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Real time evaluation of tissue optical properties during thermal ablation of ex
vivo liver tissues

Vivek K. Nagarajana, Venkateswara R. Goginenib, Sarah B. Whiteb and Bing Yua

aDepartment of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA; bDepartment of
Radiology, Division of Vascular Interventional Radiology, Medical College of Wisconsin, Milwaukee, WI, USA

ABSTRACT
Complete ablation of liver tumors is vital for minimizing the risk of local tumor recurrence. Accurately
identifying the hallmarks of tissue necrosis during thermal ablative therapies may significantly increase
the efficacy of ablation, while minimizing unnecessary damage to the surrounding normal tissues or
critical structures. Light propagation in biological tissues is sensitive to the tissue microstructure and
chromophore concentrations. In our previous studies, we found that the wavelength (k) averaged liver
tissue absorption coefficient (ma) and reduced scattering coefficient (ms0) change significantly upon
heating which may be used for assessment of tissue damage during thermal ablation of solid tumors.
Here, we seek to demonstrate the use of an integrated fiber-optic probe for continuous monitoring of
the local tissue temperature (T), ma(k) and ms0(k) during thermal ablation of ex vivo porcine livers. The
wavelength-averaged (435–630nm) tissue absorption and scattering (ma and ms0 ) increased rapidly at
45 �C and plateaued at 67 �C. The mean ma and ms0 for liver tissue at 37 �C (n¼ 10) were 8.5 ± 3.7 and
2.8±1.1 cm�1, respectively. The relative changes in ma and ms0 at 37, 55, and 65 �C were significantly
different (p< .02) from each other. A relationship between the relative changes in ma and ms0 and the
degree of tissue damage estimated using the temperature-based Arrhenius model for porcine liver tis-
sues was established and studied.
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Introduction

Hepatocellular carcinoma (HCC) is the sixth most common
cancer and the third most common cause of cancer-related
deaths worldwide. In 2012, 782,000 new cases and 745,000
deaths related to HCC were reported worldwide [1]. HCC is
also the fastest growing cause of cancer-related deaths in
the USA [2]. Surgical resection and/or liver transplantation
are the only options for curative intent; however, less than
20% of patients with HCC are candidates for surgery [3].
Percutaneous ablative therapies, such as radiofrequency abla-
tion (RFA) and microwave ablation (MWA), are considered as
an alternative treatment for unresectable early stage HCC [4].
To be considered a desirable alternative, outcomes should
be comparable to those achieved with surgical resection.
However, the reported rate of complete response after a sin-
gle session of RFA of HCC varies from 48% to 97% [5–11].
Similarly, the rate of complete response for MWA ranges
from 69% to 100%, depending on tumor size [12].

The risk of local tumor recurrence after RFA or MWA ther-
apy depends on the extent of thermal damage, which is
often affected by the size and location of the tumor(s), adja-
cent structures, ablation technique used, and availability and
effectiveness of intra-operative monitoring. The extent of

thermal tissue damage is a function of the temperature and
duration of heating to the tissue. Ideally, assessment of tis-
sue damage should be done in real-time to avoid under or
over treatment of the target tissue. Real-time monitoring is
critical to regulate the ablation zone, in order to minimize
heat exposure to surrounding critical structures (blood ves-
sels, bile ducts, nerves, etc.). Histological assessment is the
current gold standard for assessing thermal tissue damage,
but is not a practical or generalizable way to monitor abla-
tion zones. Therefore, real-time monitoring of tissue during
thermal ablation is critical to ensure complete destruction of
tumor mass while avoiding tissue charring and excessive
damage to surrounding normal tissues.

Temperature-based methods, such as the Arrhenius model
[13,14], are commonly used to assess thermal tissue damage
in real-time during tumor ablation [15–17]. However, tem-
perature-based methods do not account for tissue hetero-
geneity, and require prior knowledge of tissue properties to
determine the extent of thermal damage. Light propagation
within a biological tissue is sensitive to the tissue morph-
ology and physiology. Specifically, quantitative optical spec-
troscopy can determine the optical properties of normal vs.
coagulated tissue, with higher ma(k) and ms0(k) seen in coagu-
lated tissues [18–20]. Although changes in tissue optical
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properties are due to denaturation, the correlation between
tissue absorption and reduced scattering coefficient and true
tissue damage are yet to be established. Quantitative optical
spectroscopy could therefore be performed to predict com-
plete tissue ablation.

In our previous study [13,18], we have shown that ma and
ms0 in porcine muscle tissues measured by diffuse reflectance
spectroscopy (DRS), at selected temperature points, corre-
lated with the degree of denaturation (Fd) derived from the
Arrhenius damage model. In addition, we determined that
continuous monitoring of ma and ms0 is necessary to achieve
the endpoint for ablation. In this paper, we report the use of
a DRS system with an integrated fiber-optic temperature sen-
sor to continuously record the ma, ms0 and local tissue tem-
perature during heating of ex vivo liver and compare the
changes in tissue optical properties with Fd.

Materials and methods

DRS instrument

The integrated DRS system, as illustrated in Figure 1(a), con-
sists of a home-made needle-based fiber-optic probe, two
visible spectrometers (Avantes BV, The Netherland) with a
white light-emitting diode (LED), one near-infrared (NIR)
spectrometer with an 820 nm LED and a laptop computer
loaded with custom software. The fiber-optic probe includes
two side-firing fibers (200/220 mm), spaced apart by 1mm for
DRS, a homemade extrinsic Fabry–Perot interferometric (EFPI)
temperature sensor [21] and two forward firing fibers (200/
220mm) for self-calibration [22,23], all housed into a 17G
hypodermic needle. One of the two side-firing fibers is con-
nected to the white LED to illuminate the target tissue and
the other to the visible spectrometer A (Vis Spec A) for
detection of diffuse reflectance from the tissue. The self-cali-
bration fibers, as shown in Figure 1(b), loop the light from
the white LED back to visible spectrometer B (Vis Spec B)

before it reaches the tissue using a diffusely reflective medium.
The self-calibration records a calibration spectrum in concur-
rent with DRS measurement which is used to correct for instru-
ment fluctuations and probe bending loss [22,23].

The EFPI sensor head was fabricated by laser fusion bond-
ing of two multimode fibers, separated by a small air gap
(Lc), to a borosilicate capillary tube with an outer diameter of
400 lm (Figure 1(c)). The distance between the two bonding
points, the gage length (LG), is 2.0mm. The EFPI sensor head
is connected to the sensing arm of a 2� 2 50/50 fiber-optic
coupler. The 820 nm LED was used to interrogate the EFPI
sensor and the returned interferogram was collected by the
NIR spectrometer (NIR Spec). Thermal expansion of the boro-
silicate tubing alters the optical path difference between the
two interfering waves that are reflected by the end-faces of
the two fiber tips, shifting the peak positions of the inter-
ferogram. The temperature is determined by tracking the
temperature-dependent wavelength shift in the interfero-
gram [23]. The temperature sensor was calibrated in a water
bath and was found to have an accuracy of 1 �C between 20
and 95 �C. A laptop computer with a custom LabVIEW pro-
gram and embedded MATLAB scripts was used for instru-
ment control and data acquisition and analysis.

Phantom experiment

Tissue-mimicking phantoms consisting of a mixture of
human hemoglobin powder (H0267, Sigma-Aldrich Co. LLC,
St. Louis, USA), as the absorber, and 1-mm polystyrene beads
(07310-15, Polysciences Inc., Warrington, USA) as the tissue
scatterer, was used for evaluating the probe performance
and instrument calibration [24]. Eleven phantoms covering a
hemoglobin concentration of 14–54.9mM, in water were cre-
ated by fixing the number of scatterers and titrating the
absorbers. The absorption coefficient ma(k) of stock hemoglo-
bin solution was independently determined with a spectro-
photometer (Lambda 35, PerkinElmer Inc., Waltham, USA).

Figure 1. Schematics of the experimental setup: (a) the integrated DRS system and experiment setup for measuring the local optical properties and temperature
of porcine liver tissues during heating; (b) the self-calibration channel and (c) the EFPI temperature sensor.
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For all phantoms, the ma ranged from 1.2 to 4.9 cm�1. The
reduced scattering ms0(k) of the phantoms was calculated
using the Mie theory for known size, density and refractive
index of scatterers. The ms0 decreased from 11.4 to 4 cm�1

due to titration, representing the typical scattering properties
of native and coagulated liver tissues. Diffuse reflectance
spectra (435–630 nm) for each of the 11 phantoms were col-
lected using the DRS instrument.

Tissue sample preparation

Fresh porcine livers from three healthy pigs were obtained
less than 2min post-slaughtering from a local slaughterhouse
and transported to the laboratory in an iced physiological
saline solution. The average transport time was about
30min. Upon arrival, the liver tissues were stored in a saline
solution at 4 �C until use. Liver tissues were used within
1–2 days of purchase. A total of 10 liver samples were used,
each of which was cut to �20� 20� 18mm tissue blocks.

Measurement and data analysis

The needle probe was placed at the center of each tissue sam-
ple, as illustrated in Figure 1(a), and the sample was heated for
30min in a temperature chamber (Tenny Jr, Thermal Product
Solutions, White Deer, Pennsylvania, USA) that was preheated
to 100 �C. Diffuse reflectance spectra and T of the ex vivo tis-
sues were continuously recorded during heating. In addition,
for each DRS measurement, a concurrent self-calibration spec-
trum was recorded. Each tissue spectrum was divided by the
calibration spectrum to obtain a normalized spectrum. The
ma(k) and ms0(k) were extracted from the normalized DRS spec-
trum using the reference phantom spectrum and an inverse
Monte-Carlo method for diffuse reflectance [25]. The tissue
damage index Fd was calculated using an activation energy
(Ea) of 66.18 Kcal/mol, a pre-exponential factor (A) of
5.51� 1041 s�1 [26] for liver, and Equations (1) and (2) [13,14].

XA ¼
ðt
0
Ae

�Ea
RT tð Þ (1)

Fd ¼ 1� eXA (2)

where Fd¼ 1 signifies complete tissue denaturation,
whereas, Fd¼ 0 indicates no thermal denaturation, or
native tissue.

The liver tissue ma and ms0 observed between 20 �C (room
temperature) and 37 �C were averaged to obtain a baseline

measurement. The relative changes in ma and ms0

(Measurement�Basline
Baseline ), from the baseline measurements (native

tissues), at 37 �C (level 1), 55 �C (level 2), 65 �C (level 3) and
75 �C (level 4) were statistically compared with the calculated
Fd at the corresponding T using a paired t-test. Also, the rela-
tionship between the relative changes in ma and ms0 and Fd
have been established and studied. Pearson’s correlation was
used to compare relative changes in ma and ms0 to Fd.

Results

Phantom experiment

The ma(k) and ms0 (k) of the 11 phantoms were extracted
using the inverse Monte-Carlo model, and the wavelength-
averaged values (ma and ms0) are plotted against the expected
values in Figure 2(a,b), respectively. The overall errors for
extracting ma and ms0 the tissue-mimicking phantoms were
10.2% and 6.7%, respectively. Error bars in all the figures are
standard deviations of the mean obtained by using each of
the phantoms as a reference.

Ex vivo liver tissue

The mean liver tissue temperature vs. time is plotted in
Figure 3. It takes approximately 4.5min for the tissue at the
probe tip to reach 50 �C. The mean and standard deviation
(n¼ 10) for ma and ms0 recorded during heating of the ex vivo
liver tissue are present in Figure 4(a,b). The mean ma and ms0

for liver tissue were 8.5 ± 3.7 and 2.8 ± 1.1 cm�1, respectively.
Both ma and ms0 began to increase rapidly at about 45 �C and
plateaued at about 67 �C, following a sigmoidal trend. The
relative changes in ma and ms0 of the liver tissues during

Figure 2. The measured vs. expected (a) ma and (b) ms0 of the tissue mimicking phantoms.

Figure 3. The mean tissue temperature vs. time during heating of ex vivo por-
cine liver samples.
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heating are shown in Figure 4(c,d), respectively. In addition,
the mean ma(k) and ms0(k) at some characteristic wavelengths
488 nm (argon laser line), 542 nm (absorption peak for oxy-
hemoglobin), 550 nm (absorption peak for deoxyhemoglobin)
and 594 nm (absorption peak for oxyhemoglobin) are plotted
with the mean ma and ms0 in Figure 5. The ma(k) and ms0(k) at
these four wavelengths showed similar general trends as
that of the wavelength-averaged values (ma and ms0), and
therefore, only the ma and ms0 are used for further analysis in
the report.

The relative changes in mean ma and ms0 are plotted
against the natural logarithm of Fd in Figure 6(a,b). Three dif-
ferent regions were identified: baseline, linear increase and
peak. The liver tissue experienced no noticeable damage
(In(Fd)� 0) in the baseline region. The transition from the
baseline to a linear region occurs at a threshold Fd. The
threshold Fd for ma and ms0 were 0.018 (�48 �C) and 0.024
(�48.5 �C), respectively. The slope in the linear region for ma
and ms0 (liver tissues) were 0.27 and 0.21, respectively. These
slopes represent the temperature-dependent relative change
in ma and ms0 per unit In(Fd), which reflect the tissue-specific

sensitivity of change in ma and ms0 to tissue denaturation (Fd).
Finally, the maximum relative change in ma and ms0 within
the peak region were found to be 1.5 (66 �C) and 1.3 (67 �C),
respectively. The Fd values corresponding to the observed
peak positions for both ma and ms0 were 1, indicating com-
plete denaturation. The relative changes in ma and ms0 as a
function of T were also compared with the theoretically cal-
culated Fd for liver tissues in Figure 6(c). The relative changes
in mean ma and ms0 follow closely and are highly correlated
with Fd. The Pearson’s correlation coefficient for both ma and
ms0, compared to Fd, was 0.96. Furthermore, no significant
changes in the optical properties were observed after pla-
teauing of Fd (>67 �C). Finally, the relative changes in ma and
ms0, at four different temperatures (37, 55, 65 and 75 �C), rep-
resentative of different damage levels (1 – baseline, 2 – mid-
transition, 3 – onset of plateau and 4 – steady-state), were
statistically compared using a paired-t-test, and the results
are present in Figure 6(d). The relative changes in damage
levels 1, 2 & 3 were significantly different from each other
(p< .02). However, damage levels 3 & 4 were not signifi-
cantly different for both ma (p¼ .37) and ms0 (p¼ .40),

Figure 4. Absolute change in the liver tissue (a) ma and (b) ms0 and relative change in (c) ma and (d) ms0 (n¼ 10).

Figure 5. Absolute changes in (a) ma and (b) ms0 at selected wavelengths during tissue heating.
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implying that the increases in relative changes in ma and ms0,
follow a sigmoidal trend and are correlated (Pearson’s correl-
ation coefficient ¼0.96) with thermal tissue damage.

Discussions

In this paper, an integrated fiber-optic spectroscopic system
was developed to record continuous changes in ma, ms0 and
local tissue temperature (T) during heating of ex vivo liver.
The system was first calibrated using tissue mimicking phan-
toms, and later, used to study the continuous changes in ma
and ms0 of ex vivo liver during heating by comparing them
with fractional damage, Fd, calculated using the Arrhenius
damage model, Equations (1) and (2). The mean photon
travel depth in liver (435–630 nm), estimated using source-
detector separation (1mm) and effective attenuation coeffi-
cient [27], was 0.5mm. The temperature variations within
0.5mm were assumed to be less than our temperature meas-
urement accuracy of 1 �C. The tissue optical properties began
to increase rapidly at about 45 �C and plateaued at about
67 �C. From Figure 4, the overall trend in the continuous
changes of mean ma and ms0 follows a sigmoidal trend. From
Figure 5, we observed that at the selected four wavelengths,
ma at 80 �C is approximately twofold higher than ma at 37 �C.
Similarly, ms0 at 80 �C is about twofold higher than ms0 at
37 �C. The change in mean ma(k) and ms0(k) at each of the
four wavelengths followed a similar sigmoidal trend.

Increases in tissue ma and ms0 due to heating have also
been reported by many groups in different types of soft tis-
sues [18–20] and our observation is in accordance with previ-
ously reported studies. Tissue ma(k) and ms0(k) are indicative
of both the structural and physiological state of the tissue.
During heating, temperature-induced microscopic changes in
the tissue structure, such as cell membrane rupture or pro-
tein denaturation, can alter light propagation within the

tissue [28,29], and subsequently, the tissue ma(k) and ms0(k)
change. Coagulation of structural proteins (e.g., nucleus,
mitochondrial etc.), refractive index mismatch, and loss of
extracellular fluids or formation of new particles can signifi-
cantly affect the tissue scattering properties [12,30]. Similarly,
denaturation of tissue chromophores alters the absorption
characteristics of chromophores, thereby, affecting the ma(k).
From Figure 1(a), we can deduce that, during heating, tissue
coagulation travels inwards toward the probe. The stresses
developed within the coagulum and tissue shrinkage may
force highly absorptive tissue fluid (primarily blood mixed
with bile) towards the probe which could form a bilayer con-
sisting of highly scattering tissue and highly absorbing
aggregation of tissue fluid, around the probe. Such a bilayer
could have resulted in the increase of both ma and ms0.
Nilsson et al. demonstrated an aggregation of erythrocytes in
coagulated rat liver, which they believed to be the cause for
an increased ma in coagulated tissues [19]. Therefore, the
aggregation of fluids containing highly absorptive chromo-
phore may have caused increases in ma, in our study.

Tissue shrinkage and dehydration are also important fac-
tors that can affect the tissue optical properties during ther-
mocoagulation. Jacques et al. [31] and Chan et al. [32]
observed that tissue absorption and scattering increases dur-
ing tissue compression and that such changes are irrevers-
ible. Cilesiz et al. [33] observed that dehydration increases
tissue ma and ms0. Other factors such as thawing, tissue
denaturation et cetera are also known to affect ma and ms0.
Salomatina et al. [34] compared optical properties in an ex
vivo and in vivo mouse ear model and found that in ex vivo
tissues ma and ms0 decreases gradually over time due to loss
of blood. In this study, liver samples were kept in saline solu-
tion until measurement. The changes in ma and ms0, reported
in this study, include the effect of local thermal stress and
tissue dehydration. Most of our measurements were made

Figure 6. Relative changes in (a) ma and (b) ms0 compared with the natural logarithm of Fd; (c) continuous measurement of relative changes in ma and ms0, and Fd
at different temperatures; (d) comparison of relative changes in ma and ms0 at Level 1 (37 �C), 2 (55 �C), 3 (65 �C) and 4 (75 �C), respectively. For both parameters,
levels 1, 2 & 3 were significantly different from each other. Levels 3 & 4 were not statistically different from each other. (� indicates p< .0003 and �� indi-
cates p< .001).
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within 15min, as shown in Figure 3. Thus, we believe that
the effect of tissue dehydration on our measurements
was minimal.

There are several limitations to the current study.
Specifically, in the present study, only non-cancerous ex vivo
tissues were used. It is known that tumor cells are more sen-
sitive to heat than normal tissue [35]. Therefore, future stud-
ies will seek to evaluate changes in hepatic tumors’ ma and
ms0. We anticipate that tumor tissue will mimic changes seen
normal tissue, as reported in the current study. Due to the
lack of histological assessment, the true tissue damage was
unknown and, therefore, the calculated tissue damage index
Fd was used. In future studies, evaluation of the integrated
DRS technique will use a histological thermal damage index
as the gold standard. Another major limitation in this study
is that the measured liver ma and ms0 went beyond the cali-
bration range at higher temperatures, which could have
resulted in higher errors. Nevertheless, such measurement
errors are systematic in nature and the reported relative
changes in ma and ms0 are still valid and reproducible.

Conclusion

In conclusion, an integrated fiber-optic spectroscopic system
was developed to continuously measure local temperature
and optical properties of ex vivo liver tissues during heating.
The observed changes in the liver absorption and scattering
(ma and ms0) followed a sigmoidal trend and strongly corre-
lated with the calculated thermal damage (Fd). This study
demonstrated the potential of the integrated DRS probe for
real-time monitoring of tissue coagulation during thermal
ablation of liver tumors. Comparing to the Arrhenius model,
which assesses tissue damage indirectly and requires a priori
information, the integrated DRS probe provides a direct and
potentially more accurate way for continuously monitoring
temperature-induced changes (volumetrically) in target tis-
sues. Successfully relating true thermal damage to changes
in tissue ma and ms0 during thermal therapy allows for a self-
contained cost-effective real-time ablation monitoring sys-
tem. To further evaluate the feasibility of the technology,
future studies should focus on relating temperature-depend-
ent changes in ma and ms0 to the true tissue damage
obtained through histological assessment, which can provide
more insight on the accuracy and clinical value of the inte-
grated device.
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