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Abstract: 
Although there has been notable progress in modeling cascading failures in power grids, few works 
included using machine learning algorithms. In this paper, cascading failures that lead to massive 
blackouts in power grids are predicted and classified into no, small, and large cascades using machine 
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learning algorithms. Cascading-failure data is generated using a cascading failure simulator framework 
developed earlier. The data set includes the power grid operating parameters such as loading level, 
level of load shedding, the capacity of the failed lines, and the topological parameters such as edge 
betweenness centrality and the average shortest distance for numerous combinations of two 
transmission line failures as features. Then several machine learning algorithms are used to classify 
cascading failures. Further, linear regression is used to predict the number of failed transmission lines 
and the amount of load shedding during a cascade based on initial feature values. This data-driven 
technique can be used to generate cascading failure data set for any real-world power grids and hence, 
power-grid engineers can use this approach for cascade data generation and hence predicting 
vulnerabilities and enhancing robustness of the grid. 

SECTION I. Introduction 
Cascading failures in power grids are described as a sequence of correlated failures of individual 
components that successively weakens the power system [1]. Cascading failures can occur due to a 
wide range of events, including natural disasters, technical error, human error, and deliberate 
sabotage attacks [2]. Moreover, cascading-failure dynamics involve several power-grid variables and 
interdependency between the variables of the power grid and the communication network [3], [4]. 
Modeling cascading failures and examining the severity of cascading failures is a challenging task. 
Nonetheless, since the 2003 blackout in North America [5], notable efforts have been given by the 
researchers in modeling cascading-failure dynamics in the power grid and mitigating the risk of 
cascading failures [6]. One general approach is the use of probabilistic modeling of cascading failures in 
the power grid independently [3], [7]–[8][9] or in an interdependent setting (including the 
communication network) [10]–[11][12][13][14][15]. The objective of using probabilistic models is to 
find the average size of the blackout, blackout size probability distribution, average load loss, load loss 
distribution, critical transmission lines [16]. 

Although most of the models are based on simulating the different power grid topologies for various 
failure initiating events, which generate a massive volume of cascading failure data, the use of 
machine-learning approaches is relatively unexplored in this area. A proactive blackout prediction 
model for an early warning system in smart grids is proposed in [17]. In that work, a support vector 
machine (SVM) has been trained using the historical cascade data and is used to predict blackout 
events in advance. The work uses SVM to build a prediction rule, which is used to predict the scenarios 
of the blackout as early as possible. However, the dataset includes only fifty cases, which are used for 
training and testing purpose. It is challenging to learn the complex dynamics of cascading failures in 
power grids using fifty test cases only. Also, the authors reported that for specific parameter values 
100% training and testing accuracy was achieved, which is very unlikely and unrealistic for a 
sophisticated event like cascading failures. Nonetheless, the paper is a novel work on proactive 
cascade prediction using a machine learning approach. In [18], the authors proposed a machine 
learning model based on Bayes networks to predict cascading failure propagation. Their model, termed 
ITEPV, collects power grid data from simulations, and then predicts cascading failure propagation with 
the highest probability. This paper is another work that focuses on data-driven cascade prediction 
using a machine learning approach. However, the authors do not describe clearly how they collected 
the data, simulated the power flow, or what simulation software they used, which makes 



reproducibility of the work difficult. A classification problem is formulated in [19] that classifies a 
cyber-attack from other classical disturbances in the power grid. The authors used various machine 
learning algorithms to evaluate classification performance and found the optimal algorithms under 
given constraints. Furthermore, the authors observed various measures (accuracy, precision, recall, 
and F-Measure) to show that Adaboost+JRipper [20] is the optimal algorithm for classifying various 
types of cyber-threats in power grids. The work is an initial benchmark for disturbance classification in 
the power grid. The authors used the WEKA [21] machine learning framework for implementing 
various algorithms. Benchmarking of various deep learning algorithms and comparison of %RMSE (root 
mean square error) reduction by the different algorithms from the existing load forecasting 
approaches in smart grid applications were done in [22]. To the best of the authors' knowledge, no 
work has been found to classify cascading failures in power grids as well as predicting key attributes 
such as the number of failed transmission lines, the amount of load shedding for an initial disturbance 
conditioned on the grid operating parameters and the topological parameters. One of the main 
reasons is the unavailability of a large volume of the real-world cascading failure data. 

In this paper, we classify and predict cascading failure based on critical power grid attributes, namely, 
power-flow capacity, edge betweenness centrality, demand loss, power grid loading, estimation errors, 
and constraints on load shedding. The contribution of this paper is three-fold. First, we describe an 
earlier developed cascading failure simulation (CFS) framework using MATPOWER [23], a widely used 
power-flow simulator. We then use this framework to generate a cascading failures dataset using the 
IEEE 118-bus topology under various initial disturbance conditions. Second, a comparison using 
different classifiers is shown to evaluate the classification performances. The objective is to do 
exploratory data analysis on labeled data using various supervised machine learning algorithms and 
identify the best algorithm based on accuracy. Third, we use a linear regression technique to calculate 
the number of transmission line failures, and the amount of load shed for any given initial condition. 

SECTION II. Cascading Failure Simulation (cfs) Framework 
We use MATPOWER [23], a package of MATLAB m-files for solving the steady-state DC or AC power 
flow optimization problem. It uses the power-flow distribution framework under the given set of 
constraints. The standard power flow or load flow problem involves solving for the set of voltages and 
flows in a power grid network corresponding to a specified pattern of load and generation [3]. 
MATPOWER includes solvers for both AC and DC power flow problems, both of which involve solving a 
set of linear equations. The AC power flow captures detailed dynamics of cascading failures in the 
power grid, including the transient effects. However, the effect of AC power flow on the number of 
transmission line failures is found to be incremental compared to the DC power flow [9]. In this paper, 
we generate our data set using the DC power flow because of its simplicity yet effectiveness. 

A. Overview of the CFS Framework 
We show a flowchart in Fig. 1 that illustrates the CFS framework used in this paper. We start with two 
initial number of transmission-line failures in the power grid initiated from an arbitrary initial event. It 
is important to note that the failure of at least two transmission lines is necessary to start a cascading 
failure event because the power grid is robust against one transmission line failure due to N-1 security 
considerations. Our objective is to classify the cascading failures in power grids into no, small, and large 
as well as to identify the initial conditions that trigger large transmission line failures. We assume that 



we have sufficient knowledge regarding the power grid topology and operating parameters before the 
initial failure event. We then remove the failed transmission lines from the grid and check whether any 
islands are formed in the power grid. Note that an island is a self-sufficient local network that operates 
independently when disconnected from the base network having a set of generators and loads [24]. 
Depending on whether any islands are formed or not, we then solve the DC power flow using 
MATPOWER on each island. If we have any overloaded lines in the grid, we either fail these lines or 
probabilistically fail a set of lines among them (e.g., failing the line with the highest overload). In this 
paper, we use a similar approach used in [3] for islanding and overloading calculations and propose 
two algorithms (discussed later) for calculating islanding and overloading in power grids. We repeat the 
same process until we end up with a power grid with no overloaded lines, which indicates the end of a 
cascade. 

 
Fig. 1: Flowchart of the cascading failure process in power grids 
 

B. Power-Grid Operating Parameters and Model Features 
Based on power-grid simulations and prior works [3], we identify the following power-grid operating 
parameters and features that govern the cascading failure dynamics. In our simulation, we use the IEEE 
118-bus system (which is a simple approximation of the American Electric Power system in the U.S. 
Midwest [25]) as the test case which contains 186 transmission lines, 118 buses (nodes) and 54 
generators. 

Power Grid Loading Level, 𝑟𝑟 
The power grid loading level, 𝑟𝑟 ∈ [0,1], is the ratio of the total load demand and the generation 
capacity of the power grid [3]. In IEEE 118-bus system the maximum generation is 9966 MW. Here 𝑟𝑟 =
1 indicates the demand is also 9966 MW and 𝑟𝑟 ∈ [0,1] scales the power demand with respect to 
maximum possible generation. In our simulation, we define a set {0.5, 0.6, 0.7,0.8, 0.g} and simulate 
the grid against various r from this set. We observe that for 𝑟𝑟 < 0.5, the power grid can absorb the 
impact of two transmission line failures and redistribute the power flow without any further failures. 
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Fig. 2: Correlation among the features 
 

Load Shedding Constraint, 𝜃𝜃 
The load shedding constraint is the ratio of uncontrollable loads (the loads that do not participate in 
load shedding) and the total load in the power grid, and it is denoted by 𝜃𝜃 ∈ [0,1] [3]. The 
parameter 𝜃𝜃 ensures the capability of implementing the control actions by the power grid operator. 
Namely, 𝜃𝜃 = 1 indicates that all the loads are uncontrollable, and the operators can perform no load 
shedding. Again, 𝜃𝜃 = 0 indicates that the operators can shed any load in the grid. In this paper, we 
consider equal load shedding constraints over all the loads in the grid for simplicity. Further, we 
consider a set {0.05, 0.1, 0.15, 0.2, 0.25} and choose value of 𝜃𝜃 randomly from this set. Similar to 𝑟𝑟, a 
higher value of θ increases the probability of cascading failure in the power grid. 

Capacity Estimation Error, 𝑒𝑒 
Capacity estimation error, 𝑒𝑒 ∈ [0,0.25], is the error by the control center in its estimation of the actual 
capacity of the lines [3]. In our CFS framework, this parameter is used to calculate overloaded lines. We 
used the same approach used in [3] to calculate overloaded lines. When power flow in a transmission 
line exceeds (1 − 𝑒𝑒) capacity, we consider that line as an overloaded line. We estimate the capacity of 
a transmission line using power flow simulation with maximum loads, i.e. when generation equals 
demand (𝑟𝑟 = 1). Since we use DC power flow simulation, there are no transient effects, and we can 
use maximum generation without any issues. We quantize the flow capacity of a transmission line into 
a set of five capacities {20, 80, 200, 500, 800} MW [24] and assign this capacity of the transmission line 
as a constraint of the MATPOWER power flow optimization problem (discussed later). In our 
simulation, we consider values of e drawn from the set {0.05, 0.1, 0.15, 0.2, 0.25} 

Fixed Failure Probability of Neighboring Lines, 𝑓𝑓𝑝𝑝 
To capture the effect of hidden failures and localized failures in a power grid [6], we include a 
parameter 𝑓𝑓𝑝𝑝, the fixed failure probability of neighboring lines, in our CFS framework that fails the 

adjacent lines of a failed line with a small probability. We consider a set, 𝑓𝑓𝑝𝑝 =
{0.01,0.02,0.03,0.04,0.05,0.06}, and choose the value of 𝑓𝑓𝑝𝑝 randomly from that set. Since 𝑓𝑓𝑝𝑝 is a 
probability, it adds uncertainty on line failures, i.e., the total number of transmission line failure after a 
cascading failure ends is not deterministic for a given initial condition. 
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Edge Betweenness, 𝐵𝐵 and average shortest path, 𝑆𝑆𝑝𝑝 
We keep track of the average edge betweenness of the initially failed lines as a model feature which is 
defined as a measure of centrality based on shortest graph distance [26]. Additionally, we track the 
average shortest path between the two initially failed transmission lines as a model feature. The 
shortest path is calculated using Dijkstra's algorithm [26]. In this paper, to obtain the average shortest 
path between the two transmission lines, first, we calculate the distance between two starting points 
(from the bus) and the two ending points (to the bus) of transmission lines and then take the average 
distance between them. The rationale for tracking these two features is to capture the role of the 
physical topology of the power grid. 

Flow Capacity of the Initially Failed Lines, 𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
We keep track of the sum of the flow capacities of the initially failed lines. Intuitively, failing 
transmission lines with higher capacity yields more transmission line failures in the successive stages 
due to the difference between load and generation. 

Cumulative Installed Capacity of the Failed Lines, 𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
We keep track of the cumulative installed capacity of the failed lines. Note that the installed capacity of 
a transmission line is the quantized capacity chosen from the set of five capacities. 

Number of Islands, 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
Finally, we include the number of islands formed due to cascading failures in power grids as a model 
feature. Since islands are formed as a result of failures of transmission lines that break the power grid 
into small self-sufficient microgrids, it is intuitive that the probability of a large cascade is very high if 
the number of islands is very high. 

On top of these features of the grid during cascading failures, we track the following two output labels. 

Number of Failed Lines, 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
We track the number of failed transmission lines after the cascade ends as an output label. We classify 
the number of failed lines into three distinct classes of the cascade (no, small, and large cascade). 

Cumulative Amount of Load Shed, c Ls 
We use the optimal power flow algorithm from MATPOWER, which includes the capability of 
implementing load shedding depending on the cost. Here, we set the cost of load shedding ten times 
higher than the cost of generation to ensure maximum generation before any load shedding. We track 
the cumulative amount of load shedding as a critical grid parameter. 

In general, the stress over the power grid increases as we increase the operating parameters. From the 
simulations, we observe that depending on the topology, power grid operating parameters, and initial 
disturbances, the severity of the cascading failure varies from no cascading failure to complete 
blackout of the power grid. The correlation among the features is shown in Fig. 2. Observe that, the 
correlation among the topological parameters B and Sp with the number of failed lines and the amount 
of load shed is insignificant, which matches with the observation of [12]. The correlation plot is handy 
to visualize the correlation between the features of the grid. 

We solve the following DC power flow equation where 𝑭𝑭 is a vector of power flow in transmission 
lines, 𝑨𝑨 is a matrix whose elements can be calculated in terms of the connectivity of transmission lines 



in the power grid and the impedance of the lines, and 𝑷𝑷 is a vector which contains the generator and 
load power information [3]. 

𝐹𝐹 = 𝐴𝐴𝐴𝐴 

(1) 

Similar to [3], we minimize the following cost function 

cost = �𝑤𝑤𝑖𝑖
𝑔𝑔𝑔𝑔𝑥𝑥

𝑖𝑖∈𝐺𝐺

+ �𝑤𝑤𝑗𝑗𝑙𝑙𝑙𝑙𝑗𝑗
𝑗𝑗∈𝐿𝐿

 

(2) 

with the following optimization constraints 

1. Power flow equations (1). 
2. Generator power: 0 ≤ 𝑔𝑔𝑖𝑖 ≤ 𝐺𝐺𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, 𝑖𝑖 ∈ 𝐺𝐺 
3. Controllable loads: (1 − 𝜃𝜃𝑗𝑗)𝐿𝐿𝑗𝑗 ≤ b𝑗𝑗 ≤ 0, i ∈ 𝐿𝐿, 1𝑗𝑗 = 𝑏𝑏𝑗𝑗 + 𝜃𝜃𝑗𝑗𝐿𝐿𝑗𝑗 
4. Transmission line power flow: 𝐹𝐹𝑘𝑘 ≤ 𝐶𝐶𝑘𝑘

opt 

5. Power balance: ∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝐺𝐺 + � 𝑙𝑙𝑗𝑗 = 0
𝑗𝑗∈𝐿𝐿

, where 𝑔𝑔𝑖𝑖 is the output of each generator, 𝑙𝑙𝑗𝑗 is the 

delivered power at each load and 𝐿𝐿𝑖𝑖  represents the demand at the load bus 𝑖𝑖. Moreover, 𝐶𝐶𝑘𝑘
opt is 

the capacity of a transmission line, 𝐺𝐺𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 is the generator capacity, and 𝐺𝐺 and 𝐿𝐿 represent the 
set of generator and load buses. Controllable loads are defined using the 𝜃𝜃 parameter. Finally, 
the power balance is done by the optimizer using a reference generator, typically the generator 
with the largest generation capacity. The output of MATPOWER contains power flow through 
each transmission line satisfying the constraints. The optimal power flow utilizes dispatchable 
loads to implement load shedding when the cost of generation is higher than the cost of serving 
loads. Since the load shed cost is set ten times higher than the generation cost, load shedding is 
only performed when the optimizer fails to satisfy the optimization constraints. 

 

C. Algorithms for Finding the Island and Overloaded Lines 
Recall that we use DC power-flow, which is used in many earlier cascading failure 
analysis [3], [7], [12], [27] for its simplicity yet effectiveness. However, the introduction of the fixed 
failure probability of the neighboring lines transforms our model from deterministic to stochastic for 
the same initial conditions. We use the following algorithm for finding the maximum overloaded lines 
shown in algorithm 1. 

Here in the algorithm, PF is the power flow through transmission lines, 𝑀𝑀 is the total number of 
transmission lines in the power grid, Plf is the ratio of the absolute power flow and the adjusted 
installed capacity (using the capacity estimation error, 𝑒𝑒), ProbTest is a variable used to find the 
maximum overloaded transmission line, and FailedIndex is the index of the maximum overloaded 
transmission line. From the power flow data, overloaded transmission lines can be calculated, which is 
used in several previous works [3], [7], [13], [28] to fail transmission lines in the power grid. We 
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consider a line failed when power flow through line exceeds the maximum allowable power flow limit 
through that transmission line. Once we find overflow in a transmission line, we fail that line and re-
calculate optimal power flow (OPF) using the remaining transmission lines. We take one or multiple 
transmission line failures per time unit to understand the cascading failure dynamics effectively. One 
way to choose one transmission line to fail out of all the overloaded lines is that if multiple 
transmission lines exceed the capacity threshold, we fail the line with the maximum deviation from the 
overflow threshold. Since the power grid needs to balance generation and load, the overloaded failed 
transmission lines can initiate a cascade of failures in the successive steps. 

Here mpc contains the IEEE 118 bus system data available in MATPOWER, sparse and graphconncomp 
are two Matlab functions used to find the number of islands and their components, rundcopf is the 
MATPOWER optimal power flow function used to solve the power flow optimization problem. 
AdjMatrix is the adjacency matrix of the power grid that represents the connectivity pattern, variables 
s and c given the number of islands and number of components at each island respectively and GD 
represents generator output. Algorithm 2 shows our methodology for solving power flow in each of the 
islands created during the simulation. Recall that an island in a power grid is a self-sufficient grid 
network containing both loads and generators created when transmission line failure breaks the vast 
connected grid into a small localized connected grid. During each iteration, we calculate the number of 
islands formed in the grid and solve power flow simulation at each island using algorithm 2. 

Algorithm 1: Finding maximum overloaded lines probabilistically during cascading failures 

 

 

Algorithm 2: Solving power flow in each islanded grid 
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SECTION III. Results 
In this section, first, we discuss the statistics of the data set and then implement machine learning 
algorithms to predict cascading failures in power grids. 

 
Fig. 3: Comparison of the overall accuracies for predicting cascading failure in power grids using machine 
learning algorithms. 
 

A. Description of the Data 
We have performed simulations over seventy-six thousand iterations of two random transmission line 
failures using the CFS framework on the IEEE 118-bus test case to collect failure data. We randomly 
select 𝑟𝑟, 𝑒𝑒,𝜃𝜃, and 𝑓𝑓𝑝𝑝  from the sets defined earlier. We also calculate the topological parameters such as 
edge betweenness centrality, shortest distance as defined previously. Moreover, we store the data of 
the power flow through the initially failed transmission lines. The CFS framework output provides the 
number of transmission line failures after the cascade ends, the amount of load served, load shed, and 
the number of islands formed. We calculate and store the input-output parameters for all the 
iterations. 

B. Analysis on Cascading Failure Prediction 
We have used the data set obtained from MATPOWER simulation to perform classification using the 
python scikit learn library [29]. The data set contains the number of transmission line failures after the 
cascade ends. As mentioned above, we quantize the number of failed transmission lines in three 
classes: no cascade (number of transmission lines failures ≤ 10), small cascade (10 <number of 
transmission lines failures < 25), and large cascade (number of transmission lines failures> 25). Note 
that the ranges of transmission line failures for the three classes were chosen arbitrarily. We split the 
data set for training (70%) and testing (30%) purposes. We have used nine features, as described 
above. We have used the following machine learning classification algorithms [20], [30]: logistic 
regression, k-nearest neighbors (KNN), decision tree, random forest, support vector machine (SVM), 
and AdaBoost. The precision, recall, and f1-scores are calculated using [29] for all the algorithms and 
shown in Fig. 3. It can be observed that all the classification algorithms have a relatively higher 
accuracy of classification with SVM and random forest having the best precision. Next, we show the 
individual cascade type classification accuracies in Fig. 4. We can observe that the classification of no 
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cascade has higher precision compared to the classification of high cascades. This is because high 
cascades have low test samples compared to no cascades. For KNN, we further calculate the 
optimal k that yields the lowest error rate and observe that 𝑘𝑘 =  9 gives the highest accuracy. 

Table I: Prediction error 

metric error (number of failed lines) error (amount of load shed) 
mean absolute error 1.9 82.92 
mean square error 7.07 15334.84 
root mean square error 2.66 123.83 

 

C. Linear Regression to Predict the Number of Transmission Line Failures and the 
Amount of Load Shed 
We use linear regression [20] to predict the number of cascading failures and the amount of load shed, 
which are shown in Figs. 5 and 6, respectively. The scatter plot of Fig. 5 shows that the relationship 
between the test data and the predicted values are linear, which indicates that linear regression is a 
reasonable model to predict the number of line failures. The error (deviation) of the predicted values 
from the actual value is reported in table 1. Note that the error of predicting the amount of 
transmission line failures is relatively small. Also, in Fig. 6, it is visible that the plot is not exactly linear, 
which indicates that linear regression may not be a good model for predicting the amount of load 
shedding. 

SECTION IV. Conclusion and Future Works 
In this paper, we have used machine learning algorithms to predict cascading failures in power grids 
and also used linear regression to predict the number of transmission line failures, as well as the 
cumulative amount of load shed given an initial operating condition. Using an earlier developed CFS 
framework, we have effectively generated a labeled cascading failure data set by simulating IEEE 118-
bus system, which is used as an input to the machine learning models. The results suggest that 
cascading failure prediction can be made using machine learning with high accuracy. The exploratory 
data analysis reported in this paper can be extended to find the distribution of line failures, distribution 
of load shedding, and critical line identification. In addition, the CFS framework needs to consider the 
generator dynamics, the disturbance of grid communication and control system, and grid operator 
error to analyze the dynamics of cascading failures in a more realistic setting, although that will 
increase the computational complexity of the CFS framework. 

 
Fig. 4: Comparison of the accuracies for predicting cascading failure in power grids using machine learning 
algorithms for the three classes of cascades. 
 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8974143/9000182/9000379/NAPS2019_paper_131-fig-4-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8974143/9000182/9000379/NAPS2019_paper_131-fig-4-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8974143/9000182/9000379/NAPS2019_paper_131-fig-4-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8974143/9000182/9000379/NAPS2019_paper_131-fig-4-source-large.gif


 

 
Fig. 5: Predicting the number of line failures 
 

 
Fig. 6: Predicting the cumulative amount of load shed 
 

References  
1. R. Baldick et al., "Initial review of methods for cascading failure analysis in electric power 

transmission systems ieee pes cams task force on understanding prediction mitigation and 
restoration of cascading failures", Power and Energy Society General Meeting-Conversion and 
Delivery of Electrical Energy in the 21st Century 2008 IEEE, pp. 1-8, 2008. 

2. P. Hines et al., "Trends in the history of large blackouts in the united states", Power and Energy 
Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century 2008 
IEEE, pp. 1-8, 2008. 

3. Rahnamay-Naeini et al., "Stochastic analysis of cascading-failure dynamics in power grids", IEEE 
Transactions on Power Systems, vol. 29, no. 4, pp. 1767-1779, 2014. 

4. M. Rahnamay-Naeini and M. M. Hayat, "Cascading failures in interdependent infrastructures: 
An interdependent markov-chain approach", IEEE Transactions on Smart Grid, vol. 7, no. 4, pp. 
1997-2006, 2016. 

5. B. Liscouski et al., "Final report on the august 14 2003 blackout in the united states and canada: 
Causes and recommendations", A report to US Department of Energy, vol. 40, no. 4, pp. 86, 
2004. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8974143/9000182/9000379/NAPS2019_paper_131-fig-5-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8974143/9000182/9000379/NAPS2019_paper_131-fig-5-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8974143/9000182/9000379/NAPS2019_paper_131-fig-5-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8974143/9000182/9000379/NAPS2019_paper_131-fig-6-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8974143/9000182/9000379/NAPS2019_paper_131-fig-6-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8974143/9000182/9000379/NAPS2019_paper_131-fig-6-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8974143/9000182/9000379/NAPS2019_paper_131-fig-5-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8974143/9000182/9000379/NAPS2019_paper_131-fig-6-source-large.gif


6. H. Guo et al., "A critical review of cascading failure analysis and modeling of power 
system", Renewable and Sustainable Energy Reviews, vol. 80, pp. 9-22, 2017. 

7. Y. Yang et al., "Small vulnerable sets determine large network cascades in power grids", Science, 
vol. 358, no. 6365, pp. 0036-8075, 2017. 

8. I. Dobson et al., "Branching process models for the exponentially increasing portions of 
cascading failure blackouts", System Sciences 2005. HICSS'05. Proceedings of the 38th Annual 
Hawaii International Conference on, pp. 64a-64a, 2005. 

9. B. Schäfer et al., "Dynamically induced cascading failures in power grids", Nature 
communications, vol. 9, no. 1, pp. 1975, 2018. 

10. S. V. Buldyrev et al., "Catastrophic cascade of failures in interdependent networks", Nature, vol. 
464, no. 7291, pp. 1025-1028, 2010. 

11. C. D. Brummitt et al., "Suppressing cascades of load in interdependent networks", Proceedings 
of the National Academy of Sciences, vol. 109, no. 12, pp. E680-E689, 2012. 

12. M. Korkali et al., "Reducing cascading failure risk by increasing infrastructure network 
interdependence", Scientific Reports, vol. 7, 2017. 

13. Z. Wang et al., "Impacts of operators' behavior on reliability of power grids during cascading 
failures", IEEE Transactions on Power Systems, 2018. 

14. R. A. Shuvro et al., "Modeling cascading failures in power grids including communication and 
human operator impacts", 2017 IEEE Green Energy and Smart Systems Conference (IGESSC). 

15. R. A. Shuvro et al., "Modeling impact of communication network failures on power grid 
reliability", North American Power Symposium(accepted), 2017. 

16. P. Henneaux et al., "Benchmarking quasi-steady state cascading outage analysis 
methodologies", 2018 IEEE International Conference on Probabilistic Methods Applied to Power 
Systems (PMAPS), pp. 1-6, 2018. 

17. S. Gupta et al., "Support-vector-machine-based proactive cascade prediction in smart grid using 
probabilistic framework", IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2478-
2486, 2015. 

18. R. Pi et al., "Machine learning based on bayes networks to predict the cascading failure 
propagation", IEEE Access, vol. 6, pp. 44815-44823, 2018. 

19. R. C. Hink et al., "Machine learning for power system disturbance and cyber-attack 
discrimination", 2014 7th international symposium on resilient control systems (ISRCS), pp. 1-8, 
2014. 

20. G. James et al., An introduction to statistical learning, Springer, vol. 112, 2013. 
21. M. Hall et al., "The weka data mining software: An update", ACM SIGKDD explorations 

newsletter, vol. 11, no. 1, pp. 10-18, 2009. 
22. A. Almalaq and G. Edwards, "A review of deep learning methods applied on load 

forecasting", 2017 16th IEEE International Conference on Machine Learning and Applications 
(ICMLA), pp. 511-516, 2017. 

23. R. D. Zimmerman et al., "Matpower: Steady-state operations planning and analysis tools for 
power systems research and education", IEEE Transactions on power systems, vol. 26, no. 1, pp. 
12-19, 2011. 

24. A. J. Wood et al., Power generation operation and control, John Wiley & Sons, 2013. 
25. R. Christie, 118 bus power flow test case, 1993. 



26. U. Brandes, "A faster algorithm for betweenness centrality", Journal of mathematical sociology, 
vol. 25, no. 2, pp. 163-177, 2001. 

27. I. Dobson et al., "Complex systems analysis of series of blackouts: Cascading failure critical 
points and self-organization", Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 17, 
no. 2, pp. 026-103, 2007. 

28. Q. Chen and L. Mili, "Composite power system vulnerability evaluation to cascading failures 
using importance sampling and antithetic variates", IEEE transactions on power systems, vol. 
28, no. 3, pp. 2321-2330, 2013. 

29. F. Pedregosa et al., "Scikit-learn: Machine learning in python", Journal of machine learning 
research, vol. 12, pp. 2825-2830, Oct 2011. 

30. S. B. Kotsiantis et al., "Supervised machine learning: A review of classification 
techniques", Emerging artificial intelligence applications in computer engineering, vol. 160, pp. 
3-24, 2007. 

 


	Predicting Cascading Failures in Power Grids using Machine Learning Algorithms
	Recommended Citation

	Abstract:
	SECTION I. Introduction
	SECTION II. Cascading Failure Simulation (cfs) Framework
	A. Overview of the CFS Framework
	B. Power-Grid Operating Parameters and Model Features
	Power Grid Loading Level, 𝑟
	Load Shedding Constraint, 𝜃
	Capacity Estimation Error, 𝑒
	Fixed Failure Probability of Neighboring Lines, ,𝑓-𝑝.
	Edge Betweenness, 𝐵 and average shortest path, ,𝑆-𝑝.
	Flow Capacity of the Initially Failed Lines, ,𝐶-𝑓𝑙𝑜𝑤.
	Cumulative Installed Capacity of the Failed Lines, ,𝐶𝐶-𝑓𝑎𝑖𝑙.
	Number of Islands, ,𝑁-𝑖𝑠𝑙𝑎𝑛𝑑𝑠.
	Number of Failed Lines, ,𝑁-𝑓𝑎𝑖𝑙.
	Cumulative Amount of Load Shed, c Ls

	C. Algorithms for Finding the Island and Overloaded Lines

	SECTION III. Results
	A. Description of the Data
	B. Analysis on Cascading Failure Prediction
	C. Linear Regression to Predict the Number of Transmission Line Failures and the Amount of Load Shed

	SECTION IV. Conclusion and Future Works
	References

