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Abstract 

In this paper, we define and study a new lifetime model called the Kumaraswamy Marshall-Olkin log-logistic 

distribution. The new model has the advantage of being capable of modeling various shapes of aging and failure 

criteria. The new model contains some well-known distributions as special cases such as the Marshall-Olkin log-

logistic, log-logistic, lomax, Pareto type II and Burr XII distributions. Some of its mathematical properties 

including explicit expressions for the quantile and generating functions, ordinary moments, skewness, kurtosis are 

derived. The maximum likelihood estimators of the unknown parameters are obtained. The importance and 

flexibility of the new model is proved empirically using a real data set. 

Keywords: Kumaraswamy-G, Maximum likelihood, Log-Logistic, Order statistic. 

2000 Mathematics Subject Classification: 60E05, 62P99 

 

1. Introduction 

There has been an increased interest in defining new generated classes of univariate continuous distributions 

by introducing additional shape parameter(s) to a baseline model. The extended distributions have attracted 

several statisticians to develop new models. The addition of parameters has been proven to be useful in 

Received 1 November 2016
 

       Accepted 20 March 2017

59

Copyright © 2018, the Authors.  Published by Atlantis Press. 
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 1 (March 2018) 59–76

mailto:ahmed.afify@fcom.bu.edu.eg


exploring skewness and tail properties, and also for improving the goodness-of-fit of the generated family. 

The well-known generators are the following: the Marshall-Olkin distribution family by Marshall and Olkin 

(1997), the beta-G by Eugene et al. (2002), the Kumaraswamy-G (Kw-G) by Cordeiro and de Castro (2011), 

the Logistic-G by Torabi and Montazari (2014), the transformed-transformer (T-X) by Alzaatreh et al. (2013), 

the odd exponentiated generalized by Cordeiro et al. (2013), the Weibull-G by Bourguignon et al. (2014), the 

Kumaraswamy Marshal-Olkin distribution family by Alizadeh et al. (2015), the transmuted geometric-G by 

Afify et al. (2016a) and the beta transmuted-H by Afify et al. (2017).  

Marshall and Olkin (1997) proposed a flexible family of distributions and introduced an interesting method of 

adding a new parameter to an existing distribution. The resulting new distribution includes the original 

distribution as a special case and gives more flexibility to model various types of data. For further information 

about the Marshall–Olkin family of distributions, see Barreto-Souza et al. (2013). The log-logistic (LL) 

distribution (known as the Fisk distribution in economics) has been widely used particularly in survival and 

reliability over the last few decades. It is the probability distribution of a random variable whose logarithm 

has a logistic distribution, an alternative to the log-normal distribution since it presents a failure rate function 

that increases initially and decreases later. The cumulative distribution function (cdf) and probability density 

function (pdf) of the LL distribution are given (for 0x  ) by 

 

1

( ; , ) 1 1LL

x
G x



 




  
    

   

 and 

2
1

( ; , ) 1 ,LL

x x
g x






 




   

   
   

 (1.1) 

respectively, where 0   is the scale parameter and 0   is the shape parameter.  

Searching a more flexible LL distribution, many authors defined generalizations and modified forms of the 

LL distribution, with different number of parameters. For example, the Kumaraswamy log-logistic (de 

Santana et al., 2012), Marshall-Olkin LL (MOLL) (Gui, 2013), Lomax log-logistic (Cordeiro et al., 2014), 

McDonald log-logistic (Tahir et al., 2014), beta log-logistic (Lemonte, 2014), transmuted log-logistic 

(Granzotto and Louzada, 2015), Kumaraswamy transmuted log-logistic (Afify et al., 2016b) and generalized 

transmuted log-logistic (GTLL) (Nofal et al., 2017) distributions. 

Gui (2013) defined the cdf and pdf of the MOLL distribution (for 0x  ) by  

 ( ; , , ) 1
(x )

MOLLG x


 


  


 


 and 

1

2
( ; , , ) ,

(x )
MOLL

x
g x

 

 


  








 (1.2) 

respectively, where ,  ,  0    . For 1  , we obtain the LL distribution.  

The goal of this paper is to define and study a new lifetime model called the Kumaraswamy Marshall-Olkin 

Log-Logistic (“KMOLL” for short) distribution. The main feature of this model is that two additional shape 

parameters are inserted in (2) to give more flexibility in the form of the generated distribution. Based on the 

Kumaraswamy-generalized (K-G) family proposed by Cordeiro and de Castro (2011), we construct the new 

five-parameter KMOLL distribution. We give some mathematical properties of the new distribution with the 

hope that it will attract wider applications in engineering, reliability, life testing and other research. In fact, 

the KMOLL distribution can provide better fits than other models. 

Let ( )g x  and ( )G x  denote the pdf and cdf of the baseline model. Cordeiro and de Castro (2011) defined the 

cdf of the K-G family by 

 
( ) 1 {1 ( ) } .a bF x G x    (1.3) 

The corresponding pdf of (1.3) is given by  

 
1 1( ) ( ) ( ) {1 ( ) }a a bf x abg x G x G x   , (1.4) 
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where 0a   and 0b   are two extra shape parameters whose role are to govern skewness and tail weights. 

Clearly, for 1,a b   we obtain the baseline distribution. 

To this end, we start from the MOLL distribution to define the new KMOLL distribution by inserting (1.2) in 

equations (1.3) and (1.4). Then, the cdf (for 0x  ) of the KMOLL distribution is given by 

 

x
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. (1.5) 

The corresponding pdf of (1.5) is  
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. (1.6) 

where α  is a scale parameter and the shape parameters a,b,γ  and β  govern the skewness of (1.6). 

A random variable X  with the pdf (1.6) is denoted by ~ KMOLLX (a,b,α,γ,β) . The survival function, hazard 

rate function (hrf) and cumulative hazard rate function (chrf) of X  are, respectively, given by 
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and 
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Some of the possible shapes of the pdf (1.6) for selected parameter values are illustrated in Figure 1. As seen 

from Figure 1, the density function can take various forms depending on the parameter values. It is evident 

that the KMOLL distribution is much more flexible than the MOLL distribution, i.e. the additional shape 

parameters a  and b  allow for a high degree of flexibility of the KMOLL distribution. Both unimodal and 

monotonically decreasing shapes appear to be possible. 
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Fig. 1.  Plots for the pdf of the KMOLL distribution for several parameter values. 

 

Plots for the hrf of the KMOLL distribution for several parameter values are displayed in Figure 2. Figure 2 

shows that the hrf of the KMOLL distribution can be bathtub, upside down bathtub (unimodal), increasing or 

decreasing. This attractive flexibility makes the hrf of the KMOLL useful and suitable for non-monotone 

empirical hazard behaviors which are more likely to be encountered or observed in real life situations. 

 

  
Fig. 2.    Plots of the hrf of the KMOLL distribution for several parameter values.  

 

We now state a useful expansion for the KMOLL density. Using the binomial expansion, the pdf of the 

KMOLL reduces to  

 ( 1) 1
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w ab
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The importance of the KMOLL distribution is that it contains as special sub-models several well-known 

distributions. Table 1 lists the special distributions related to KMOLL distribution.  
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Table 1.  Sub-models of the KMOLL distribution 

Reduced Model a  b    α    

KLL a  b    α  1
 

MOLL 1 1   α    

EMOLL a  1   α    

GMOLL 1 b    α    

ELL a  1   α  1
 

GLL 1 b    α  1 

LL 1 1   α  1 

Dagum a  1   - 
1/γβ  

BurrXII 1 b  1 - β  

EBurrXII a  b  1 - β  

ParetoII 1 1/ b  0 - / b  

EParetoII a  1/ b  0 - / b  

Lomax a  1/ b  - - / b  

 

The rest of the article is outlined as follows. In Section 2, we obtain the quantile function, shapes, skewness, 

kurtosis, moments, moment generating functions, Rényi entropies, reliability function and order statistics of 

X . Certain characterizations are presented in Section 3. The maximum likelihood estimates (MLEs) of the 

model parameters are obtained in Section 4. An application to real data set is considered in Section 5. Finally, 

Section 6 provides some concluding remarks. 

2.  The KMOLL Properties 

In this section, we investigate mathematical properties of the KMOLL distribution including quantile 

function, skewness, kurtosis, shapes of functions, moments, the Rényi and Shannon entropies, reliability and 

order statistics.  

2.1.  Quantile function 

Quantile functions are in widespread use in statistics and often find representations in terms of lookup tables 

for key percentiles. Let ~ KMOLL( )X a,b,α,γ,β . The quantile function say ( )Q u  is defined by inverting ( )F x  

in (1.5) as  
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The effect of the shape parameters , , ,a,b     on the skewness and kurtosis can be considered based on 

quantile measures. There are many heavy tailed distributions for which this measure is infinite. So, it becomes 

uninformative precisely when it needs to be. The Bowley’s skewness is based on quartiles: 
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and the Moors’ kurtosis is based on octiles: 
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where (.)Q  represents the quantile function of X . These measures are less sensitive to outliers and they exist 

even for distributions without moments. Skewness measures the degree of the long tail and kurtosis is a 

measure of the degree of tail heaviness. When the distribution is symmetric, 0S   and the when the 

distribution is right (or left) skewed, 0S   or ( 0S  ). As K increases, the tail of the distribution becomes 

heavier. 

2.2.  Moments and moment generating function 

Some of the most important features and characteristics of a distribution can be studied through moments (e.g. 

tendency, dispersion, skewness and kurtosis). Now we obtain ordinary moments and the moment generating 

function of the KMOLL distribution. The ordinary moments ( )n

nE X  , 1,2,...,n   of the KMOLL 

distribution can be obtained, using (1.7), as 
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. Here, (.)MOLLg and (.)MOLLG  are the pdf and cdf of the MOLL distribution, 

respectively. Then, the integral part in (2.1) is defined as  

 

1

( 1) 1 ( 1) 1

0 0

( ) ( ) ( ) ,MOLL

n a i n a i

MOLL MOLLx g x G x dx Q u u du



      

where (.)MOLLQ  is the quantile function of the MOLL distribution for 0 1u  . Then, we obtain  
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where (.,.)B  is the beta function. 

Further, the central moments ( n ) and cumulants ( n ), 1,2,...,n   of the KMOLL distribution can be obtained 

from 
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Here, 1 1  , 2

2 2 1     , 3

3 3 2 1 13 2          , 2 2 4

4 4 3 1 2 2 1 14 3 12 6                   etc.  

The skewness 3/2

1 3 2/    and kurtosis 2

2 4 2/    are also computed from the second, third and fourth 

cumulants. Table 2 gives moments, skewness, and kurtosis of the KMOLL distribution for some parameter 

values.  

Table 2 indicates that the skewness value can be positive and negative, also close to zero. Hence, the KMOLL 

distribution can be right-skewed, left-skewed or symmetric. 
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Table 2.  Moments, skewness and kurtosis of the KMOLL distribution for some parameter values 

( , , , , )KMOLL a b     '

1  '

2  
'

3  
'

4  S  K  

(0.1,1.98,16,18,20) 11.806 167.936 2656.865 45090.060 0.000 -0.811 

(5,10,2,3,8) 11.362 133.290 1612.749 20108.035 0.335 0.357 

(2,1,5,4,3) 6.228 47.418 526.448 185560.800 4.883 2403.251 

(4,9,1.2,1.5,8) 10.148 119.066 1601.209 24581.778 1.028 2.180 

(0.4,15,0.5,1.2,5) 0.018 0.002 0.000 0.000 5.511 53.883 

(7,2,3.5,3,0.2) 0.565 0.356 0.258 0.230 2.200 13.764 

(1,4,1,8,1) 0.807 0.668 0.567 0.491 -0.207 0.262 

(0.5,9,16,1,13) 4.126 86.379 4204.147 381961.900 5.671 63.640 

(1.5,2.5,2,7,4) 4.163 17.806 78.167 352.098 0.303 0.765 

(25,10,0.5,1.2,1) 3.660 15.332 73.762 409.965 1.287 3.412 

 

Figure 3 also depicts plots for the skewness and kurtosis coefficients related to additional parameters. In the 

figure, a parameter decreases while other parameters are kept fixed. These plots indicate that both measures 

can be very sensitive on these shape parameters. Thus, indicating the importance of the proposed distribution. 

 

  

  
Fig. 3.   Skewness and kurtosis plots of the KMOLL distribution for some parameter values 

 

The moment generating function (mgf) is widely used as an alternative way to analytical results compared 

with working directly with pdf and cdf. The mgf of X  is  
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2.3. Unimodality 

The pdf of the KMOLL model is decreasing or unimodal. In order to investigate the critical points of its 

density function, its first derivative with respect to x is  
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γ γ
γ γ-2

γ γ γ γ

2
γ γ

x
- +1

x + βα

x + βα

x x
abβγ γ -1 α x - +1

x + βα x + βα
+ = 0.

x + βα

  
     

    
         

 (2.4) 

There may be more than one root to (2.4). If 0x x  is a root of (2.4), then it corresponds to a local maximum 

if ( ) / 0df x dx   for all 0x x  and ( ) / 0df x dx   for all 0x x . It corresponds to a local minimum if 
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( ) / 0df x dx   for all 0x x  and ( ) / 0df x dx   for all 0x x . It corresponds to a point of inflexion if either 

( ) / 0df x dx   for all 0x x  or ( ) / 0df x dx   for all 0x x .  

2.4.  Entropies 

The entropy of a random variable X with density function f(x)  is a measure of variation of the uncertainty. 

Two popular entropy measures are the Rényi and Shannon entropies (Rényi (1961). Shannon (1951)). Here. 

we derive expressions for the Rényi and the Shannon entropies of the KMOLL distribution. The Rényi 

entropy of a random variable with pdf f(x)  is defined as  

    
1

log
1

R f x dx






 
   

for 0   and 1  . Then, we can write  

  ( 1) 1 ( 1)

0 00 0 0

( 1)

,

0 0

( ) ( ) ( ) ( ) ( )

( ) ( ) ,

MOLL MOLL MOLL

MOLL

a i a ai

MOLL i MOLL i

i i

a ai

i MOLL

i

f x dx g x w G x dx g x G x w G x dx

c g x G x dx

 

  

 



   
  

 


 



   
    

   



   

   (2.5)

 

where 
1

( 1)i

i

b
w ab

i

 
   

 
 and  1

, 0 ,

1

( ) ( 1)
i

i m i m

m

c iw m i w c 





   .  

The integral part of (2.5) is  

 

1

( 1) 1

0 0

( 1)( 1) ( 1)( 1)1

1 1/ 1

0

1 1/ 1

( ) ( ) ( )

( ) (1 )

( 1)( 1) ( 1)( 1)
( ) ( 1, 1).

MOLL

a ai ai a

MOLL MOLL MOLL

ai a

g x G x dx u g Q u du

u u du

B ai a

    

   
 

   

 

 

   
   

 



    

   
  

  

  



 

   
     

 

  

Then the Rényi entropy of the KMOLL distribution is given by 

 

1 1/ 11 ( 1)( 1) ( 1)( 1)
( ) log ( ) ( 1, 1) .

1
R B ai a     
    

  

      
       

  
 

The Shannon entropy plays a similar role as the kurtosis measure in comparing the shapes of various densities 

and measuring heaviness of tails. The Shannon entropy of a random variable X is defined by  logE f x   . It 

is the special case of Rényi entropy when 1  . The Shannon entropy of the KMOLL distribution is  

 

 

 

log log( ) [log ( )] ( 1) [log ( )]

( 1) log[1 ( )]

MOLL MOLL

a

MOLL

E f x ab E g x a E G x

b E G x

       

  
. (2.6) 

To obtain three expectations terms given above. We define and compute 

 

 
1

1

00

[log ( )] log ( ) ( ) ( ) 1 ( ) .
MOLL MOLL

b
a a

MOLL MOLL MOLL k k

k

E g x ab g x g x G x G x dx w I

 






       

Here we have 
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    
1

( 1) 1 ( 1) 1

0 0

1 11

1 1/ ( 1) 1

0

1

1 2

1

log ( ) ( ) ( ) log ( )
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1 log 1 ( 1) 2
log log log ( , , 1,2)

2 ( 1)

MOLL

a k a k
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j j
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



   

 

   





 

 
  

  

  
        

   

 





 

where 2 1F  is the generalized hypergeometric function defined by 

 

1 2

0

( ) ( )
( , , 1,2)

( ) !

k

k k

k k

a b x
F j ak a ak a

c k





      

and ( ) ( 1)...( 1)ka a a a k     denotes ascending factorial. 

Similarly, the following expectations are defined for (12) as 
1

1

0

1
1 ( ) log

MOLL

a bE G x b uu du
b

        and 

1

1

00

( 1, ) ( 1)
[log ( )] log (1 )b

MOLL

b b B b C b
E G x u u du

a a a

 







    
   

 . 

Here. C is Euler’s constant (Nadarajah et al. 2012). 

2.5.  Reliability 

In the context of reliability. the stress-strength model describes the life of a component which has a random 

strength 1X  that is subjected to a random stress 2X . The component fails at the instant that the stress applied 

to it exceeds the strength. and the component will function satisfactorily whenever 1 2X X . Hence, 

 2 1R  Pr X <X  is a measure of component reliability. Here. we obtain the reliability  R  when 

 KMOLL1 1 1X a ,b ,α,γ,β  and  KMOLL2 2 2X a ,b ,α,γ,β  are independent random variables. Probabilities of 

this form have many applications especially in engineering concepts. 

Let if  and iF  denote the pdf and cdf of iX  for 1,2,...,i  .Then, the reliability function for the KMOLL 

distribution is given by 

 1 2

0

( ) ( ) .R f x F x dx



   

The cdf of 2X  and the pdf of 1X  are obtained as  

  
2

2 2

2
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a a k
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F x G x s G x



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1

0
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a i

i MOLL MOLL

i

f x w G x g x


 


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After some algebra, we arrive at 

  
0 0 01 1 2( 1) ( 1)

i i k

i i k

w w s
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  
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  

  . (2.7) 

where 
1

( 1)i

i

b
w ab

i

 
   

 
 and 

2
( 1)k

k

b
s

k

 
   

 
. 
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2.6.  Order statistics 

Order statistics make their appearance in many areas of statistical theory and practice. They enter in the 

problems of estimation and hypotheses testing in a variety of ways. Therefore, we now discuss some 

properties of the order statistics for the proposed class of distributions. Let :i nX  denote the ith order statistic. 

Nadarajah et al. (2012) obtained the general results for the Kumaraswamy-G distribution. We use the results 

about the pdf  :i nf x of the ith order statistic. Then. we can give the pdf  :i nf x  for a random sample 

1 2, ,..., nX X X  from the KMOLL distribution. It is well-known that 

   1

:

( )
( ) [1 ( )]

( , 1)

i n i

i n

f x
f x F x F x

B i n i

  
 

 (2.8) 

for 1,2,...,i n . Using the binomial expansion in the last equation. We obtain 
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
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   
 .  

The pdf in (2.7) can also be defined as 
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where 
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   

Several mathematical properties for the KMOLL order statistics (mgf, ordinary moments) can be derived 

from the mixture form in (2.9). Thus, from (2.9). the sth ordinary moment of :Xi n  is given by 

  
1

( 1) 1 /
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( ) ( , 1)s s a k r s s
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Then the mgf of :Xi n  is obtained as 
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where 

, 1

,

0

( 1)
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k r i jn i
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n i
w p

j
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B i n i

 



 
  

 


 
  and (.,.)B  is the beta function. 

3. Characterizations 

This section deals with various characterizations of KMOLL distribution. These characterizations are based 

on: (i) the ratio of two truncated moments; (ii) the hazard function and (iii) certain functions of the random 

variable. It should be mentioned that for characterization (i) the cdf need not have a closed form. We present 

our characterizations (i) − (iii) in three subsections. 

3.1.  Characterizations based on ratio of two truncated moments 

In this subsection, we present characterizations of KMOLL distribution in terms of a simple relationship 

between two truncated moments. This characterization result employs a theorem due to (Glänzel. 1987). see 
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Theorem 3.1 below. Note that the result holds also when the interval H  is not closed. Moreover, as 

mentioned above. It could be also applied when the cdf F  does not have a closed form. As shown in 

(Glänzel, 1990). This characterization is stable in the sense of weak convergence. 

 

Theorem 3.1. Let ( , , )F P  Ω,  be a given probability space and let [ ]H d,e  be an interval for some  d e (

,  d e    might as well be allowed). Let :X HΩ  be a continuous random variable with the 

distribution function F and let g and h be two real functions defined on H such that 

 [ ( ) | ] [ ( ) | ] ( )    ,    ,E g X X x E h X X x x x H     

is defined with some real function  . Assume that 
1 2( ), , ( )g h C H C H   and F  is twice continuously 

differentiable and strictly monotone function on the set H . Finally, assume that the equation h g   has no 

real solution in the interior of H . Then, F  is uniquely determined by the functions ,g h  and   particularly 
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u
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
 
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where the function s is a solution of the differential 
'

' h
s

h g







 and C  is the normalization constant. such that 

1.
H

dF   

 

Proposition 3.1. Let : (0, )X    be a continuous random variable and let 

1

(1 )( ) 1
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x
h x x

x


 

 




  
   

   

 

and 
1( ) ( )( )g x h x x     for 0x  . The random variable X  has pdf (1.6) if and only if the function   

defined in Theorem 3.1 has the form  

 1( ) ( ) , 0
1

x x x 
 



  


. 

Proof. Let X  be a random variable with pdf (1.6). Then, 

 (1 ( )) ( ) ( ) , 0,aF x E h x X x b x x             
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and finally 
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1
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 for 0.x   

Conversely, if   is given as above. Then 
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( ) ( ) ( )

x h x
s x a x x x

x h x g x

  
 


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and hence 

  ( ) log ( ) , 0.as x x x     
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Now, in view of Theorem 3.1. X  has density (1.6).   
 

Corollary 3.1. Let : (0, )X    be a continuous random variable and let ( )h x  be as in Proposition 3.1. The 

pdf of X  is (6) if and only if there exist functions g  and   defined in Therorem 3.1 satisfying the differential 

equation 

 
'

1 1( ) ( )
( ) , 0.

( ) ( ) ( )

x h x
a x x x

x h x g x

  
 



   


 

The general solution of the differential equation in corollary 3.1 is 

  1 1 1( ) ( ) ( ) ( ( )) ( ) ,a ax x a x x h x g x D               
   

where D  is a constant. Note that a set of function satisfying the above differential equation is given in 

Proposition 3.1 with 0D   However, it should be also noted that there are other triplets (h,g,ξ)  satisfying the 

conditions of Theorem 3.1. 

Remark 3.1. For 1,b   (Mendoza et al., 2016). we let 
1( ) ( )[ ]h x g x x     with 

( 1)( ) ag x x   . Then 

1
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The differential equation and general solution in this case are. respectively. 
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and 
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3.2.  Characterization based on hazard function 

It is known that the hazard function. Fh . a twice differentiable distribution function, F , satisfies the first 

order differential equation 

'' ( )( )
( ).

( ) ( )

F

F

F

h xf x
h x

f x h x
   

For many univariate continuous distributions. this is the only characterization available in terms of the hazard 

function. The following characterization establishes a characterization of KMOLL distribution which is not of 

the above trivial form. 

 

Proposition 3.2. Let  :  , )0(X    be a continuous random variable. The pdf of X is (1.6) if and only if its 

hazard function ( )Fh x  satisfies the differential equation 
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0x  . with the initial condition (0) 0Fh   for 1a  . 
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Proof. If X  has pdf (1.6) then clearly the above differential equation holds. Now, if it holds, then 
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or 
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which is the hazard function of the KMOLL distribution.  

 

Remark 3.2. For 1a b   (special case of (1.4)). we have the following simple differential equation 

2 2( 1)
' 1

2
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

 


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    


 

 

3.3. Characterization based on certain functions of the random variable 

The following propositions have already appeared in (Hamedani, 2013). so we will just state them here which 

can be used to characterize KMOLL distribution. 

 

Proposition 3.3. Let  : ,  X d e  be a continuous random variable with cdf F . Let ( )x  be a 

differentiable function on ( , )d e  with ( ) 1
x d

lim x
 . Then for 1  . 

 [ ( ) ] ( ), ( , ),E x X x x x d e     

If and only if 

 
1

1

( ) (1 ( )) , ( , ).x F x x d e


    

 

Remark 3.3. It is easy to see that for certain functions. e.g., ( ) 1 ,

a

x
x

x



 




 
  

  1

b

b
 


 and (d, e) = (0, ).∞  

Proposition 3.3 provides a characterization of KMOLL distribution. Clearly there are other suitable functions 

.  We chose the above one for simplicity. 

 

4.  Maximum Likelihood Estimation 

Several approaches for parameter estimation have been proposed in the literature but the maximum likelihood 

method is the most commonly employed. Here we consider estimation of the unknown parameters of the 

KMOLL distribution by the method of maximum likelihood. Let 1 2, ,..., nx x x  be observed values from the 

KMOLL distribution with parameters a,b,γ,α  and  . The log-likelihood function for ( , )a,b,γ,α   is given by 

 
1 1

log log log log log log ( 1) og ( 1) log( ) ( 1) log 1 ,i

n n
a

i i

i i

L a b a l x a x b s      
 

                
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where  / .i iis x x     

The derivatives of the log-likelihood function with respect to the parameters a,b,γ,α  and   are given by 

respectively. 

    i
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The MLEs of (a,b, , , )   , say ˆ ˆˆ ˆ ˆ(a,b, , , )   , are the simultaneous solutions of the equations 
log

0,
L

a






log
0,

L

b





 

log
0,

L







 

log
0

L







 and 

log
0

L







. Maximization of the likelihood function can be performed 

by using nlm or optimize in R statistical package.  

 

5.  An Illustrative Application 

In this section, we use a real data set to compare the fits of the KMOLL distribution with MOLL, LL and 

Weibull Fréchet (WFr) (Afify et al., 2016c) distributions. We will use a data set consists of 63 observations of 

the strengths of 1.5 cm glass fibres (Smith and Naylor, 1987), originally obtained by workers at the UK 

National Physical Laboratory. Unfortunately, the measurement units are not given in their paper. We estimate 

the unknown parameters of the distributions by the maximum likelihood. Then, we provide the values of the 

following statistics: Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC) 

and Bayesian Information Criterion (BIC). 

In general, the smaller the values of these statistics, the better the fit to the data. Table 3 lists the MLEs of the 

parameters and the values of AIC, CAIC and BIC statistics.  

 

73

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 1 (March 2018) 59–76



Table 3. MLEs and the values of AIC, CAIC and BIC statistics 

Distribution Estimated Parameters (Standard Error) AIC CAIC BIC 

KMOLL( , , , , )a b     
1.8355 

(0.096)  

0.0028 

(0.002) 

47.4236 

(13.307) 

0.0588 

(0.030) 

0.2786 

(0.095) 
28.0861 29.1387 38.8018 

MOLL( , , )    
2.3267 

(1.289) 

0.0353 

(0.154) 

7.9260 

(0.873) 
  51.5799 51.9867 58.0093 

LL( , )   
1.5262 

(0.041) 

7.9260 

(0.873)  
   49.5799 49.7799 53.8662 

WFr( , , , )a b   
0.3865 

(0.799) 

0.2436 

(0.285) 

1.4762 

(4.782) 

16.8561 

(20.485) 
 39.0 47.6 42.4 

 

Table 4. Cramer-von Misses and Anderson Darling statistics 

 A W 

KMOLL( , , , , )a b     0.0181403 0.127219 

MOLL( , , )    0.4969404 2.748973 

LL( , )   0.4969402 2.748972 

 
Fig. 4.   Fitted densities of the KMOLL, MOLL, LL and WFr distributions for the data set. 

 
Fig. 5.   Estimated and KMOLL, MOLL, LL and WFr cdfs for the data set. 
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Based on Table 3, it is clear that KMOLL distribution provides the overall best fit and therefore could be 

chosen as the more adequate model than other models for explaining the data set. Table 4 gives Cramer-von 

Misses (W) and Anderson Darling statistics (A) for the three models which are the KMOLL, MOLL and LL 

distributions. More information is provided by a histogram of the data given in Figure 4. Fitted lines in Figure 

4 represent the KMOLL, MOLL, LL and WFr distributions. Figure 5 shows empirical cdf and the fitted cdfs. 

Finally, we give Q-Q plots for all fitted models. The figures also reveals that the KMOLL fits the data very 

well.  

 

 
Fig. 6.   Q-Q plots for KMOLL, MOLL, LL and WFr distributions. 

 

6. Conclusion 

In this paper. we introduce a five-parameter distribution called the Kumaraswamy Marshal-Olkin log-logistic 

(KMOLL) distribution. Interestingly. our proposed model has increasing. upside-down bathtub and bathtub 

shaped hazard rate function. A study on the mathematical properties of the new distribution is presented. We 

obtain the moment generating function. ordinary moments. skewness. kurtosis. hazard and survival functions. 

The estimation of the model parameters is done via maximum likelihood method. We also provide a 

numerical example of our findings. We hope that the proposed model may attract applications in survival 

analysis and customer lifetime duration etc. 
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