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Abstract: 
In this paper, we study unmanned aerial vehicle (UAV) assisted mobile edge computing (MEC) with the objective 
to optimize computation offloading with minimum UAV energy consumption. In the considered scenario, a UAV 
plays the role of an aerial cloudlet to collect and process the computation tasks offloaded by ground users. 
Given the service requirements of users, we aim to maximize UAV energy efficiency by jointly optimizing the 
UAV trajectory, the user transmit power, and computation load allocation. The resulting optimization problem 
corresponds to nonconvex fractional programming, and the Dinkelbach algorithm and the successive convex 
approximation (SCA) technique are adopted to solve it. Furthermore, we decompose the problem into multiple 
subproblems for distributed and parallel problem solving. To cope with the case when the knowledge of user 
mobility is limited, we adopt a spatial distribution estimation technique to predict the location of ground users 
so that the proposed approach can still be applied. Simulation results demonstrate the effectiveness of the 
proposed approach for maximizing the energy efficiency of UAV. 

SECTION I. Introduction 
Driven by the visions of Internet of Things (IoT) and 5G communications, mobile edge computing (MEC) is 
considered as an emerging paradigm that leverages the computing resource and storage space deployed at 
network edges to perform latency-critical and computation-intensive tasks for mobile users [1]. The 
computation tasks generated by mobile users can be offloaded to the nearby edge server, such as macro/small 
cell base station and Wi-Fi access point, to reduce computation delay and computing energy cost at mobile 
devices. Moreover, by pushing the traffic, computation, and network functions to the network edges, mobile 
users can enjoy low task offloading time with less backhaul usage [2]. 

Specifically, in IoT era, MEC is considered as a key enabling technology to support the computing services for 
billions of IoT nodes to be deployed [3], [4]. Since the most of IoT nodes are power-constrained and have limited 
computing compatibility, they can offload their computation tasks to network edges to extend their battery life 
and improve the computing efficiency. However, many IoT nodes are operating in unattended or challenging 
areas, such as forests, deserts, mountains, or underwater locations [5], to execute some computation-intensive 
applications, including long pipeline infrastructures monitoring and control [6], underwater infrastructures 
monitoring [7], and military operations [8]. In these scenarios, the terrestrial communication infrastructures are 
distributed sparsely and cannot provide reliable communications for the nodes. Therefore, in this paper, we 
utilize unmanned aerial vehicles (UAVs) to provide ubiquitous communication and computing supports for IoT 
nodes. Equipped with computing resources, UAV-mounted cloudlet can collect and process the computation 
tasks of ground IoT nodes that cannot connect to the terrestrial edges. As UAVs are fully controllable and 
operate at a high altitude, they can be dispatched to the designated places for providing efficient on-demand 
communication and computing services to IoT nodes in a rapid and flexible manner [9]–[10][11][12]. 

Despite the advantages of UAV-assisted MEC, there are several challenges in network deployment and 
operation. Firstly, the onboard energy of a UAV is usually limited. To improve the user experience on the 
computing service, UAVs should maximize their energy efficiency by optimizing their computing ability in the 
limited service time. Secondly, planning an energy-aware UAV trajectory is another challenge in UAV-assisted 
networks. The UAV is required to move to collect the offloaded data from sparsely distributed users for the best 
channel quality, while a significant portion of UAV energy consumption stems from mechanical actions during 
flying. Thirdly, the computation load allocation cannot be neglected even though the computing energy 
consumption in UAV-mounted cloudlet is relatively small compared to its mechanical energy. In the state-of-art 
MEC server architecture, the dynamic frequency and voltage scaling (DVFS) technique is adopted. The 



computing energy for a unit time is growing cubically as the allocated computation load increases [1]. Without 
proper allocation, the computing energy consumption could blow up, or the offloaded tasks cannot be finished 
in time. More importantly, UAV trajectory design, computation load allocation, and communication resource 
management are coupled in the MEC system [13], which makes the system even more complex. To the best of 
our knowledge, the joint optimization of UAV trajectory, computation load allocation, and communication 
resource management considering energy efficiency has not been investigated in the UAV-assisted MEC system. 

To address the above challenges, we consider an energy constrained UAV-assisted MEC system in this paper. IoT 
nodes as ground users can access and partially offload their computation tasks to the UAV-mounted cloudlet 
according to their service requirements. The UAV flies according to a designed trajectory to collect the 
offloading data, process computation tasks, and send computing results back to the nodes. For each data 
collection and task execution cycle, we optimize the energy efficiency of the UAV, which is defined as the ratio 
of the overall offloaded computing data to UAV energy consumption in the cycle, by jointly optimizing the UAV 
trajectory and resource allocation in communication and computing aspects. The main contributions of the 
paper are summarized as follows. 

1. We develop a model for energy-efficient UAV trajectory design and resource allocation in the MEC 
system. The model incorporates computing service improvement and energy consumption minimization 
in a UAV-mounted cloudlet. The communication and computing resources are allocated subject to the 
user communication energy budget, computation capability, and the mechanical operation constraints 
of the UAV. 

2. We exploit the successive convex approximation (SCA) technique and Dinkelbach algorithm to transform 
the non-convex fractional programming problem into a solvable form. In order to improve scalability, we 
further decompose the optimization problem by the alternating direction method of multipliers 
(ADMM) technique. UAV and ground users solve the optimization problem cooperatively in a distributed 
manner. By our approach, both users and UAV can obtain the optimal resource allocation results 
iteratively without sharing local information. 

3. We further consider the scenario with limited knowledge of node mobility. A spatial distribution 
estimation technique, Gaussian kernel density estimation, is applied to predict the location of ground 
users. Based on the predicted location information, our proposed strategy can determine an energy-
efficient UAV trajectory when the user mobility and offloading requests are ambiguous at the beginning 
of each optimization cycle. 

The remainder of the paper is organized as follows. Related works are discussed in Section II. The system model 
is provided in Section III. Problem formulation and the corresponding approach are presented 
in Section IV and V, respectively. The extended implementation of the proposed approach are provided 
in Section VI. Finally, extensive simulation results and conclusions are provided in Sections VII and VIII, 
respectively. 

SECTION II. Related Works 
A. Mobile Edge Computing 
To improve the user experience on mobile computing in 5G era, the concept of MEC has been proposed 
in [14] to reduce the transmitting and computing latency by utilizing a vast amount of computation resource 
located at edge devices. The works [15], [16] consider energy-efficient computing in MEC. In [15], 
Zhang et al. study the total energy consumption minimization in 5G heterogeneous networks. The mobile users 
make binary offloading decisions to determine where their computation tasks are executed. In [16], 



Mao et al. investigate the MEC system with energy harvesting devices and propose an online Lyapunov-based 
method to reduce the computing latency and the probability of task dropping. The works [17]–[18][19] study 
radio resource allocation for computation offloading in edge computing. In [17], Kuang et al. propose a partial 
offloading scheduling and power allocation approach for single user MEC system and jointly minimize the task 
execution delay and energy consumption in MEC server while guaranteeing the transmit power constraint of the 
user. In [18], [19], Rodrigues et al. investigate transmit power control and service migration policy to balance the 
computation load among edge servers and reduce the overall computing delay accordingly. The above works 
consider resource allocation in MEC with fixed edge infrastructures. To provide on-demand service for remote 
IoTs, our work studies edge computing supported by UAV-mounted cloudlet, which introduces dynamic channel 
conditions and mechanical operation constraints. 

B. UAV-Assisted Network 
The UAV-assisted communication network has been investigated in works [20]–[21][22]. In [20], 
Wu et al. consider trajectory design and communication power control for a multi-UAV multi-user system, in 
which the objective is to maximize the throughput over ground users in a downlink scenario. In [21], 
Zeng et al. analyze the energy efficiency of the UAV-assisted communication network and design a UAV 
trajectory strategy for hovering above a single ground communication terminal. In [22], Tang et al. investigate a 
game-based channel assignment scheme for UAVs in D2D-enabled communication networks. UAVs have also 
been utilized to enhance the flexibility of a MEC system in [23], [24], where UAVs behave as communication 
relays to participate in the computation offloading process. Moreover, recently, more works utilize UAV as an 
aerial cloudlet to provide edge computing service [25]–[26][27]. In [25], Jeong et al. study UAV path planning to 
minimize communication energy consumption for task offloading at mobile users, where the energy 
consumption of UAV-mounted cloudlet is constrained. Both orthogonal and non-orthogonal channel models are 
considered in the work. In [26], Tang et al. propose a UAV-assisted recommendation system in location based 
social networks (LBSNs), while a UAV-mounted cloudlet is deployed to reduce computing and traffic load of the 
cloud server. In [27], Cheng et al. provide the computation load offloading strategy in an IoT network given the 
pre-determined UAV trajectories. The work aims to minimize the computing delay, user energy consumption, 
and server computing cost jointly, where the energy consumption of the UAV-mounted cloudlet has not been 
investigated. None of the above works discusses the energy efficiency on mobile computing in a UAV-mounted 
cloudlet, which is considered as a meaningful metric for prolonging the computing service lifetime. Note that 
although [21] also studies energy-efficient trajectory design, it focuses on a single-ground-terminal scenario, 
whereas our work focuses on a multi-user scenario with corresponding resource management. 

SECTION III. System Model 
A. Network Model 
The UAV-assisted MEC system is shown in Fig. 1, in which a single UAV-mounted cloudlet is deployed to offer 
edge computing service for ground users in area 𝒜𝒜. The UAV periodically collects and processes the 
computation tasks offloaded from ground users. Each user processes the rest of the computation tasks locally if 
the task cannot be fully collected by the UAV. Define the computing cycle as a duration of 𝑇𝑇 seconds. Each cycle 
contains 𝐾𝐾 discrete time slots with equal length. Denote the set of time slots in the cycle by 𝐾𝐾. Thus, the time 
length for a slot is 𝑇𝑇/𝐾𝐾, which is denoted by Δ. The list of symbols is given in Table I. 



 
Fig. 1. System model. 
 

TABLE I List of Symbols 

𝑘𝑘 index of time slot 
𝑖𝑖 index of ground node/user 
ℐ set of users, where ℐ =  {1, . . . ,𝑁𝑁} 
𝐾𝐾 set of time slots, where 𝒦𝒦 =  {1, . . . ,𝐾𝐾} 

𝐚𝐚𝑘𝑘(𝐐𝐐) average acceleration of the UAV in slot 𝑘𝑘 
𝑎𝑎max maximum acceleration of the UAV 
𝐵𝐵 channel bandwidth 
𝐸𝐸𝑖𝑖𝑇𝑇 maximum offloading communication energy of user 𝑖𝑖 

𝐸𝐸𝑖𝑖,𝑘𝑘
𝐶𝐶,𝑈𝑈(𝐖𝐖𝑘𝑘) UAV computing energy for executing tasks from user 𝑖𝑖 in time slot 𝑘𝑘 
𝐸𝐸𝑘𝑘𝐹𝐹(𝐐𝐐) UAV propulsion energy consumption in slot 𝑘𝑘 
𝐸𝐸𝑖𝑖𝑀𝑀 maximum computing energy consumption of user 𝑖𝑖 

𝑓𝑓𝑘𝑘𝑈𝑈(𝐖𝐖𝑘𝑘) CPU-cycle frequency in time slot 𝑘𝑘 
𝑓𝑓𝑖𝑖𝑀𝑀 CPU-cycle frequency of user 𝑖𝑖 

ℎ𝑖𝑖,𝑘𝑘(𝐐𝐐𝑘𝑘) channel gain for user 𝑖𝑖 in slot 𝑘𝑘 
ℎ𝑥𝑥, ℎ𝑦𝑦 bandwidth of the 2-D Gaussian kernel 

𝐻𝐻 UAV flying altitude 
𝐼𝐼𝑖𝑖 overall input data size for computation tasks of user 𝑖𝑖 
𝐼𝐼𝑖𝑖 minimum input data amount to be offloaded for user 𝑖𝑖 
𝐾𝐾 number of time slots in a time window 
𝑁𝑁 number of users 
𝑃𝑃 maximum transmit power of a user 
𝐪𝐪𝑖𝑖,𝑘𝑘 horizontal coordinate of user 𝑖𝑖 in slot 𝑘𝑘 
𝐐𝐐𝑘𝑘 horizontal coordinate of the UAV in slot 𝑘𝑘 

𝑅𝑅𝑖𝑖,𝑘𝑘(𝛿𝛿𝑖𝑖,𝑘𝑘,𝐐𝐐𝑘𝑘) data rate for user 𝑖𝑖 in slot 𝑘𝑘 
𝑆𝑆𝑖𝑖,𝑘𝑘(𝛿𝛿𝑖𝑖,𝑘𝑘) communication energy for user 𝑖𝑖 in slot 𝑘𝑘 

𝑇𝑇 time length of a computing cycle 
𝐯𝐯𝑘𝑘(𝐐𝐐) average velocity of the UAV in slot 𝑘𝑘 
𝑣𝑣max maximum velocity of the UAV 
𝑊𝑊𝑖𝑖,𝑘𝑘 amount of data offloaded by 𝑖𝑖 to be processed in slot 𝑘𝑘 at the UAV-mounted cloudlet 
𝛾𝛾1,𝛾𝛾2 UAV propulsion energy consumption parameters 
𝛿𝛿𝑖𝑖,𝑘𝑘 portion of the maximum power allocated to user 𝑖𝑖 within slot 𝑘𝑘 
Δ time length of a time slot 
𝜎𝜎2 power spectral density of channel noise 
𝜒𝜒𝑖𝑖  number of computation cycles for executing 1 bit 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/25/9036104/8964328/li1-2968343-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/25/9036104/8964328/li1-2968343-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/25/9036104/8964328/li1-2968343-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/25/9036104/8964328/li1-2968343-large.gif


 

At the beginning of each cycle, ground users with computation tasks in area 𝒜𝒜 send offloading requests to the 
UAV-mounted cloudlet. Denote the set of those ground users by ℐ, where ℐ = {1, … ,𝑁𝑁}. Assume the ground 
users in ℐ can connect to the UAV for all time slots in the cycle. In this work, the UAV and the users cooperatively 
determine the offloading and resource allocation strategy for this cycle, including the UAV moving trajectory, 
the transmit power of ground users, and computation load allocation for UAV-mounted cloudlet. Assume that 
the computation loads on solving the optimization problem are negligible compared to the computation loads of 
the offloaded tasks. During the cycle, UAV flies over the ground users and offers the computing service 
according to the designed trajectory and resource allocation strategy. By the end of the cycle, UAV returns to a 
predetermined final position. 

B. Communication Model 
The quality of communication links between the UAV and ground users is dependent on their location. To 
represent their locations, we construct a 3D Cartesian coordinate system. For IoT node i, the horizontal 
coordinate at time 𝑘𝑘 is denoted by 𝐪𝐪𝑖𝑖,𝑘𝑘 = �𝑞𝑞𝑖𝑖,𝑘𝑘𝑥𝑥 ,𝑞𝑞𝑖𝑖,𝑘𝑘

𝑦𝑦 �. Assume that nodes know their trajectory for the upcoming 
cycle, i.e., {𝐪𝐪𝑖𝑖,𝑘𝑘,∀𝑘𝑘}. For the UAV, the horizontal coordinate at time 𝑘𝑘 is denoted by 𝐐𝐐𝑘𝑘 = [𝑄𝑄𝑘𝑘𝑥𝑥 ,𝑄𝑄𝑘𝑘

𝑦𝑦]. The UAV 
moves at a fixed altitude 𝐻𝐻. The UAV trajectory plan, as an optimization variable, consists of UAV positions in 
the whole cycle, i.e., 𝐐𝐐 = [𝐐𝐐1; … ;𝐐𝐐𝐾𝐾]. The average UAV velocity in slot 𝑘𝑘 is given by 

𝐯𝐯𝑘𝑘(𝐐𝐐) =
𝐐𝐐𝑘𝑘 − 𝐐𝐐𝑘𝑘−1

Δ ,∀𝑘𝑘. 

(1) 

The average acceleration in slot 𝑘𝑘 is given by 

𝐚𝐚𝑘𝑘(𝐐𝐐) =
𝐯𝐯𝑘𝑘(𝐐𝐐) − 𝐯𝐯𝑘𝑘−1(𝐐𝐐)

Δ ,∀𝑘𝑘. 

(2) 

The magnitudes of velocity and acceleration are constrained by the maximum speed and acceleration 
magnitude, which are denoted by 𝑣𝑣max and 𝑎𝑎max, respectively. 

It is assumed that the doppler frequency shift in the communication can be compensated at the receiver. The 
channel quality depends on the distance between the UAV and users. Due to the high probability of LOS links in 
UAV communication [21], we assume that the channel gain follows a free-space path loss model. The channel 
gain for user 𝑖𝑖 in slot 𝑘𝑘 is denoted by ℎ𝑖𝑖,𝑘𝑘, where 

ℎ𝑖𝑖,𝑘𝑘(𝐐𝐐𝑘𝑘) =
𝑔𝑔0

‖𝐐𝐐𝑘𝑘 − 𝐪𝐪𝑖𝑖,𝑘𝑘‖22 + 𝐻𝐻2 , 

(3) 

where ‖ ⋅ ‖2 is the notation representing the L2 norm. The parameter 𝑔𝑔0 denotes the received power at the 
reference distance (e.g., 𝑑𝑑 = 1 m) between the transmitter and the receiver. We consider two channel access 
schemes: i) orthogonal access, in which the bandwidth is divided into 𝑁𝑁 sub-channels each occupied by one 
user; and ii) non-orthogonal access, in which the frequency bandwidth is shared among users. Denote the 
channel bandwidth for the uplink by 𝐵𝐵. The amount of data that can be offloaded by user 𝑖𝑖 in slot 𝑘𝑘 is 



𝑅𝑅𝑖𝑖,𝑘𝑘�𝛿𝛿𝑖𝑖,𝑘𝑘,𝐐𝐐𝑘𝑘� =
𝐵𝐵Δ
𝑁𝑁 log �1 +

𝛿𝛿𝑖𝑖,𝑘𝑘ℎ𝑖𝑖,𝑘𝑘(𝐐𝐐𝑘𝑘)𝑃𝑃
𝜎𝜎2(𝐵𝐵 𝑁𝑁⁄ ) � , 

(4) 

under the orthogonal access model, and, 

𝑅𝑅𝑖𝑖,𝑘𝑘(𝜹𝜹𝑘𝑘,𝐐𝐐𝑘𝑘) = 𝐵𝐵Δ log

⎣
⎢
⎢
⎡
1 +

𝛿𝛿𝑖𝑖,𝑘𝑘ℎ𝑖𝑖,𝑘𝑘(𝐐𝐐𝑘𝑘)𝑃𝑃

𝜎𝜎2𝐵𝐵 + � 𝛿𝛿𝑗𝑗,𝑘𝑘ℎ𝑗𝑗,𝑘𝑘
𝑗𝑗≠𝑖𝑖

(𝐐𝐐𝑘𝑘)𝑃𝑃
⎦
⎥
⎥
⎤

, 

(5) 

under the non-orthogonal channel model. The parameter 𝑃𝑃 and 𝜎𝜎2 denote the maximum transmit power of 
ground users and the power spectral density of channel noise, respectively. The variable 𝛿𝛿𝑖𝑖,𝑘𝑘 ∈ [0,1] represents 
the portion of the maximum power that is allocated to user 𝑖𝑖 within time slot 𝑘𝑘, which is a part of the offloading 
strategy. The symbol 𝜹𝜹𝑘𝑘 denotes the vector of 𝛿𝛿𝑖𝑖,𝑘𝑘 for all 𝑖𝑖 ∈ ℐ in slot 𝑘𝑘. The noise power in the transmission is 
represented by 𝑛𝑛0, where 𝑛𝑛0 = 𝜎𝜎2𝐵𝐵/𝑁𝑁 for the orthogonal channel access model, and 𝑛𝑛0 = 𝜎𝜎2𝐵𝐵 for the non-
orthogonal channel access model. In non-orthogonal model, users share the same channel to offload their tasks. 
The communication power allocated for a user will interfere the data rate of other users. 

C. Computation Model 
Due to the limited battery and the computing capability of the UAV, only a part of tasks can be offloaded and 
executed in the UAV-mounted cloudlet. Full granularity in task partition is considered, where the task-input data 
can be arbitrarily divided for local and remote executions [25], [28], [29]. Accordingly, a portion of the 
computation tasks are offloaded to the cloudlet while the rest are executed by the ground users locally. Users 
upload the input data for their offloaded tasks, and the UAV processes the corresponding computation loads of 
those tasks. Assume that the computation load can be executed once the input data is received, and the 
computing data amount is equal to the input data amount of tasks [25]. A task partition technique is considered, 
where the partition of the computation input bits are utilized to measure the division between the offloaded 
computation load and local computation load. The overall input data size for computation tasks of user 𝑖𝑖 is 

denoted by 𝐼𝐼𝑖𝑖. We set the threshold 𝐼𝐼
ˇ
𝑖𝑖 as the minimum input data amount required to be offloaded to the 

cloudlet for user 𝑖𝑖, where 𝐼𝐼
ˇ
𝑖𝑖 ≤ 𝐼𝐼𝑖𝑖. The threshold represents the part of computation tasks having to be 

conducted in the cloudlet. Thus, the overall offloaded bits of user 𝑖𝑖 is constrained as follows: 

𝐼𝐼
ˇ
𝑖𝑖 ≤ � 𝑅𝑅𝑖𝑖,𝑘𝑘(𝜹𝜹𝑘𝑘,𝐐𝐐𝑘𝑘) ≤ 𝐼𝐼𝑖𝑖 ,∀𝑖𝑖

𝑘𝑘∈𝒦𝒦

. 

(6) 

Under the scenario that the threshold is satisfied, if user's tasks cannot be fully offloaded, the rest of the tasks 
are processed by IoT nodes locally. 

After users upload the input data, the UAV will save the received data to a buffer with enough capacity for 
further processing. The UAV processes the received data according to the workload allocation results. Let the 
variable 𝑊𝑊𝑖𝑖,𝑘𝑘 denote the amount of data, which is from user 𝑖𝑖's offloaded task, to be processed in slot 𝑘𝑘. The 



UAV can only compute the task which is offloaded and received, and all offloaded tasks should be executed by 
the end of the cycle. Therefore, the following computation constraints are given: 

�𝑅𝑅𝑖𝑖,𝑡𝑡(𝜹𝜹𝑘𝑘,𝐐𝐐𝑘𝑘)
𝑘𝑘

𝑡𝑡=1

≥�𝑊𝑊𝑖𝑖,𝑡𝑡 ,∀𝑘𝑘
𝑘𝑘

𝑡𝑡=1

�𝑅𝑅𝑖𝑖,𝑡𝑡(𝜹𝜹𝑘𝑘,𝐐𝐐𝑘𝑘)
𝐾𝐾

𝑡𝑡=1

= �𝑊𝑊𝑖𝑖,𝑡𝑡

𝐾𝐾

𝑡𝑡=1

.

 

(7a)(7b) 

 

In addition, for the local computing, the CPU-cycle frequency of the IoT node 𝑖𝑖 is fixed as 𝑓𝑓𝑖𝑖𝑀𝑀. For the UAV-
mounted cloudlet, we consider the CPU featured by DVFS technique. The CPU-cycle frequency can step-up or 
step-down according to the computation workload and is bounded by the maximum CPU-cycle frequency 𝑓𝑓𝑚𝑚𝑚𝑚𝑥𝑥

𝑈𝑈 . 
As given in [1], [28], the CPU-cycle frequency for the cloudlet can be calculated by 

𝑓𝑓𝑘𝑘𝑈𝑈(𝐖𝐖𝑘𝑘) =
� 𝜒𝜒𝑖𝑖𝑊𝑊𝑖𝑖,𝑘𝑘𝑖𝑖

Δ ≤ 𝑓𝑓𝑚𝑚𝑚𝑚𝑥𝑥
𝑈𝑈 ,∀𝑘𝑘, 

(8) 

where 𝑓𝑓𝑘𝑘𝑈𝑈(𝐖𝐖𝑘𝑘) represents the CPU-cycle frequency in time slot 𝑘𝑘, and 𝜒𝜒𝑖𝑖  denotes the number of computation 
cycles needed to execute 1 bit of data. 

D. Energy Consumption Model 
1) Energy Consumption at Nodes 
The main energy consumption of nodes are the energy cost from communication and local computing. Firstly, 
the communication energy for user 𝑖𝑖 offloading tasks in slot 𝑘𝑘 can be formulated as 

𝑆𝑆𝑖𝑖,𝑘𝑘(𝛿𝛿𝑖𝑖,𝑘𝑘) = 𝛿𝛿𝑖𝑖,𝑘𝑘𝑃𝑃Δ. 
(9) 

The overall offloading communication energy of user 𝑖𝑖 is bounded by 𝐸𝐸𝑖𝑖𝑇𝑇, i.e., 

�𝑆𝑆𝑖𝑖,𝑘𝑘(𝛿𝛿𝑖𝑖,𝑘𝑘) ≤ 𝐸𝐸𝑖𝑖𝑇𝑇 ,∀𝑖𝑖
𝑘𝑘

. 

(10) 

Therefore, the energy consumption of a user on communication can be reduced if the UAV is closer. On the 
other hand, for the computing energy consumption, we consider that the lower bound of offloaded 

bits 𝐼𝐼
ˇ
𝑖𝑖 guarantees the local computing energy under the user's computing energy requirement, i.e., 

𝐸𝐸𝑖𝑖𝑀𝑀 = 𝜅𝜅𝜒𝜒𝑖𝑖(𝐼𝐼𝑖𝑖 − 𝐼𝐼
ˇ
𝑖𝑖)(𝑓𝑓𝑖𝑖𝑀𝑀)2 ≤ 𝐸𝐸

^
𝑖𝑖
𝑀𝑀, 

(11) 



where 𝐸𝐸𝑖𝑖𝑀𝑀 is the maximum computing energy that could be reached by threshold 𝐼𝐼
ˇ
𝑖𝑖, and 𝐸𝐸�𝑖𝑖𝑀𝑀 is the parameter 

representing the constraint of the computing energy consumption. The computing energy model is adopted 
from [1], [30]. Parameters 𝑓𝑓𝑖𝑖𝑀𝑀 and 𝜅𝜅 represent the fixed CPU-cycle frequency of user 𝑖𝑖 and a constant related to 
the hardware architecture, respectively. 

2) Energy Consumption at UAV-Mounted Cloudlet 
The main energy consumption at the UAV-mounted cloudlet consists of the energy cost from mechanical 
operation and computing. Although downlink transmission exists in our system, this part of energy consumption 
is negligible for two reasons: 1) The communication energy is too small compared to the UAV propulsion and 
computing energy. 2) The output computing results usually have much less data amount compared to the input 
data amount [31]. We adopt the refined UAV propulsion energy consumption model for fixed-wing UAV 
following [21].* The propulsion energy consumption in slot 𝑘𝑘 relates to the instantaneous UAV acceleration and 
velocity, which is given by 

𝐸𝐸𝑘𝑘𝐹𝐹(𝐐𝐐) = 𝛾𝛾1‖𝐯𝐯𝑘𝑘(𝐐𝐐)‖23 +
𝛾𝛾2

‖𝐯𝐯𝑘𝑘(𝐐𝐐)‖2
�1 +

‖𝑎𝑎𝑘𝑘(𝐐𝐐)‖22

𝑔𝑔2 � , 

(12) 

where 𝑔𝑔 denotes the gravitational acceleration. 𝛾𝛾1 and 𝛾𝛾2 are fixed parameters related to the aircraft's weight, 
wing area, air density, etc. The value of parameters is given in [21], [25]. The computing energy for executing 
tasks from user 𝑖𝑖 in time slot 𝑘𝑘 is expressed as 

𝐸𝐸𝑖𝑖,𝑘𝑘
𝐶𝐶,𝑈𝑈(𝐖𝐖𝑘𝑘) = 𝜅𝜅𝜒𝜒𝑖𝑖𝑊𝑊𝑖𝑖,𝑘𝑘(𝑓𝑓𝑘𝑘𝑈𝑈(𝐖𝐖𝑘𝑘))2. 

(13) 

SECTION IV. Problem Formulation 
In this work, the main objective is to maximize the energy efficiency of the UAV-mounted cloudlet subject to 
user offloading constraints, UAV computing capabilities, and the mechanical constraints of the UAV. The energy 
efficiency of the UAV is defined as the ratio between the overall offloaded data and the energy consumption of 
the UAV in a cycle. The energy efficiency maximization problem is formulated as follows. 

𝑚𝑚𝑎𝑎𝑚𝑚
𝜹𝜹,𝐖𝐖,𝐐𝐐

𝜂𝜂 =
∑  𝑖𝑖∈ℐ � 𝑅𝑅𝑖𝑖,𝑘𝑘(𝜹𝜹𝑘𝑘,𝐐𝐐𝑘𝑘)𝑘𝑘∈𝒦𝒦

∑  𝑘𝑘∈𝒦𝒦 ∑  𝑖𝑖∈ℐ 𝐸𝐸𝑖𝑖,𝑘𝑘
𝐶𝐶,𝑈𝑈(𝐖𝐖𝑘𝑘) + � 𝐸𝐸𝑘𝑘𝐹𝐹(𝐐𝐐)𝑘𝑘∈𝒦𝒦

s.t. ‖𝐯𝐯𝑘𝑘(𝐐𝐐)‖2 ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥,∀𝑘𝑘,
‖𝐚𝐚𝑘𝑘(𝐐𝐐)‖2 ≤ 𝑎𝑎𝑚𝑚𝑚𝑚𝑥𝑥,∀𝑘𝑘,
𝐐𝐐𝐾𝐾 = 𝐐𝐐𝑓𝑓 , 𝐯𝐯𝐾𝐾(𝐐𝐐) = 𝐯𝐯0,
0 ≤ 𝛿𝛿𝑖𝑖,𝑘𝑘 ≤ 1,
(6), (7𝑎𝑎), (7𝑏𝑏), (8), (10).

 

(14)(14a)(14b)(14c)(14d) 

The term 𝐐𝐐𝑓𝑓 represents the designated final position of the UAV, and 𝐯𝐯0 represents the initial velocity at the 
beginning of the cycle. The constraints can be categorized into three types: 1) user QoS constraints, 
including (6), (10), and (14d); 2) UAV computing ability constraints, including (7a), (7b), and (8); 3) UAV 

https://ieeexplore.ieee.org/document/#deqn6
https://ieeexplore.ieee.org/document/#deqn10
https://ieeexplore.ieee.org/document/#deqn14-deqn14d
https://ieeexplore.ieee.org/document/#deqn7a-deqn7b
https://ieeexplore.ieee.org/document/#deqn7a-deqn7b
https://ieeexplore.ieee.org/document/#deqn8


mechanical constraints, including (14a), (14b), and (14c). The optimization problem is a non-linear fractional 
programming. In addition, due to the interference among users in the non-orthogonal channel and the 
propulsion energy consumption for the fixed-wing UAV, both functions 𝑅𝑅𝑖𝑖,𝑘𝑘(𝜹𝜹𝑘𝑘 ,𝐐𝐐𝑘𝑘) and 𝐸𝐸𝑘𝑘𝐹𝐹(𝐐𝐐) are non-convex. 
Therefore, solving optimization problem (14) is challenging. To search the global optimizer of a non-convex 
problem is often slow and may not be feasible. In the following section, we will propose an approach to find a 
local optima efficiently. 

SECTION V. Proposed Optimization Approach 
In this section, an optimization approach is introduced to find a solution of problem (14). Firstly, an inner convex 
approximation method is applied to approximate the non-convex functions 𝑅𝑅𝑖𝑖,𝑘𝑘(𝜹𝜹𝑘𝑘,𝐐𝐐𝑘𝑘) and 𝐸𝐸𝑘𝑘𝐹𝐹(𝐐𝐐) by solvable 
convex functions. The SCA-based algorithm is adopted to achieve the local optimizer of the original problem. 
After the approximated convex functions are built, the fraction programming in the inner loop of the SCA-based 
algorithm is handled by the Dinkelbach algorithm. Moreover, in order to improve scalability, the problem is 
further decomposed into several sub-problems via ADMM technique, in which the power allocation is solved by 
users in a distributed manner, while the computation load allocation and UAV trajectory planning are 
determined by UAV itself. The details are presented in following subsections. 

A. Successive Convex Approximation 
Problem (14) is a non-convex problem due to 𝑅𝑅𝑖𝑖,𝑘𝑘(𝜹𝜹𝑘𝑘 ,𝐐𝐐𝑘𝑘) and 𝐸𝐸𝑘𝑘𝐹𝐹(𝐐𝐐). To construct an approximation that is 

solvable, we first introduce several auxiliary variables, {𝜉𝜉𝑖𝑖,𝑘𝑘 ,𝜔𝜔𝑘𝑘 , 𝑙𝑙𝑖𝑖,𝑘𝑘,𝐴𝐴𝑘𝑘 ,𝑅𝑅
ˇ
𝑖𝑖,𝑘𝑘 ,𝐸𝐸

^
𝑖𝑖,𝑘𝑘
𝐹𝐹 }. For the orthogonal channel 

access scheme, the new optimization problem is shown as follows: 

𝑚𝑚𝑎𝑎𝑚𝑚
𝒱𝒱

𝜂𝜂
ˇ
(𝒱𝒱) =

∑  𝑖𝑖∈ℐ ∑  𝑘𝑘∈𝒦𝒦 𝑅𝑅
ˇ
𝑖𝑖,𝑘𝑘

∑  𝑘𝑘∈𝒦𝒦 ∑  𝑖𝑖∈ℐ 𝐸𝐸𝑖𝑖,𝑘𝑘
𝐶𝐶,𝑈𝑈(𝐖𝐖𝑘𝑘) + ∑  𝑘𝑘∈𝒦𝒦 𝐸𝐸

^
𝑘𝑘
𝐹𝐹

s.t. 𝑅𝑅
ˇ
𝑖𝑖,𝑘𝑘 ≤

𝐵𝐵Δ
𝑁𝑁 log (1 + 𝜉𝜉𝑖𝑖,𝑘𝑘),∀𝑖𝑖, 𝑘𝑘

𝜉𝜉𝑖𝑖,𝑘𝑘𝑙𝑙𝑖𝑖,𝑘𝑘 ≤ 𝛿𝛿𝑖𝑖,𝑘𝑘𝑃𝑃,∀𝑖𝑖, 𝑘𝑘
(‖𝐐𝐐𝑘𝑘 − 𝐪𝐪𝑖𝑖,𝑘𝑘‖22 + 𝐻𝐻2)𝑛𝑛0

𝑔𝑔0
≤ 𝑙𝑙𝑖𝑖,𝑘𝑘 ,∀𝑖𝑖,𝑘𝑘

𝐸𝐸
^
𝑘𝑘
𝐹𝐹 ≥ 𝛾𝛾1‖𝐯𝐯𝑘𝑘(𝐐𝐐)‖23 + 𝛾𝛾2𝐴𝐴𝑘𝑘 ,∀𝑘𝑘

𝜔𝜔𝑘𝑘
2 ≤ ‖𝐯𝐯𝑘𝑘(𝐐𝐐)‖22,∀𝑘𝑘

𝜔𝜔𝑘𝑘𝐴𝐴𝑘𝑘 ≥ 1 +
‖𝑎𝑎𝑘𝑘(𝐐𝐐)‖22

𝑔𝑔2 ,∀𝑘𝑘

𝐼𝐼
ˇ
𝑖𝑖 ≤ �  

𝑘𝑘∈𝒦𝒦

𝑅𝑅
ˇ
𝑖𝑖,𝑘𝑘 ≤ 𝐼𝐼𝑖𝑖 ,∀𝑖𝑖,

(6), (7𝑎𝑎), (7𝑏𝑏), (8), (10), (14𝑎𝑎) − (14𝑑𝑑).

 

(15)(15a)(15b)(15c)(15d)(15e)(15f)(15g) 
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Set 𝒱𝒱 represents the union set of the primary and auxiliary optimization variables, where 𝒱𝒱 =

{𝜹𝜹,𝐖𝐖,𝐐𝐐, 𝝃𝝃,𝝎𝝎, 𝐥𝐥,𝐀𝐀,𝐑𝐑
ˇ

,𝐄𝐄
^
𝐹𝐹}. For the non-orthogonal channel model, constraint (15a) is replaced by the following 

constraint: 

𝑅𝑅
ˇ
𝑖𝑖,𝑘𝑘 ≤ 𝐵𝐵Δ

⎣
⎢
⎢
⎡
log�1 + �𝜉𝜉𝑖𝑖,𝑘𝑘

𝑖𝑖∈ℐ

� − log

⎝

⎛1 + � 𝜉𝜉𝑗𝑗,𝑘𝑘

𝑗𝑗∈ ℐ
{𝑖𝑖} ⎠

⎞

⎦
⎥
⎥
⎤

,

∀𝑖𝑖, 𝑘𝑘.

 

(15h) 

Lemma 1: 

Problem (15) is an equivalent form of problem (14). 

Proof: 

See Appendix A.■ 

Problem (15) includes four non-convex constraints, which are (15b), (15e), (15f), and (15h). We approximate 
those non-convex constraints by their first order Taylor expansions and adopt the successive convex 
optimization technique to solve the problem. New auxiliary variables, {𝜉𝜉𝑖𝑖,𝑘𝑘𝑡𝑡 , 𝑙𝑙𝑖𝑖,𝑘𝑘𝑡𝑡 ,𝜔𝜔𝑘𝑘

𝑡𝑡 ,𝐴𝐴𝑘𝑘𝑡𝑡 ,𝐯𝐯𝑘𝑘, 𝑧𝑧𝑖𝑖,𝑘𝑘𝑡𝑡 }, are introduced 
to represent the corresponding estimated optimizers at the previous iteration of optimization, i.e., iteration 𝑡𝑡. 
The SCA-based algorithm iterates until the estimated solution reaches to a local optimizer. Constraint (15b) can 
be approximated as follows: 

‖𝜉𝜉𝑖𝑖,𝑘𝑘 + 𝑙𝑙𝑖𝑖,𝑘𝑘 , 𝜉𝜉𝑖𝑖,𝑘𝑘𝑡𝑡 − 𝑙𝑙𝑖𝑖,𝑘𝑘𝑡𝑡 , 𝑚𝑚𝑖𝑖,𝑘𝑘 − 1‖2 ≤ 𝑚𝑚𝑖𝑖,𝑘𝑘 + 1, 

(16) 

where 

𝑚𝑚𝑖𝑖,𝑘𝑘 = 𝛿𝛿𝑖𝑖,𝑘𝑘𝑃𝑃 −
(𝜉𝜉𝑖𝑖,𝑘𝑘𝑡𝑡 − 𝑙𝑙𝑖𝑖,𝑘𝑘𝑡𝑡 )(𝜉𝜉𝑖𝑖,𝑘𝑘 − 𝑙𝑙𝑖𝑖,𝑘𝑘)

2 . 

Constraint (15e) can be approximated as follows: 

𝜔𝜔𝑘𝑘
2 ≤ ‖𝐯𝐯𝑘𝑘𝑡𝑡‖22 + 2(𝐯𝐯𝑘𝑘𝑡𝑡)𝑇𝑇(𝐯𝐯𝑘𝑘(𝐐𝐐)− 𝐯𝐯𝑘𝑘𝑡𝑡). 

(17) 

Constraint (15f) can be approximated as follows: 

‖𝜔𝜔𝑘𝑘 − 𝐴𝐴𝑘𝑘 ,𝜔𝜔𝑘𝑘
𝑡𝑡 + 𝐴𝐴𝑘𝑘𝑡𝑡 , 𝑦𝑦𝑘𝑘 − 1,2,

2𝑎𝑎𝑘𝑘(𝐐𝐐𝑘𝑘)
𝑔𝑔

‖2 ≤ 𝑦𝑦𝑘𝑘 + 1, 

(18) 

where 
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𝑦𝑦𝑘𝑘 =
(𝜔𝜔𝑘𝑘

𝑡𝑡 + 𝐴𝐴𝑘𝑘𝑡𝑡 )(𝜔𝜔𝑘𝑘 + 𝐴𝐴𝑘𝑘)
2 . 

Constraint (15h) can be approximated as follows: 

𝑅𝑅
ˇ
𝑖𝑖,𝑘𝑘 ≤

𝐵𝐵Δ
𝑁𝑁 [log�1 + 𝜉𝜉𝑖𝑖,𝑘𝑘 + 𝑒𝑒𝑖𝑖,𝑘𝑘� − log�1 + 𝑒𝑒𝑖𝑖,𝑘𝑘𝑡𝑡 �)

−
𝑒𝑒𝑖𝑖,𝑘𝑘 − 𝑒𝑒𝑖𝑖,𝑘𝑘𝑡𝑡

ln 2�1 + 𝑒𝑒𝑖𝑖,𝑘𝑘𝑡𝑡 �
],

 

(19) 

where 𝑒𝑒𝑖𝑖,𝑘𝑘 = ∑𝑗𝑗∈ℐ/{𝑖𝑖} 𝜉𝜉𝑖𝑖,𝑘𝑘. 

Lemma 2: 

Non-convex constraints (15b), (15e), (15f), and (15h) can be approximated by the convex forms in (16)–(19). The 
solution of the approximated problem is a local maximizer of problem (14), which provides the lower bound of 
the maximum energy efficiency that can be achieved. 

Proof: 

See Appendix B.■ 

Algorithm 1: SCA-based Algorithm for Solving Problem (15). 

1. Initialize the auxiliary variables 𝔸𝔸0 = {𝜉𝜉𝑖𝑖,𝑘𝑘0 ,𝜔𝜔𝑘𝑘
0 , 𝑙𝑙𝑖𝑖,𝑘𝑘0 ,𝐴𝐴𝑘𝑘0 ,𝑅𝑅

ˇ
𝑖𝑖,𝑘𝑘
0 ,𝐸𝐸

^
𝑖𝑖,𝑘𝑘
𝐹𝐹,0} and loop index 𝑡𝑡 = 0. 

2. repeat 
3. Solve the approximated problem (20) for given 𝔸𝔸𝑡𝑡, and denote the optimal solution for auxiliary 

variables by 𝔸𝔸𝑡𝑡+1: 

𝑚𝑚𝑎𝑎𝑚𝑚
𝒱𝒱

𝜂𝜂
ˇ
(𝒱𝒱;𝔸𝔸𝑡𝑡)

s.t. (6), (7𝑎𝑎), (7𝑏𝑏), (8), (10), (14𝑎𝑎) − (14𝑑𝑑),
(15𝑐𝑐), (15𝑑𝑑), (15𝑔𝑔), (16) − (17),
(15𝑎𝑎), in the case of orthogonal channel,
(19), in the case of non-orthogonal channel.

 

(20) 
4. Update 𝑡𝑡 = 𝑡𝑡 + 1. 
5. until The difference of the solutions between two adjacent iterations, i.e., ‖𝔸𝔸𝑡𝑡+1 − 𝔸𝔸𝑡𝑡‖, is below 
a threshold 𝜃𝜃1. 

 

Based on Lemma 1 and Lemma 2, the SCA-based algorithm is summarized by Algorithm 1. The 

term 𝜂𝜂
ˇ
(𝒱𝒱;𝔸𝔸𝑡𝑡) represents the energy efficiency 𝜂𝜂

ˇ
(𝒱𝒱) in (15) with the given value in auxiliary variable set 𝔸𝔸𝑡𝑡. 

Note that the approximated problem inside the loop (Steps 3 and 4 in Algorithm 1) is a fractional programming 
problem and still non-convex. We will provide the optimal solution of the approximated problem in the 
remainder of the section. The convergence of SCA has been proven in [32], and the algorithm will stop after 
finite iterations if the local optimizer exists. 
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B. Dinkelbach Algorithm 
Problem (20) is a fraction programming problem. We can adopt the Dinkelbach algorithm to achieve the optimal 
solution. The objective function (20) can be rewritten as the following parametric programming form: 

𝐹𝐹𝑡𝑡(𝛼𝛼) = 𝑚𝑚𝑎𝑎𝑚𝑚
𝒱𝒱

{�  
𝑘𝑘∈𝒦𝒦

�  
𝑖𝑖∈ℐ

𝑅𝑅
ˇ
𝑖𝑖,𝑘𝑘 − 𝛼𝛼[�  

𝑘𝑘∈𝒦𝒦

�  
𝑖𝑖∈ℐ

𝐸𝐸𝑖𝑖,𝑘𝑘
𝐶𝐶,𝑈𝑈(𝐖𝐖𝑘𝑘)

+ �  
𝑘𝑘∈𝒦𝒦

𝐸𝐸
^
𝑘𝑘
𝐹𝐹]|𝒱𝒱 ∈ ℱ𝑡𝑡},

 

(21) 

where ℱ𝑡𝑡 represents the feasible set of problem (20) at the 𝑡𝑡-th iteration in Algorithm 1. The function 𝐹𝐹𝑡𝑡(𝛼𝛼) is a 
monotonic decreasing function of 𝛼𝛼. Let the term 𝛼𝛼∗ denote the solution of 𝐹𝐹𝑡𝑡(𝛼𝛼∗) = 0. Due to the monotone 
decreasing property of 𝐹𝐹𝑡𝑡(𝛼𝛼), 𝐹𝐹𝑡𝑡(𝛼𝛼∗) = 0 if and only if 𝛼𝛼∗ is equal to the optimal result of 

problem (20), i.e., 𝛼𝛼∗ = 𝜂𝜂
ˇ
(𝒱𝒱∗;𝔸𝔸𝑡𝑡) [33]. The algorithm for solving problem (20) is shown in Algorithm 2. 

Algorithm 2: Dinkelbach Algorithm for Solving Problem (20). 
1. Initialize 𝛼𝛼0 = 0 if 𝑡𝑡 = 0, 𝛼𝛼0 = 𝛼𝛼∗ in loop 𝑡𝑡 − 1 if 𝑡𝑡 ≥ 0, and the loop index 𝑚𝑚 = 0. 
2. repeat 
3. Solve problem (21) for given 𝛼𝛼𝑚𝑚, and denote the solution for the problem by 𝒱𝒱𝑑𝑑𝑚𝑚. 

4. Update the Dinkelbach auxiliary variable 𝛼𝛼𝑚𝑚+1 = 𝜂𝜂
ˇ
(𝒱𝒱𝑑𝑑𝑚𝑚;𝔸𝔸𝑡𝑡). 

5. 𝑚𝑚 = 𝑚𝑚 + 1. 
6. until 𝐹𝐹𝑡𝑡(𝛼𝛼𝑚𝑚+1) ≤ 𝜃𝜃2. 

 

Due to the nature of the SCA-based algorithm and Dinkelbach algorithm, we can further cut the iteration times 
based on the following Lemma. 

Lemma 3: 

Denote the optimal Dinkelbach parameter 𝛼𝛼∗ for two consecutive SCA iterations by 𝛼𝛼∗(𝑡𝑡 − 1) and 𝛼𝛼∗(𝑡𝑡). We 
have 𝛼𝛼∗(𝑡𝑡 − 1) ≤ 𝛼𝛼∗(𝑡𝑡), and 𝐹𝐹𝑡𝑡(𝛼𝛼∗(𝑡𝑡 − 1)) ≥ 𝐹𝐹𝑡𝑡(𝛼𝛼∗(𝑡𝑡)) = 0. 

Proof: 

Denote the optimization results and the corresponding Dinkelbach parameter at iteration 𝑡𝑡 − 1 by 𝒱𝒱∗(𝑡𝑡 −

1) and 𝛼𝛼∗(𝑡𝑡 − 1), respectively. From Dinkelbach algorithm, we have 𝛼𝛼∗(𝑡𝑡 − 1) = 𝜂𝜂
ˇ ∗(𝒱𝒱∗(𝑡𝑡 − 1);𝔸𝔸𝑡𝑡−1) ≤

𝜂𝜂
ˇ ∗(𝒱𝒱∗). As shown in Lemma 2, the approximated function provides the global lower bound of the original 
optimization function, and the results have to be inside the feasible set of the approximate optimization 

function for the next iteration. Thus, 𝜂𝜂
ˇ ∗(𝒱𝒱∗(𝑡𝑡 − 1);𝔸𝔸𝑡𝑡−1) ≤ 𝜂𝜂

ˇ
(𝒱𝒱∗(𝑡𝑡 − 1);𝔸𝔸𝑡𝑡) ≤ 𝜂𝜂

ˇ ∗(𝒱𝒱∗(𝑡𝑡);𝔸𝔸𝑡𝑡). 
Therefore, 𝛼𝛼∗(𝑡𝑡 − 1) ≤ 𝛼𝛼∗(𝑡𝑡). Moreover, due to the monotonically decreasing nature of 𝐹𝐹(𝛼𝛼), 𝐹𝐹𝑡𝑡(𝛼𝛼∗(𝑡𝑡 − 1)) ≥
𝐹𝐹𝑡𝑡(𝛼𝛼∗(𝑡𝑡)) = 0.■ 

Given Lemma 3, the initial point in iteration t, i.e., 𝛼𝛼0(𝑡𝑡), in Algorithm 2 can be set at 𝛼𝛼∗(𝑡𝑡 − 1) rather than 0 so 
that the computation efficiency of the optimization algorithm can be further improved. 
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C. Sub-Problem Decomposition by ADMM 
By now, the UAV computation energy efficiency maximization problem has been transformed into a solvable 
form. However, solving problem (21) is time-consuming due to multiple second order cone (SOC) constraints 
and requires the local information exchange between the UAV and users. Therefore, we propose a distributed 
solution, in which users maximize their offloaded computation tasks in parallel while the UAV aims to minimize 
its energy consumption. The original problem is decomposed into several sub-problems without losing 
optimality, and the UAV and users solve the optimization problem cooperatively. Local information, such as the 
mobility of users and the propulsion energy consumption function of the UAV, is not required to be shared 
among users and the UAV. 

We adopt ADMM technique to decompose problem (21) [34]. The optimization solution is achieved in an 
iterative manner. Firstly, we introduce an auxiliary variable, 𝔾𝔾, which is solved by users: 

𝔾𝔾 = �
𝐐𝐐
¨
1,1 … 𝐐𝐐

¨
𝑁𝑁,1 𝑊𝑊1,1 … 𝑊𝑊𝑁𝑁,1

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝐐𝐐
¨
1,𝐾𝐾 … 𝐐𝐐

¨
𝑁𝑁,𝐾𝐾 𝑊𝑊1,𝐾𝐾 … 𝑊𝑊𝑁𝑁,𝐾𝐾

�

𝑇𝑇

 

where 𝐐𝐐
¨
𝑖𝑖,𝑘𝑘 denotes the UAV location in time slot 𝑘𝑘 expected by user 𝑖𝑖. Each user solves a part of the 

matrix 𝔾𝔾𝑖𝑖 = [𝐐𝐐
¨
𝑖𝑖,1,𝑊𝑊𝑖𝑖,1; … ;𝐐𝐐

¨
𝑖𝑖,𝐾𝐾 ,𝑊𝑊𝑖𝑖,𝐾𝐾, and updates it to the UAV. Then, the UAV generates its trajectory, 𝐐𝐐, and 

overall computation load allocation according to the uploaded matrix 𝔾𝔾. Denote the overall amount of 
computation load processed in slot 𝑘𝑘 at UAV by 𝑉𝑉𝑘𝑘, where 𝐕𝐕 = [𝑉𝑉1; … ;𝑉𝑉𝐾𝐾]. The results determined by the UAV 
are summarized by matrix ℍ, where ℍ = [𝕀𝕀(𝑁𝑁×1)𝐐𝐐;𝐕𝐕]. 𝕀𝕀(𝑁𝑁×1) is a vector where all 𝑁𝑁 entries are 1. By the end of 
the ADMM algorithm, the expected UAV trajectories should be unified and follow the flying constraints. The 
computation load should be allocated under the UAV computing capability. Thus, in the final optimal solution, 
the following constraint should be satisfied: 

ℙ𝑇𝑇𝔾𝔾 = ℍ, 
(22) 

where 

ℙ = �
𝕀𝕀(𝑁𝑁×𝑁𝑁) 𝟎𝟎(𝑁𝑁×1)
𝟎𝟎(𝑁𝑁×𝑁𝑁) 𝝌𝝌 � 

The vector 𝜒𝜒 represents the computation intensity for users’ tasks, where 𝝌𝝌 = [𝜒𝜒1; … ;𝜒𝜒𝑁𝑁]. The sub-
matrices 𝕀𝕀(𝑁𝑁×𝑁𝑁) and 𝟎𝟎(𝑁𝑁×𝑁𝑁) denote 𝑁𝑁-by-𝑁𝑁 identity matrix and zero matrix, respectively. 

In addition, for the non-orthogonal channel model, we introduce another auxiliary variable, 𝑒𝑒𝑖𝑖,𝑘𝑘, which denotes 
the summation of 𝜉𝜉𝑗𝑗,𝑘𝑘 in all other users except user 𝑖𝑖. This variable is used to decouple the 
correlated 𝜉𝜉𝑗𝑗,𝑘𝑘 in (15h) to facilitate the independent optimization process at each user. At the end of the 

optimization, 𝑒𝑒𝑖𝑖,𝑘𝑘 should be equal to � 𝜉𝜉𝑗𝑗,𝑘𝑘
𝑗𝑗∈ℐ/{𝑖𝑖}

. For simplicity of presentation, we transform this constraint 

as follows: 

1
𝑁𝑁 (𝑒𝑒𝑖𝑖,𝑘𝑘 + 𝜉𝜉𝑖𝑖,𝑘𝑘) = 𝜉𝜉𝑘𝑘 , 
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(23) 

where 𝜉𝜉𝑘𝑘 is the mean of {𝜉𝜉1,𝑘𝑘, … , 𝜉𝜉𝑁𝑁,𝑘𝑘}. Then, the augmented Lagrangian function is formulated as follows: 

Γ(𝒱𝒱A) = −�  
𝑘𝑘∈𝒦𝒦

�  
𝑖𝑖∈ℐ

𝑅𝑅
ˇ
𝑖𝑖,𝑘𝑘 + 𝛼𝛼 ��  

𝑘𝑘∈𝒦𝒦

�  
𝑖𝑖∈ℐ

𝐸𝐸𝑖𝑖,𝑘𝑘
𝐶𝐶,𝑈𝑈(𝐖𝐖) + �  

𝑘𝑘∈𝒦𝒦

𝐸𝐸 𝑘𝑘
𝐹𝐹�

+Tr{𝐔𝐔1𝑇𝑇(ℙ𝑇𝑇𝔾𝔾 −ℍ)} +
𝜌𝜌1
2 ‖ℙ𝑇𝑇𝔾𝔾 −ℍ‖𝐹𝐹2

+𝜛𝜛�  
𝑘𝑘∈𝒦𝒦

�{𝑈𝑈2,𝑖𝑖,𝑘𝑘[
1
𝑁𝑁 (𝑒𝑒𝑖𝑖,𝑘𝑘 + 𝜉𝜉𝑖𝑖,𝑘𝑘) − 𝜉𝜉𝑘𝑘]

𝑖𝑖∈ℐ

+
𝜌𝜌2
2 �

1
𝑁𝑁 �𝑒𝑒𝑖𝑖,𝑘𝑘 + 𝜉𝜉𝑖𝑖,𝑘𝑘� − 𝜉𝜉𝑘𝑘�

2

},

 

(24) 

where ‖ ⋅ ‖𝐹𝐹 is the notation representing the Frobenius norm. Set VA represents variables {𝒱𝒱,𝔾𝔾,ℍ,𝐔𝐔1,𝐔𝐔2}. 
Variables 𝐔𝐔1 ∈ 𝐑𝐑(𝑁𝑁+1)×𝐾𝐾 and 𝐔𝐔2 ∈ 𝐑𝐑𝑁𝑁×𝐾𝐾 are Lagrangian multipliers for the two auxiliary 
constraints, (22) and (23), respectively. Two parameters, 𝜌𝜌1 and 𝜌𝜌2, are penalty parameters. The 
parameter 𝜛𝜛 indicates the channel model. 𝜛𝜛 = 1 denotes the case of the non-orthogonal channel access 
scheme, and 𝜛𝜛 = 0 denotes the case of the orthogonal channel access scheme. 

Problem (21) can be separated into two sub-problems. The sub-problem solved in user 𝑖𝑖 is organized as follows: 

𝑚𝑚𝑖𝑖𝑛𝑛
𝒱𝒱1

− �  
𝑘𝑘∈𝒦𝒦

𝑅𝑅
ˇ
𝑖𝑖,𝑘𝑘 + Tr�(𝐔𝐔1,𝑖𝑖

𝑛𝑛−1)𝑇𝑇ℙ𝑖𝑖𝑇𝑇𝔾𝔾𝑖𝑖�

+
𝜌𝜌1
2 ‖ℙ𝑖𝑖𝑇𝑇𝔾𝔾𝑖𝑖 − 𝕁𝕁𝑖𝑖𝑛𝑛−1‖𝐹𝐹2

+𝜛𝜛�
𝑈𝑈2,𝑖𝑖,𝑘𝑘
𝑛𝑛−1�𝑒𝑒𝑖𝑖,𝑘𝑘�
𝑁𝑁 +

𝜌𝜌2
2 �

𝑒𝑒𝑖𝑖,𝑘𝑘 − 𝑒𝑒𝑖𝑖,𝑘𝑘𝑛𝑛−1

𝑁𝑁 + 𝜃𝜃𝑖𝑖,𝑘𝑘𝑛𝑛−1�
2

+�−
𝑈𝑈2,𝑗𝑗,𝑘𝑘
𝑛𝑛−1𝜉𝜉𝑖𝑖,𝑘𝑘
𝑁𝑁 +

𝜌𝜌2
2 �

𝜃𝜃𝑗𝑗,𝑘𝑘
𝑛𝑛−1

𝑁𝑁 − 1 +
𝜉𝜉𝑖𝑖,𝑘𝑘𝑛𝑛−1 − 𝜉𝜉𝑖𝑖,𝑘𝑘

𝑁𝑁 �
2

�

𝑗𝑗∈ ℐ
{𝑖𝑖}

s.t.
(‖𝐐𝐐

¨
𝑖𝑖.𝑘𝑘 − 𝐪𝐪𝑖𝑖,𝑘𝑘‖22 + 𝐻𝐻2)𝑛𝑛0

𝑔𝑔0
≤ 𝑙𝑙𝑖𝑖,𝑘𝑘 ,∀𝑖𝑖,𝑘𝑘

(7𝑎𝑎), (7𝑏𝑏), (10), (14𝑑𝑑), (15𝑔𝑔), (16),
(15𝑎𝑎), if 𝜛𝜛 = 0,
(19), if 𝜛𝜛 = 1,

 

(25a)(25b) 
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and the sub-problem solved in the UAV is organized as follows: 

𝑚𝑚𝑖𝑖𝑛𝑛
𝒱𝒱2

𝛼𝛼 ��  
𝑘𝑘∈𝒦𝒦

𝜅𝜅𝑉𝑉𝑘𝑘3

Δ2 + �  
𝑘𝑘∈𝒦𝒦

𝐸𝐸
^
𝑘𝑘
𝐹𝐹� − Tr{(𝐔𝐔1𝑛𝑛)𝑇𝑇ℍ}

+
𝜌𝜌1
2 ‖ℙ𝑇𝑇𝔾𝔾𝑛𝑛 − ℍ‖𝐹𝐹2

s.t.
𝑉𝑉𝑘𝑘
Δ ≤ 𝑓𝑓𝑚𝑚𝑚𝑚𝑥𝑥

𝑈𝑈 ,∀𝑘𝑘,

(14𝑎𝑎), (14𝑏𝑏), (15𝑑𝑑), (18), (17).

 

(26a)(26b) 

The term (𝑚𝑚)𝑛𝑛−1 represents the variable 𝑚𝑚 obtained in iteration 𝑛𝑛 − 1. The Lagrangian multipliers 𝐔𝐔1 and 𝐔𝐔2 are 
updated at each iteration as follows: 

𝐔𝐔1𝑛𝑛 = 𝐔𝐔1𝑛𝑛−1 + 𝜌𝜌1(ℙ𝑇𝑇𝔾𝔾𝑛𝑛 − ℍ)𝑛𝑛

𝐔𝐔2,𝑖𝑖,𝑘𝑘
𝑛𝑛 = 𝐔𝐔2,𝑖𝑖,𝑘𝑘

𝑛𝑛−1 + 𝜌𝜌2𝜃𝜃𝑖𝑖,𝑘𝑘𝑛𝑛 ,  

(27a)(27b) 

where 𝜃𝜃𝑖𝑖,𝑘𝑘𝑛𝑛  is 

𝜃𝜃𝑖𝑖,𝑘𝑘𝑛𝑛 =
1
𝑁𝑁 �𝑒𝑒𝑖𝑖,𝑘𝑘

𝑛𝑛 + 𝜉𝜉𝑖𝑖,𝑘𝑘𝑛𝑛 � − 𝜉𝜉𝑘𝑘
𝑛𝑛

. 

(28) 

Algorithm 3: ADMM Algorithm for Solving Problem (21). 
1. Initialize variables {𝐞𝐞0,𝝃𝝃0,𝜽𝜽0,ℍ0,𝔾𝔾0} and dual variables {𝐔𝐔10,𝐔𝐔20}. Loop index 𝑛𝑛 = 0. 
2. repeat 
3. For each user 𝑖𝑖: 
4. If 𝜛𝜛 = 0: Wait until receive updated 𝕁𝕁𝑖𝑖𝑛𝑛−1. 
5. If 𝜛𝜛 = 1: Wait until receive updated {𝕁𝕁𝑖𝑖𝑛𝑛−1,𝜽𝜽𝑛𝑛−1}. 
6. Calculate the dual variable 𝐔𝐔1,𝑖𝑖

𝑛𝑛−1 = 𝐔𝐔1,𝑖𝑖
𝑛𝑛−2 + 𝜌𝜌1(ℙ𝑖𝑖𝑇𝑇𝔾𝔾𝑖𝑖

𝑛𝑛−1 − 𝕁𝕁𝑖𝑖𝑛𝑛−1). 
7. Calculate the dual variable 𝐔𝐔2 for all 𝑖𝑖 ∈ ℐ by (27b). 
8. Solve problem (25). 
9. If 𝜛𝜛 = 0: Send 𝔾𝔾𝑖𝑖

𝑛𝑛 to the cloudlet. 
10. If 𝜛𝜛 = 1: Send {𝔾𝔾𝑖𝑖

𝑛𝑛,𝐞𝐞𝑖𝑖𝑛𝑛,𝝃𝝃𝑖𝑖𝑛𝑛} to the cloudlet. 
11. For the UAV-mounted cloudlet: 
12. Gather information from users to form matrix 𝔾𝔾𝑛𝑛. 
13. Solve problem (26), and update Hn. 
14. Update dual variable Un1 by (27a) 
15. If 𝜛𝜛 = 1: Update variables 𝜃𝜃𝑖𝑖,𝑘𝑘𝑛𝑛 ∀𝑖𝑖, 𝑘𝑘 by (28), and send the variables to users. 
16. 𝑛𝑛 = 𝑛𝑛 + 1. 
17. until |Γ𝑛𝑛(𝒱𝒱,𝔾𝔾,𝐕𝐕,𝐔𝐔1,𝐔𝐔2)− Γ𝑛𝑛−1(𝒱𝒱,𝔾𝔾,𝐕𝐕,𝐔𝐔1,𝐔𝐔2)| ≤ 𝜃𝜃3. 

 

https://ieeexplore.ieee.org/document/#deqn21
https://ieeexplore.ieee.org/document/#deqn27a-deqn27b
https://ieeexplore.ieee.org/document/#deqn27a-deqn27b
https://ieeexplore.ieee.org/document/#deqn28


𝜃𝜃𝑖𝑖,𝑘𝑘 represents the difference between the user expected interference and the real interference. At iteration 𝑛𝑛, 
problem (25) is solved by each user individually. The optimization variable 

set 𝒱𝒱1 includes {𝛿𝛿𝑖𝑖,𝑘𝑘 ,𝑊𝑊𝑖𝑖,𝑘𝑘 ,𝐐𝐐
¨
𝑖𝑖,𝑘𝑘 , 𝜉𝜉𝑖𝑖,𝑘𝑘, 𝐥𝐥,𝐑𝐑

ˇ
, 𝑒𝑒𝑖𝑖,𝑘𝑘} for all 𝑘𝑘 ∈ 𝒦𝒦. To decompose the auxiliary constraint (22) for each 

user 𝑖𝑖, we introduce sub-matrices ℙ𝑖𝑖, ℍ𝑖𝑖, and 𝐔𝐔1,𝑖𝑖, which are defined as follows: The parameter matrix ℙ𝑖𝑖 is the 
sub-matrix sliced from ℙ, where ℙ𝑖𝑖 = 𝐝𝐝𝐝𝐝𝐚𝐚𝐝𝐝{1,𝜒𝜒𝑖𝑖}. The matrix 𝕁𝕁𝑖𝑖  is obtained by the information from the UAV, 

where 𝕁𝕁𝑖𝑖𝑛𝑛 = �𝐐𝐐𝑛𝑛; 𝐕𝐕
𝑛𝑛

𝑁𝑁
+ 𝜒𝜒𝑖𝑖𝑊𝑊𝑖𝑖

𝑛𝑛 −�
𝜒𝜒𝑗𝑗𝐖𝐖𝑗𝑗

𝑛𝑛

𝑁𝑁𝑗𝑗∈ℐ
�. The sub-matrix 𝐔𝐔1,𝑖𝑖 is sliced from the dual variable, where 𝐔𝐔1,𝑖𝑖 =

[𝐔𝐔1(𝑖𝑖, : );𝐔𝐔1(𝑁𝑁 + 1, : )]. The detailed decomposition process is omitted due to the space limit. Subsequently, 

problem (26) is solved by the UAV. The optimization variable set 𝒱𝒱2 includes {𝐐𝐐,𝝎𝝎,𝐀𝐀,𝐄𝐄
^
𝐹𝐹}. 

Lemma 4: 

If the initial value of {𝐞𝐞0,𝝃𝝃0,𝐔𝐔10,𝐔𝐔20} is shared and unified among all users and the UAV, only information from 
the UAV required for computing the sub-problem on the user side at each iteration is {𝕁𝕁𝑖𝑖𝑛𝑛−1,𝜽𝜽𝑛𝑛−1}. 

Proof: 

If the initial value is unified among the UAV and users, the dual variables are not required to be shared and can 
be computed locally by the UAV and users. For computing the dual variable 𝐔𝐔1,𝑖𝑖 at 𝑛𝑛, the following knowledge is 
required: the updated global value 𝕁𝕁𝑖𝑖𝑛𝑛−1, the historical value for the local information 𝔾𝔾𝑖𝑖

𝑛𝑛−1, and the historical 
value of the dual variable 𝐔𝐔1,𝑖𝑖

𝑛𝑛−1. Therefore, if 𝐔𝐔1,𝑖𝑖
0  is identical to all users and the UAV, 𝐔𝐔1,𝑖𝑖

𝑛𝑛  can be synchronized 
according to the historical value and the value from the global variable. Similarly, 𝐔𝐔2 can be updated by users if 
the initial value is known.■ 

Consider the condition in Lemma 4, the distributed algorithm is given in Algorithm 3. In each optimization 
iteration, user side computes and share matrix 𝔾𝔾 to the UAV, and UAV computes and shares the matrix 𝕁𝕁 to 
users. Meanwhile, when 𝜛𝜛 = 1, excepting contributing matrix 𝔾𝔾𝑖𝑖, user 𝑖𝑖 needs the 
information 𝑒𝑒𝑗𝑗,𝑘𝑘 and 𝜉𝜉𝑗𝑗,𝑘𝑘 from other users 𝑗𝑗 ∈ ℐ/{𝑖𝑖} to evaluate the interference. 

By the problem decomposition, at the user side, each user only aims to maximize its own offloading data given 
the UAV trajectory computed by the UAV-mounted cloudlet and the interference environment in the previous 
iteration. At the UAV-mounted cloudlet side, the UAV aims to minimize energy consumption under the users’ 
expected UAV trajectories to collect enough workload. The trade-off between the received offloaded tasks and 
the energy consumption is controlled by the parameter 𝛼𝛼 which is updated out of the ADMM algorithm loop. 
Meanwhile, the corresponding variables and constraints are split into two groups. This introduces three main 
advantages. Firstly, local variables and parameters, such as user location and user offloading constraints, are not 
required to be uploaded to the UAV. Similarly, UAV's mechanical parameters and settings are not required to be 
shared to users for offloading optimization. Secondly, less configuration is required when the UAV is replaced. 
Thirdly, the main computation load in solving the problem is from the SOC programming. The SOC constraints 
are now decomposed and solved by users in parallel such that the computation efficiency can be improved. For 
ADMM algorithm, in the orthogonal channel model, there are two main distributed blocks: the user side and the 
UAV side. The convergence of ADMM is guaranteed when the number of blocks is no more than two. In the non-
orthogonal channel model, since each user is required to compute the interference variable 𝑒𝑒𝑖𝑖,𝑘𝑘 parallelly, 
convergence is not always guaranteed. Proximal Jacobian ADMM can be adopted to ensure the convergence, in 
which the proximal term 𝜏𝜏

2
||𝑚𝑚𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑘𝑘||2 is further combined in the primal problem of the current algorithm [35]. 
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D. Convergence and Complexity Analysis 
The convergence for the three loops in Algorithms 1 to 3 is guaranteed. For the SCA-based algorithm, if the 
problem is feasible and the initial values of the approximate variables are in the feasible set of the original 
optimization problem (14), the algorithm convergence is ensured [32]. Moreover, the Dinkelbach algorithm can 
achieve the optimal 𝛼𝛼∗ with a super-linear rate. 

The computation complexity of the problem is dominated by the SOC programming [13], [36]. Suppose that 
Algorithm 3 runs 𝐿𝐿1 × 𝐿𝐿2 iterations, where the SCA algorithm loop repeats 𝐿𝐿1 times, and the loop for the 
Dinkelbach algorithm repeats 𝐿𝐿2 times. The problem before decomposition, i.e., problem (21), has 𝐾𝐾𝑁𝑁 SOC 
constraints in 4 dimensions, 𝐾𝐾 SOC constraints in 7 dimensions, and KN SOC constraints in 2 dimensions, 
where 6𝐾𝐾𝑁𝑁 + 4𝐾𝐾 variables participates in those constraints. The overall complexity can 
be 𝐿𝐿1𝐿𝐿2𝑂𝑂(√2𝐾𝐾𝑁𝑁 + 𝐾𝐾(6𝐾𝐾𝑁𝑁 + 4𝐾𝐾)(20𝐾𝐾𝑁𝑁 + 49𝐾𝐾 + (6𝐾𝐾𝑁𝑁 + 4𝐾𝐾)2)). After ADMM decomposition, for the sub-
problem on the user side, there are 𝐾𝐾 SOC constraints in 4 dimensions and 𝐾𝐾 SOC constraints in 2 dimensions. 
Thus, the computation complexity is 𝐿𝐿1𝐿𝐿2𝑂𝑂(1/𝜃𝜃3)𝑂𝑂(√2𝐾𝐾(5𝐾𝐾)(20𝐾𝐾 + (5𝐾𝐾)2)) for each user. On the UAV side, 
the sub-problem contains K SOC constraints in 7 dimensions. The complexity is 𝐿𝐿1𝐿𝐿2𝑂𝑂(1/𝜃𝜃3)𝑂𝑂(√𝐾𝐾(2𝐾𝐾)(49𝐾𝐾 +
(2𝐾𝐾)2)). 

SECTION VI. Proactive Trajectory Design Based on Spatial Distribution 
Estimation 
So far, we have introduced the trajectory design and resource allocation for the scenario that all computation 
load information and user location are known. However, some IoT nodes have a certain mobility [37]. It is hard 
for users to know their future positions during the upcoming computation cycle. Moreover, users needs to send 
the offloading requests at the beginning of the cycle. It means that the user may buffer the computation task 
until a new cycle begins, which introduces extra delay for waiting to send the request. Thus, the maximum 
queue delay may reach to 𝑇𝑇 seconds. To deal with the above issues, in this subsection, we introduce an 
approach to estimate the spatial distribution of user locations in a cycle. The mobility of users is predicted by an 
unsupervised learning tool, kernel density estimation method [38], and the computation load of each user is 
considered in a stochastic model correspondingly. The UAV trajectory is optimized via the estimated knowledge 
about ground users. Thus, UAV can collect the offloaded tasks of users without requesting in advance. 

To estimate the location of users, each user need to report its current location periodically. The sampled 
location of user 𝑖𝑖 is represented by 𝑞𝑞𝑖𝑖. We use the sampled location to estimate the spatial distribution of users 
for the cycle, where the probability density function for the user at (𝑚𝑚,𝑦𝑦) is denoted as 𝑓𝑓(𝑚𝑚,𝑦𝑦). 

In order to compute 𝑓𝑓(𝑚𝑚,𝑦𝑦), consider a small region 𝐑𝐑 which is a rectangle area with side length 
of ℎ𝑥𝑥 and ℎ𝑦𝑦, i.e., Parzen window. To count the number of users falling within the region, we define the 
following function to indicate if user 𝑖𝑖 is in the area: 

𝐶𝐶(𝑞𝑞𝑖𝑖𝑥𝑥,𝑞𝑞𝑖𝑖
𝑦𝑦;𝐑𝐑) =

⎩
⎨

⎧1, if max�
�|𝑞𝑞𝑖𝑖𝑥𝑥 − 𝑚𝑚|�

ℎ𝑥𝑥
,
��𝑞𝑞𝑖𝑖

𝑦𝑦 − 𝑦𝑦��
ℎ𝑦𝑦

� ≤
1
2

0, otherwise,

 

(29) 

where (𝑚𝑚,𝑦𝑦) is the central point of the area. Thus, for a large 𝑁𝑁, the general expression for non-parametric 
density estimation is [38] 
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𝑓𝑓(𝑚𝑚,𝑦𝑦) =
1

𝑁𝑁ℎ𝑥𝑥ℎ𝑦𝑦
�𝐶𝐶(𝑞𝑞𝑖𝑖𝑥𝑥, 𝑞𝑞𝑖𝑖

𝑦𝑦;𝐑𝐑)
𝑖𝑖∈ℐ

. 

(30) 

To establish continuous estimation function, a smooth Gaussian kernel is applied, where 

𝑓𝑓
^

(𝑚𝑚,𝑦𝑦) =
1

𝑁𝑁�ℎ𝑥𝑥ℎ𝑦𝑦
�

1
2𝜋𝜋 𝑒𝑒

−[(𝑞𝑞𝑖𝑖
𝑥𝑥−𝑥𝑥)2
2ℎ𝑥𝑥

+
(𝑞𝑞𝑖𝑖

𝑦𝑦−𝑦𝑦)2
2ℎ𝑦𝑦

]

𝑖𝑖∈ℐ

. 

(31) 

The term 𝑓𝑓
^

(𝑚𝑚,𝑦𝑦) is the distribution of Gaussian kernel estimation. In (31), ℎ𝑥𝑥 and ℎ𝑦𝑦 represent the bandwidth of 
the Gaussian kernel rather than the side length of the Parzen window. To improve the estimation quality, the 
proper bandwidth, ℎ𝑥𝑥 and ℎ𝑦𝑦, needs to be selected to minimize the error between the estimated density and 
the true density. In this work, the maximum likelihood cross-validation method [38], [39] is adopted to 
determine the bandwidth ℎ𝑥𝑥 and ℎ𝑦𝑦. The optimal bandwidth is 

[ℎ𝑥𝑥∗ ,ℎ𝑦𝑦∗ ] = argmax�
1
𝑁𝑁
�og 𝑓𝑓

^
−𝑖𝑖(𝑞𝑞𝑖𝑖𝑥𝑥,𝑞𝑞𝑖𝑖

𝑦𝑦)

𝑖𝑖∈ℐ

l� , 

(32) 

where 𝑓𝑓
^
−𝑖𝑖(𝑞𝑞𝑖𝑖𝑥𝑥,𝑞𝑞𝑖𝑖

𝑦𝑦) is the estimated distribution in which user 𝑖𝑖 is left out of the estimation. In order to apply the 
estimated distribution into our proposed approach, we divide the working area of the UAV 𝒜𝒜 into 𝐺𝐺 × 𝐺𝐺 sub-
areas. For sub-area 𝒜𝒜𝑖𝑖, there is a virtual user located at the center of the area. The virtual user carries all the 
computation tasks in the sub-area. It is assumed that the distribution of the task input data size and user spatial 
location are independent. The expected length of input bits for the tasks generated by a user by 𝔼𝔼[𝑋𝑋]. Thus, 
expected length of computing bits generated inside sub-area 𝒜𝒜𝑖𝑖  is 

𝔼𝔼[𝐼𝐼𝑖𝑖] = 𝔼𝔼[𝑋𝑋]𝔼𝔼[𝑁𝑁𝑖𝑖] = 𝔼𝔼[𝑋𝑋]� 𝑓𝑓
^

(𝑥𝑥,𝑦𝑦)∈𝒜𝒜𝑖𝑖

(𝑚𝑚,𝑦𝑦)𝑑𝑑𝑚𝑚𝑑𝑑𝑦𝑦, 

(33) 

where 𝔼𝔼[𝑁𝑁𝑖𝑖] denotes the expected number of users in the sub-area 𝒜𝒜𝑖𝑖. Our proposed approach can now be 
adopted to solve the problem: In the new problem, there are 𝐺𝐺2 virtual users participating in the computation 
task offloading, and virtual user 𝑖𝑖 has 𝔼𝔼[𝐼𝐼𝑖𝑖] computation load to be done in a cycle. The location of user 𝑖𝑖 is fixed 
at the center of the sub-area. For the orthogonal channel model, the virtual user 𝑖𝑖 shares a portion 
of 𝔼𝔼[𝑁𝑁𝑖𝑖]/𝑁𝑁 of the channel bandwidth. As 𝐺𝐺 increases, the performance of the estimation will be improved 
correspondingly. 
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SECTION VII. Numerical Results 
In this section, we evaluate the performance of our proposed optimization approach. The parameter settings are 
given in Table II. The channel gain parameter 𝑔𝑔0 is −70 dB. Let the term 𝑝𝑝 represent the percentage of 

computation tasks that have to be offloaded to the cloudlet, i.e., (𝐼𝐼
ˇ
𝑖𝑖/𝐼𝐼𝑖𝑖) ∗ 100%. We consider that users have 

homogeneous offloading requirements in the simulation, i.e., 𝐸𝐸𝑖𝑖𝑇𝑇 and p are identical for all user. The term “NO” 
represents the non-orthogonal channel access scheme, and the term “O” represents the orthogonal channel 
access scheme. We also consider the circular trajectory scheme as the benchmark, where the UAV moves 
around a circle within a cycle, with the circle center located at (0.5, 0.5) km, and the radius is predefined. Two 
network scenarios are considered: a three-node scenario and a four-node scenario. In the three-node scenario, 
there are three users located at (0, 1) km, (1, 1) km, and (1, 0) km, as shown in Fig. 2(a). At the beginning of the 
cycle, the UAV moves from the location (0, 0) at an initial speed (−10, 0) m/s. By the end of the cycle, the UAV 
returns to the final designated position at (0.5, 0) km. In the four-node scenario, there are four users located at 
the randomly generated locations. The users travel at constant speeds which are random selected from [−3, 
−3] m/s to [3, 3] m/s, as shown in Fig. 2(b). The UAV moves from the location (200, 200) m at an initial speed 
(−10, 0) m/s and returns to the initial position at the end of the cycle. 

 
Fig. 2. Optimal UAV trajectories with different parameter settings: (a) the three-node scenario; (b) the four-node 
scenario with user mobility, where the solid straight lines represent user trajectories, and the arrows represent 
user moving directions. 
 

TABLE II Parameter Settings for the Three-Node Scenario 

Parameter Value Parameter Value 
𝐵𝐵 3 MHz 𝜅𝜅 10-28 
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𝜎𝜎2 -80 dBm/Hz 𝛾𝛾1 0.0037 
𝜒𝜒𝑖𝑖  1550.7 𝛾𝛾2 500.206 
Δ 1.5 s 𝐻𝐻 100 m 

𝛼𝛼max 50 m/s2 𝑃𝑃 100 mW 
𝑣𝑣max 35 m/s 𝐾𝐾 50 

 

The UAV trajectory results obtained by the proposed approach are shown in Fig. 2. In the three-node case 
shown in Fig. 2(a), the UAV takes most of the time moving towards and stays around the location of user 2 due 
to high computation task loads of the user. With a higher minimum offloading requirement 𝑝𝑝, the UAV moves 
closer to users in order to collect more offloading tasks. Similarly, with a lower maximum communication energy 
requirement 𝐸𝐸𝑖𝑖𝑇𝑇, the UAV also moves closer to users to reduce the user's offloading communication energy 
consumption. Moreover, since the non-orthogonal access method has a higher channel capacity, under the 
same condition, the trajectory of the non-orthogonal case is shrunk to preserve the mechanical energy 
consumption compared to the orthogonal channel case. Similar results can be obtained in the four-node case, as 
shown in Fig. 2(b). 

The comparisons of the energy efficiency with different settings are shown in Fig. 3. In Figs. 3(a) and 3(b), the x-
axis represents the iteration number of the SCA-based algorithm loop. As shown in Fig. 3(a), the energy 
efficiency converges at 𝑡𝑡 = 30 in the three-node scenario, while the number of iterations till convergence is 
increased in the four-node scenario. Moreover, for both scenarios, with loose user offloading requirements, the 
energy efficiency is improved due to the expanded optimization feasible set. In contrast, with tight user 
offloading requirements, the energy efficiency is decreased significantly due to high energy consumption for the 
UAV to move closer to the users. 



 
Fig. 3. Energy efficiency versus main loop iteration number with different trajectory designs: (a) the three-node 
scenario; (b) the four-node scenario with user mobility. 
 

For the three-node case, the ratio of the offloaded data amount to the overall computing data amount is shown 
in Fig. 4. The parameter setting for the indexes are given in Table III, where the results by the proposed 
approach are shown in 1–6, and the results by the circular trajectory are shown in 7–9. For all scenarios, the 
proposed approach can achieve the minimum offloading requirement, while the circular trajectory scheme 
cannot guarantee to achieve the requirement. Moreover, when the maximum communication energy 
requirement 𝐸𝐸𝑖𝑖𝑇𝑇 is increased, the UAV can collect more data even though its trajectory is far away from users 
compared to the case with a low𝐸𝐸𝑖𝑖𝑇𝑇 . The UAV also collects the extra offloaded tasks, which is beyond the users’ 
requirement, to improve its energy efficiency. 
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Fig. 4. The ratio of the offloaded task data amount to the overall computation task data among generated by 
users with different parameter settings. 
 

TABLE III Parameter Setting for Fig. 4 

 

Index 𝑝𝑝 𝐸𝐸𝑖𝑖𝑇𝑇 Index 𝑝𝑝 𝐸𝐸𝑖𝑖𝑇𝑇 Index Radius 𝐸𝐸𝑖𝑖𝑇𝑇 
I 90% 0.5 J 4 60% 0.5 J 7 200 m 0.5 J 
2 90% 0.8 J 5 60% 0.8 J 8 200 m 0.8 J 
3 90% 1.1 J 6 60% 1.1 J 9 200 m 1.1 J 

 

The trade-off between the maximum offloading energy, i.e., 𝐸𝐸𝑖𝑖𝑇𝑇, and the energy efficiency in the three-node 
case is shown in Fig. 5(a). As 𝐸𝐸𝑖𝑖𝑇𝑇 increases, the energy efficiency of the UAV is increased at first and hits the 
ceiling in a high 𝐸𝐸𝑖𝑖𝑇𝑇. At that point, 𝐸𝐸𝑖𝑖𝑇𝑇 is not the factor that limits the energy efficiency performance since all 
user's computing data is collected as shown in Fig. 5(c). When the energy efficiency reaches the maximum value, 
the UAV will find a path that has minimum energy consumption given that all tasks are offloaded. Furthermore, 
our proposed approach can improve the energy efficiency significantly compared to the circular trajectory. 
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Fig. 5. (a) Energy efficiency versus the maximum offloading communication energy 𝐸𝐸𝑖𝑖𝑇𝑇 with different settings. (b) 
Overall energy consumption in a cycle versus the maximum offloading communication energy 𝐸𝐸𝑖𝑖𝑇𝑇. (c) Overall 
offloaded bits in a cycle versus the maximum offloading communication energy 𝐸𝐸𝑖𝑖𝑇𝑇. 
 

The magnitudes of the UAV acceleration and velocity in the three-node case are shown in Fig. 6(a) and Fig. 6(b), 
respectively. The final velocity is constrained to be equal to the initial velocity. Note that the optimal velocity 
cannot be zero due to the characteristic of fixed-wing UAV. With the lower maximum energy requirement, both 
magnitudes of acceleration and velocity are increased, such that the UAV can move closer to users. With the 
higher energy requirement, the fluctuation on velocity and acceleration decreases to reduce the propulsion 
energy consumption of the UAV. 

 
Fig. 6. (a) The acceleration of the UAV in the cycle. (b) The speed of the UAV in the cycle. 
 

The ratio of the actual allocated transmit power to the maximum power, 𝛿𝛿𝑖𝑖,𝑘𝑘, for the three users in a cycle is 
shown in Fig. 7(a). Note that the overall offloading communication energy is limited. For the user with high 
offloading demands, i.e., user 2, the ratio is maximized when the UAV moves adjacent to it, while the ratio is 
minimized when the UAV moves away from it. The user tends to preserve the communication energy and starts 
the offloading only when the data rate is high. However, for user 3, the transmit power is still allocated when 
the UAV is far away from the location of the user for two reasons: Firstly, the maximum communication energy 
of the user allows user uploading the data even though the user transmission efficiency is low. Secondly, the 
UAV-mounted cloudlet prefers collecting the data in advance such that it can balance the computation load to 
reduce the computing energy cost. The computation load allocation of the cloudlet in the three-node case is 
shown in Fig. 7(b). Since the energy consumption is cubically increased as the computation load in a unit time 
increased (based on (8) and (13)), the computation load is preferred to be balanced among time slots. However, 
the computation load can only be executed after the corresponding tasks are offloaded into the cloudlet. 
Therefore, in the case with limited maximum communication energy, the allocated computation load is 
increased only when the new offloaded tasks are received. In contrast, with the loose maximum communication 
energy constraint, the workload fluctuation is reduced significantly to minimize the computing energy 
consumption. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/25/9036104/8964328/li6-2968343-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/25/9036104/8964328/li6-2968343-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/25/9036104/8964328/li6-2968343-large.gif
https://ieeexplore.ieee.org/document/#deqn8
https://ieeexplore.ieee.org/document/#deqn13
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/25/9036104/8964328/li6-2968343-large.gif


 
Fig. 7. (a) The transmit power allocation among three users, where 𝑝𝑝 = 90%, and 𝐸𝐸𝑖𝑖𝑇𝑇 = 0.5 J under orthogonal 
channel scenario. (b) The workload allocation with different settings. 
 

SECTION VIII. Conclusion 
In this paper, an optimization approach has been proposed to maximize the energy efficiency of a UAV-assisted 
MEC system, where the UAV trajectory design and resource allocation have been jointly considered. The non-
convex and non-linear energy efficiency maximization problem has been solved in a distributed manner. 
Moreover, the node mobility estimation has been adopted to design a proactive UAV trajectory when the 
knowledge of user trajectory is limited. Our work can offer valuable insights on UAV optimal trajectory design 
for providing on-demand edge computing service for remote IoT nodes. In the future, considering the 
uncertainty of user mobility and the time-invariant computation demand, we will focus on the online resource 
management in UAV-assisted MEC system under a dynamic channel environment. 

Appendix A Proof of Lemma 1 

Firstly, to deal with the non-convex function on the numerator, i.e., 𝑅𝑅𝑖𝑖,𝑘𝑘(𝛿𝛿𝑖𝑖,𝑘𝑘 ,𝐐𝐐𝑘𝑘), we introduce the auxiliary 

variable 𝑅𝑅
ˇ
𝑖𝑖,𝑘𝑘 to indicate the lower bound of the data rate for user 𝑖𝑖 in slot 𝑘𝑘. Moreover, we introduce two 

auxiliary variables: the term 𝜉𝜉𝑖𝑖,𝑘𝑘, where 𝜉𝜉𝑖𝑖,𝑘𝑘 ≤ 𝛿𝛿𝑖𝑖,𝑘𝑘𝑃𝑃/𝑙𝑙𝑖𝑖,𝑘𝑘, and the term 𝑙𝑙𝑖𝑖,𝑘𝑘, where 𝑙𝑙𝑖𝑖,𝑘𝑘 ≥ 𝑁𝑁0/ℎ𝑖𝑖,𝑘𝑘. Thus, the 
following relation can be established 

𝑅𝑅
ˇ
𝑖𝑖,𝑘𝑘 ≤

𝐵𝐵Δ
𝑁𝑁 log (1 + 𝜉𝜉𝑖𝑖,𝑘𝑘) ≤ 𝑅𝑅𝑖𝑖,𝑘𝑘(𝛿𝛿𝑖𝑖,𝑘𝑘 ,𝐐𝐐𝑘𝑘), 

(34) 

where 𝑅𝑅
ˇ
𝑖𝑖,𝑘𝑘 is the epigraph form of 𝑅𝑅𝑖𝑖,𝑘𝑘(𝛿𝛿𝑖𝑖,𝑘𝑘 ,𝐐𝐐𝑘𝑘). When (15) is maximized, i.e., the numerator 𝑅𝑅

ˇ
𝑖𝑖,𝑘𝑘
∗  is maximized, 

we have 𝑙𝑙𝑖𝑖,𝑘𝑘∗ = 1/𝑔𝑔𝑖𝑖,𝑘𝑘∗ , 𝜉𝜉𝑖𝑖,𝑘𝑘∗ = 𝛿𝛿𝑖𝑖,𝑘𝑘∗ 𝑃𝑃/𝑙𝑙𝑖𝑖,𝑘𝑘∗ , and 𝑅𝑅
ˇ
𝑖𝑖,𝑘𝑘
∗ = 𝑅𝑅𝑖𝑖,𝑘𝑘(𝛿𝛿𝑖𝑖,𝑘𝑘∗ ,𝐐𝐐𝑘𝑘∗ ). 
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Furthermore, to deal with the non-linear function on the denominator, i.e., 𝐸𝐸𝑘𝑘𝐹𝐹(𝐐𝐐), we introduce an auxiliary 

variable 𝐸𝐸
^
𝑘𝑘
𝐹𝐹 to indicate the upper bound of the UAV propulsion energy in slot 𝑘𝑘. For the non-linear part of the 

function, we introduce two auxiliary variables: the term 𝜔𝜔𝑘𝑘, where 𝜔𝜔𝑘𝑘
2 ≤ ‖𝐯𝐯𝑘𝑘(𝐐𝐐)‖2

2, and the term 𝐴𝐴𝑖𝑖,𝑘𝑘, 
where 𝐴𝐴𝑖𝑖,𝑘𝑘 ≥ (1/𝜔𝜔𝑘𝑘)(1 + ‖𝑎𝑎𝑘𝑘(𝐐𝐐)‖22/𝑔𝑔2). Thus, we have 

𝐸𝐸
^
𝑘𝑘
𝐹𝐹 ≥ 𝛾𝛾1‖𝐯𝐯𝑘𝑘(𝐐𝐐)‖23 + 𝛾𝛾2𝐴𝐴𝑘𝑘

≥ 𝛾𝛾1‖𝐯𝐯𝑘𝑘(𝐐𝐐)‖23 + 𝛾𝛾2
1
𝜔𝜔𝑘𝑘

�1 +
‖𝑎𝑎𝑘𝑘(𝐐𝐐)‖22

𝑔𝑔2 � ≥ 𝐸𝐸𝑘𝑘𝐹𝐹(𝐐𝐐).
 

(35) 

Similarly, when (15) is maximized, i.e., the denominator 𝐸𝐸𝑘𝑘𝐹𝐹(𝐐𝐐) is minimized, 𝐸𝐸
^
𝑘𝑘
𝐹𝐹∗ = 𝐸𝐸𝑘𝑘𝐹𝐹(𝐐𝐐∗). Therefore, 

problem (15) is equivalent to problem (14), and 𝜂𝜂∗ = 𝜂𝜂
ˇ ∗. 

Appendix B Proof of Lemma 2 

Constraint (15b) can be transformed into the following equivalent form: 

(𝜉𝜉𝑖𝑖,𝑘𝑘 + 𝑙𝑙𝑖𝑖,𝑘𝑘)2 − (𝜉𝜉𝑖𝑖,𝑘𝑘 − 𝑙𝑙𝑖𝑖,𝑘𝑘)2 ≤ 4𝛿𝛿𝑖𝑖,𝑘𝑘𝑃𝑃, 

(36) 

which is difference of convex functions [32]. Then, we approximate the second part of the equation by the 
Taylor expansion: 

(𝜉𝜉𝑖𝑖,𝑘𝑘 − 𝑙𝑙𝑖𝑖,𝑘𝑘)2 ≈ (𝜉𝜉𝑖𝑖,𝑘𝑘𝑡𝑡 − 𝑙𝑙𝑖𝑖,𝑘𝑘𝑡𝑡 )2

+ �
2𝜉𝜉𝑖𝑖,𝑘𝑘𝑡𝑡 − 2𝑙𝑙𝑖𝑖,𝑘𝑘𝑡𝑡

2𝑙𝑙𝑖𝑖,𝑘𝑘𝑡𝑡 − 2𝜉𝜉𝑖𝑖,𝑘𝑘𝑡𝑡
�
𝑇𝑇

�
𝜉𝜉𝑖𝑖,𝑘𝑘 − 𝜉𝜉𝑖𝑖,𝑘𝑘𝑡𝑡

𝑙𝑙𝑖𝑖,𝑘𝑘 − 𝑙𝑙𝑖𝑖,𝑘𝑘𝑡𝑡
�

 

(37) 

Then, we further reformulate the approximated equation as the constraints shown in (16) with a cone 
expression. Moreover, constraint (15f) is approximated by constraint (18) in a similar way. 
Constraints (15e) and (15h) are approximated by (17) and (19) respectively by first order Taylor expansion to 
obtain the lower bound on the squared norm and the subtracted term, respectively. 

All the approximated constraints (16)–(19) are stricter than their original counterparts, guaranteeing that the 
solution of the approximated problem is strictly smaller than the original optimum. For example, consider the 
optimal 𝜉𝜉𝑖𝑖,𝑘𝑘 and 𝑙𝑙𝑖𝑖,𝑘𝑘 obtained by solving the approximated problem, which is denoted by 𝜉𝜉𝑖𝑖,𝑘𝑘𝑚𝑚  and 𝑙𝑙𝑖𝑖,𝑘𝑘𝑚𝑚 . These two 
variables are bounded by constraint (16) in the approximated problem. Comparing (16) with the original 
constraint (15b) and considering the property of the Taylor expansion, we have 𝜉𝜉𝑖𝑖,𝑘𝑘𝑚𝑚 𝑙𝑙𝑖𝑖,𝑘𝑘𝑚𝑚 + Δ𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥 ≤ 𝛿𝛿𝑖𝑖,𝑘𝑘𝑃𝑃, 
where Δ𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥 ≥ 0. Thus, 

𝐵𝐵Δ
𝑁𝑁 log�1 + 𝜉𝜉𝑖𝑖,𝑘𝑘𝑚𝑚 � ≤

𝐵𝐵Δ
𝑁𝑁 log�1 +

𝛿𝛿𝑖𝑖,𝑘𝑘𝑃𝑃
𝑙𝑙𝑖𝑖,𝑘𝑘𝑚𝑚

� 

(38) 
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Moreover, due to 𝑙𝑙𝑖𝑖,𝑘𝑘𝑚𝑚 ≥ 1/𝑔𝑔𝑖𝑖,𝑘𝑘, we have 

𝐵𝐵Δ
𝑁𝑁 log�1 +

𝛿𝛿𝑖𝑖,𝑘𝑘𝑃𝑃
𝑙𝑙𝑖𝑖,𝑘𝑘𝑚𝑚

� ≤ 𝑅𝑅𝑖𝑖,𝑘𝑘�𝛿𝛿𝑖𝑖,𝑘𝑘,𝐐𝐐𝑘𝑘�. 

(39) 

Therefore, the approximation on constraint (15b) will leads to 𝑅𝑅
ˇ
𝑖𝑖,𝑘𝑘
∗ < 𝑅𝑅𝑖𝑖,𝑘𝑘(𝛿𝛿𝑖𝑖,𝑘𝑘 ,𝐐𝐐𝑘𝑘). Other approximated 

constraints can be proven similarly to show that the proposed approximated objective function provides the 
global lower bound for original objective function (14). Moreover, due to the gradient consistency in the first 
order estimation, the SCA algorithm will be stopped when a local optimizer is found. 
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Footnotes 
We deploy the fixed-wing UAV in the proposed system as an example. The proposed approach also can be 

adapted to the system with a quad-rotor UAV, where only the mechanical energy consumption model is 
different. 
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