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Abstract 
Introduction 
The purpose of this study was to characterize resting-state cortical networks in chronic stroke survivors 
using electroencephalography (EEG). 

http://doi.org/10.1002/brb3.2097
http://epublications.marquette.edu/


Methods 
Electroencephalography data were collected from 14 chronic stroke and 11 neurologically intact 
participants while they were in a relaxed, resting state. EEG power was normalized to reduce bias and 
used as an indicator of network activity. Correlations of orthogonalized EEG activity were used as a 
measure of functional connectivity between cortical regions. 

Results 
We found reduced cortical activity and connectivity in the alpha (p < .05; p = .05) and beta 
(p < .05; p = .03) bands after stroke while connectivity in the gamma (p = .031) band increased. 
Asymmetries, driven by a reduction in the lesioned hemisphere, were also noted in cortical activity 
(p = .001) after stroke. 

Conclusion 
These findings suggest that stroke lesions cause a network alteration to more local (higher frequency), 
asymmetric networks. Understanding changes in cortical networks after stroke could be combined 
with controllability models to identify (and target) alternate brain network states that reduce 
functional impairment. 

1 INTRODUCTION 
The purpose of this study was to characterize resting-state cortical networks in chronic stroke survivors 
using electroencephalography (EEG). Functional magnetic resonance imaging (fMRI), 
magnetoencephalography (MEG), and EEG all reveal regions of the brain that have common activation 
patterns which are thought to be representative of functionally connected networks (Aoki et al., 2015; 
Biswal et al., 1995; Brookes et al., 2011; Rosazza & Minati, 2011; Wirsich et al., 2020). Some of the 
more common cortical networks include the default mode, sensorimotor, executive control, visual, 
lateralized frontoparietal, auditory, and temporoparietal networks (Aoki et al., 2015; Biswal 
et al., 1995; Brookes et al., 2011; Rosazza & Minati, 2011). The brain utilizes these cortical networks in 
different ways including memory consolidation, cognition, vision, and movement (Bressler, 1995; 
Corbetta, 1998; Mazoyer et al., 2001; Sukerkar, 2010). An improved understanding of the changes in 
these networks after stroke could provide insight into the mechanisms underlying functional loss and 
recovery. 

FMRI studies of brain networks following stroke indicate altered cortical patterns throughout the brain 
including areas within the default mode, sensorimotor, executive control, visual, and lateralized 
frontoparietal networks (Balaev et al., 2018; Zhao et al., 2018). Using fMRI, Tuladhar and colleagues 
found reduced functional connectivity after stroke within and between the medial temporal lobe, 
posterior cingulate, and medial prefrontal cortex; areas associated with the default mode network 
(Tuladhar et al., 2013). FMRI studies of sensorimotor network activity during motor tasks have shown 
increased activity in both hemispheres excluding the lesioned region (Carey et al., 2002; Grefkes 
et al., 2008; Mintzopoulos et al., 2009; Rossini et al., 1998; Ward et al., 2003). Others have shown a 
corresponding decrease in functional connectivity within and between hemispheres during motor tasks 
(Grefkes et al., 2008; Mintzopoulos et al., 2009). While fMRI offers excellent spatial resolution (~1 mm) 
of the cortex, it lacks temporal resolution (~1 s) which prevents the study of underlying brain processes 



that act at the millisecond time scale (Koenig et al., 2005; Lopes da Silva, 2013). EEG and MEG, with 
their better temporal resolution (~1 ms), have been employed to overcome this issue. 

EEG/MEG studies of brain networks after stroke indicate frequency-specific changes. Sensorimotor 
task-based studies in people with stroke show impairment-specific changes in alpha and beta band 
activity, with a decrease in activity near the lesion and an increase in cortical asymmetry (Platz 
et al., 2000; Rossiter et al., 2014; Stępień et al., 2011; Strens et al., 2004). When examining EEG 
functional connectivity during a visually guided grip task, Bönstrup and colleagues found alpha band 
connectivity increased within the lesioned motor networks of stroke patients (Bönstrup et al., 2018). 
Despite their usefulness, task-based studies tend to be limited to stroke participants who can perform 
the tasks and can result in mirror movements that confound the results of the study (Calautti 
et al., 2007; Dong et al., 2006; Ward et al., 2007; Weiller et al., 1993; Wittenberg et al., 2000). 

Resting-state paradigms, where participants remain still and relaxed, have the advantage of including 
participants of all functional abilities and are easier and quicker to administer than task-based 
paradigms. After stroke, resting-state EEG shows increased bilateral power in the delta and theta 
bands as well as increased power asymmetries between hemispheres (Assenza et al., 2013; Köpruner & 
Pfurtscheller, 1984; Wang et al., 2012). EEG resting-state studies have also reported decreased 
connectivity in the alpha and beta bands within the lesioned area (Dubovik et al., 2012, 2013; Wu 
et al., 2015). 

The alteration of resting-state EEG frequency characteristics after stroke may be representative of 
underlying structural changes. Brain networks with a large neuronal population or spatial extent 
oscillate at lower frequencies (Bullock et al., 1995; Eckhorn, 1994; Kopell et al., 2000; von Stein & 
Sarnthein, 2000). This observation led Nunez to develop a theoretical framework for the inverse 
relationship between frequency of activity and spatial scale of a network (Nunez, 2000). Further, local 
sensory integration invokes gamma band activity, multisensory integration produces upper alpha and 
lower beta band activity, while long-range interactions involve theta and alpha band activity (von Stein 
& Sarnthein, 2000). Gamma band synchronization decreases with distance, with lower frequency 
oscillations associated with longer-range interactions (Bullock et al., 1995; Eckhorn, 1994; Kopell 
et al., 2000). These cortical network frequency dependencies arise from the physical architecture of 
the networks, speed of communication due to axon conduction/synaptic delays, and the number of 
synapses involved in the network path (Nunez, 1995; von Stein et al., 2000). Thus, it is important to 
consider spectral information in the interpretation of EEG activity and connectivity data. 

While resting-state EEG networks in people with stroke indicate frequency specific changes in cortical 
activity and connectivity, there are elements of the analysis that confound the identification of the 
networks and hamper interpretation of the resulting data. The analysis of resting-state EEG is 
influenced by electrode impedance, neuronal density under each electrode and volume conduction. 
The power of resting-state EEG is affected by electrode impedance such that electrodes with lower 
impedance display higher power. In addition, larger synchronous neuronal populations beneath an 
electrode produce greater signal power, which may influence interpretation of the signal size, 
especially in people with loss of brain tissue after stroke. EEG estimates of functional connectivity are 
also affected by volume conduction. Volume conduction results in significant connectivity between 
EEG electrodes that can extend over distances of up to 8 cm (Nunez et al., 1997), even if the cortical 



regions immediately below the electrodes are not functionally connected. Imaginary coherence (Nolte 
et al., 2004), orthogonalization techniques (Brookes et al., 2012; Hipp et al., 2012), and other phase 
metrics that exclude zero lag connectivity (Nolte et al., 2008) can be used to mitigate this issue. 

In this study, we set out to quantify the changes in resting-state cortical network power and 
connectivity in people with chronic stroke. We collected EEG data while participants were in a relaxed, 
resting state. EEG power was normalized to reduce bias and used as an indicator of network activity. 
Correlations of orthogonalized EEG activity were used to measure functional connectivity between 
cortical areas. We hypothesized that cortical networks are more asymmetric after stroke and that 
there is a shift in the frequency due to changes in cortical communication after stroke. Specifically, we 
expected cortical networks to have a higher reliance on local network activity with less efficient 
pathways connecting local regions, resulting in a shift to higher frequency. 

2 MATERIALS AND METHODS 
2.1 Participant population 
A sample of 14 chronic stroke participants and 11 age-matched neurologically intact controls 
participated in this study. Stroke participants (8 male, aged 36–79 years) were required to be at least 1-
year poststroke. Prior to the study, participants completed a questionnaire and were asked to self-
report known sensory and motor deficits, including visual deficits due to either physical deficits (e.g., 
homonymous hemianopsia) or to inattention disorders. Exclusion criteria included the diagnosis of any 
other neurological disorder or recent treatment that interfered with neuromuscular function, such as 
botulinum toxin injection. The impairment level of stroke participants was assessed using the upper 
extremity Fugl-Meyer Assessment (FMA) which consists of a motor portion (maximum score 66) and 
sensory/proprioception portion (maximum score 12; Fugl-Meyer et al., 1975) and the Semmes-
Weinstein monofilament test (Semmes et al., 1960). The monofilament test was performed at seven 
locations on the palmar surface of the paretic hand and averaged (distal phalanx of the small finger, 
index finger and thumb; proximal phalanx of the small and index finger; thenar, and hypothenar). 
Control participants (7 male, aged 34–77 years) reported no history of stroke or any other 
neuromuscular pathology. Detailed demographic data for all participants are shown in Table 1. All 
participants gave written informed consent, and all procedures were approved by the Marquette 
University Institutional Review Board in accordance with the Declaration of Helsinki. 

TABLE 1. Demographic and clinical data for stroke (S) and control (C) participants. 

Subject 
Identifier 

Sex Age 
(year) 

Time after 
Stroke 
(year) 

Fugl-Meyer 
(Motor:66) 

Fugl-Meyer 
(Sensory:12) 

Monofilament 
(g,sensation) 

 

S1 F 60 23 63 12 0.08 (-) 
S2 F 79 7 62 11 0.15 (-) 
S3 F 67 30 29 12 0.05 (N) 
S4 M 57 2 28 6 134.29 (---) 
S5 M 64 16 61 8 0.19 (-) 
S6 F 66 26 51 4 60.00 (---) 
S7 M 61 11 31 12 0.35 (-) 



S8 F 65 13 38 8 94.29 (---) 
S9 M 64 14 34 12 50.28 (---) 
S10 M 59 14 23 8 60.00 (---) 
S11 M 73 7 21 8 100.00 (---) 
S12 M 36 8 21 8 71.43 (---) 
S13 F 71 4 30 12 0.01 (N) 
S14 M 55 15 27 12 37.43 (---) 
C1 F 68 - - - -  
C2 M 64 - - - -  
C3 M 61 - - - -  
C4 M 51 - - - -  
C5 F 77 - - - -  
C6 F 57 - - - -  
C7 M 67 - - - -  
C8 M 65 - - - -  
C9 F 63 - - - -  
C10 M 34 - - - -  
C11 M 64 - - - -  

Note: 

“Fugl-Meyer” indicates the Fugl-Meyer upper extremity score (Motor: maximum of 66; Sensory: 
maximum of 12). Monofilament values indicate the average force in grams (g) across the seven hand 
locations tested with the degree of sensation (N: normal (g < 0.07), “-”: diminished light tough 
(0.07 > g < 0.4), “--”: diminished protective sensation (0.4 > g < 2.0), “---”: loss of protective sensation 
(2.0 > g < 180.0), “----”: deep pressure sensation only (g > 180)). (F: female; M: male; ND: non-
dominant) 

2.2 Experimental protocol 
During the study, participants were seated in a chair and asked to remain as still as possible, keep their 
eyes closed, refrain from making any eye movements, and clear their mind. EEG data were collected 
for approximately 3 min in this relaxed, resting state. 

2.3 Physiological measurements 
A 64-channel active electrode actiCAP (Brain Products GmbH) system was used to record EEG data. EEG 
electrodes were arranged in the conventional 10–20 system with the reference at FCz and the ground 
at AFz. The EEG cap was placed on the participant's head such that the Cz electrode was in line with 
the preauricular points in the frontal plane and with the nasion and inion points in the sagittal plane. 
SuperVisc gel (Brain Products GmbH) was applied between the scalp and electrodes to lower the 
electrode impedances below 10 kOhms prior to data collection. EEG data were amplified, sampled at 
1 kHz, filtered from 0.1 to 200 Hz and notch filtered at 60 Hz using a Synamps2 amplifier system 
(Neuroscan), and recorded using the Neuroscan software, Scan 4.5. The data that support the findings 
of this study are available from the corresponding author upon reasonable request. 



2.4 Data analysis 
Electroencephalography data were postprocessed and analyzed using the EEGLAB toolbox (version 
v13.4.4b; Delorme & Makeig, 2004) for storing and configuring the data, FieldTrip (version 2016-01-03; 
Oostenveld et al., 2011) for removing bad epochs and electrodes, Brainstorm (version 3.4; Tadel 
et al., 2011) for source localization, Network Based Statistic Toolbox (version 1.2; Zalesky et al., 2010) 
for statistically comparing network connectivity, BrainNet Viewer (version 1.62; Xia et al., 2013) for 
visualizing network connectivity and custom MATLAB scripts (version 2014a, MathWorks, Natick, 
Massachusetts). All EEG data were bandpass filtered (1-50 Hz) using a fourth order zero-phase 
Butterworth filter. Trial epochs of the EEG data were then extracted by creating 2 s, consecutive, 
nonoverlapping windows starting at the beginning of the file and continuing until a complete 2 s 
window could not be formed. This process resulted in approximately 90 epochs per participant. EEG 
epochs were then zero-meaned, and bad channels and epochs removed manually using FieldTrip's 
visual inspection code (channel/epoch removed if variance/kurtosis >2 standard deviations from the 
mean, “ft_rejectvisual,” average number channels/epochs removed, 0.8/10.4, per subject). If a channel 
was rejected from the EEG data, its value was replaced with interpolated data from the surrounding 
electrode channels. Stroke participant EEG data were flipped so that the hemisphere associated with 
the lesion was always represented on the left. EEG data were then separated into signal and artifactual 
components using an adaptive mixture independent component analysis (AMICA; Palmer et al., 2008), 
with 64 independent temporal components. Signal artifacts, including electromyography and 
movement artifacts, were identified by distinct artifactual characteristics (Delorme et al., 2012; Makeig 
et al., 2004; Mognon et al., 2011; Puce & Hämäläinen, 2017) and removed from the EEG data (average 
number of artifact components removed, 6.6; minimum number: 3; maximum number: 15). The 
remaining components were then transformed back to the EEG channel space. Finally, EEG data were 
re-referenced to a common average reference for all data analyses. The re-reference technique 
reintroduced the FCz electrode to the data set. For the following analyses, EEG data were separated 
into ten non-overlapping 5 Hz frequency bands ranging from 1 to 50 Hz (first band only ranged from 1–
5 Hz due to the 1 Hz high pass filter applied during preprocessing) to determine whether frequency 
shifts occurred in the stroke group relative to the controls. 

A power spectrum analysis was performed at the electrode level to examine the spatial characteristics 
of resting-state EEG power across frequency bands. The power spectrum at every electrode was 
calculated using Welch's method with epochs as the measure of consistency (Welch, 1967). The 
frequency bands were then extracted from the power spectrum and normalized at each electrode 
using Equation 1, 

NP = 100 ×
∑𝐹𝐹

∑Total
, 

(1) 

where NP represents the normalized power, ∑𝐹𝐹 represents the sum of power within a frequency 
band, and ∑Total represents the sum of power across the frequency spectrum (1–50 Hz). By 
normalizing power in this fashion, we could determine whether the cortical area's function 
(distribution of power across the spectrum) was changing while removing any dependence on 
electrode impedance or neuronal population size. To characterize any effects that stroke lesions may 



have on the spatial distribution of frequency, the control and stroke groups were compared at every 
electrode within each frequency band using a two-sample t test with a false discovery rate (FDR) 
of α = 0.05 for multiple comparisons correction. To facilitate interpretation of normalized power, 
average absolute power within frequency bands was computed and plotted for each electrode to 
determine whether normalized power differences between controls and stroke survivors were due to 
true absolute power changes within frequency bands or if a normalization bias was driving the 
normalized power differences. For instance, a loss of absolute power in one frequency band could 
result in normalized power increases in other frequency bands, even though they are not changed on 
an absolute level. Similar to normalized power, absolute power for control and stroke groups was 
compared at every electrode within each frequency band using a two-sample t test with a false 
discovery rate (FDR) of α = 0.05 for multiple comparisons correction. 

To determine whether frequency bands displayed power differences between hemispheres, an 
electrode directional asymmetry metric was computed between analogous electrodes in the two 
hemispheres using Equation 2,  

EDA = 100 ×
1
𝑛𝑛
�

NP𝐿𝐿 − 𝑁𝑁𝑁𝑁𝑅𝑅
|𝑁𝑁𝑁𝑁𝐿𝐿| + |𝑁𝑁𝑁𝑁𝑅𝑅| , 

(2) 

where EDA is the whole head electrode directional asymmetry, NPL is the normalized power of the 
homologous electrode in the left hemisphere, NPR is the normalized power of the homologous 
electrode in the right hemisphere, and n is the total number of electrode pairs. Electrodes along the 
midline were ignored for calculation of the EDA. This metric resembles the brain symmetry index 
created by van Putten and colleagues (van Putten et al., 2004); however, it has been modified to allow 
for the directionality of any asymmetries to be identified similar to what was done by Saes and 
colleagues (Saes et al., 2019). 

Volume source localization of EEG data was performed to enable volumetric connectivity analyses. 
Distributed current dipole volumes were computed in Brainstorm using the default MNI/ICBM152 
anatomical brain template with the cerebellum included (Tadel et al., 2011). The standard actiCAP 
electrode locations were fit to the scalp surface so that the Cz electrode location was at the vertex as 
described in the physiological measurements section. A boundary element model (BEM) was used to 
estimate the forward model (OpenMEEG; Gramfort et al., 2010; Kybic et al., 2005) with volumetric 
vertices (5 × 5 × 5 mm) placed on a regular grid spanning the entire brain. A depth-weighted minimum 
L2 norm estimator of current density (Hämäläinen & Ilmoniemi, 1994) was used to estimate the 
inverse model where each vertex consisted of three orthogonal dipoles (representing the x, y, 
and z directions). The three-dimensional dipole activity for every vertex was subsequently processed 
using a principal component analysis (PCA) to obtain a single activity time course that best represented 
the volumetric source. 

Following the projection of EEG data into volumetric source space, the functional connectivity between 
all brain regions was calculated within the defined frequency bands, Figure 1. First, the source localized 
data were bandpass filtered using a zero-phase fourth order Butterworth filter to extract the different 
frequency bands; the resulting data were then concatenated across epochs within frequency bands. A 



reduced version (described below) of the Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer 
et al., 2002) from the micron software package 
(https://people.cas.sc.edu/rorden/mricron/index.html) was used to define volumes of interests (VOI) 
for input into the connectivity analysis. Reductions to the original AAL atlas VOIs were necessary 
because we intended to orthogonalize the VOI time courses to reduce the effect of volume conduction 
on connectivity analyses. Orthogonalization by way of a symmetric multivariate correction (Colclough 
et al., 2015) is dependent on the rank of the data (which was limited to 61 due to one participant only 
having a maximum of 61 valid electrodes after preprocessing). Therefore, we reduced the original 116 
AAL atlas VOIs to 61 VOIs, Figure 1. The 12 subcortical structures (left and right) were left unaltered, 
while the 9 cerebellar VOIs within each hemisphere and 8 vermis VOIs were merged, respectively. The 
34 cortical VOIs in the left hemisphere were reduced to 23 iteratively by finding the smallest VOI and 
merging it with the nearest VOI based on VOI centroid locations. The homologous VOIs merged in the 
left hemisphere were then merged in the right hemisphere to maintain a symmetrical VOI distribution. 

 

FIGURE 1 Diagram of connectivity workflow and the 10–15 Hz frequency band connectivity for a single 
stroke participant (S14) thresholded at a z-score of ±2. After preprocessing, EEG data were projected 
into a volumetric source space where a PCA was applied to each three-dimensional dipole to extract 
the time course that best represented the dipole's activity. The brain was then segmented into 61 VOIs 
based on a reduced AAL atlas. All VOIs were filtered voxel-wise to extract the frequency bands of 
interest, and PCA was applied to reduce the dipole activity within the VOIs to a single time course. For 
each frequency band, VOI time series were orthogonalized after which the envelope of the VOI activity 
was obtained via the Hilbert transform. Correlations between the envelopes of VOI activity were 
performed within frequency bands to characterize connectivity between VOI’s. For the representative 
stroke subject shown (S14), the hemisphere associated with the stroke lesion is displayed on the left. 

https://onlinelibrary.wiley.com/cms/asset/a265af78-1975-40f6-89ac-90e4f0f9f7e9/brb32097-fig-0001-m.jpg


Stronger connections between nodes are represented by larger z-scores and line widths. Node size 
indicates the number of connections a node makes with other nodes 

 

Once the reduced AAL atlas was defined, PCA was performed across the voxel time courses within each 
VOI with the largest component of the PCA retained, resulting in a single activity time course that best 
represented each VOI. All VOI time courses were then orthogonalized using a symmetric multivariate 
correction with twenty iterations (Colclough et al., 2015) to reduce the EEG volume conduction artifact 
and spatial leakage that results from source localization estimates. Power envelopes of the 
orthogonalized VOI time courses were then calculated by taking the absolute value of their Hilbert 
transform, a similar approach for calculating activity envelopes has been done in previous studies 
(Brookes et al., 2011; Hipp et al., 2012). VOI power envelopes were then correlated within frequency 
bands resulting in a connectivity matrix of correlation coefficients that was 61 (number of VOIs) by 61 
(number of VOIs) by 10 (number of frequency bands) for each participant. Connectivity correlation 
coefficients were Fisher z-transformed to normalize the sample distribution for statistical analysis. An 
additional normalization was performed across frequency bands to account for the inverse relationship 
between correlation and frequency band for a fixed time window. For the bias normalization, we 
performed a Monte Carlo simulation using 1,000 iterations on the pipeline described above by 
randomizing the VOI time series phase information while retaining the magnitude information. This 
resulted in a random “noise” correlation distribution for each participant, frequency band and VOI-to-
VOI interaction. The true Fisher z-transformed connectivity data were then bias corrected by 
subtracting the mean and dividing by the standard deviation of the random “noise” distributions 
converting the true connectivity data to a z-score relative to the null distribution. 

To determine whether frequency bands displayed connectivity differences between hemispheres, a 
connectivity directional asymmetry metric was computed between analogous connections in the two 
hemispheres using Equation 3,  

CDA = 100 ×
1
𝑛𝑛
�

𝐶𝐶𝐿𝐿 − 𝐶𝐶𝑅𝑅
|𝐶𝐶𝐿𝐿| + |𝐶𝐶𝑅𝑅|, 

(3) 

where CDA represents the whole brain connectivity directional asymmetry metric, CL represents the 
connectivity of the homologous connections in the left hemisphere, CR represents the connectivity of 
the homologous connections in the right hemisphere, and n represents the total number of 
homologous connection pairs. Connectivity between homologous regions was ignored. 

To visualize frequency dependent shifts in the stroke population relative to the control population, 
connectivity spectra (connectivity vs. frequency) were plotted for connections within the left (lesioned) 
and right (non-lesioned) hemispheres. To quantify deviations in the shape of the connectivity spectrum 
from the control group, the connectivity spectrum of each participant (control and stroke) was 
correlated with the average connectivity spectrum from the control population. Finally, connectivity 
spectrum correlation values were Fisher z-transformed to normalize the sample distribution for 
statistical testing. 



The Network Based Statistic toolbox (Zalesky et al., 2010) was used at the group level to identify 
significantly connected networks in the control and stroke groups and networks that were significantly 
different between sample groups. The Network Based Statistic, a graph analogue of cluster-based 
statistical methods, used permutation testing to control the family-wise error rate (p <.05) associated 
with multiple comparisons tests based on the extent (number of connections in a network) of the 
network above a predefined (defined by the user) threshold. For our analysis, we tested networks that 
were either positively or negatively correlated between VOI’s. We modified the Network Based 
Statistic code (added the capability to perform one-sample t tests) to compute the network statistics 
within the control (threshold: t-value = 3.169) and stroke (threshold: t-value = 3.012) groups using a 
one-sample t test (thresholds for both groups were equivalent to a two-tailed one-sample t test p-
value of .01). Significant differences between the networks of control and stroke groups (threshold: t-
value = 2.5) were identified using a two-sample t test applied to the Network Based Statistic (the 
threshold for differences between groups was equivalent to a two-tailed two-sample t test p value of 
.02). 

2.5 Statistical analysis 
Changes in electrode and connectivity directional asymmetry were characterized across subjects using 
a two-way mixed ANOVA with frequency as the within-subject factor and group as the between-
subject factor in the analysis. One-way ANOVAs and t tests were applied post hoc to characterize 
specific interaction effects identified in the two-way ANOVAs. Changes in the connectivity spectra 
correlation between groups were characterized by using a two-sample t test. If Mauchly's Test of 
Sphericity indicated that the assumption of sphericity was violated, a Greenhouse–Geisser correction 
was used for the ANOVA results. The Holm–Sidak method for correcting for multiple comparisons was 
used at each level (between multiple ANOVAs and t tests) of the analysis except for the pairwise 
comparisons where the Tukey post hoc test was applied. Raw p-values were reported and stated as 
significant if they survived the correction for multiple comparisons. A non-parametric bootstrap 
approach similar to the Zhou and Wong method (Zhou & Wong, 2011) with 10,000 iterations was used 
to generate the statistical distributions for the Tukey post hoc test. Statistical tests were performed 
with a Type I error rate of α = 0.05. If significant differences were identified between the control and 
stroke groups for the electrode normalized power distributions, electrode directional asymmetry, 
connectivity directional asymmetry, connectivity spectra, or connectivity networks analysis, a simple 
linear regression analysis was performed with the variable of interest and the upper extremity motor 
FMA for the stroke participants. Plots were displayed whether the regression analysis was significant 
(p < .05). Data are reported as mean ± SD unless stated otherwise. 

3 RESULTS 
3.1 Normalized power: Control population 
Electrode level normalized power was examined to identify the spatial distribution of power across 
electrodes for each frequency band of interest and to determine whether the power distribution was 
different between control and stroke groups (Figure 2a). In the controls, the lower half of the 
frequencies examined (1-25 Hz) accounted for ~85% of the total power while the upper half of the 
frequencies (25–50 Hz) contributed ~15%. The regions that contributed the most power in the 1–5 Hz 
frequency band were located above the bilateral frontal cortices while for the 5–10 Hz band, the 



power was largest above the medial frontal cortices and the medial/lateral parietal cortices. There was 
a posterior to anterior shift in the regions that contributed the most power for the frequency bands 
ranging from 10 to 50 Hz, with regions located above the bilateral visual cortices for the 10–15 Hz 
band, two nodes located above the bilateral parietal/sensory/motor cortices for the 15–20 Hz band, a 
region located above the bilateral motor/premotor cortices for the 20–25 Hz band, a region located 
above the bilateral premotor/frontal cortices for the 25–30 Hz band, and regions located over the 
bilateral frontal cortices for the remaining frequency bands (30–50 Hz). 

 

FIGURE 2 Electrode power and linear regression analysis during resting state. The hemisphere 
associated with the stroke lesion is displayed on the left. (a) Topographic maps of the normalized 
electrode power averaged across participants are shown for each group and frequency band of 
interest. Black dots indicate electrodes whose power was significantly different between the control 
and stroke groups, using an FDR correction of α = 0.05 (please refer to Figure S1 for an alternative 
visualization of significant power differences). Values are interpolated between electrodes for 
visualization purposes. (b and c) Linear regression of the stroke group normalized power averaged 
across significantly different electrodes and upper extremity motor FMA scores for the 10–15 and 15–
20 Hz frequency bands, respectively. Normalized power for each frequency band was plotted against a 
perfect upper extremity motor FMA of 66 for controls 

3.2 Normalized power differences 
The normalized power of the stroke group was similar to the controls, particularly for the distribution 
of power across frequency bands. However, within frequency bands the normalized power from 1–10 
and 30–50 Hz was larger in the stroke group while the normalized power from 10 to 25 Hz was smaller 
in the stroke group when compared to the control group (Figure 2a). In general, absolute power within 
frequency bands displayed differences between the stroke and control groups similar to the 
normalized power. Absolute power from 1–10 and 30–50 Hz was larger in the stroke group while the 
absolute power from 10 to 25 Hz was smaller in the stroke group when compared to the control group 
(Figure S2). 

https://onlinelibrary.wiley.com/cms/asset/a5de670e-7388-4812-adfa-31aab24e5dcb/brb32097-fig-0002-m.jpg


To assess significant changes in spatial power distribution, normalized power was compared between 
the control and stroke groups at every electrode within each frequency band. Even though there were 
changes in power across all frequency bands examined, only the 10–15 and 15–20 Hz frequency bands 
resulted in significant differences (p <.05) following FDR correction. In the stroke group, the 10–15 Hz 
band contained significantly less power across the entire brain except above the right (non-lesioned) 
visual cortex (averaged across significantly different electrodes; control group: 20.18 ± 6.42% total 
power; stroke group: 12.6 ± 4.94% total power) while the 15–20 Hz band contained significantly less 
power across electrodes located over the left (lesioned) sensory/parietal cortices (Figure 2a) compared 
with controls (averaged across significantly different electrodes; control group: 10.08 ± 4.05% total 
power; stroke group: 5.6 ± 2.57% total power). Across significantly different electrodes, average 
normalized power was significantly related to motor function (upper extremity motor FMA) in both the 
10–15 and 15–20 Hz bands (R2 = 0.47, p =.007 and R2 = 0.48, p =.006, respectively; Figure 2b,c). When 
assessing significant changes in spatial power distribution of absolute power between the control and 
stroke groups at every electrode within each frequency band, no frequency bands revealed electrodes 
with significant differences following FDR correction (Figure S2). 

3.3 Normalized power asymmetry 
In addition to the differences in normalized power, the power topographies for the stroke group were 
more asymmetric when compared to those of the control group (Figure 2a). In the stroke group, power 
in the 1–10 Hz frequency bands showed larger power in the left (lesioned) hemisphere while the 10–
50 Hz frequency bands exhibited larger power in the right (non-lesioned) hemisphere. The two-way 
ANOVA for differences in electrode directional asymmetry indicated a main effect of frequency 
(F(2.70,62.04) = 6.47, p =.001) and group (F(1,23) = 16.21, p =.001) with an interaction effect between 
frequency and group (F(2.70,62.04) = 6.88, p =.001). The post hoc two-sample t tests for group 
differences within frequencies indicated that the frequency bands ranging from 15 to 50 Hz (averaged 
across 15–50 Hz frequency bands; control group: 1.31 ± 4.73%; stroke group: −12.27 ± 9.84%) were 
significantly (t(23) > 2.99, p < .007) more asymmetric in the stroke group with the power being larger in 
the right (non-lesioned) hemisphere, Figure 3. The 5–10 Hz (control group: −0.84 ± 1.24%; stroke 
group: 5.48 ± 9.02%) frequency band approached significance (t(23) = 2.02, p =.055) with more power 
found in the left (lesioned) hemisphere while the frequency bands from 1–5 Hz (control group: 
2.0 ± 4.53%; stroke group: 5.48 ± 11.22%) and 10–15 Hz (control group: −1.09 ± 3.16%; stroke group: 
−6.37 ± 11.52%) were not significantly (t(23) < 1.47, p > .15) different between the control and stroke 
groups. The post hoc one-way ANOVAs for frequency showed significant differences between 
frequencies for the stroke group (F(2.40,31.16) = 9.83, p =.0003) but not the control group 
(F(2.32,23.21) = 0.76, p =.498). The post hoc analysis (Tukey test) of frequency within the stroke group 
indicated that the electrode directional asymmetry was significantly different between the frequency 
bands in the 1–10 Hz range and all other frequency bands (q(117) > 4.91, p < .025) while no other 
frequency bands showed significant differences (q(117) < 3.56, p > .27). Linear regression analysis of 
electrode directional asymmetry (for significantly different frequency bands) and function (upper 
extremity motor FMA) indicated that directional asymmetry was not a good predictor of motor 
function (R2 < 0.2, p > .11). 

 



 

FIGURE 3 Directional asymmetry in electrode power during resting-state EEG. The directional 
asymmetry in electrode power averaged across participants is shown for each group and frequency 
band of interest. Positive asymmetry values indicate that the frequency band had larger normalized 
power in the left (lesioned) hemisphere while negative asymmetry values indicate the right (non-
lesioned) hemisphere had larger normalized power. Error bars denote the 95% confidence interval 
about the mean. Significant differences determined via post hoc analysis (Tukey test) are indicated by 
stars (*p <.05, **p <.01, and ***p <.001) 

3.4 Functional connectivity: Networks 
Networks identified via functional connectivity analysis were examined to identify the spatial extent of 
connectivity for each frequency band of interest and to determine whether the connectivity spectra 
were different between stroke and control groups. No networks defined by negative correlations were 
found in the control (p > .9568) or stroke groups (p > .9999). All networks described below resulted 
from positive correlations between VOIs in the control (p < .0008) and stroke (p < .0002) groups. In the 
control group, connectivity was stronger (i.e., higher correlations) and more extensive at lower 
frequencies (1–20 Hz), which peaked in the 5–15 Hz frequency range. In contrast, higher frequencies 
(25–50 Hz) exhibited fewer connections that tended to be located in the anterior half of the brain 
(Figure 4a). Connectivity spectra for the control group in the left and right hemispheres (Figure 4b,c), 
mirrored the frequency dependences shown in the network plots (Figure 4a). The high connectivity in 
the lower frequencies (1–20 Hz) sloped downward until it reached a plateau in the higher frequencies 
(25–50 Hz). 
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FIGURE 4 Functional connectivity networks and connectivity spectra during resting state. The 
hemisphere associated with the stroke lesion is displayed on the left. (a) Networks deemed 
significantly connected within control (p < .0008) and stroke (p < .0002) groups are shown for each 
frequency band of interest. Stronger connections between nodes are represented by larger z-scores 
(color) and line widths. Node size indicates the degree of connectivity (number of connections a node 
makes with other nodes) and is normalized by the maximum degree within each frequency band of 
interest for each group. Please refer to Figure S3 for an alternative visualization of functional 
connectivity networks. (b and c) Left (lesioned) and right (non-lesioned) hemisphere connectivity 
spectra, respectively. Average connectivity of all connections (not just the significantly connected 
connections) within the for each frequency band of interest. Shaded areas indicate the 95% confidence 
interval about the mean 

The stroke group showed similarities to the control network patterns; however, there were also 
notable differences. Lower frequencies (1–20 Hz) had more extensive functional connectivity 
throughout the brain while higher frequencies (25–50 Hz) had fewer connections that tended to be 
located in the anterior half of the brain (Figure 4a). However, for the stroke group, connectivity in the 
5–20 Hz frequency bands tended to be more asymmetric with lower connection strength occurring in 
the left (lesioned) hemisphere. Conversely, stroke networks in the 25–50 Hz frequency bands 
contained more (and larger) connections. The two-way ANOVA for differences in connectivity 
directional asymmetry indicated that there was a main effect of frequency 
(F(4.58,105.24) = 2.89, p =.003), no effect of group (F(1,23) = 0.75, p =.109), and a trend toward 
significance in the interaction effect between frequency and group (F(2.26,105.24) = 4.58, p =.06). The 
post hoc analysis (Tukey test) of frequency indicated that the connectivity directional asymmetry was 
significantly different between the 10–15 Hz band and the 1–5/40–45 Hz bands (q(216) > 4.73, p < .03), 
trended toward a significance difference between the 1–5 Hz and 15–20 Hz bands 
(q(216) = 4.27, p =.08) and showed no differences for the remaining frequencies 
(q(216) < 4.07, p > .119). While there was no significant interaction effect between frequency and 
group for the connectivity asymmetry analysis (p =.06), the stroke group data did seem to drive the 
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results found in the main effect of frequency. In general, the stroke group had larger connectivity 
directional asymmetry in all bands with the 5–25 Hz bands (averaged across 5–25 Hz frequency bands; 
control group: 0.04 ± 2.69%; stroke group: −3.29 ± 5.52%) displaying larger connectivity in the right 
(non-lesioned) hemisphere and 1–5/25–50 Hz bands (averaged across 1–5/25–50 Hz frequency bands; 
control group: 0.65 ± 2.07%; stroke group: 2.28 ± 3.18%) displaying larger connectivity in the left 
(lesioned) hemisphere. 

When comparing the connectivity spectra between groups (Figure 4b,c), the left (lesioned) hemisphere 
(control group: 1.37 ± 0.49 Fisher Z; stroke group: 0.52 ± 1.02 Fisher Z) was significantly different 
(t(23) = 2.55, p =.018) while the right (non-lesioned) hemisphere (control group: 1.28 ± 0.43 Fisher Z; 
stroke group: 0.92 ± 0.67 Fisher Z) showed no differences (t(23) = 1.08, p =.29) between stroke and 
controls. The only noticeable differences in the right (non-lesioned) hemisphere connectivity spectrum 
of the stroke group were that it peaked in the 1–10 Hz range instead of the 5–15 Hz range while the 
connectivity in the 10–20 Hz frequency was slightly lower. On the contrary, the left (lesioned) 
hemisphere of the stroke group displayed a different spectrum entirely, peaking in the 1–5 Hz 
frequency band, sloping downward until the 15–20 Hz frequency band and gradually increasing 
throughout the 15–50 Hz frequencies. The stroke group's left (lesioned) hemisphere connectivity 
spectrum also showed a decrease in connectivity for the 5–25 Hz frequency bands and an increase in 
connectivity for the 25–50 Hz bands when compared to the control group. Linear regression analysis of 
the left connectivity spectrum and function (upper extremity motor FMA) showed a limited 
correspondence between measures (R2 = 0.18, p =.13). 

3.5 Functional connectivity: Different networks 
To better visualize and quantify the changes between resting-state connectivity in the control and 
stroke groups, we identified networks that were significantly different between groups within each 
frequency band of interest (Figure 5a). Note that here we define “network” as a group of connections 
within a frequency band. Networks with significantly larger connectivity in the control group occurred 
in the 10–15 Hz (p =.05; average network connectivity; control group: 0.90 ± 0.48 z-score; stroke group: 
0.59 ± 0.24 z-score) and 15–20 Hz (p =.03; average network connectivity; control group: 0.77 ± 0.44 z-
score; stroke group: 0.50 ± 0.21 z-score) frequency bands. In the stroke group, one network showed 
significantly larger connectivity in the 35–40 Hz (p = .031; average network connectivity; control group: 
0.44 ± 0.36 z-score; stroke group: 0.59 ± 0.54 z-score) frequency band while another network in the 
30–35 Hz frequency band approached significance (p =.066). No other frequency bands contained 
significantly different networks (p > .18). The 10–15 and 15–20 Hz networks with significantly larger 
connectivity in the control group included connections throughout the brain; however, there were 
more connections in the left (lesioned) hemisphere compared with the right (non-lesioned) 
hemisphere (Figure 5a,b). The 10–15 Hz network included nodes with high degree (degree > 4) located 
in the left inferior frontal, middle frontal, middle/inferior occipital, middle/superior temporal pole and 
right middle/superior temporal pole, and heschl/rolandic operculum/superior temporal regions with 
the highest degree occurring in the left cerebellum (degree = 8). The 15–20 Hz network included nodes 
with high degree (degree > 4) located in the left inferior frontal, superior frontal, heschl/rolandic 
operculum/superior temporal, cerebellum and right lingual, middle temporal, inferior/middle occipital, 
cuneus/superior occipital regions with the highest degree occurring in the left angular/inferior parietal 
and left postcentral/supramarginal regions (degree = 6). The 35–40 Hz network present in the stroke 



group was localized toward the anterior portion of the brain with an equal number of connections in 
the left (lesioned) and right (non-lesioned) hemispheres (Figure 5a,b) The 35–40 Hz network included 
nodes with high degree in the right superior frontal gyrus (degree = 4) and right amygdala (degree = 5). 
In all three networks with between-group differences, approximately 50% of the connections occurred 
between hemispheres (Figure 5a,b). For the networks that were different between groups, no 
significant relationship was found between average connectivity and motor function (upper extremity 
motor FMA, R2 < 0.05, p > .43). 

 

FIGURE 5 Resting-state functional connections with statistically significant differences (p < .05) 
between control and stroke groups. The hemisphere associated with the stroke lesion is displayed on 
the left. (a) Networks with statistically significant differences across frequency bands. Z-values 
correspond to the differences between the control and stroke groups with a positive or negative z-
value indicating stronger connections in the control or stroke group, respectively. Larger differences in 
connectivity are also denoted by larger line widths between nodes. Node size indicates the degree 
(number of connections a node makes with other nodes) and is normalized by the maximum degree 
within each frequency band of interest. Please refer to Figure S4 for an alternative visualization of 
functional connectivity networks. (b) Comparison of the numbers of inter- and intrahemispheric 
connections within networks that were significantly different between groups 

4 DISCUSSION 
4.1 Main Results 
In this study, we set out to identify the changes in resting-state cortical signal power and connectivity 
in people with chronic stroke. We hypothesized that cortical activity (power) and connectivity are more 
asymmetric after stroke and that there is a shift in the frequency of cortical communication. The 
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