara-parabricks. Retrieved from NVIDIA Clara Parabricks: 

https://developer.nvidia.com/clara-parabricks 

Quinlan, A. R. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. 

Bioinformatics, 841-842. 

Rimmer, A. P. (2014). Integrating mapping-, assembly-and haplotype-based approaches for 

calling variants in clinical sequencing applications. Nature genetics, 912-918. 

Rossen, J. W.-G. (2018). Practical issues in implementing whole-genome-sequencing in routine 

diagnostic microbiology. Clinical microbiology and infection, 355-360. 

Saunders, C. J. (2012). Rapid whole-genome sequencing for genetic disease diagnosis in 

neonatal intensive care units. Science translational medicine, 154. 

Schwarze, K. B. (2018). Are whole-exome and whole-genome sequencing approaches cost-

effective? A systematic review of the literature. Genetics in Medicine, 1122-1130. 

Sun, X.-H. a. (2010). Reevaluating Amdahl’s law in the multicore era. Journal of Parallel and 

distributed Computing, 183-188. 

Thiffault, I. F. (2019). Clinical genome sequencing in an unbiased pediatric cohort. Genetics in 

Medicine, 303-310. 

Van der Auwera, G. A.‐M. (2013). From FastQ data to high‐confidence variant calls: the genome 

analysis toolkit best practices pipeline. Current protocols in bioinformatics. 

Waldrop, M. M. (2016). The chips are down for Moore’s law. Nature News, 144. 

Willig, L. K. (2015). Whole-genome sequencing for identification of Mendelian disorders in 

critically ill infants: a retrospective analysis of diagnostic and clinical findings. The 

Lancet: Respiratory Medicine, 377-387. 

Zhao, M. W. (2013). Computational tools for copy number variation (CNV) detection using next-

generation sequencing data: features and perspective. BMC bioinformatics, 14. 

Zook, J. M. (2014). Nature biotechnology. Integrating human sequence data sets provides a 

resource of benchmark SNP and indel genotype calls, 246-251. 

Zook, J. M. (2019). An open resource for accurately benchmarking small variant and reference 

calls. Nature biotechnology. 37(5), 561-566. 

 


	Comparison of CPU and Parabricks GPU Enabled Bioinformatics Software for High Throughput Clinical Genomic Applications
	Recommended Citation

	Comparison of CPU and Parabricks GPU enabled software for high throughput bioinformatic applications

