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Abstract 
Breast cancer is the most commonly diagnosed cancer among women. Positive margin status after breast-
conserving surgery (BCS) is a predictor of higher rates of local recurrence. Intraoperative margin detection helps 
to complete tumor excision at the first operation. A margin tool that is capable of imaging all six margins of large 
lumpectomy specimens with both high resolution and fast speed (within 20 min) is yet to be developed. Deep 
UV light allows simultaneous excitation of multiple fluorophores and generating surface fluorescence images. 
We have developed a deep UV fluorescence scanning microscope (DUV-FSM) for slide-free, high-resolution and 
rapid examination of tumor specimens during BCS. The DUV-FSM uses a deep UV LED for oblique back 
illumination of freshly excised breast tissues stained with propidium iodide and Eosin Y and motorized XY stages 
for mosaic scanning. Fluorescence images are captured by a color CCD camera. Both invasive lobular carcinoma 
(ILC) and invasive ductal carcinoma (IDC) images showed excellent contrast from that of the normal cells in 
color, tissue texture, and cell density and shapes. This contrast have been consistently observed in all samples (n 
= 20) we have imaged so far. Statistical analysis showed a significant difference (p<0.0001) in nucleus-to-
cytoplasm (NC) ratio between normal and invasive tissues. Thus, it may be utilized either visually by a trained 
individual or quantitatively by an algorithm to detect positive margins of lumpectomy specimens 
intraoperatively. 

1. INTRODUCTION 
Breast cancer is the most common cancer among women. In 2019, it is estimated that there will be over 268.000 
women with newly diagnosed breast cancer in the United States,[1] of whom about a half to two-thirds will 
undergo BCS.[2-5] A positive margin is defined as cancer cells at the surface of the specimen. Women with 
positive margins have at least 2-fold increased risk of tumor recurrence in the same breast.[6, 7] Thus, women 
with positive margins are recommended to undergo further surgeries to achieve negative margins. Achieving 
negative margins during the first surgery results in lowered cost, better cosmesis and avoids additional 
emotional stress. Methods including 2D mammography,[8] digital tomosynthesis,[9] frozen section,[10] and 
cytologic imprint prep,[11] etc. have been investigated in breast margin detection during BCS. Optical methods 
including diffuse reflectance spectroscopy (DRS),[12] optical coherence tomography (OCT),[13] Raman 
spectroscopy,[14] photoacoustic tomography (PAT),[15] structured illumination imaging,[16] etc. have also been 
studied for margin assessment on ex vivo lumpectomy tissues. However, none of these methods has 
demonstrated the capability of inspecting 6 margins of an entire lumpectomy specimen with high microscopic 
resolution within a short period of time that is feasible to be implemented in the operation room. Microscopy 
with ultraviolet surface excitation (MUSE)[17] uses deep UV lights that penetrate very shallow in tissues for 
fluorescence excitation, which allows imaging superficial layers of the specimen in high resolution without other 



complicated optical sectioning techniques. Previous studies using MUSE for breast tumor margin 
detection[18, 19] focus on generating H&E mimicking images by color mapping for histopathological assessment. 
We emphasize the importance of providing valuable margin status information directly to the surgeon within 
minutes in the operation room to guide surgeries. 

2. METHODS 
2.1 Imaging system 
The experimental setup is shown in Figure 1. A 285 nm wavelength deep UV LED (M285L4, Thorlabs) is installed 
on the right side of a commercial inverted fluorescence microscope as oblique illumination for fluorescence 
excitation. The LED and the microscope are fastened on an optical breadboard to avoid possible relative position 
displacements. The excitation/emission filter block of the microscope is set to an empty position so that 
emission signals can directly follow the light path to the camera without filtering. Images are taken by a USB 3.0 
color charge-coupled device (CCD) camera. The color camera is capable of capturing the fluorescence signals at 
different wavelengths simultaneously with no need to switch between emission filters. There is a tradeoff 
between imaging resolution and speed. Because time is precious in the operating room, a fast speed is highly 
desired and preferred in this application. A 4x apochromatic long working distance objective lens (Plan Fluor 4x, 
NA = 0.13) was selected to yield a large field-of-view (FOV) and hence accelerate the imaging speed. Large area 
scanning is achieved by an x-y motorized stage. The system is placed inside an optical dark enclosure to 
minimize influences from the environment and prevent UV leakage to personnel. 

Figure 1. 

Experimental setup. A deep UV LED is installed on the right side of a commercial inverted fluorescence 
microscope. The system is placed inside an optical dark enclosure for safety concerns and to avoid 
environmental lights. 

 

2.2 Specimen preparation 
Human breast specimens were taken from lumpectomy and mastectomy cases by the Medical College of 
Wisconsin (MCW) Tissue Bank. All specimens included in this study were de-identified, therefore Institutional 
Review Board (IRB) and Institutional Biosafety Committee (IBC) reviews were exempted. The specimens were 
stained with 100 μg/ml propidium iodide (PI) for 20 seconds and 1.0 mg/ml eosin Y (EY) for 60 seconds. After 
that, the specimens were immersed into phosphate-buffered saline (PBS) solution to rinse away extra dyes on 
the specimen surface. PI stains cell nuclei and mainly exhibits red fluorescence when excited by deep UV lights. 



EY stains cell cytoplasm and other tissue structures. EY mainly exhibits green fluorescence when excited. 
Because of the large wavelength gap (approximately 75 nm) between the fluorescence emission peaks of the 
two dyes, high contrast is expected between cell nuclei and other tissue structures. Stained specimens were 
placed on a quartz plate and pushed softly against the plate to get rid of air bubbles/liquid cavities, which can 
cause artifacts within images. Quartz is selected because it’s UV-transparent and has low autofluorescence 
characteristics. The liquid on specimen surroundings was absorbed by Kimwipes. 

2.3 Data processing 
Individual scanning images were stitched together to create a whole specimen image for next step processing. A 
Fiji plugin named BaSiC was used for background and shading correction[20] caused by uneven illumination. 
Optimized collimation and alignment with multiple deep UV LEDs may reduce the effect of illumination 
unevenness in future studies. Image stitching was operated within Fiji.[21] 

After imaging, specimens were transported back to MCW Tissue Bank for routine histology processing after 
imaging. Visual comparison of fluorescence images with the gold standard H&E images was performed by an 
experienced breast pathologist (Dr. Julie Jorns). 

Uncontrolled division and growth of cancer cells cause multiple morphological changes in tumor regions. It is 
shown that cancer regions exhibit differences in cell density and nucleus-cytoplasm ratio (NC ratio) compared to 
normal regions.[22, 23] Moreover, NC ratios have already been used in cancer detection.[24-28] An algorithm based 
on edge detection and adaptive thresholding was applied for cell nuclei segmentation. Segmented specimen 
images were divided into 2 x 2 mm size patches. NC ratios were calculated for each small patch. Each patch was 
labeled as non-adipose normal (normal breast epithelium), adipose, ILC, and IDC in correlation with H&E images. 
Patches from ambiguous areas were discarded. For statistical analysis, the Generalized Estimating Equations 
(GEE) model was used to account for repeated observations per sample and the TUKEY adjustment was used for 
multiple pairwise comparisons. 

3. RESULTS 
3.1 Visual inspection 
Figure 2 shows the fluorescence and H&E images of typical breast specimen structures. Adipose tissue appear as 
single or clustered rounded small droplets in dark green color and sparse pink nuclei as is shown in (a). H&E 
image from the same location has verified this in (f). Fluorescence image of benign lobules surrounded by 
fibrous stroma is shown in (b) and the corresponding H&E image in (g). Fibrous stroma has low nuclear density 
and hence appear mostly green in the fluorescence image. Benign lobules have higher nuclear density and nuclei 
are clustered in regular, rounded structures. This feature is more evident in the H&E image as terminal duct 
lobular units (TDLU). Benign ducts have two layers of epithelial cells and show a dense nuclei outlined duct in (c). 
The duct has an optically clear lumen in (h). However, it appears as a dark hole in the fluorescence image (c). 
Invasive tumors ILC and IDC are shown in (d) and (e) with their H&E images in (i) and (j), respectively. Tumor 
areas have a higher number of cell nuclei and appear in pink-red color. Infiltrating single-cell or Indian file 
pattern is visible in fluorescence image (d) for ILC. 

Figure 2. 

Fluorescence and H&E images of typical breast specimen structures. Normal tissues including predominantly 
adipose (with some normal glands at the lower right), benign lobules, and benign ducts with their H&E images 
are shown in (a), (b), (c) and (f), (g), (h), respectively. Invasive tumors including ILC and IDC with their H&E 
images are shown in (d), (e) and (i), (j), respectively. 



 

Figure 3 shows the image of a typical normal breast tissue. The gross specimen image is shown in (c). The sample 
size is approximately 19 x 14 mm. Stroma appears green in the fluorescence image (a) and pink in the H&E 
image (b). Scattered ducts and lobules are clearly visible in the fluorescence image. 

Figure 3. 

Typical normal breast tissue. (a) fluorescence image; (b) H&E image; (c) gross specimen image. 

 

Figure 4 shows the image of a mixed IDC tissue. The specimen is acquired from a grade 3, ER/PR+, HER2- case. 
The gross specimen image is shown in (b). The specimen size is approximately 25 x 22 mm. Tumor regions on the 
left have high nuclear density and are easily distinguished visually from both the fluorescence image (a) and the 
H&E image (b). 

Figure 4. 

IDC tissue from case: grade 3, ER/PR+, HER2-. (a) fluorescence image; (b) gross specimen image; (c) H&E image. 

 

3.2 Statistical analysis 
Results of statistical analysis on NC ratios are plotted in Figure 5. A total of 712 patches from the 20 breast tissue 
samples were obtained: 331 from 5 normal specimens, 189 from 3 adipose specimens, 26 from 3 ILC specimens 



and 166 from 9 IDC specimens. Figure 5(a) is the boxplot of 4-class comparisons. There were significant 
differences between adipose and IDC, adipose and ILC, non-adipose normal and IDC, and non-adipose normal 
and ILC (p<0.0001). There was no significant difference between IDC and ILC (p>0.5), and adipose and non-
adipose tissues (p>0.1). Figure 5(b) shows the boxplot of 2-class comparison. The invasive class includes IDC and 
ILC. The normal class includes adipose and non-adipose tissues. The GEE model indicates the estimate NC ratio 
of invasive tumor tissues is 0.19 higher than that of normal tissues with an empirical standard error of 0.03. A 
significant difference was observed between invasive tumor and normal tissues (p<0.0001). 

Figure 5. 

Statistical analysis on NC ratios results. Outliners were plot as red crosses. (a) 4-class comparisons. Significant 
differences are observed between IDC and adipose, IDC and non-adipose normal, ILC and adipose, and ILC and 
nonadipose normal. (b) 2-class comparison. A significant difference is observed between invasive tumor and 
normal tissues. 

 

Table 1. 

Summary of specimens and image patches generated. 

Tissue type Number of specimens Number of patches 
Adipose 3 189 
Non-adipose normal 5 331 
IDC 9 166 
ILC 3 26 
Total 20 712 

4. DISCUSSIONS AND CONCLUSION 
Visual inspection shows a good correlation between fluorescence and H&E images. Invasive tumor exhibits 
differences in color, tissue texture, cell density and shapes compared to normal tissues. Common human breast 
tissue structures are easily identifiable in fluorescence images. Of note it might be difficult to co-register all 
features between fluorescence and H&E images. There are mainly two reasons. First, specimen shape can 
change between imaging and the formalin-fixed paraffin-embedded (FFPE) histology process; Second, there is an 
average ~200 µm cut depth into the embedded tissue block in order to get a full face section of the tissue for 
H&E slide preparation. Fluorescence images only capture the top dozens of μm from the specimen surface. In 
addition, same tissue structure can appear differently in fluorescence and H&E images, such as benign ducts 
having optical clearly lumina in H&E images while this is not the case in fluorescence images. There are just 
differences between the two techniques but that the correlates are consistent and easily translatable between 
methods. Statistical analysis on NC ratios shows a significant difference between invasive tumors and normal 



tissues, which implies that NC ratio may be used to develop an algorithm to detect invasive tumor regions 
automatically. However, in this study, the patch size is 2 x 2 mm. The spatial resolution cannot reach below 2 
mm, which means small size tumor regions might not be detected by this method. Future studies will explore 
using more features in differentiating tumor regions from normal tissue. 

In conclusion, a commercial inverted fluorescence microscope has been converted to a DUV-FSM with 
preliminary deep UV fluorescence images showing values as a promising intraoperative tool for rapid imaging of 
tumor margins during BCS. Distinct visual contrasts are identified between invasive tumor and normal regions. 
Statistically significant differences in NC ratio also distinguish tumor and normal tissue. Future work will focus on 
optimizing the imaging system, collecting more specimen data, and exploring other methods for tumor/normal 
classification. 

5. ACKNOWLEDGEMENTS 
This study has been supported by the Marquette University College of Engineering GHR Foundation grant (Dr. 
Bing Yu and Dr. Taly Gilat-Schmidt), Marquette University startup grant (Dr. Bing Yu), and We Care Fund, 
Medical College of Wisconsin, Department of Surgery (Dr. Tina Yen and Dr. Bing Yu). 

REFERENCES 
[1] R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2019,” CA Cancer J Clin, 69 (1), 7 –34 

(2019). https://doi.org/10.3322/caac.v69.1   

[2] R. Nash, M. Goodman, C. C. Lin et al., “State Variation in the Receipt of a Contralateral Prophylactic 
Mastectomy Among Women Who Received a Diagnosis of Invasive Unilateral Early-Stage Breast Cancer in 
the United States, 2004-2012,” JAMA Surg, 152 (7), 648 –657 
(2017). https://doi.org/10.1001/jamasurg.2017.0115   

[3] S. M. Wong, R. A. Freedman, Y. Sagara et al., “Growing Use of Contralateral Prophylactic Mastectomy Despite 
no Improvement in Long-term Survival for Invasive Breast Cancer,” Ann Surg, 265 (3), 581 –589 
(2017). https://doi.org/10.1097/SLA.0000000000001698   

[4] K. L. Kummerow, L. Du, D. F. Penson et al., “Nationwide trends in mastectomy for early-stage breast cancer,” 
JAMA Surg, 150 (1), 9 –16 (2015). https://doi.org/10.1001/jamasurg.2014.2895   

[5] O. Kantor, C. Pesce, K. Kopkash et al., “Impact of the Society of Surgical Oncology-American Society for 
Radiation Oncology Margin Guidelines on Breast-Conserving Surgery and Mastectomy Trends,” J Am Coll 
Surg, (2019). https://doi.org/10.1016/j.jamcollsurg.2019.02.051   

[6] M. L. Marinovich, L. Azizi, P. Macaskill et al., “The Association of Surgical Margins and Local Recurrence in 
Women with Ductal Carcinoma In Situ Treated with Breast-Conserving Therapy: A Meta-Analysis,” Ann Surg 
Oncol, 23 (12), 3811 –3821 (2016). https://doi.org/10.1245/s10434-016-5446-2   

[7] N. Houssami, P. Macaskill, M. L. Marinovich et al., “The association of surgical margins and local recurrence in 
women with early-stage invasive breast cancer treated with breast-conserving therapy: a meta-analysis,” 
Ann Surg Oncol, 21 (3), 717 –30 (2014). https://doi.org/10.1245/s10434-014-3480-5   

[8] R. A. Graham, M. J. Homer, C. J. Sigler et al., “The efficacy of specimen radiography in evaluating the surgical 
margins of impalpable breast carcinoma,” AJR Am J Roentgenol, 162 (1), 33 –6 
(1994). https://doi.org/10.2214/ajr.162.1.8273685   



[9] K. U. Park, H. M. Kuerer, G. M. Rauch et al., “Digital Breast Tomosynthesis for Intraoperative Margin 
Assessment during Breast-Conserving Surgery,” Ann Surg Oncol, 26 (6), 1720 –1728 
(2019). https://doi.org/10.1245/s10434-019-07226-w   

[10] T. P. Olson, J. Harter, A. Munoz et al., “Frozen section analysis for intraoperative margin assessment during 
breast-conserving surgery results in low rates of re-excision and local recurrence,” Ann Surg Oncol, 14 (10), 
2953 –60 (2007). https://doi.org/10.1245/s10434-007-9437-1   

[11] J. J. Keating, C. Fisher, R. Batiste et al., “Advances in intraoperative margin assessment for breast cancer,” 
Cuur Surg Rep, 4 (2016).   

[12] J. Q. Brown, T. M. Bydlon, L. M. Richards et al., “Optical Assessment of Tumor Resection Margins in the 
Breast,” IEEE Journal of Selected Topics on Quantum Electronics, 16 530 –544 
(2010). https://doi.org/10.1109/JSTQE.2009.2033257   

[13] F. T. Nguyen, A. M. Zysk, E. J. Chaney et al., “Intraoperative evaluation of breast tumor margins with optical 
coherence tomography,” Cancer Res, 69 (22), 8790 –6 (2009). https://doi.org/10.1158/0008-5472.CAN-08-
4340   

[14] A. S. Haka, Z. Volynskaya, J. A. Gardecki et al., “Diagnosing breast cancer using Raman spectroscopy: 
prospective analysis,” J Biomed Opt, 14 (5), 054023 (2009). https://doi.org/10.1117/1.3247154   

[15] R. Li, P. Wang, L. Lan et al., “Assessing breast tumor margin by multispectral photoacoustic tomography,” 
Biomed Opt Express, 6 (4), 1273 –81 (2015). https://doi.org/10.1364/BOE.6.001273   

[16] A. Mazhar, S. Dell, D. J. Cuccia et al., “Wavelength optimization for rapid chromophore mapping using 
spatial frequency domain imaging,” J Biomed Opt, 15 (6), (2010). https://doi.org/10.1117/1.3523373   

[17] F. Fereidouni, Z. T. Harmany, M. Tian et al., “Microscopy with ultraviolet surface excitation for rapid slide-
free histology,” Nature Biomedical Engineering, 1 (12), 957 –966 (2017). https://doi.org/10.1038/s41551-
017-0165-y   

[18] W. Xie, Y. Chen, Y. Wang et al., “Microscopy with ultraviolet surface excitation for wide-area pathology of 
breast surgical margins,” J Biomed Opt, 24 (2), 1 –11 (2019). https://doi.org/10.1117/1.JBO.24.2.026501   

[19] T. Yoshitake, M. G. Giacomelli, L. M. Quintana et al., “Rapid histopathological imaging of skin and breast 
cancer surgical specimens using immersion microscopy with ultraviolet surface excitation,” Sci Rep, 8 (1), 
4476 (2018). https://doi.org/10.1038/s41598-018-22264-2   

[20] T. Peng, K. Thorn, T. Schroeder et al., “A BaSiC tool for background and shading correction of optical 
microscopy images,” Nat Commun, 8 14836 (2017). https://doi.org/10.1038/ncomms14836   

[21] S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image 
acquisitions,” Bioinformatics, 25 (11), 1463 –5 (2009). https://doi.org/10.1093/bioinformatics/btp184   

[22] R. S. Saad, and J. F. Silverman, “CHAPTER 25 - Breast] W.B. Saunders, Edinburgh,” (2008).   

[23] M. N. Gurcan, A. Madabhushi, H. M. Reynolds et al., “Cell density in prostate histopathology images as a 
measure of tumor distribution,” International Society for Optics and Photonics, (2014).   

[24] Y. Tang, J. Carns, and R. R. Richards-Kortum, “Line-scanning confocal microendoscope for nuclear 
morphometry imaging,” J Biomed Opt, 22 (11), 1 –6 (2017). https://doi.org/10.1117/1.JBO.22.11.116005   



[25] D. Shin, M. H. Lee, A. D. Polydorides et al., “Quantitative analysis of high-resolution microendoscopic images 
for diagnosis of neoplasia in patients with Barrett’s esophagus,” Gastrointest Endosc, 83 (1), 107 –14 
(2016). https://doi.org/10.1016/j.gie.2015.06.045   

[26] B. D. Grant, J. H. Fregnani, J. C. Possati Resende et al., “High-resolution microendoscopy: a point-of-care 
diagnostic for cervical dysplasia in low-resource settings,” Eur J Cancer Prev, 26 (1), 63 –70 
(2017). https://doi.org/10.1097/CEJ.0000000000000219   

[27] T. Quang, R. A. Schwarz, S. M. Dawsey et al., “A tablet-interfaced high-resolution microendoscope with 
automated image interpretation for real-time evaluation of esophageal squamous cell neoplasia,” 
Gastrointest Endosc, 84 (5), 834 –841 (2016). https://doi.org/10.1016/j.gie.2016.03.1472   

[28] D. Shin, M. A. Protano, A. D. Polydorides et al., “Quantitative analysis of high-resolution microendoscopic 
images for diagnosis of esophageal squamous cell carcinoma,” Clin Gastroenterol Hepatol, 13 (2), 272 –279 
(2015). https://doi.org/10.1016/j.cgh.2014.07.030   

 


	Deep UV Fluorescence Scanning Microscopy for Breast Tumor Margin Detection
	Recommended Citation
	Authors

	Tongtong Lu
	Julie Jorns
	Mollie Patton
	Renee Fisher
	Amanda Emmrich
	Todd Doehring
	Taly Gilat-Schmidt
	Dong Hye Ye
	Tina Yen
	Bing Yu
	Abstract
	1. INTRODUCTION
	2. METHODS
	2.1 Imaging system
	2.2 Specimen preparation
	2.3 Data processing

	3. RESULTS
	3.1 Visual inspection
	3.2 Statistical analysis

	4. DISCUSSIONS AND CONCLUSION
	5. ACKNOWLEDGEMENTS
	REFERENCES

