
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Electrical and Computer Engineering Faculty
Research and Publications

Electrical and Computer Engineering,
Department of

4-1-2021

The Design of Dynamic Probabilistic Caching with Time-Varying The Design of Dynamic Probabilistic Caching with Time-Varying

Content Popularity Content Popularity

Jie Gao
University of Waterloo

Shan Zhang
Beihang University

Lian Zhao
Ryerson University

Xuemin Shen
University of Waterloo

Follow this and additional works at: https://epublications.marquette.edu/electric_fac

 Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Gao, Jie; Zhang, Shan; Zhao, Lian; and Shen, Xuemin, "The Design of Dynamic Probabilistic Caching with
Time-Varying Content Popularity" (2021). Electrical and Computer Engineering Faculty Research and
Publications. 646.
https://epublications.marquette.edu/electric_fac/646

https://epublications.marquette.edu/
https://epublications.marquette.edu/electric_fac
https://epublications.marquette.edu/electric_fac
https://epublications.marquette.edu/electric
https://epublications.marquette.edu/electric
https://epublications.marquette.edu/electric_fac?utm_source=epublications.marquette.edu%2Felectric_fac%2F646&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=epublications.marquette.edu%2Felectric_fac%2F646&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=epublications.marquette.edu%2Felectric_fac%2F646&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/electric_fac/646?utm_source=epublications.marquette.edu%2Felectric_fac%2F646&utm_medium=PDF&utm_campaign=PDFCoverPages

Marquette University

e-Publications@Marquette

Electrical and Computer Engineering Faculty Research and
Publications/College of Engineering

This paper is NOT THE PUBLISHED VERSION.
Access the published version via the link in the citation below.

IEEE Transactions on Mobile Computing, Vol. 20, No. 4 (April 1, 2021): 1672-1684. DOI. This article is ©
The Institute of Electrical and Electronics Engineers and permission has been granted for this version to
appear in e-Publications@Marquette. The Institute of Electrical and Electronics Engineers does not
grant permission for this article to be further copied/distributed or hosted elsewhere without the
express permission from The Institute of Electrical and Electronics Engineers.

The Design of Dynamic Probabilistic Caching
with Time-Varying Content Popularity

Jie Gao
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
Shan Zhang
School of Computer Science and Engineering, Beihang Univesity, Beijing, China
State Key Laboratory of Software Development Environment, Beijing, China
Beijing Key Laboratory of Computer Networks, Beijing, China
Lian Zhao
Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON,
Canada
Xuemin Shen
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada

https://doi.org/10.1109/TMC.2020.2967038
http://epublications.marquette.edu/

Abstract:
In this paper, we design dynamic probabilistic caching for the scenario when the instantaneous content
popularity may vary with time while it is possible to predict the average content popularity over a time window.
Based on the average content popularity, optimal content caching probabilities can be found, e.g., from solving
optimization problems, and existing results in the literature can implement the optimal caching probabilities via
static content placement. The objective of this work is to design dynamic probabilistic caching that: i) converge
(in distribution) to the optimal content caching probabilities under time-invariant content popularity, and ii)
adapt to the time-varying instantaneous content popularity under time-varying content popularity. Achieving
the above objective requires a novel design of dynamic content replacement because static caching cannot
adapt to varying content popularity while classic dynamic replacement policies, such as LRU, cannot converge to
target caching probabilities (as they do not exploit any content popularity information). We model the design of
dynamic probabilistic replacement policy as the problem of finding the state transition probability matrix of a
Markov chain and propose a method to generate and refine the transition probability matrix. Extensive
numerical results are provided to validate the effectiveness of the proposed design.

SECTION 1 Introduction
Data traffic volume in cellular networks has experienced a tremendous growth since the deployment of the LTE,
and a major portion of the traffic is related to content delivery [1]. This feature is expected to be even more
prominent in the next generation cellular network [2]. In this background, mobile edge caching (MEC) has
attracted increasing research attention [3], [4], [5]. By placing selected contents in the cache, a base station (BS)
can resolve a part of content requests locally without fetching the requested content over the backhaul. This
benefits both the network and the users by alleviating the pressure on the backhaul and reducing the end-to-
end delay in content delivery, respectively.

In practice, caches deployed in a network have limited sizes and can only accommodate selected contents. The
problem of selecting the contents to be stored at available caches is referred to as content placement. In the
case of static caching, the cached contents will not change once the content placement problem is solved. By
contrast, the cached content can be updated, e.g., as content request and download status changes, in the case
of dynamic caching. The problem of selecting new content to cache while replacing existing contents is referred
to as content replacement. The term caching can include content placement, content replacement, or both.
Various principles and approaches for caching can be found in the literature [6], [7], [8], [9], [10], [11].

When the content popularity is unknown, dynamic caching is usually adopted to allow adjustments to the
content placement based on the content request and download status. With heuristic principles such as the
least-frequently-used (LFU) or least-recently-used (LRU), a less popular content is replaced when a new content
is accepted in classic dynamic caching. Probabilistic dynamic caching, which originates from computer networks,
implements dynamic caching probabilistically. The idea is that a user-requested content is cached with a certain
probability [12], [13]. Because of the dynamic cache-and-replace process, dynamic probabilistic caching may
adapt to time-varying content popularity without knowing the popularity. Moreover, dynamic probabilistic
caching can achieve fair and efficient content placement in a network with low redundancy in a distributed

setting [12], [14]. However, it is difficult to establish a bound on the performance of probabilistic caching, which
is typically evaluated numerically.

When the content popularity is known, the optimal content placement can be calculated, and static caching
based on the optimal placement is usually adopted. A common approach for content placement in such case is
for caches at different locations in a network to cooperate and find a joint optimal caching solution. For
example, Applegate et al. studied the placement of video-on-demand contents considering an arbitrary network
topology and time-varying content demand [15]. Using relaxation and approximation methods [16], the authors
found a near-optimal solution that can serve all requests with significantly less bandwidth consumption when
compared to LRU/LFU. Common objectives for joint optimal caching include maximizing the cache hit
probability [17], maximizing the caching capacity of a network [18], and minimizing the content provisioning
delay [19], [20] or cost [21]. Alternatively, the problem of content placement can also be formulated as a non-
cooperative game [22] or an auction [23] between cache servers, content providers, and/or network operators,
and the solution can be found from the resulting equilibrium or outcome in a decentralized manner [24], [25].
Probabilistic content placement was adopted in many recent works in the literature of optimization-based MEC
with known content popularity [26], [27], [28], [29], [30]. Chen et al. analyzed the performance of probabilistic
content placement at small base stations (SBSs) and found the optimal joint caching probability to maximize the
successful download probability [26]. Li et al. studied the joint optimization of caching probabilities for
maximizing the successful delivery probability in the scenario of an N-tier heterogeneous network [27]. In [28],
SBSs cooperate and form clusters, and an efficient solution of content placement to reduce the cooperative
strategy was proposed. Liu and Yang studied the problem of optimal probabilistic content placement policy to
maximize the area spectral efficiency in a heterogeneous network and analyzed the impact of transmission
power, node density, and rate requirements on the result [29]. The optimal tier-level content placement with
probabilistic content placement for maximizing the cache hit probability, in which BSs at the same tier are
assigned the same caching probabilities, was derived in [30]. However, most of these works do not consider
dynamic content replacement as it becomes unnecessary when the exact content popularity is known.

It is well known that content popularity can be subject to variations over time [31], [32]. For example,
Traverso et al. proposed a shot noise model to capture the temporal locality in content popularity in [33], while
Leonardi and Torrisi analyzed LRU under the shot noise model [34]. Garetto et al. proposed a unified approach
to analyze caching policies, taking the temporal locality into account [35]. Given potential variations in content
popularity over time, assuming the knowledge of instantaneous content popularity might not always be
practical. However, the average content popularity over a time window may be obtained, e.g., from
prediction [36].1 In such case, the knowledge of the average content popularity can be used to derive the target
optimal overall content caching probabilities. It is not difficult to implement the target caching probabilities
using static caching. Alternatively, one could use dynamic caching such as LRU. The former option maximizes the
average cache hit ratio (among all static caching) but cannot adapt to the time-varying content popularity. The
latter, by contrast, may cope with variations in the instantaneous content popularity but generally does not
exploit the average content popularity information. Depending on the content request statistics, either static
caching based on the target caching probabilities or dynamic caching can be the better option. The objective of
this paper is to design dynamic probabilistic caching that inherit advantages from both options. Specifically, we
aim at such dynamic probabilistic caching that can converge (in distribution) to target optimal content caching
probabilities if the content popularity is time-invariant and can adapt to the time-varying instantaneous content
popularity otherwise. To do that, we exploit the average content popularity information while designing the
content replacement policy. The contributions of this work are as follows.

First, we propose the idea of dynamic probabilistic caching based on average content popularity and
demonstrate that it can outperform both the static caching and classic dynamic caching such as LRU. The

proposed dynamic probabilistic caching can adapt to the time-varying instantaneous content popularity and
thereby increase the cache hit ratio when compared to the optimal static caching in the case of time-varying
instantaneous content popularity. In addition, unlike classic dynamic caching, the proposed design can converge
(in distribution) to a target set of optimal content caching probabilities in the case of time-invariant content
popularity.

Second, we establish a connection between a set of caching probabilities and a probabilistic content placement
policy. We show that the probabilistic content placement policy that can implement a given set of caching
probabilities can be non-unique in most cases and derive a general-form solution of probabilistic content
placement policies, which includes existing solutions, e.g., the one in [37], as special cases. Moreover, we show
that different probabilistic content placement policies are not equivalent when implemented in dynamic
caching.

Third, we formulate the problem of designing a probabilistic content replacement policy based on average
content popularity into an equivalent problem of designing the state transition probability matrix of a Markov
chain and propose a method to solve the latter problem. In classic dynamic caching such as LRU, the content
request statistics determine the state transitions. However, our design builds the state transition probability
matrix by exploiting the average content popularity information. The proposed method finds the state transition
probability matrix so that the underlying Markov chain is irreducible and ergodic, and its unique steady state
implements the target probabilistic content placement policy if the instantaneous content popularity converges
to the average content popularity.

SECTION 2 System Model
Consider an edge caching system (Fig. 1 shows an example), where each SBS has a cache. Similar scenarios of
MEC can be found in the literature, e.g., [38], [39], [40]. Here we focus on the dynamic caching strategy of each
individual cache. Consider a target cache with size c and assume there are 𝑁𝑁f contents in total. Contents have an
identical length (normalized to 1), and the set of contents is denoted by ℱ. The instantaneous content request
probability at the target cache can be varying with time and hard to track. However, we assume that it is
possible to predict the average probability of the cache receiving a request for content 𝑘𝑘 ∈ ℱ over a predefined
time window and denote this probability as 𝜑𝜑𝑘𝑘2. We do not consider the issue of user mobility since the impact
of user mobility is reflected through the average content popularity at the target cache while our focus is not on
the popularity prediction. For research on mobility management in MEC, interested readers can check
references [41], [42], [43].

Fig. 1. An illustration of an edge caching system.

As probabilistic caching is considered, contents can be cached with probabilities. Denote the probability that
content 𝑘𝑘 is stored at the target cache as 𝑝𝑝𝑘𝑘. The cache size limit requires that

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao1-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao1-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao1-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao1-2967038-large.gif

� 𝑝𝑝𝑘𝑘 ≤ 𝑐𝑐
∀𝑘𝑘∈ℱ

.

(1)

To maximize its cache hit ratio, an SBS would use all available cache spaces. In the sequel, we assume that all
cache space is used (which implies that using cache space does not incur a cost). Depending on the specific
scenario and objective, the caches in the system may find their optimal caching probabilities either locally or
jointly through an optimization problem or a game using the knowledge of {𝜑𝜑𝑘𝑘}𝑘𝑘∈ℱ. Denote the optimal caching
probabilities of the target cache by {𝑝𝑝𝑘𝑘⋆}∀𝑘𝑘.

In our model, we focus on the caching strategy after {𝑝𝑝𝑘𝑘⋆}∀𝑘𝑘 are obtained instead of finding {𝑝𝑝𝑘𝑘⋆}∀𝑘𝑘. After
knowing {𝑝𝑝𝑘𝑘⋆}∀𝑘𝑘, the target cache could implement {𝑝𝑝𝑘𝑘⋆}∀𝑘𝑘 using static caching. Alternatively, the target cache
could also use dynamic caching such as LRU. The former maximizes the average cache hit ratio among all static
caching in the predefined time window, while the latter may cope with time-varying content popularity. We aim
to design dynamic caching that can implement {𝑝𝑝𝑘𝑘⋆}∀𝑘𝑘 when the content popularity is time-invariant and can
adapt when the content popularity is time-varying.

TABLE 1 List of Symbols

𝑐𝑐 Cache size of the target SBS
ℱ Set of all contents
𝑁𝑁f Number of all contents
𝜑𝜑𝑘𝑘 Probability that content 𝑘𝑘 is requested
𝐬𝐬𝑚𝑚 The 𝑚𝑚th cache state, represented by a 𝑁𝑁f × 1 vector

S The cache state matrix
𝜂𝜂𝑙𝑙 The probability of the cache in state 𝐬𝐬𝑙𝑙
𝜂𝜂 The state caching probability vector
𝜂𝜂∗ The target (optimal) state caching probability vector
𝒢𝒢𝑚𝑚 The set of contents cached by cache state 𝐬𝐬𝑚𝑚
ℋ𝑚𝑚 The neighbor states of state 𝑚𝑚
ℋ𝑚𝑚

𝑘𝑘 The neighbor states of state 𝑚𝑚 linked by content 𝑘𝑘
𝑝𝑝𝑘𝑘 The probability of caching content 𝑘𝑘
𝐏𝐏 Content caching probability vector, i.e., �𝑝𝑝1∗, … ,𝑝𝑝𝑁𝑁f�
𝐏𝐏∗ The target (optimal) content caching probability vector
𝜏𝜏𝑚𝑚′,𝑚𝑚 The conditional probability that the content in 𝒢𝒢𝑚𝑚′ − 𝒢𝒢𝑚𝑚 replaces that in 𝒢𝒢𝑚𝑚 − 𝒢𝒢𝑚𝑚′

S𝑙𝑙 The 𝑙𝑙th ordered sequence of states
𝐵𝐵(𝑙𝑙) The branch point of sequence 𝑙𝑙
𝑀𝑀(𝑙𝑙) The merge point of sequence 𝑙𝑙

Given the above objective, the next two sections formulate static caching in terms of probabilistic content
placement policy and dynamic caching in terms of probabilistic content replacement, respectively. A list of
symbols used in this paper is given in Table 1.

SECTION 3 Probabilistic Content Placement
A cache accommodates a combination of contents, subject to its size limit, at any given time. Therefore, in
probabilistic caching, it is necessary for a cache to map a given set of content caching probabilities into specific
combinations of contents and the corresponding probabilities of caching these combinations. In this section, we
first define cache state and then investigate static probabilistic caching by studying the connection between
content caching probabilities and state caching probabilities.

3.1 Cache States
A cache state can be represented by a 0-1 vector: the kth element is 1 if content 𝑘𝑘 is cached and 0 otherwise.
Given the cache limit 𝑐𝑐, the cache has 𝑛𝑛 = (𝑁𝑁f𝑐𝑐) different states that cache exactly 𝑐𝑐 files. Denote the 𝑚𝑚th state
of the cache and the set of contents cached by the mth state by 𝐬𝐬𝑚𝑚 and 𝒢𝒢𝑚𝑚, respectively. It follows that 𝐬𝐬𝑚𝑚 =
[𝑠𝑠1𝑚𝑚, … , 𝑠𝑠𝑁𝑁f

𝑚𝑚]T is a 𝑁𝑁f × 1 vector, where the superscript (⋅)T denotes the transpose. In the vector 𝐬𝐬𝑚𝑚,
element 𝑠𝑠𝑘𝑘𝑚𝑚 is 1 if 𝑘𝑘 ∈ 𝒢𝒢𝑚𝑚 and 0 if 𝑘𝑘 ∉ 𝒢𝒢𝑚𝑚. We can organize all state vectors into an 𝑁𝑁f × 𝑛𝑛 cache state matrix 𝐒𝐒,
which is defined as 𝐒𝐒 = [𝐬𝐬1, … , 𝐬𝐬𝑛𝑛].

3.2 State Caching Probability
State caching probabilities are the probabilities assigned to the cache states. Denote the probability of cache
state 𝐬𝐬𝑙𝑙 as 𝜂𝜂𝑙𝑙. It follows that � 𝜂𝜂𝑙𝑙 = 1𝑛𝑛

𝑙𝑙=1 . The state caching probabilities {𝜂𝜂𝑙𝑙}∀𝑙𝑙 and the content caching
probabilities {𝑝𝑝𝑘𝑘}∀𝑘𝑘 must satisfy the following conditions

𝜂𝜂𝑙𝑙 = 0,∀𝑙𝑙|s𝑘𝑘𝑙𝑙 = 0,if 𝑝𝑝𝑘𝑘 = 1,

(2a)

𝜂𝜂𝑙𝑙 = 0,∀𝑙𝑙|s𝑘𝑘𝑙𝑙 = 1,if 𝑝𝑝𝑘𝑘 = 0.
(2b)

It can be seen that the number of cache states with nonzero state caching probabilities reduces for each
content 𝑘𝑘 such that 𝑝𝑝𝑘𝑘 = 1 or 𝑝𝑝𝑘𝑘 = 0. The state caching probabilities can be organized into an 𝑛𝑛 × 1 state
caching probability vector 𝜼𝜼, as follows:

𝜼𝜼 = [𝜂𝜂1, … , 𝜂𝜂𝑛𝑛]T.

(3)

3.3 Static Probabilistic Caching
Implementing a target set of content caching probabilities, e.g., {𝑝𝑝𝑘𝑘⋆}∀𝑘𝑘, is equivalent to determining the
vector 𝜂𝜂. This is because 𝜂𝜂 specifies the cache states and the corresponding state caching probabilities. Define
the content caching probability vector 𝐩𝐩 = [𝑝𝑝1, … ,𝑝𝑝𝑁𝑁f]. The content caching probability vector 𝐩𝐩, state caching
probability vector 𝜼𝜼, and the cache state matrix 𝐒𝐒 are connected through the following equation:

𝐒𝐒𝜼𝜼 = 𝐩𝐩,

(4)

where 𝐒𝐒, 𝜼𝜼, 𝒑𝒑 are of size 𝑁𝑁f × 𝑛𝑛, 𝑛𝑛 × 1, and 𝑁𝑁f × 1, respectively.

Lemma 1.
A given set of caching probabilities {𝑝𝑝𝑘𝑘}∀𝑘𝑘 could be implemented by more than one state caching probability
vector 𝜼𝜼.

The proof of Lemma 1 is straightforward. Since 𝑛𝑛 = �𝑁𝑁f𝑐𝑐 � ≥ 𝑁𝑁f, it can be seen that Eq. (4) is in general an under-
determined system that may have more than one solution of 𝜼𝜼, corresponding to different probabilistic content
placement policies.

Note that Eq. (4) incorporates the requirement that � 𝜂𝜂𝑙𝑙 = 1𝑙𝑙 . This can be seen by multiplying an all-one vector
of size 1 ×𝑁𝑁f from the left to both sides of Eq. (4).

To implement a target set of content caching probabilities {𝑝𝑝𝑘𝑘⋆}∀𝑘𝑘 (equivalently, the content caching probability
vector 𝐩𝐩⋆) using static caching, the method is to randomly draw a cache state based on 𝜼𝜼⋆. Once the cache state
is drawn, there will be no change of cache state (i.e., no content replacement). As long as 𝐒𝐒𝜼𝜼⋆ = 𝐩𝐩⋆, the random
draw of the cache state implements the target content caching probabilities. Lemma 1 suggest that, the static
probabilistic caching that can implement a target set of content caching probabilities is non-unique.

Lemma 2.
The cache state matrix 𝐒𝐒 has the following two properties:

• 𝐒𝐒 has full row rank;

• the minimum singular value of 𝐒𝐒 is no less than √𝑐𝑐.

Proof.
See Appendix A, which can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/TMC.2020.2967038.

Lemma 2 suggests that the matrix 𝐒𝐒𝐒𝐒T has full rank. Therefore, given a set of optimal caching probabilities 𝐩𝐩⋆,
the solution to Eq. (4) can be written as:

𝜼𝜼⋆ = 𝐒𝐒T(𝐒𝐒𝐒𝐒T)−1𝐩𝐩⋆ + 𝐯𝐯,
(5)

where v can be any vector in the null space of 𝐒𝐒 that renders 𝜼𝜼⋆ a valid probability vector, i.e., 𝟎𝟎 ⪯ 𝜼𝜼⋆ ⪯
𝟏𝟏 and 𝟏𝟏T𝜼𝜼⋆ = 1. Here, the inequality sign ⪯ represents element-wise comparison, i.e., 𝐱𝐱 ⪯ 𝐲𝐲 if 𝑥𝑥𝑖𝑖 ≤ 𝑦𝑦𝑖𝑖 ,∀𝑖𝑖 (in
which 𝑥𝑥𝑖𝑖 represents the ith element of vector 𝐱𝐱). The solution in Eq. (5) includes all possible static probabilistic
caching that can implement 𝐩𝐩⋆.

A heuristic method for implementing the given 𝐩𝐩⋆ is introduced in [37]. Specifically, one can generate c (i.e., the
cache size) rows, all with length 1, and then a block for each content, where the length of block 𝑘𝑘 is equal to 𝑝𝑝𝑘𝑘⋆.
Next, the blocks are placed into the rows one by one. If the vacant part of a row is not long enough for a block,
the rest of this block continues from the beginning of the next row. Fig. 2a illustrates the above procedure using
a total of 5 contents and a cache of size 2 as an example. In this example, the given caching probabilities for
contents 1 to 4 are nonzero while the given caching probability for content 5 is zero. We represent the blocks for
content 1 to content 4 using decreasing shades. After placing all blocks, the next step is to generate a random
number 𝜉𝜉 in [0,1] based on uniform distribution and draw a vertical line (the dashed line in Fig. 2a) at the
corresponding location. Then, the blocks that the vertical line crosses indicate the contents to be cached to
implement 𝐩𝐩⋆. For example, in the case of Fig. 2a, contents 1 and 3 will be cached.

https://ieeexplore.ieee.org/document/#deqn4
https://ieeexplore.ieee.org/document/#deqn4
https://ieeexplore.ieee.org/document/#deqn4
https://ieeexplore.ieee.org/document/#deqn4
https://ieeexplore.ieee.org/document/#deqn5

Fig. 2. Generating cache state probabilistically given 𝐩𝐩⋆ in static probabilistic caching.

Although the aforementioned method does not explicitly solve 𝜼𝜼 from the given 𝐩𝐩⋆, the probability of a chosen
cache state corresponds to one solution of 𝜼𝜼⋆. Specifically, if the dashed vertical line in Fig. 2a sweeps across the
rows from one side to the other under a constant speed, the portion of time that the vertical line crosses
state 𝑙𝑙 is equal to 𝜂𝜂𝑙𝑙. However, the solution in Eq. (5) is non-unique in general, and probabilistic caching based
on the aforementioned method corresponds to only one solution of 𝜼𝜼⋆. If we rearrange the blocks or divide the
blocks into pieces, the result may correspond to different solutions of 𝜼𝜼⋆. Figs. 2b and 2c give two examples.

As subtle as the aforementioned heuristic method is, it can be more complicated than finding a solution using
Eq. (5) when 𝑁𝑁f is large. More importantly, it is worth noting that, while the results in Figs. 2a, 2b, and 2c are
equivalent in the case of static caching, different solutions of 𝜼𝜼 may not be equivalent in the case of dynamic
caching with content replacement. Consider the same example with 5 contents and a cache size of 2. Suppose
that the optimal caching probabilities for the 5 contents found from optimization are given by 𝐩𝐩⋆ =
[0.9,0.7,0.3,0.1,0]T. The matrix 𝐒𝐒 is given as follows:

𝐒𝐒 =

⎣
⎢
⎢
⎢
⎡
1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1⎦

⎥
⎥
⎥
⎤
.

Then, it can be shown that

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao2-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao2-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao2-2967038-large.gif
https://ieeexplore.ieee.org/document/#deqn5
https://ieeexplore.ieee.org/document/#deqn5
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao2-2967038-large.gif

𝜼𝜼1 = [0.6,0.2,0.1,0,0.1,0,0,0,0,0]T,
which corresponds to the case similar to Fig. 2b and

𝜼𝜼2 = [0.62,0.22,0.06,0,0.06,0.02,0,0.02,0,0]T,
which corresponds to the case similar to Fig. 2c, can both implement 𝐩𝐩⋆ = [0.9,0.7,0.3,0.1,0]T. Therefore, for
static caching, content placement generated from 𝜼𝜼1 and 𝜼𝜼2 are equivalent. However, for dynamic caching,
dynamic content replacement based on 𝜼𝜼1 can lead to a less number of cache replacements than that based
on 𝜼𝜼2. This is because 𝜼𝜼1 has less nonzero elements, corresponding to fewer cache states. For example, dynamic
implementation of 𝐩𝐩⋆ based on 𝜼𝜼2 may cause a replacement of content 3 by content 4 when the cached
contents are {2,3} and a replacement of content 1 by content 3 when the cached contents are {1,4}. However,
such replacements will not happen if dynamic caching based on 𝜼𝜼1 is used because 𝜼𝜼1 assigns zero probability to
the states that cache {2,4} and {3,4}.

Note that the choice of 𝜼𝜼⋆ based on the optimal content caching probability 𝐩𝐩⋆ can determine the initial content
placement. Accordingly, the initial contents stored in the target cache at the beginning of the considered time
window are pre-fetched based on 𝜼𝜼⋆, which occurs at the beginning of the time window. Then, for dynamic
caching, the target cache updates its cached contents as it receives content requests, as studied in the next
section.

SECTION 4 Probabilistic Content Replacement: the Markov Chain of Content
Replacement
In classic dynamic caching such as LRU, replacements are usually determined solely by the content request
statistics. Such replacements provide adaptivity to time-varying content popularity without any a
priori information. However, in our considered scenario, in which average content popularity {𝜑𝜑𝑘𝑘}𝑘𝑘∈ℱ and
target content caching probabilities {𝑝𝑝𝑘𝑘⋆}∀𝑘𝑘 are available, using classic dynamic caching while neglecting the
average content popularity can lead to a waste of useful information. Therefore, we aim to design dynamic
probabilistic caching that can exploit the average content popularity {𝜑𝜑𝑘𝑘}𝑘𝑘∈ℱ to adapt to the content popularity.
A logical requirement is that the resulting caching probability should converge to the optimal content placement
policy 𝜼𝜼⋆ based on the average content popularity in the case of time-invariant content popularity. This section
addresses two questions regarding the design of such dynamic caching: a) what should be the probability of
accepting a new content into the cache? and b) which existing content should be replaced, and with what
probability, if the new content is accepted. In the rest of this section, we assume that the target cache makes
replacement decisions locally, i.e., without needing to check with other caches.

4.1 The Content Replacement Markov Chain
The content replacement process at the target cache can be modeled using a Markov chain. Note that the idea
of using Markov chain and related tools in designing content replacement policy can be found in the literature.
For example, using a Markov decision process, Bahat and Makowski proved that the optimal content
replacement policy is a Markov stationary policy under the independent reference model [44]. In their recent
work, Shukla and Abouzeid modeled content replacement using a Markov decision process and found the
optimal content retention time to jointly minimize content retrieval delay and cache wearout [45]. Our focus
here, however, is the design of content replacement that can converge to a target stationary point in the case
when the instantaneous content popularity is time-invariant and adapt to the variations in the case when the
instantaneous content popularity is time-varying.

In the content replacement Markov chain, a state transition may happen when a requested content is not in the
cache. For state m, denote the set of states that state m can transit into by replacing one cached content with
content 𝑘𝑘 and the entire set of states that state 𝑚𝑚 can transit into by replacing one cached content with any
other content as ℋ𝑚𝑚

𝑘𝑘 and ℋ𝑚𝑚, respectively. It is not difficult to see that state 𝑚𝑚 and any state in ℋ𝑚𝑚 must differ
in one and only one cached content. Moreover, the following results hold:

ℋ𝑚𝑚 = � ℋ𝑚𝑚
𝑘𝑘 , |ℋ𝑚𝑚

𝑘𝑘 | = 𝑐𝑐, |ℋ𝑚𝑚| = 𝑐𝑐(𝑁𝑁f − 𝑐𝑐)
𝑘𝑘∈ℱ∖𝒢𝒢𝑚𝑚

 .

(6)

Consider a pair of neighbor states 𝑚𝑚 and 𝑚𝑚′ ∈ ℋ𝑚𝑚
𝑘𝑘 . The question that arises is: with what probability should the

cache transition into state 𝑚𝑚′ given that content 𝑘𝑘 is requested while the cache is currently in state 𝑚𝑚? Denote
this conditional probability as 𝜏𝜏𝑚𝑚′,𝑚𝑚. Then, the design of dynamic probabilistic caching boils down to
finding 𝜏𝜏𝑚𝑚′,𝑚𝑚 for every 𝑚𝑚 and 𝑚𝑚′ ∈ ℋ𝑚𝑚

𝑘𝑘 where 𝑘𝑘 ∈ ℱ ∖ 𝒢𝒢𝑚𝑚.

The overall state transition probability matrix of the content replacement Markov chain is determined by two
sets of probabilities: the content request probabilities and {𝜏𝜏𝑚𝑚′,𝑚𝑚}. Since the instantaneous content request
probabilities are unknown, we can only exploit the average content request probabilities {𝜑𝜑𝑘𝑘}𝑘𝑘∈ℱ. Therefore,
the design of dynamic content replacement uses {𝜑𝜑𝑘𝑘}𝑘𝑘∈ℱ instead of the instantaneous content request
probabilities. A discussion on the effect of time-varying content popularity will be given later.

Denote the overall state transition probability matrix by 𝚯𝚯. The element at the 𝑚𝑚th column and the 𝑚𝑚′th row
of 𝚯𝚯 represents the probability that state m transitions into state 𝑚𝑚′. Then, 𝚯𝚯 can be written as the summation
of content-specific conditional state transition matrices as follows:

𝚯𝚯 = �𝜑𝜑𝑘𝑘𝚯𝚯𝑘𝑘
𝑘𝑘∈ℱ

.

(7)

where 𝚯𝚯𝑘𝑘 is the conditional state transition probability matrix given that content 𝑘𝑘 is being requested. It can be
seen that 𝚯𝚯 and 𝚯𝚯𝑘𝑘 ,∀𝑘𝑘 have many zero elements because 𝚯𝚯(𝑚𝑚,𝑚𝑚′) and 𝚯𝚯(𝑚𝑚′,𝑚𝑚) are both zero if 𝑚𝑚′ ∉ ℋ𝑚𝑚,
and 𝚯𝚯𝑘𝑘(𝑚𝑚,𝑚𝑚′) and 𝚯𝚯𝑘𝑘(𝑚𝑚′,𝑚𝑚) are both zero if 𝑚𝑚′ ∉ ℋ𝑚𝑚

𝑘𝑘 . Specifically, based on the conditions in Eq. (6), each
column of 𝚯𝚯 only has 𝑐𝑐(𝑁𝑁f − 𝑐𝑐) + 1 nonzero elements with one on and the rest off the main diagonal. For a
column in 𝚯𝚯𝑘𝑘, two cases are possible. If state 𝑚𝑚 caches content 𝑘𝑘, then the diagonal element 𝚯𝚯𝑘𝑘(𝑚𝑚,𝑚𝑚) is the
only nonzero element in the mth column. Otherwise, the mth column has c nonzero elements off the main
diagonal.

In order to highlight the state transition, the content request probability 𝜑𝜑𝑘𝑘 at the target cache is alternatively
denoted by 𝜑𝜑𝑚𝑚′,𝑚𝑚 if 𝑚𝑚′ ∈ ℋ𝑚𝑚

𝑘𝑘 , i.e., if content 𝑘𝑘 must be requested for the cache to transition from state 𝑚𝑚 into
state 𝑚𝑚′. Denote the mth element on the main diagonal of 𝚯𝚯 by 𝛼𝛼𝑚𝑚,𝑚𝑚. Fig. 3 illustrates the state transitions. In
the illustrated example, 𝑁𝑁f = 5 and 𝑐𝑐 = 2, and therefore 𝑐𝑐(𝑁𝑁f − 𝑐𝑐) + 1 = 7. As a result, each state can
transition into itself and 6 other states.

https://ieeexplore.ieee.org/document/#deqn6

Fig. 3. An illustration of the variables in the state transition using the example of state 2, where 𝑁𝑁f = 5 and 𝑐𝑐 =
2. Each circle represents a state, the bracketed numbers in the center represent the cached contents in that
state, and the italic number at the bottom represents the state ID.

Given the above notations, the overall transition probability matrix 𝚯𝚯 corresponding to the content replacement
Markov chain for the target cache can be written as:

𝚯𝚯 =

1
⋮
𝑚𝑚
⋮
𝑛𝑛

1 ⋯ 𝑚𝑚 ⋯ 𝑛𝑛

⎣
⎢
⎢
⎢
⎡

𝛼𝛼1,1 ⋯ 𝜑𝜑1,𝑚𝑚𝜏𝜏1,𝑚𝑚 ⋯ 𝜑𝜑1,𝑛𝑛𝜏𝜏1,𝑛𝑛

⋮ ⋱ ⋮ ⋮
𝜑𝜑𝑚𝑚,1𝜏𝜏𝑚𝑚,1 𝛼𝛼𝑚𝑚,𝑚𝑚 𝜑𝜑𝑚𝑚,𝑛𝑛𝜏𝜏𝑚𝑚,𝑛𝑛

⋮ ⋮ ⋱ ⋮
𝜑𝜑𝑛𝑛,1𝜏𝜏𝑛𝑛,1 ⋯ 𝜑𝜑𝑛𝑛,𝑚𝑚𝜏𝜏𝑛𝑛,𝑚𝑚 ⋯ 𝛼𝛼𝑛𝑛,𝑛𝑛 ⎦

⎥
⎥
⎥
⎤

,

(8)

where 𝜑𝜑𝑚𝑚′,𝑚𝑚 ∈ [0,1] and 𝜏𝜏𝑚𝑚′,𝑚𝑚 ∈ [0,1],∀𝑚𝑚′ ∈ ℋ𝑚𝑚,∀𝑚𝑚. The diagonal element 𝛼𝛼𝑚𝑚,𝑚𝑚 in (8) can be found as
follows:

𝛼𝛼𝑚𝑚,𝑚𝑚 = � 𝜑𝜑𝑘𝑘
𝑘𝑘∈𝒢𝒢𝑚𝑚

+ � 𝜑𝜑𝑚𝑚′,𝑚𝑚(1− 𝜏𝜏𝑚𝑚′,𝑚𝑚)
𝑚𝑚′∈ℋ𝑚𝑚

.

(9)

The first item in Eq. (9) represents the probability that a content currently in the cache is requested, while the
second item represents the probability that a content not in the cache is requested (and downloaded) but not
accepted into the cached (i.e., no replacement occurred).

In Section 3, we have investigated the problem of implementing target content caching probabilities 𝐩𝐩⋆ by
finding the corresponding state caching probabilities 𝜼𝜼⋆. Given 𝜼𝜼⋆, the design of dynamic probabilistic caching so
that the content caching probabilities converge to 𝐩𝐩⋆ in the case of time-invariant content popularity is
equivalent to finding the transition matrix 𝚯𝚯 such that

𝚯𝚯𝜼𝜼⋆ = 𝜼𝜼⋆.
(10)

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao3-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao3-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao3-2967038-large.gif
https://ieeexplore.ieee.org/document/#deqn8
https://ieeexplore.ieee.org/document/#deqn9
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao3-2967038-large.gif

If the elements of 𝚯𝚯 could be arbitrarily chosen in the range of [0,1], the problem can be solved with existing
methods, e.g., the Metropolis-Hastings Algorithm [46]. However, as can be seen from Eq. (8), there are
additional constraints on the elements of 𝚯𝚯. First, each off-diagonal element is a product of two items, and
the (𝑚𝑚′,𝑚𝑚) th element should be bounded by 𝜑𝜑𝑚𝑚′,𝑚𝑚. Second, the summation of multiple elements in the same
column should also be bounded, i.e.,

� 𝜑𝜑𝑚𝑚′,𝑚𝑚𝜏𝜏𝑚𝑚′,𝑚𝑚 ≤ 𝜑𝜑𝑘𝑘 ,∀𝑘𝑘 ∈ 𝒢𝒢𝑚𝑚,∀𝑚𝑚
∀𝑚𝑚′∈ℋ𝑚𝑚

𝑘𝑘

.

(11)

Consequently, the Metropolis-Hastings Algorithm cannot be applied to the considered problem. In the next
section, an approach is proposed to construct an irreducible and ergodic Markov chain by designing the
matrix 𝚯𝚯 for the target cache so that 𝜼𝜼⋆ is the unique steady state.

4.2 Generating the State Transition Matrix 𝚯𝚯
Without loss of generality, it is assumed that the elements of 𝜼𝜼⋆ are non-zero and arranged in a non-increasing
order, i.e., 𝜂𝜂𝑞𝑞 ≥ 𝜂𝜂𝑙𝑙 if 𝑞𝑞 < 𝑙𝑙. An extension to the case when 𝜂𝜂𝑗𝑗 is zero for some 𝑗𝑗 is straightforward.

When a content not in the cache is requested, a replacement may or may not happen. In order to control this
factor in our design, we introduce parameters {𝜔𝜔𝑘𝑘,𝑚𝑚′,𝑚𝑚} to represent the upper-limit on state transition
probabilities. Specifically, for any given m and 𝑚𝑚′ ∈ ℋ𝑚𝑚

𝑘𝑘 , the parameter 𝜔𝜔𝑘𝑘,𝑚𝑚′,𝑚𝑚 represents the upper limit that
state m transits into state 𝑚𝑚′ given that content k is requested. As a result, the following condition must be
satisfied

� 𝜔𝜔𝑘𝑘,𝑚𝑚′,𝑚𝑚 ≤ 1,∀𝑚𝑚,∀𝑘𝑘
𝑚𝑚′∈ℋ𝑚𝑚

𝑘𝑘

.

(12)

If strict equality holds in the above condition, then content 𝑘𝑘 is always accepted into the cache when the cache
state is 𝑚𝑚. Otherwise, content 𝑘𝑘 may not be accepted into the cache even after it is requested and downloaded.

The next step is to determine which state transitions could happen and with what probabilities. Recall that the
elements of 𝜼𝜼⋆ are arranged in non-increasing order. Note that adjacent states, e.g., state 𝑚𝑚 and state 𝑚𝑚 + 1,
may not be neighbor states using such an order. For any given 𝑚𝑚, define the functions 𝑉𝑉(𝑚𝑚) for 𝑚𝑚 ∈
{2, … ,𝑛𝑛} and 𝑋𝑋(𝑚𝑚) for 𝑚𝑚 ∈ {1, … ,𝑛𝑛 − 1}, both mapping from a state to one of its neighbor states as follows

𝑉𝑉(𝑚𝑚) = arg𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚
^
∈ℋ𝑚𝑚

 {𝜂𝜂𝑚𝑚
^

|𝜂𝜂𝑚𝑚
^
≥ 𝜂𝜂𝑚𝑚},

(13a)

𝑋𝑋(𝑚𝑚) = arg𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚
ˇ
∈ℋ𝑚𝑚

 {𝜂𝜂𝑚𝑚
ˇ

|𝜂𝜂𝑚𝑚
ˇ
≤ 𝜂𝜂𝑚𝑚}.

(13b)

https://ieeexplore.ieee.org/document/#deqn8

An illustration of 𝑉𝑉(⋅) and 𝑋𝑋(⋅) when 𝑁𝑁f = 5 and 𝑐𝑐 = 2 is given in Fig. 4a. Using 𝑉𝑉(𝑚𝑚) and 𝑋𝑋(𝑚𝑚) on state 𝑚𝑚, two
cases are possible.

• 𝑋𝑋(𝑚𝑚) = 𝑚𝑚 + 1 and 𝑉𝑉(𝑚𝑚 + 1) = 𝑚𝑚: In such case, states 𝑚𝑚 and 𝑚𝑚 + 1 are both adjacent and neighbor
states (e.g., states 1 and 2 in Fig. 4a).

Fig. 4. An illustration of using 𝑉𝑉(𝑚𝑚) and 𝑋𝑋(𝑚𝑚) to group states into ordered sequences. The states satisfy 𝜂𝜂1⋆ ≥
𝜂𝜂2⋆ ≥. . .≥ 𝜂𝜂10⋆ .

• 𝑋𝑋(𝑚𝑚) ≠ 𝑚𝑚 + 1 and 𝑉𝑉(𝑚𝑚 + 1) ≠ 𝑚𝑚: In such case, 𝑚𝑚 and 𝑚𝑚 + 1 are adjacent but not neighbor states
(e.g., states 3 and 4 in Fig. 4a).

To facilitate the design of state transitions, we organize the states into several sequences so that: 1). 𝜂𝜂𝑚𝑚⋆ in each
sequence is sorted in a non-increasing order; and 2). adjacent states in the same sequence are always neighbors.
Denote the original sequence of all states by 𝖲𝖲0. Using the procedure in Algorithm 1 repeatedly (by setting the
output 𝖫𝖫 as the input sequence 𝖲𝖲0 of the next run until the output 𝖫𝖫 is empty), the above-mentioned ordered
sequences can be obtained. The procedure is illustrated in 4 steps in Fig. 4.

The connection points identified in Step 3 and Step 5 of Algorithm 1 are the points where the next sequence of
states may connect with the current sequence in the Markov chain. We refer to the points where the first state
and the last state of the next sequence can connect to as branch and merge points, respectively. Determine one
branch point and one merge point for each sequence is not difficult and neglected here. Denote the lth
sequence of states as 𝖲𝖲𝑙𝑙 and the length of 𝖲𝖲𝑙𝑙 as 𝐾𝐾𝑙𝑙. Denote the kth state, the branch point, and the merge point
of sequence 𝖲𝖲𝑙𝑙 as 𝖲𝖲𝑙𝑙(𝑘𝑘), 𝐵𝐵(𝑙𝑙), and 𝑀𝑀(𝑙𝑙), respectively. This is illustrated in Fig. 5a.

Algorithm 1. Generating Ordered Sequence of Neighbor States

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao4-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao4-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao4-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao4-2967038-large.gif

Input: 𝖲𝖲0

Output: 𝖲𝖲, 𝖫𝖫

Initialization: 𝖲𝖲 = 𝖲𝖲0; L set to an empty sequence.

for State 𝑚𝑚 = 2 to 𝑛𝑛 do

if 𝑋𝑋(𝑉𝑉(𝑚𝑚)) ≠ 𝑚𝑚 then

Mark 𝑉𝑉(𝑚𝑚) as a potential connection point;

Remove m from sequence 𝐒𝐒;

Add m to the end of sequence 𝖫𝖫;

else if 𝑉𝑉(𝑋𝑋(𝑚𝑚)) ≠ 𝑚𝑚 then

Mark 𝑋𝑋(𝑚𝑚) as a potential connection point;

end if

end for

return 𝖲𝖲, 𝖫𝖫

Fig. 5. An illustration on generating and refining the underlying Markov chain by updating 𝚯𝚯 using
Algorithms 2 and 3.

Given the ordered sequences, we next determine the state transition probabilities iteratively, considering one
pair of states in each iteration. Initialize the state transition probability matrix 𝚯𝚯 to be 𝐈𝐈. The basic procedure for

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao5-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao5-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao5-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao5-2967038-large.gif

updating the state transition probabilities for a pair of neighbor states m and m such that 𝑚𝑚′ = ℋ𝑖𝑖,𝑚𝑚
𝑘𝑘 and 𝑚𝑚 =

ℋ𝑚𝑚′
𝑘𝑘′ is given as follows:

𝛿𝛿 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝜔𝜔𝑘𝑘,𝑚𝑚′,𝑚𝑚𝜑𝜑𝑚𝑚′,𝑚𝑚,𝜔𝜔𝑘𝑘′,𝑚𝑚,𝑚𝑚′𝜑𝜑𝑚𝑚,𝑚𝑚′
𝜂𝜂𝑚𝑚′

𝜂𝜂𝑚𝑚 },

(14a)

𝚯𝚯(𝑚𝑚′,𝑚𝑚) = 𝛿𝛿,
(14b)

𝚯𝚯(𝑚𝑚,𝑚𝑚′) = 𝛿𝛿
𝜂𝜂𝑚𝑚

𝜂𝜂𝑚𝑚′ ,

(14c)

𝚯𝚯(𝑚𝑚′,𝑚𝑚′) ⇐ 𝚯𝚯(𝑚𝑚′,𝑚𝑚′) − 𝛿𝛿
𝜂𝜂𝑚𝑚

𝜂𝜂𝑚𝑚′ ,

(14d)

𝚯𝚯(𝑚𝑚,𝑚𝑚) ⇐ 𝚯𝚯(𝑚𝑚,𝑚𝑚) − 𝛿𝛿,
(14e)

where ⇐ represents the operation of assigning the value of the right-hand side expression to the left-hand side.
The above procedure guarantees that, assuming 𝚯𝚯𝜼𝜼⋆ = 𝜼𝜼⋆ before the update, the equality still holds after
updating the transition probabilities for states 𝑚𝑚 and 𝑚𝑚′.

Algorithm 2. Generating the Stochastic Matrix 𝚯𝚯

Input: 𝜼𝜼⋆, {𝜑𝜑𝑚𝑚,𝑚𝑚′}∀𝑚𝑚,∀𝑚𝑚′, {𝖲𝖲𝑙𝑙}, {𝐵𝐵(𝑙𝑙)}, {𝑀𝑀(𝑙𝑙)}

Output: 𝚯𝚯

Initialization: Set 𝚯𝚯 = 𝐈𝐈.

for each sequence 𝑙𝑙 do

Run the procedure (14a)-(14e) with 𝑚𝑚 = 𝐵𝐵(𝑙𝑙),𝑚𝑚′ = 𝖲𝖲𝑙𝑙(1).

Run the procedure (14a)-(14e) with 𝑚𝑚 = 𝑀𝑀(𝑙𝑙),𝑚𝑚′ = 𝖲𝖲𝑙𝑙(𝐾𝐾𝑙𝑙).

for State 𝑞𝑞 = 𝐾𝐾𝑙𝑙 to 2 do

Run the procedure (14a)-(14e) with 𝑚𝑚′ = 𝖲𝖲𝑙𝑙(𝑞𝑞) and 𝑚𝑚 = 𝖲𝖲𝑙𝑙(𝑞𝑞 − 1).

end for

end for

return 𝚯𝚯

https://ieeexplore.ieee.org/document/#deqn14a
https://ieeexplore.ieee.org/document/#deqn14e
https://ieeexplore.ieee.org/document/#deqn14a
https://ieeexplore.ieee.org/document/#deqn14e
https://ieeexplore.ieee.org/document/#deqn14a
https://ieeexplore.ieee.org/document/#deqn14e

Based on the above definitions and procedures, Algorithm 2 is proposed to generate a basic transition
probability matrix 𝚯𝚯 that has the steady state 𝜼𝜼⋆. An illustration of Algorithm 2 is given in Figs. 5a and 5b. Steps
2 and 3 of Algorithm 2 “connect” the ordered sequences found using Algorithm 1 by generating the state
transition probabilities for the connection points, e.g., states 2 and 4 and states 8 and 9 as illustrated in Fig. 5a.
Then, Steps 4 to 6 of Algorithm 2 generate state transitions only between adjacent and neighbor states within
each ordered sequence of states. This is illustrated in Fig. 5b, which shows a basic irreducible Markov chain at
the output of Algorithm 2. The generated Markov chain satisfies 𝚯𝚯𝜼𝜼⋆ = 𝜼𝜼⋆ but most of the off-diagonal
elements in 𝚯𝚯 are 0. As a result, the mixing time can be long. In order to reduce the mixing time, we use a
refinement procedure to connect more states, which is given in Algorithm 3 and illustrated in Fig. 5c. The
refinement in Algorithm 3 is designed based on the fact that the mixing time of the Markov chain is determined
by the second largest eigenvalue of the transition matrix [47]. Simulation examples in Section 5 will demonstrate
the performance of the refinement. Detailed analysis, however, is beyond the scope of this work.

Theorem 1.
In the case when the instantaneous content popularity converges to the average content popularity, the
matrix 𝚯𝚯 generated by Algorithm 2 has the following properties:

• 𝚯𝚯 is a valid state transition matrix;

• 𝚯𝚯 guarantees that 𝜏𝜏𝑚𝑚,𝑚𝑚′ ∈ [0,1] for all m and 𝑚𝑚′ ≠ 𝑚𝑚;

• 𝚯𝚯 satisfies Eq. (10);

• The underlying Markov chain specified by 𝚯𝚯 has a unique steady state which is 𝜼𝜼⋆.

Proof.
See Appendix B, available in the online supplemental material.

Based on Theorem 1, the underlying Markov chain can converge in distribution to 𝜼𝜼⋆ when the instantaneous
content popularity is constant. Accordingly, the content caching probabilities converge to the optimal caching
probabilities 𝐩𝐩⋆. When the instantaneous content popularity is time-varying, dynamic caching based on the
designed state transitions may adapt to varying content popularity. Nevertheless, it should be noted that the
adaptivity depends on the specific content request statistics, and therefore neither dynamic or static caching can
claim to outperform the other in all cases. We will demonstrate and discuss this in Section 5.

Algorithm 3. Refining the Matrix 𝚯𝚯

Input: Θ, {𝜑𝜑𝑚𝑚,𝑚𝑚′}∀𝑚𝑚,∀𝑚𝑚′

Output: 𝚯𝚯

for State 𝑚𝑚 = 1 to n do

for State 𝑚𝑚′ = 𝑚𝑚 + 1 to n do

if 𝑚𝑚′ ∈ ℋ𝑚𝑚 and 𝚯𝚯(𝑚𝑚′,𝑚𝑚) = 0 then

Run the procedure in (14a)-(14e)

end if

end for

end for

https://ieeexplore.ieee.org/document/#deqn10
https://ieeexplore.ieee.org/document/#deqn14a
https://ieeexplore.ieee.org/document/#deqn14e

return 𝚯𝚯

In the case of time-varying content popularity, assume that there are 𝑁𝑁r requests in the considered time
window. Denote the instantaneous content popularity at the 𝑞𝑞th request by {𝜑𝜑𝑘𝑘

(𝑞𝑞)}∀𝑘𝑘∈ℱ, where 𝑞𝑞 ∈ {1, … ,𝑁𝑁r}.
The average content popularity is specified by {𝜑𝜑𝑘𝑘}∀𝑘𝑘∈ℱ. The instantaneous state transition matrix 𝚯𝚯(𝑞𝑞) is time-
varying as a result of the time-varying instantaneous content popularity.

Lemma 3.
Under time-varying content popularity, the overall state transition matrix averaged over the 𝑁𝑁r requests,
denoted by 𝚯𝚯, is equal to the matrix 𝚯𝚯 generated by Algorithm 2.

Proof.
See Appendix C, available in the online supplemental material.

It should be noted that the result 𝚯𝚯 = 𝚯𝚯 in Lemma 3 does not imply that the average content caching
probabilities are equal to the target content caching probabilities when the instantaneous content popularity is
time-varying. To the best of our knowledge, designing dynamic caching which can achieve target average
content caching probabilities without knowing the instantaneous content request probabilities is impossible.
After all, the ability of adapting to content popularity implies that the resulting content caching probabilities
depend on the content request statistics (not just the average content popularity).

4.3 Discussion on the Scalability
The proposed design involves finding the transition probabilities for each cache state, and the overall number of
cache states, i.e., (𝑁𝑁f𝑐𝑐), can be prohibitively large in practice. Nevertheless, we can limit the number of states to
be considered. Next, we provide some methods for reducing the number of states when the number of contents
is large. Section. 5 will use a numerical example to demonstrate the simplification of the proposed dynamic
caching and the resulting performance.

On the Content Level. Although the number of contents can be large, the number of “popular” contents which
are worth caching can be small. The study in [48] shows that a large portion of YouTube videos (> 70%) are
requested only once from an edge network. It follows that a significant portion of contents will be assigned with
a caching probability of zero. This can be seen in the example illustrating Fig. 2b in Section 3.3. Denote the
number of all contents which are assigned with a nonnegative caching probability as 𝑁𝑁p. Then, the number of
cache states to be considered decreases from (𝑁𝑁f𝑐𝑐) to (𝑁𝑁p𝑐𝑐), which is a significant reduction when 𝑁𝑁p is much
smaller than 𝑁𝑁f. Moreover, the “very popular” contents which are assigned with a caching probability of 1 also
reduces the number of cache states to be considered. If Ne contents are assigned a caching probability in (0,1),
then the number of cache states decreases to (𝑁𝑁e𝑐𝑐).

On the State Level. We have illustrated in Fig. 2 and the related example on how to choose a state caching
probability vector that has less non-negative elements. On top of that, a further and more effective
simplification can be used. Specifically, we could limit the considered states to a small number of states with
large overall cached content request probabilities. This will significantly reduce the number of states to be
considered and the resulting dimension of the state transition matrix. For example, if 𝑁𝑁e = 100 and 𝑐𝑐 = 20,
there are more than 1020 states. However, we can consider the top 1000 states that cache the most popular
contents only. By setting a proper cut-off threshold, the proposed dynamic caching can still yield satisfactory
performance. We will show this with an example in Section 5, in which there are 10000 contents but we only
consider 30 states.

SECTION 5 Numerical Examples
5

Example 1. (The convergence speed of the underlying Markov chain corresponding to the designed 𝚯𝚯).

In this illustrative example, 5 contents and a cache with size 2 is considered. Thus, there are 10 cache states
and the state caching probability vector is a vector with 10 elements. The transition probability matrix 𝚯𝚯 is
first generated by Algorithms 2 and then refined by Algorithms 3. For the purpose of illustrating the
convergence performance of the proposed 𝚯𝚯, a constant instantaneous content popularity based on Zipf
distribution is used in this example. The convergence speed of the underlying Markov chains of 𝚯𝚯 at the
output of Algorithms 2 and Algorithm 3 are shown in the top and bottom subplots of Fig. 6, respectively. In
each figure, 10000 tests with randomly generated initial 𝜼𝜼0 are conducted. Three observations can be made
from Fig. 6. First, 𝜼𝜼 always converge (in distribution) to the target 𝜼𝜼⋆ with the designed replacement policy
represented by 𝚯𝚯 in the 20000 tests regardless of the initial caching strategy, which validates the result in
Theorem 1. Second, the convergence speed is shorter on average when the 𝜼𝜼0 is closer to 𝜼𝜼⋆ and vice versa.
Third, the refinement of 𝚯𝚯 by Algorithm 3 significantly reduces the convergence speed, i.e., by a factor of 10.

Fig. 6. Demonstration of the convergence speed of 𝚯𝚯 generated by Algorithms 2 and 3 with 10000 random initial
states.

5

Example 2. (The comparison of the convergence (in distribution) of replacement policies).

In this illustrative example, 15 contents and a cache with size 8 is considered. Thus, there are 6435 cache
states, and the state caching probability vector has 6435 elements. The convergence performance of three
replacement policies under constant content popularity is compared: the proposed policy corresponding to
the designed 𝚯𝚯, LRU, and LFU. The content requests from UE are randomly generated and follows a Zipf
distribution. The convergence is represented through the square norm of the difference between the current
caching strategy 𝜼𝜼 and the target caching strategy 𝜼𝜼⋆ versus the number of content requests since the
beginning of the simulations. The comparison of the convergence performance is shown in Fig. 7. It can be
seen from this figure that the proposed replacement policy can converge to 𝜼𝜼⋆ in distribution and thereby
implement a given set of caching probabilities when the instantaneous content popularity is constant. By
contrast, LRU or LFU cannot converge to 𝜼𝜼⋆ under the same condition.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao6-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao6-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao6-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao6-2967038-large.gif

Fig. 7. Comparison of replacement policies: the proposed, LRU, and LFU.
5

Example 3. (The benefit of probabilistic content replacement).

In this illustrative example, the benefit of dynamic probabilistic content replacement with the designed
replacement policy {τm,m′} is demonstrated with 23 contents and a cache of size 2. A time duration divided
into 50 sessions is considered, and 2 × 106 content requests are generated in total. The 23 contents are
equally popular overall but the popularity of each content varies in each session. Two different cases of
variations in content popularity (in terms of content request probability) are considered: random fluctuation
and smooth change, as shown in the top subplots of Figs. 8 and 9, respectively. The corresponding cache hit
ratio by using dynamic probabilistic content replacement is given in the bottom subplots of Figs. 8 and 9,
respectively. As the overall popularity is the same for each content, caching any two content without
replacement would lead to a cache hit ratio of 2/23, or 0.087 approximately. It can be seen that from Figs.
8 and 9 that the cache hit ratio is improved by using probabilistic content replacement in either case. The
overall cache hit ratio is 0.1063 and 0.1085, equivalent to an increase of 22 and 25 percent, in the cases
of Figs. 8 and 9, respectively. The figures demonstrate that designed probabilistic content replacement based
on the average content popularity can improve cache hit ratio by adapting to the varying content popularity
when the instantaneous content popularity changes over time.

Fig. 8. Cache hit ratio with probabilistic replacement when content popularity varies over time - the case of
random fluctuation.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao7-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao7-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao7-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao8-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao8-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao8-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao7-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao8-2967038-large.gif

Fig. 9. Cache hit ratio with probabilistic replacement when content popularity varies over time - the case of
smooth change.

5

Example 4. (The case of large content number and shot noise request model).

In this example, we consider a total of 10000 contents and demonstrate how to apply the proposed idea of
dynamic caching when there are a large number of contents. The requests for the contents are generated in a
window of 100 minutes based on the shot noise model using the exponential shape [33]. The average number
of requests for each content in the considered time window follows a Zipf distribution with parameter 𝑠𝑠. The
average content popularity is based on the overall number of requests in the considered 100 minutes. The
first request for the contents follows a uniform distribution in [0,40] minutes. Contents have different
lifetime, while the lifetime of every content is short so that almost all requests occur in the considered 100-
minute time window. In such a scenario, there are two problems in applying the proposed dynamic caching.
First, the number of cache state is prohibitively large due to the 10000 contents. Second, the optimal static
caching strategy reduces to caching the c most popular contents deterministically (i.e., 𝜂𝜂1⋆ = 1 and 𝜂𝜂𝑙𝑙⋆ =
0,∀𝑙𝑙 > 1). To apply and evaluate the idea of the proposed dynamic caching, we make the following two
simplifications of the proposed design. First, we only consider 30 cache states with the largest static cache hit
ratio. Second, in order to apply dynamic state transition, we use a non-optimal 𝜼𝜼⋆ (of size 30 × 1), in which
the state caching probability of state l is proportional to ∑ 𝜑𝜑𝑘𝑘𝑘𝑘∈𝒢𝒢𝑙𝑙 . Note that the above two settings
significantly simplify our original design and can lead to performance degradations. We compare the cache hit
ratio of the optimal static caching, LRU, and the (simplified) proposed dynamic caching as well as the number
of replacements of LRU and the (simplified) proposed dynamic caching under various cache sizes, values of 𝑠𝑠,
and content lifetime (i.e., the duration between the first and the last requests).

Fig. 10a shows the cache hit ratio of the three schemes as well as the number of replacements of LRU and the
(simplified) proposed dynamic caching versus the content popularity skewness parameter s in the range
of [0.6,1.1]. The cache size is 30, and the average content lifetime for the 100 most popular files is around 32.7
minutes. Each point in the figure is an average over 240 runs of simulations, each of which randomly generates
all content requests for the 10000 contents. The plot on the left-hand side shows that, when s is small, the
optimal static caching outperform LRU. Moreover, the proposed dynamic caching outperforms both LRU and the
optimal static caching. The reason behind the two observation is that the replacement made by LRU can be less
targeted when the skewness of popularity is small (i.e., the chance that the new content is less likely to be
requested than the replaced content could be large) while the replacements made by the proposed method are

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao9-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao9-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao9-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao9-2967038-large.gif

guided by the average content popularity information. When 𝑠𝑠 becomes large and the number of “most
popular” contents become smaller, LRU can gain an advantage since all three schemes cache the most popular
contents with large probabilities, but LRU has the strongest adaptivity and uses the rest of the cache to store
temporarily popular contents. However, overall, the proposed dynamic caching, even after significant
simplification, still outperforms both the optimal static caching and LRU in a wide range of 𝑠𝑠. Furthermore, the
plot on the right-hand side shows that the proposed dynamic caching achieves such a performance with much
less number of replacements compared to LRU (i.e., less than 1/40 of the replacements by LRU when 𝑠𝑠 =
0.6 and less than 1/8 when 𝑠𝑠 = 1.1). Therefore, the replacements in the proposed dynamic caching are more
effective due to the exploitation of the average content popularity information.

Fig. 10. Comparison of the optimal static caching, LRU, and the proposed dynamic caching under different
settings.

Fig. 10b shows the cache hit ratio of the three schemes as well as the number of replacements of LRU and the
(simplified) proposed dynamic caching versus the cache size 𝑁𝑁c in the range of [10,100]. The popularity
skewness parameter s is 0.8, and the average content lifetime for the 100 most popular files is 32.7 minutes.
Each point in the figure is an average over 240 runs of simulations, each of which randomly generates all content
requests for the 10000 contents. The logarithmic growth in the cache hit ratio versus the cache size shown

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao10-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao10-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao10-2967038-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7755/9370048/8960482/zhao10-2967038-large.gif

in Fig. 10b is consistent with the observations in existing research, e.g., [49]. The proposed dynamic caching
always has an advantage over LRU in the cache hit ratio when the cache size 𝑁𝑁c is no larger than 60 (i.e., 6‰ of
the size of all contents). In addition, the proposed dynamic caching always outperforms the optimal static
caching. Furthermore, similar to the case shown in Fig. 10a, the proposed dynamic caching uses a significantly
less number of replacements compared to that of LRU.

Fig. 10c shows the cache hit ratio of the three schemes as well as the number of replacements of LRU and the
(simplified) proposed dynamic caching versus the average content lifetime for the 100 most popular files. The
popularity skewness parameter s is 0.8, and the cache size 𝑁𝑁c is 30. Each point in the figure is an average over
240 runs of simulations, each of which randomly generates all content requests for the 10000 contents. The left-
hand side plot shows that, when the average lifetime of the 100 most popular contents is small, e.g., less than
30 minutes in the considered 100-minute window, dynamic caching (including LRU and the proposed caching)
has an advantage over the static caching. This is because, given a fixed time window, a short lifetime can lead to
a stronger temporal locality in content popularity. Moreover, when the content lifetime increases, the
performance of LRU decreases very fast while the proposed dynamic caching still achieves a better cache hit
ratio compared to the optimal static caching. The plot on the right-hand side shows again that the proposed
dynamic caching uses a significantly less number of replacements than LRU.

SECTION 6 Conclusion
In this work, we have studied dynamic probabilistic caching when the instantaneous content popularity may
vary with time but the average content popularity is known. Specifically, we have designed probabilistic content
placement and replacement policies with the objective of increasing cache hit ratio under varying instantaneous
content popularity while converging to the target content caching probabilities under constant instantaneous
content popularity. On the probabilistic content placement, we have established a novel connection between
caching probabilities and probabilistic content placement policies through mixed strategies. On the probabilistic
content replacement, we have designed two algorithms to generate and refine the transition probability matrix
so that the Markov chain has a unique steady state which achieves the target content placement. Our study has
demonstrated that the proposed dynamic probabilistic caching can be applied on top of the existing results on
finding the optimal caching probabilities to improve the cache hit ratio under time-varying content popularity
while the optimal caching probabilities can be used as the target content caching probabilities. When combined
with content popularity prediction, the proposed design can provide a competitive approach for dynamic
caching under time-varying content popularity.

ACKNOWLEDGMENTS
This work was supported in part by the Natural Sciences and Engineering Research Council of Canada under
Grant STPGP-493787 and in part by the Nature Science Foundation of China under Grant 61801011.

References
1. X. Wang, M. Chen, T. Taleb, A. Ksentini and V. C. M. Leung, "Cache in the air: Exploiting content

caching and delivery techniques for 5G systems", IEEE Commun. Magazine, vol. 52, no. 2, pp.
131-139, Feb. 2014.

2. I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat and H. Dai, "A survey on low latency towards 5G: RAN
core network and caching solutions", IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 3098-3130,
2018.

3. E. K. Markakis, K. Karras, A. Sideris, G. Alexiou and E. Pallis, "Computing caching and communication
at the Edge: The cornerstone for building a versatile 5G ecosystem", IEEE Commun. Magazine,
vol. 55, no. 11, pp. 152-157, Nov. 2017.

4. X. Zhang and Q. Zhu, "Hierarchical caching for statistical QoS guaranteed multimedia transmissions
over 5G Edge computing mobile wireless networks", IEEE Wireless Commun., vol. 25, no. 3, pp.
12-20, Jun. 2018.

5. S. Zhang, J. Li, H. Luo, J. Gao, L. Zhao and X. S. Shen, "Towards fresh and low-latency content delivery
in vehicular networks: An Edge caching aspect", Proc. 10th Int. Conf. Wireless Commun. Signal
Process., pp. 1-6, 2018.

6. K. Zhang, S. Leng, Y. He, S. Maharjan and Y. Zhang, "Cooperative content caching in 5G networks
with mobile Edge computing", IEEE Wireless Commun., vol. 25, no. 3, pp. 80-87, Jun. 2018.

7. T. Liu, J. Li, F. Shu, H. Guan, S. Yan and D. N. K. Jayakody, "On the incentive mechanisms for
commercial Edge caching in 5G Wireless networks", IEEE Wireless Commun., vol. 25, no. 3, pp.
72-78, Jun. 2018.

8. M. Ji, G. Caire and A. F. Molisch, "Wireless device-to-device caching networks: Basic principles and
system performance", IEEE J. Sel. Areas Commun., vol. 34, no. 1, pp. 176-189, Jan. 2016.

9. B. M. Maggs and R. K. Sitaraman, "Algorithmic nuggets in content delivery", ACM SIGCOMM Comput.
Commun. Rev., vol. 45, no. 3, pp. 52-66, Jul. 2015.

10. S. Jeon, S. Hong, M. Ji, G. Caire and A. F. Molisch, "Wireless multihop device-to-device caching
networks", IEEE Trans. Inf. Theory, vol. 63, no. 3, pp. 1662-1676, Mar. 2017.

11. L. Qiu and G. Cao, "Popularity-aware caching increases the capacity of Wireless networks", IEEE
Trans. Mobile Comput., vol. 19, no. 1, pp. 173-187, Jan. 2020.

12. S. Tarnoi, K. Suksomboon, W. Kumwilaisak and Y. Ji, "Performance of probabilistic caching and
cache replacement policies for content-centric networks", Proc. 39th IEEE Conf. Local Comput.
Netw., pp. 99-106, 2014.

13. W. Bao, D. Yuan, K. Shi, W. Ju and A. Y. Zomaya, "Ins and outs: Optimal caching and re-caching
policies in mobile networks", Proc. 18th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., pp. 41-
50, 2018.

14. I. Psaras, W. K. Chai and G. Pavlou, "In-network cache management and resource allocation for
information-centric networks", IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 11, pp. 2920-2931,
Nov. 2014.

15. D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee and K. K. Ramakrishnan, "Optimal content
placement for a large-scale VoD system", IEEE/ACM Trans. Netw., vol. 24, no. 4, pp. 2114-2127,
Aug. 2016.

16. I. D. Baev, R. Rajaraman and C. Swamy, "Approximation algorithms for data placement
problems", SIAM J. Comput., vol. 38, no. 4, pp. 1411-1429, 2008.

17. N. Deng and M. Haenggi, "The benefits of hybrid caching in Gauss–Poisson D2D networks", IEEE J.
Sel. Areas Commun., vol. 36, no. 6, pp. 1217-1230, Jun. 2018.

18. S. Zhang, N. Zhang, P. Yang and X. Shen, "Cost-effective cache deployment in mobile
heterogeneous networks", IEEE Trans. Veh. Technol., vol. 66, no. 12, pp. 11264-11276, Dec.
2017.

19. S. Zhang, P. He, K. Suto, P. Yang, L. Zhao and X. Shen, "Cooperative edge caching in user-centric
clustered mobile networks", IEEE Trans. Mobile Comput., vol. 17, no. 8, pp. 1791-1805, Aug.
2018.

20. Z. Su, Y. Hui, Q. Xu, T. Yang, J. Liu and Y. Jia, "An edge caching scheme to distribute content in
vehicular networks", IEEE Trans. Veh. Technol., vol. 67, no. 6, pp. 5346-5356, Jun. 2018.

21. Q. Li, W. Shi, X. Ge and Z. Niu, "Cooperative edge caching in software-defined hyper-cellular
networks", IEEE J. Sel. Areas Commun., vol. 35, no. 11, pp. 2596-2605, Nov. 2017.

22. Y. Cui, Z. Wang, Y. Yang, F. Yang, L. Ding and L. Qian, "Joint and competitive caching designs in
large-scale multi-tier wireless multicasting networks", IEEE Trans. Commun., vol. 66, no. 7, pp.
3108-3121, Jul. 2018.

23. M. Mangili, F. Martignon, S. Paris and A. Capone, "Bandwidth and cache leasing in Wireless
information-centric networks: A game-theoretic study", IEEE Trans. Veh. Technol., vol. 66, no. 1,
pp. 679-695, Jan. 2017.

24. Y. Yang, Y. Wu, N. Chen, K. Wang, S. Chen and S. Yao, "LOCASS: Local optimal caching algorithm
with social selfishness for mixed cooperative and selfish devices", IEEE Access, vol. 6, pp. 30060-
30072, May 2018.

25. W. Wang, D. Niyato, P. Wang and A. Leshem, "Decentralized caching for content delivery based on
blockchain: A game theoretic perspective", Proc. IEEE Int. Conf. Commun., pp. 1-6, 2018.

26. Y. Chen, M. Ding, J. Li, Z. Lin, G. Mao and L. Hanzo, "Probabilistic small-cell caching: Performance
analysis and optimization", IEEE Trans. Veh. Technol., vol. 66, no. 5, pp. 4341-4354, May 2017.

27. K. Li, C. Yang, Z. Chen and M. Tao, " Optimization and analysis of probabilistic caching in \$N\$ N -
Tier heterogeneous networks ", IEEE Trans. Wireless Commun., vol. 17, no. 2, pp. 1283-1297,
Feb. 2018.

28. Y. Zhou, Z. Zhao, R. Li, H. Zhang and Y. Louet, "Cooperation-based probabilistic caching strategy in
clustered cellular networks", IEEE Trans. Commun. Lett., vol. 21, no. 9, pp. 2029-2032, Sep.
2017.

29. D. Liu and C. Yang, "Caching policy toward maximal success probability and area spectral efficiency
of cache-enabled HetNets", IEEE Trans. Wireless Commun., vol. 65, no. 6, pp. 2699-2714, Jun.
2017.

30. J. Wen, K. Huang, S. Yang and V. O. K. Li, "Cache-enabled heterogeneous cellular networks: Optimal
tier-level content placement", IEEE Trans. Wireless Commun., vol. 16, no. 9, pp. 5939-5952, Sep.
2017.

31. M. Zeng et al., "Temporal-spatial mobile application usage understanding and popularity prediction
for edge caching", IEEE Wireless Commun., vol. 25, no. 3, pp. 36-42, Jun. 2018.

32. T. Tanaka, S. Ata and M. Murata, "Analysis of popularity pattern of user generated contents and its
application to content-aware networking", Proc. IEEE Globecom Workshops, pp. 1-6, 2016.

33. S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi and S. Niccolini, "Temporal locality in
today's content caching: Why it matters and how to model it", ACM SIGCOMM Comput.
Commun. Rev., vol. 43, no. 5, pp. 5-12, Nov. 2013.

34. E. Leonardi and G. L. Torrisi, "Least recently used caches under the shot noise model", Proc. IEEE
Conf. Comput. Commun., pp. 2281-2289, 2015.

35. M. Garetto, E. Leonardi and V. Martina, "A unified approach to the performance analysis of caching
systems", ACM Trans. Modeling Perform. Eval. Comput. Syst., vol. 1, no. 3, pp. 12:1-12:28, May
2016.

36. G. Gürsun, M. Crovella and I. Matta, "Describing and forecasting video access patterns", Proc. IEEE
INFOCOM, pp. 16-20, 2011.

37. B. Blaszczyszyn and A. Giovanidis, "Optimal geographic caching in cellular networks", Proc. IEEE Int.
Conf. Commun., pp. 3358-3363, 2015.

38. N. Golrezaei, A. F. Molisch, A. G. Dimakis and G. Caire, "Femtocaching and device-to-device
collaboration: A new architecture for wireless video distribution", IEEE Commun. Magazine, vol.
51, no. 4, pp. 142-149, Apr. 2013.

39. J. Gao, L. Zhao and X. Shen, "The study of dynamic caching via state transition field—the case of
time-invariant popularity", IEEE Trans. Wireless Commun., vol. 18, no. 12, pp. 5924-5937, Dec.
2019.

40. J. Gao, L. Zhao and X. Shen, "The study of dynamic caching via state transition field—the case of
time-varying popularity", IEEE Trans. Wireless Commun., vol. 18, no. 12, pp. 5938-5951, Dec.
2019.

41. A. Gaddah and T. Kunz, "Extending mobility to publish/subscribe systems using a pro-active caching
approach", Mobile Inf. Syst., vol. 6, no. 4, pp. 293-324, 2010.

42. X. Vasilakos, V. A. Siris and G. C. Polyzos, "Addressing niche demand based on joint mobility
prediction and content popularity caching", Comput. Netw., vol. 110, pp. 306-323, 2016.

43.F. Zhang et al., "EdgeBuffer: Caching and prefetching content at the edge in the MobilityFirst future
internet architecture", Proc. IEEE 16th Int. Symp. a World Wireless Mobile Multimedia Netw.,
pp. 1-9, 2015.

44.O. Bahat and A. M. Makowski, "Optimal replacement policies for nonuniform cache objects with
optional eviction", Proc. IEEE 22nd Annu. Joint Conf. IEEE Comput. Commun. Societies, pp. 427-
437, 2003.

45.S. Shukla and A. A. Abouzeid, "Optimal device-aware caching", IEEE Trans. Mobile Comput., vol. 16,
no. 7, pp. 1994-2007, Jul. 2017.

46.C. P. Robert and G. Casella, Monte Carlo Statistical Methods, New York, NY, USA:Springer, 2004.
47.S. Boyd, P. Diaconis and L. Xiao, "Fastest mixing markov chain on a graph", SIAM Rev., vol. 46, no. 4,

pp. 667-689, Dec. 2004.
48.N. Carlsson and D. Eager, "Ephemeral content popularity at the edge and implications for on-

demand caching", IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 6, pp. 1621-1634, Jun. 2017.
49.A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan and J. R. Wilcox, "Information-centric

networking: Seeing the forest for the trees", Proc. 10th ACM Workshop Hot Topics Netw., pp. 1-
6, 2011.

	The Design of Dynamic Probabilistic Caching with Time-Varying Content Popularity
	Recommended Citation

	Abstract:
	SECTION 1 Introduction
	SECTION 2 System Model
	SECTION 3 Probabilistic Content Placement
	3.1 Cache States
	3.2 State Caching Probability
	3.3 Static Probabilistic Caching
	Lemma 1.
	Lemma 2.
	Proof.

	SECTION 4 Probabilistic Content Replacement: the Markov Chain of Content Replacement
	4.1 The Content Replacement Markov Chain
	4.2 Generating the State Transition Matrix 𝚯
	Theorem 1.
	Proof.
	Lemma 3.
	Proof.

	4.3 Discussion on the Scalability

	SECTION 5 Numerical Examples
	SECTION 6 Conclusion
	ACKNOWLEDGMENTS
	References

