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ABSTRACT The integration of communications with different scales, diverse radio access technologies, and
various network resources renders next-generation wireless networks (NGWNs) highly heterogeneous and
dynamic. Emerging use cases and applications, such as machine to machine communications, autonomous
driving, and factory automation, have stringent requirements in terms of reliability, latency, throughput, and
so on. Such requirements pose new challenges to architecture design, network management, and resource
orchestration in NGWNs. Starting from illustrating these challenges, this paper aims at providing a good
understanding of the overall architecture of NGWNs and three specific research problems under this ar-
chitecture. First, we introduce a network-slicing based architecture and explain why and where artificial
intelligence (AI) should be incorporated into this architecture. Second, the motivation, research challenges,
existing works, and potential future directions related to applying AI-based approaches in three research
problems are described in detail, i.e., flexible radio access network slicing, automated radio access technology
selection, and mobile edge caching and content delivery. In summary, this paper highlights the benefits and
potentials of AI-based approaches in the research of NGWNs.

INDEX TERMS Next-generation wireless networks, heterogeneous networks, network slicing, machine
learning, radio access network slicing, radio access technology selection, content placement and delivery.

I. INTRODUCTION
A. NEXT-GENERATION WIRELESS NETWORKS: VISIONS &
CHALLENGES
The evolution of mobile communications from the first to
the fifth generation (5G) has revolutionized many aspects
of human society in the past four decades. Expediting this
evolution, the next-generation wireless networks (NGWNs)
are envisioned to be the cornerstone for a vast number
of novel applications, ranging from remote surgery to
smart cities. Following the classification of services into
enhanced mobile broadband (eMBB), massive machine-type
communications (mMTC), and ultra-reliable and low-latency
communications (URLLC) [1], the NGWNs will support even

more diversified services with various throughput, latency,
and reliability requirements [2]. Meanwhile, thanks to
improved reliability and connection density, the NGWNs are
expected to attract enterprise users, in addition to conventional
mobile communication users, by supporting use cases such as
autonomous driving and factory automation [3], [4].

The above evolution has been shaping wireless networks to-
wards becoming increasingly heterogeneous and dynamic [5].
For instance, NGWNs will incorporate various components
such as device-to-device (D2D), vehicle-to-everything
(V2X), and mobile edge computing (MEC), with different
radio access technologies including cellular, Wi-Fi, and
dedicated short-range communications (DSRC), as well
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as different access points such as cellular base stations
(BSs), road-side units (RSUs), and unmanned aerial vehicles
(UAVs). Each component in the integrated heterogeneous
communication networks can have a unique focus and a
corresponding set of performance metrics. For example, V2X
communications must handle highly dynamic communication
channels and rapidly changing network topology, while D2D
communications require decentralized channel access control
and communication resource allocation with high energy
efficiency. As the heterogeneous and dynamic characteristics
are inevitable results of supporting ever-growing demands for
increasingly-diverse communication services, they impose
significant challenges in the architecture design, network
deployment, and network management in NGWNs.

Designing the architecture for NGWNs that can handle
diversified services and maximize infrastructure and resource
utilization efficiency is the first major challenge. Achieving
the goals of increasing network capacity and accommodating
highly diverse services with stringent quality of service (QoS)
requirements necessitates innovations in network architecture.
Network densification via deploying ultra-dense small cells
can improve network capacity [6]. However, it does not pro-
vide a solution to scalable management of heterogeneous net-
works, but creates additional challenges such as extra infras-
tructure deployment cost, low cell utilization efficiency, and
inter-cell interference. The integration of terrestrial and space
networks has been proposed for providing seamless communi-
cation coverage [7]. Such integration, however, poses a further
challenge in network management considering the dynamic
trajectory of UAVs, the orbits of satellites, and the resulting
impact on the service range and communication channels.
A cloud/Fog-radio access network (RAN) based architecture,
which incorporates the paradigm of cloud and fog computing
into wireless networks, has also been proposed [8]. However,
such an architecture focuses on improving energy efficiency,
reducing cost, and alleviating data traffic on the fronthaul
rather than satisfying diversified service requirements in com-
plex heterogeneous networks.

The second challenge is how to achieve scalable and intelli-
gent network management that can adapt to dynamic network
environments. Network environments can change rapidly due
to user mobility, time-varying channel conditions, dynami-
cally changing traffic load distribution, and temporal varia-
tions of content popularity. Up to the current generation of
wireless communication services, the problem of handling
a dynamic environment has been studied mostly on a small
scale, i.e., from the perspective of individual or several mobile
users or base stations. One example is opportunistic spec-
trum access that targets individual secondary mobile users
for them to access channels in a dynamic network envi-
ronment [9], [10]. Another example is the dynamic deploy-
ment of virtual machines in cloud-fog computing systems
based on computing task arrival patterns [11]. Nevertheless,
managing NGWNs requires the development of scalable and
adaptive models and approaches that suit large-scale prob-
lems and heterogeneous network architectures, which should

include both centralized and decentralized network control
components.

Last but not least, effective real-time network resource or-
chestration in the presence of multi-dimensional resources,
many service types, and unknown traffic models is another
challenge. The NGWNs will integrate functionalities of net-
working, caching, computing, sensing, and control [12]. Cor-
respondingly, the resources in NGWNs will extend beyond the
conventional communication resources (i.e., bandwidth, time,
and/or transmit power), and include computing and caching
resources. As a result, adaptive and flexible network resource
orchestration becomes crucial, considering the surging growth
in data traffic and increasingly diversified and stringent QoS
requirements. Conventional centralized resource allocation
can become inadequate in certain parts of NGWNs. For exam-
ple, resource allocation in microcells and D2D communica-
tions may need to be decided locally in order to reduce signal-
ing overhead and response time [13]. In addition, conventional
approaches that rely on instantaneous network information,
such as channel state information, and focus on optimizing
an instantaneous performance metric, such as instantaneous
data rate, can become inapplicable when such information is
unknown. In NGWNs, exploiting the spatial-temporal traffic
patterns while achieving service differentiation and maintain-
ing massive connectivity will be a major challenge in network
resource orchestration.

B. NETWORK-SLICING BASED ARCHITECTURE
Network slicing is an important network architecture innova-
tion in 5G that is also expected to be inherited in the next gen-
eration [14]–[16]. Network slicing enables the coexistence of
multiple isolated and independent virtual (logical) networks,
i.e., slices, on the same physical network infrastructure. The
advantages of network slicing are multifold. First, through the
multiplexing of the virtual networks, network slicing supports
multi-tenancy, i.e., multiple virtual network operators (VNOs)
sharing the same physical network infrastructure [17]. This
reduces capital expense in network deployment and opera-
tion. Second, network slicing provides the potential to cre-
ate customized slices for different service types with various
QoS requirements, which can achieve service differentiation
and guarantee service level agreement (SLA) for each service
type. Third, as slices can be created on-demand and modified
or annulled as needed, network slicing increases the flexibility
and adaptability in network management [18].

The enabling techniques for implementing network slicing
are software-defined networking (SDN) and network func-
tion virtualization (NFV). SDN leverages the cloud comput-
ing paradigm in network management, such that the network
has a centralized controller to dynamically steer and manage
traffic flow and orchestrate network resource allocation for
performance optimization [19]. An SDN controller provides
the abstract set of resources and control logic for establishing
slices, and a slice can be viewed as an SDN client context [20].
Therefore, SDN facilitates the pre-defining of slice blueprints
as well as the on-demand creation of slice instances based
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on the corresponding service characteristics and requirements.
NFV implements network functions, e.g., firewall, load bal-
ancing, address translation, etc., as software instances, known
as virtual network functions (VNFs), running on virtual ma-
chines on top of general servers (referred to as NFV nodes)
without requiring specialized hardware [21], [22]. Thus, a
network service in NFV can be considered as a component
of a network slice, while a network slice contains one or more
VNFs [23]. NFV complements SDN in implementing network
slicing since SDN establishes control plane functions that
enable slicing while NFV provisions services and manages
the life cycle of network slices and orchestrates slice resources
through realizing VNFs [24].

Despite its popularity in both academia and industry, the
slicing of RANs faces several challenges. For example, de-
termining the optimal slicing granularity, i.e., whether or not
there should be a slice for each type of service, each set of QoS
requirements, each VNO, or some combination of the afore-
mentioned, is an open problem [25]. In addition, effective ad-
mission control that strikes a balance among infrastructure uti-
lization, service provisioning in each slice, and the revenue of
network operator calls for further investigation [26]. Last, the
monitoring of slice SLA and the slice adaption based on traffic
dynamics can be challenging, considering that the resource
allocation among slices aims at slice isolation. The afore-
mentioned challenges, generally involving making optimal
decisions in a dynamic environment with unknown informa-
tion, may not be solved following conventional model-based
methods. Therefore, although network slicing will continue to
be an important part of the NGWNs, additional innovations
in the network architecture are necessary for addressing the
above challenges.

C. INTEGRATING ARTIFICIAL INTELLIGENCE
The past decade has witnessed remarkable advances in the
research and applications of artificial intelligence (AI). Re-
search in machine learning (ML), one of the most powerful AI
tools, has been progressing rapidly to embrace a wide range
of applications including voice recognition, image processing,
and self-driving vehicles. The rapid advances in ML, boosted
by the progress in hardware technology specialized to support
AI, paves the path for applying AI in NGWNs [27]. A major
advantage of ML is its ability to handle complicated problems,
which renders ML a powerful tool that suits the dynamic,
heterogeneous, and decentralized features of NGWNs. Ap-
plying ML can potentially yield benefits such as improved
performance and faster convergence in network manage-
ment automation and performance optimization in large-scale
systems.

ML methods include supervised learning, unsupervised
learning, and reinforcement learning (RL), each of which
suits a different group of research problems in wireless com-
munications. Supervised learning relies on labeled data to
learn the mapping from the input to the output, and can be
used to analyze network data, learn network characteristics,

and estimate network parameters [28]. Applications of su-
pervised learning in communications and networks include
traffic classification [29], smart offloading [30], sub-6 GHz
to millimeter wave (mmWave) frequency handover [31], and
mmWave beam alignment [32]. Unsupervised learning iden-
tifies patterns and attributes hidden in data for inference and
prediction without using labeled data. Potential applications in
communication networks include spectrum sensing [33] and
traffic volume prediction [34]. RL iteratively learns the opti-
mal decisions, based on the feedback of network state infor-
mation, to maximize a cumulative reward in the long term. RL
methods are particularly suitable for decision making in a dy-
namic environment. The applications of RL include protocol
design [35] and user scheduling with resource allocation [36].

Due to their potential applications and benefits, applying
ML methods is gaining momentum in the research and de-
velopment (R&D) of communication networks to enhance
system performance, flexibility, and scalability. For network
data analysis, ML can handle the heterogeneity and spatial-
temporal diversity in the data for network design and manage-
ment [37]. For user mobility management, ML is a tool for an-
alyzing the mobility pattern of mobile users for location-based
services [38]. For network resource management, ML-based
methods can be applied to model and study the joint allocation
of communication, caching, and computing resources [39] or
the joint problem of content caching and delivery [40].

As mentioned earlier, the heterogeneous and dynamic char-
acteristics of NGWNs demand powerful tools to automate and
optimize network slicing. From existing studies in literature,
it can be seen that ML is potentially a promising tool for
this purpose. Applying ML in network slicing can provide the
innovations required to address the aforementioned challenges
in the network architecture and resource orchestration and,
thereby, help fulfill the great prospect of NGWNs.

The rest of this paper is organized as follows. Section II pro-
vides a description of the overall architecture. Sections III to V
discuss three research problems in a network-slicing based ar-
chitecture, as well as related research efforts and, in particular,
AI-based approaches. Section III focuses on RAN slicing. In
Section IV, we present radio access technology (RAT) selec-
tion and user association automation. Section V investigates
content caching and content delivery. Section VI concludes
this study. Table 1 lists the acronyms used in this paper.

II. NETWORK ARCHITECTURE
This section presents the overall network architecture based
on network slicing and discusses where and how AI can be
applied. Due to the challenges mentioned in the introduction,
the NGWN architecture is expected to have the following
properties [41]:
� Flexible and scalable, to support a wide range of service

types and QoS requirements, and to support scalable
slice management after the deployment of slices;

� Automated and adaptive, to support automated RAN and
cloud network resource allocation and adaptation based
on data traffic and network performance, and to support
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TABLE 1. List of Acronyms

automated slice creation, slice performance monitoring,
and slice adaption;

� Open and modularized, to support customized slices de-
fined or operated by VNO, and to open certain network
management functions to third parties.

A network-slicing based AI-assisted network architecture
satisfying the above properties is illustrated in Fig. 1. This
architecture employs two-tier controllers, with a logical cen-
tralized SDN controller placed at a central cloud, and local
SDN controllers at individual RANs. Each local controller is
connected to the infrastructure in its corresponding RAN and
responsible for collecting the network information and mak-
ing local decisions in network operations. VNFs are deployed
at servers connected to radio heads, APs, storage facilities,
local data servers, etc. In the context of RAN, VNFs con-
sist of baseband unit (BBU) functions, e.g., compression and
encryption procedures and hybrid automatic repeat-request
(HARQ) [42], [43]. Accordingly, network slicing translates to
the placement of VNFs into various slices (subject to physical
infrastructure constraints and QoS requirements), the estab-
lishment of the logical topology of the VNFs in each slice,
and the mapping from the VNFs to the underlying physical
infrastructure. In this architecture, computing becomes espe-
cially important due to the virtualization of network functions
since the placement of VNFs in the slices is essentially the
allocation of required computing resources.

The key functional components and their relations corre-
sponding to the architecture in Fig. 1 are shown in Fig. 2.
While end-to-end (E2E) connections span both wireless seg-
ment(s) and the core network, this illustration focuses on the
wireless domain. The centralized SDN controller is responsi-
ble for slice blueprint definition and end-to-end slicing based
on the information collected from local controllers. Local

controllers are responsible for assisting the centralized con-
troller in the slicing of their corresponding RANs. After a slice
is deployed, the corresponding local controller is responsible
for orchestrating slice resources among end users as well
as monitoring slice status for resource utilization and QoS
satisfaction. In addition, local controllers can be involved in
slice adaption, while the centralized SDN controller may or
may not be involved depending on the service type and the
use case. The network status and operation data, aggregated
from all slices, are collected by local controllers and either
processed locally or forwarded to the centralized SDN con-
troller for analysis. The analysis results will be used to update
slice deployment and slice adaption. The relation between
centralized and local controllers introduces an important ques-
tion: whether and when should the centralized controller be
involved in specific network management and resource allo-
cation tasks under this network architecture? Evidently, in-
volving the centralized SDN controller in such tasks can take
advantage of the global network information for making op-
timal network management and resource allocation decisions.
However, decision making via the centralized SDN controller
can incur significant signaling overhead. Therefore, a balance
between the tasks for the centralized and local controllers,
which depends on the type of tasks and the type of a slice,
should be investigated.

The three blocks in Fig. 2, i.e., network topology, net-
work protocol, and network resource orchestration, form a
closed loop, which reflects the interplay between the two
levels of network management: network planning and network
resource scheduling [52]. Network planning, including the ini-
tial resource reservation for all slices, corresponds to the block
of network topology in Fig. 2. Meanwhile, network resource
scheduling consists of the network protocol and network
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FIGURE 1. An illustration of network-slicing based NGWN architecture,with three example network slices.

resource orchestration blocks in Fig. 2, where the resource
orchestration applies within each slice. As shown in Fig. 3,
network planning admits slice requests, reserves resources for
the admitted slices, and determines the placement of required
VNFs in each slice. Based on the result of network planning,
network resource scheduling further allocates resources in a
slice to individual network users dynamically. The resulting
SLA violation and resource utilization in the admitted slices
are monitored, based on which the network planning may be
adjusted in the future.

The role of AI in the network architecture includes ex-
ploiting the slice SLA monitoring data and the slice resource
utilization data to facilitate slice deployment, slice adaption,
and slice update. Due to the heterogeneous and dynamic char-
acteristics of NGWNs, conventional approaches based com-
pletely on statistical models are likely to become intractable
or too slow, if not both. The results are suboptimal if the

statistical models are inaccurate. In addition, the required
statistical models are unavailable for many new use cases
and emerging applications. By contrast, AI-based approaches
can potentially make use of the aforementioned monitoring
data for both slice and network performance optimization.
Through the application of AI for data analysis and decision
making in both the centralized and local SDN controllers,
the slicing based architecture in Fig. 1 can be empowered
by AI.

In the following sections, we investigate the RAN slicing
framework, RAT selection automation, and content caching
and delivery, respectively, under this AI-assisted slicing based
network architecture.

III. RAN SLICING FRAMEWORK
RAN slicing is deemed as the most promising technology
in 5G networks and beyond, by providing a flexible and
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FIGURE 2. The functional architecture of a network-slicing based AI-assisted next-generation RAN.

FIGURE 3. The interplay between network planning and network resource
scheduling in the slicing based architecture.

scalable network architecture to support a variety of services
attached to manifold QoS requirements. By slicing the shared
physical wireless networks into multiple isolated logical net-
works, RAN slicing can dynamically and elastically allocate
network resources to provide tailored services for isolated
logical networks. Building on the shared physical network
infrastructure, RAN slicing is a cost-effective solution for
network management. A study reported that RAN slicing can
reduce capital expenditure (CapEx) and operational expendi-
ture (OpEx) by up to 60 billion USD worldwide within the
next five years [48]. These benefits motivate the study on RAN
slicing for NGWNs. Extensive industry efforts have been de-
voted to RAN slicing framework ratification. For example,
network slicing has been introduced as one of the key features

of international mobile telecommunication (IMT)-2020 net-
work [53]. The 3rd generation partnership project (3GPP) has
conducted extensive studies on the slicing based architecture
for 5G networks [54], [55]. Multiple proof-of-concept systems
on RAN slicing have been developed and evaluated based on
real-world network traffic data [56]–[58]. In this section, we
first present the research challenges of RAN slicing. Then,
existing works on RAN slicing are reviewed, which are sum-
marized in Table 2. Finally, potential benefits and challenges
of emerging AI-based RAN slicing are discussed.

A. RESEARCH CHALLENGES IN RAN SLICING
The RAN slicing in NGWNs can be divided into two steps:
1) Slice creation – Various over-the-top services with dif-
ferent QoS requirements request for creating slices to guar-
antee service isolation. After receiving a slice creation re-
quest, the network controller decides to accept or reject the
request based on the availability of network resources. Once
a slice is admitted, a new slice will be created based on
the slice templates and network function instances; and 2)
Resource orchestration – Network resources are allocated to
admitted slices in order to meet their SLAs. Since emerging
real-time mobile services, such as virtual reality (VR), aug-
mented reality (AR), and autonomous driving, may consume
multiple-dimensional resources (communication, computing
and caching), a slice would be allocated with multiple virtual-
ized network resources. These virtualized network resources
would be mapped to the physical network infrastructure via
a resource mapping algorithm. An illustrative example of the
RAN slicing is shown in Fig. 4. The NGWNs become more
complicated due to diverse network resources, heterogeneous
network topology (e.g., cellular BSs, drone BS, WiFi APs),
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TABLE 2. Summary of Literature on RAN Slicing

FIGURE 4. The RAN slicing in NGWNs.

and differentiated QoS requirements (e.g., URLLC, eMBB,
mMTC1). These characteristics create challenges for RAN
slicing to support diverse services.

The goal of RAN slicing is to provide customized services
for mobile users with differentiated QoS requirements in het-
erogeneous networks. Hence, the key issue of RAN slicing is
how to efficiently allocate network resources while meeting
the user QoS requirements. As shown in Fig. 5, multiple-
dimensional network resources of the shared network infras-
tructure are allocated to each slice in a slicing window.2 Based
on a priori service-specific traffic statistics, the communi-
cation resources can be sliced in terms of radio spectrum

1The URLLC services desire high reliability and low latency, such as
mission-critical environmental sensing for autonomous driving and tactile
applications with millisecond latency requirement. The eMBB services aim
to have a high throughput for a large amount of data, such as video streaming
and VR/AR gaming. The mMTC services target to connect massive devices
with low throughput requirements, such as Internet of things (IoT) sensor
monitoring.

2A slicing window is a unit time for RAN slicing. At the beginning of a
slicing window, the resource allocation decision will be enforced.

FIGURE 5. The network resources of the shared network infrastructure are
allocated to each slice via RAN slicing in each slicing window.

bandwidth, the computing resources can be sliced in terms
of CPU computing power, and the caching resources can be
sliced in terms of storage unit for each slice. Hence, RAN
slicing should jointly allocate multiple network resources
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(e.g., communication, computing, and caching) to optimize
the network utility, while satisfying the differentiated QoS re-
quirements of customized services. Due to the heterogeneous
network infrastructures and differentiated QoS requirements,
RAN slicing faces the following unique challenges:
� Resource interplay – Since a service may consume mul-

tiple network resources, there exists an inherent tradeoff
among the network resources. For example, in comput-
ing offloading services, the service latency consists of
two elements: task transmission latency and task pro-
cessing latency. If a user associates with a remote MEC
server having abundant computing resources for task
processing, a high task transmission latency will incur.
On the other hand, if a user associates with a nearby
MEC server having insufficient computing resources, it
takes a longer time for task processing. In such a man-
ner, the allocation of computing and communication re-
sources is coupled with each other in the exemplary com-
puting offloading services. Similarly, the allocation of
multiple network resources is intertwined, which com-
plicates the RAN slicing. A joint multiple network re-
source allocation scheme should be judiciously designed
to maximize network welfare;

� Strict QoS requirements – Compared with traditional 4G
networks, 5G networks and beyond have stricter QoS
requirements, including a higher throughput and a lower
latency. Especially, the typical URLLC service in 5G
requires ultra-high reliability (e.g., 99.999%), which is
much stricter than that of other services. In addition, the
payload of data packets in URLLC services is usually
small, such as 32 bytes [72]. The transmission perfor-
mance of short-length packets cannot be characterized
by the traditional Shannon theory which is suitable for
long-length packet transmission due to a large trans-
mission overhead. Instead, the finite block length chan-
nel coding theory should be applied to characterize the
achievable rate for short-length packets [73]. Traditional
QoS provisioning is unsuitable for short-length packet
URLLC services with ultra-high reliability. Thus, an ac-
curate QoS provisioning for URLLC services is desired
in the RAN slicing framework;

� User mobility – Due to the high network density, users
may frequently move out the coverage of its associ-
ated network infrastructure, which results in a dynamic
network topology. For example, high-mobility vehicle
users can trigger handover frequently. The dynamic net-
work topology changes the service traffic distribution,
rendering previously optimal slice allocation suboptimal
over time, degrading network performance, and may
even violate users’ QoS requirements. When the network
performance degrades to a threshold, adjusting existing
slices or creating new slices will be triggered, which
incurs slice reconfiguration overhead. Thus, dynamic yet
efficient RAN slicing to accommodate user mobility re-
mains a challenging issue.

B. EXISTING APPROACHES
Extensive research efforts have been devoted to RAN slicing
in different contexts due to its advantages in reducing network
operation cost and improving resource utilization. Based on
the known service-specific traffic statistics, a communication
resource slicing strategy is proposed to support both machine-
type users and mobile users, by allocating the spectrum in
heterogeneous networks [21], in which bandwidth resource
and user association are jointly allocated to maximize network
utility. The results show that the proposed slicing strategy can
effectively boost the network utility compared with bench-
mark schemes. A communication resource slicing strategy is
developed to provide customized services in the context of ve-
hicular networks [44]. These works mainly formulate a RAN
slicing problem as an optimization problem with the objective
of maximizing network utility, while satisfying the QoS con-
straints of admitted slices. By resorting to optimization the-
ory, these complicated optimization problems can be solved
by classic iterative optimization algorithms. Another line of
work focuses on the communication resource slicing from
the perspective of a network operator with an objective of
maximizing the operator’s revenue in different scenarios, such
as in cellular networks [26] and indoor neutral-host small cell
networks [46]. Sub-optimal algorithms are applied to solve
these complicated slicing problems. The existing works [44],
[21], [26] address the communication resource slicing from
different perspectives. With emerging services and new use
cases, further investigation is needed for RAN slicing that in-
corporates multiple-dimensional network resources. However,
a multiple-resource slicing problem is much more complex
than an individual resource slicing problem, taking account
of network dynamics in traffic load and user mobility. In
addition, existing works mainly deal with services attached
to relatively loose QoS requirements, and hence developing
RAN slicing to support strict URLLC services requires further
investigation. In summary, model-based optimization meth-
ods are widely applied to solve RAN slicing problems, which
can effectively manage resources in a small-scale network
under simplified network statistical models.

Existing model-based optimization methods suffer from
two limitations: i) the prerequisite of a priori accurate traf-
fic model – Service demand statistic models are usually as-
sumed to be known in advance and accurate in most of the
existing works, such as a known Poisson process to model
service traffic of mobile users, which do not hold in practical
time-variant wireless networks, especially in highly-mobility
scenarios; and ii) high computational complexity – With the
dense deployment of wireless networks, efficient RAN slic-
ing for a large-scale network (e.g., tens to hundreds of BSs
and APs) is required. Applying existing iterative model-based
optimization methods can be unsuitable since the computa-
tional complexity greatly increases with the network scale,
such that slicing algorithms will take a long time to converge.
These limitations undermine the practicality of the existing
model-based optimization methods. Hence, an efficient RAN
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slicing strategy for large-scale networks without accurate a
priori traffic model, is of paramount importance.

C. AI-BASED RAN SLICING
With the development of advanced AI techniques, model-free
AI-based methods become promising techniques to provide
potential benefits to address the difficulties with unknown traf-
fic models and high computational complexity. In the follow-
ing, the potential benefits and challenges of AI-based RAN
slicing are discussed in detail.

AI-based methods can provide two potential benefits for
RAN slicing. On one hand, we can use AI-based methods
to provide accurate service-specific traffic prediction. Only
with such accurately predicted service-specific traffic, RAN
slicing can effectively facilitate network resource allocation to
accommodate service demands in the near future. Recent stud-
ies show that AI-based methods, such as deep neural network
(DNN) and long short-term memory (LSTM), are capable of
accurately forecasting service-specific traffic load. For exam-
ple, a DNN is used to predict aggregated data traffic in cellular
networks based on historical service requests in [74]. For fine-
grained service-specific traffic, a prediction model based on
a modified LSTM network is presented in [50] to accurately
predict the average traffic load, while a deep learning frame-
work is proposed for the maximum service traffic prediction
in [51], which can help to reduce resource over-provisioning
and SLA violations. Based on historical user service requests
and a known user mobility model, Sciancalepore et al. develop
an unsupervised learning based forecasting module to predict
service traffic load [45], with the traffic load prediction accu-
racy depending on the accuracy of the user mobility model.
The existing preliminary studies illustrate the potential of
an AI-based prediction method to accurately capture service
traffic patterns. Such an accurate online service-specific traffic
prediction can help to eliminate the requirement of a priori
accurate traffic modeling in RAN slicing.

Moreover, AI-based methods can facilitate efficient re-
source allocation in RAN slicing. An online AI-based re-
source allocation decision process has the potential to achieve
a low complexity after an offline training procedure, which
addresses the high computational complexity challenge in the
conventional model-based optimization methods. Recently,
extensive research works have shown that AI-based methods
can be widely applied in solving complicated resource man-
agement problems in wireless networks, such as power allo-
cation for the interference management [75], resource block
allocation in cloud radio access networks (CRANs) [76],
SBS on/off scheduling in cellular networks [74], and com-
puting task offloading in space-air integrated networks [77].
In general, the resource allocation problem is formulated as
a Markov decision process (MDP), and an RL framework is
developed for the MDP problem to make online decisions. As
the essence of RAN slicing can be viewed as an optimiza-
tion problem with the objective of maximizing network per-
formance under constraints of satisfying QoS requirements,
RL-based methods can be applied. In [45], an RL algorithm

is presented to determine the optimal set of admitted slices in
order to maximize the welfare of the infrastructure provider
(e.g., 5G broker). Note that traditional RL methods, such as
Q-learning, suffer from the curse of dimensionality, which are
only suitable for RAN slicing problems in small-scale net-
works. Deep RL methods incorporate deep learning networks
in the RL framework can effectively address the complexity
issues in large-scale networks. Chen et al. present a deep
RL learning based scheduling strategy to minimize service
latency in a sliced RAN [47], using a modified deep RL
method for computing power allocation and task transmis-
sion scheduling. An enhanced RL method, deep deterministic
policy gradient (DDPG), is proposed to dynamically slice
the shared time-varying spectrum resources in indoor small
cell networks [46]. In addition to the centralized network
resource management for RAN slicing in [45]–[47], decen-
tralized RAN slicing can be formulated as a multi-tenant RAN
slicing problem, in which multiple tenants (i.e., slice owners)
contend for network resources from an infrastructure provider.
The multi-agent RAN slicing problem aims at bidding and
allocating network resources to maximize the revenue of each
tenant. The multi-tenant RAN slicing problem can be modeled
as a non-cooperative stochastic game and solved by a stochas-
tic learning algorithm [48]. A deep learning approach based
on a double deep Q network can be applied for jointly allo-
cating communication and computing resources to maximize
the welfare of each tenant [49]. The existing studies [45]–[49]
demonstrate the potential of using AI-based approaches to
address the RAN slicing problem in various contexts.

On the other hand, AI-based RAN slicing faces its unique
challenges, such as achieving strict QoS guarantee within
the RL framework. How to satisfy the QoS constraints
in the RL framework requires innovative solutions in the
RAN slicing optimization. Due to limitations of the Q-value
based mathematical modeling, the QoS requirements are usu-
ally integrated into the reward function by some predefined
weights [74]. In such a manner, strict QoS requirements can-
not be guaranteed unless appropriate weights for the QoS
requirements are determined, which is difficult to achieve,
especially when the QoS requirements are multi-dimensional.
Most of existing solutions can only satisfy soft QoS require-
ments [46]. Developing an efficient RL-based RAN slicing
algorithm while satisfying strict QoS requirements requires
further investigation.

IV. AUTOMATED RAT SELECTION
In NGWNs, multiple types of RAT will coexist. Thus, proper
RAT selection for each user is essential. RAT selection is
closely related to user association, which associates each user
with specific APs.3 In the simple scenario of a homogeneous
network, RAT selection is basically user association. How-
ever, in a general scenario with heterogeneous networks, asso-
ciating a user to an AP requires both the selection of an RAT

3Here we use APs to include all network infrastructures such as base
stations in cellular networks, and RSUs in vehicular ad-hoc networks.
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FIGURE 6. The classification of RAT selection based on the control
paradigm: Centralized, distributed, and hybrid. For distributed user
association, the case of mobility triggered network selection is illustrated
here as an example.

and the selection of a specific AP given the chosen RAT. In
this section, we use “RAT selection” as a synonym of “user
association” in the case of heterogeneous networks.

User association has been widely studied for various net-
work scenarios, especially in the case of homogeneous net-
works. Existing studies focus on user association in a multi-
tier cellular network [78], [79], under particular physical-layer
settings (such as MIMO [80], mmWave [69], energy harvest-
ing [81]), and other networking environments (such as self-
organizing networks [82], D2D communications [83], and
UAV-to-ground communications [59]). Many performance
metrics, including spectrum efficiency, energy efficiency, and
energy consumption, are considered in the study of user
association [84].

In the rest of this section, we focus on RAT selection in
slicing based NGWNs. Firstly, we give an overview of con-
ventional user association schemes. Then, we introduce RAT
selection in network-slicing based networks. After that, we
review and discuss AI-assisted RAT selection.

A. CONVENTIONAL USER ASSOCIATION APPROACHES
As shown in Fig. 6, conventional user association can be
divided into three categories: centralized, distributed, and hy-
brid based on control paradigm [60].4 A global controller
is assumed in the case of a centralized solution to collect
network-related information. The centralized method deter-
mines a network association strategy by formulating the prob-
lem based on a Markov model or through a centralized op-
timization. Using a Markov model, the network selection is
usually formulated as a joint user association and mobile
traffic offloading problem. The target is to obtain a desirable
admission and offloading policy to optimize certain system-
level metrics such as service blocking probability [85]–[87].

4Similarly, user association can also be classified as network controlled,
user controlled, and user assisted according to the control entity.

In the centralized optimization approach [21], [79], a selection
algorithm is executed each time when association decisions
need to be updated. The target is to optimize system-level per-
formance such as energy efficiency, spectrum efficiency, load
balancing, or system aggregated utility, subject to network re-
source availability and user association constraints. However,
both Markov model-based and optimization-based centralized
user association approaches have their own limitations. In the
Markov-based approach, user mobility and handoff are gener-
ally ignored (i.e., the users are assumed to associate with the
same AP until the end of a service session). Moreover, users
are treated without any differentiation, i.e., no consideration
of user preference and service priorities in general. On the
other hand, the centralized optimization method suffers from
scalability and efficiency issues. In addition, the optimality
is usually achieved at the cost of signaling overhead in the
information gathering and the policy enforcement stages.

Distributed user association has been studied using var-
ious methods, including multiple attribute decision making
(MADM) [88], MDP [89], fuzzy-logic [90], game theory (e.g.
cooperative game [91], and non-cooperative game [80]). Un-
der the distributed setting, network attributes are collected or
estimated at the user side. The user then chooses the AP with
the best performance. Compared to the centralized method,
the distributed selection scheme can usually be implemented
with lower complexity. Further, a decentralized approach can
reduce the signaling overhead at the cost of suboptimal per-
formance. The limitations of distributed selection schemes
include that i) non-cooperative user association can lead to
network load oscillation when multiple devices try to asso-
ciate and disassociate with the same AP concurrently; and
ii) the design of effective information exchange is necessary
for distributed cooperative user association but can be very
challenging.

The hybrid selection can achieve a tradeoff between net-
work performance and signaling overhead, which can be im-
plemented as a mixture of centralized and distributed control.
In [92], Elayoubi et al. solve the user association problem
using a Bayesian game. Two types of players are involved,
which represent the different networks and the users. Each
user selfishly maximizes their own utility without any user-
level cooperation, while each network cooperates with users
within its coverage by broadcasting its current status (such as
the traffic load), to maximize the total utility of its users. Such
a design may result in multiple Nash equilibria. Therefore,
the information that the network needs to broadcast should
be carefully designed, so that an equilibrium with a high
efficiency can be achieved.

B. RAT SELECTION IN SLICING BASED HETEROGENEOUS
NETWORKS
Figure 7 shows an envisioned scenario of NGWNs in the
presence of a SDN controller. In such networks, multiple types
of RATs, multiple types of APs, multiple types of UEs with
various service requirements, and multiple types of resources
jointly contribute to an unprecedented level of heterogeneity.
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FIGURE 7. An illustration of RAT selection with multiple services in
heterogeneous wireless networks.

Next, we discuss the main differences of RAT selection un-
der the slicing based NGWNs from that in conventional user
association.

Firstly, from the control perspective, the capacity of the
SDN controller for information collection and centralized
control should be leveraged in the RAT selection. It can be
seen from Fig. 7 that a global view of the network is enabled
through the deployment of the SDN controller. Network status
information such as current network loads, user service de-
mands, and user distribution, as well as user status information
such as user location, speed, and moving direction can be ob-
tained by the SDN controller for centralized decision making.
However, such centralized control is not scalable and can yield
significant signaling overhead. Therefore, a hybrid control
architecture is preferred in the NGWNs, in which users make
distributed RAT selection decisions at a small timescale,
while the centralized control is triggered at a large timescale.

Secondly, given the SDN/NFV enabled network slicing
architecture [24], each slice is assigned with only a portion
of physical resources based on its target services. Therefore,
the resource availability and resource utilization level of each
slice become a concern and need to be accounted for properly
via the RAT selection. Further, considering network slicing,
it is possible that a user is involved in multiple network
slices [93]. The RAT selection in such a case requires further
investigation.

Thirdly, new types of network resources are emerging,
which can affect the RAT selection. Traditional network in-
frastructures (e.g., cellular BSs and WiFi APs) only have
the communication functionality. As the networks continue
to evolve, these infrastructures will support more and more

caching and computing services. Such a trend leads to diverse
network resources as compared to that in previous genera-
tions. In addition, an unprecedented level of network and ser-
vice heterogeneity is expected and, correspondingly, the com-
plexity of solving the RAT selection problem will increase in
the NGWNs.

C. RESEARCH CHALLENGES
Based on the preceding discussion, several research chal-
lenges related to RAT selection in the NGWNs are identified
as follows.

1) SERVICE MODELING
The dependence between service requirements and the cor-
responding demands for multi-dimension resources has not
been modeled explicitly in conventional user associations. In
the literature, users can either select the network based on a
radio link quality, i.e., the always-best-connected (ABC) [94],
or associate with a nearby AP that has the content of their
interest in its cache [95] or a nearby AP that has high com-
puting capability [61]. However, the network selection in
NGWNs should be determined based on multi-dimensional
resource availability for communication, caching, and com-
puting, considering that different services can have totally
different requirements on these three types of resources. For
example, video streaming services require most attention to
the communication resources (e.g., the link quality and the
available bandwidth); vehicles downloading high-definition
maps should connect to an AP which caches contents of their
interest; for VR applications [96] (e.g., Pokémon GO), com-
puting resources are of the foremost concern. As a result, the
demand for different resources will impact the RAT selection.

Some recent works provide ideas on how to model tasks of
different services. Mao et al. model a computing task using
three parameters: offloaded task size (in bits), computation in-
tensity (in CPU cycles per bit), and completion deadline [97].
A VR related task modeling with three-dimension resources
is proposed in [98], [99], in which cached contents are used
as inputs of the computing stage. However, a general model
to characterize the dependence between service requirements
and multi-dimensional resources is not available yet. The
complexity in developing such a service model comes from
the variety of services and their diversified requirements.

2) RESOURCE SLICING
Different RATs can use different resource allocation schemes
and yield different resource utilization. Therefore, resource
allocation and RAT selection are mutually dependent, and
joint network resource allocation and user association should
be considered. Existing studies on joint computing resource
allocation and user association [100], [101], joint caching re-
source allocation and user association [62], or joint allocation
of the communication, computing and caching resources and
user association [63], [64], do not consider network slicing.
On the other hand, current works on network slicing consider
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focus on one type of RAT and/or only the communication re-
source [21], [102], which limits their applications in NGWNs
with multiple RATs and multiple resources.

After RAN slicing in the planning stage, multiple slices are
established. Within each network slice, RAT selection adjust-
ments may be required in the scheduling stage due to user mo-
bility, network load distribution dynamics, scheduled power-
off of APs [74], and so on. For such adjustments of RAT
selection within a slice, it may be possible to extend some ex-
isting works on user association without considering network
slicing, to develop an RAT selection adjustment solution.

3) USER MOBILITY
Mobility is an essential issue in the RAT selection. A
properly designed association algorithm should avoid
unnecessary handoffs, since a re-association procedure
incurs extra signaling and excessive execution latency. To
avoid unnecessary handoffs, RAT selection can be based
on predicted user mobility. Many state-of-the-art prediction
algorithms have been proposed to estimate user trajectory,
cell dwelling time, and other mobility-related information,
using data-based [103] and model-based [104] mobility
prediction methods. With the prediction of user mobility,
a proactive network resource adjustment can be designed
to achieve a timely and smooth handoff. For instance, the
networks can adaptively or proactively adjust their resource
allocation, using a mobility-aware computing strategy [105]
and/or caching strategy [106]. However, these mobility-aware
resource allocation strategies assume that the user association
policy is known and fixed, which is inappropriate in the
NGWNs. In order to efficiently utilize network resources, user
association should be considered jointly with mobility-ware
network resource allocation. For example, a joint user
association and content placement in an edge caching scenario
should account for user mobility [107]. To jointly consider
both mobility and resource allocation, the RAT selection
problem is much more complex than the conventional one.

Moreover, due to user mobility, a communication or
computing task may not be completed while a user is
temporally connected to an AP. As a result, a task handover
from the original AP is necessary. For example, when a user
is moving out of the coverage of an AP and thus cannot
finish downloading a content, it should connect to another
AP that caches the same content if possible, to continue the
downloading task. Similarly, in order to preserve service
continuity in a computation task, the original task can be
decomposed into several subtasks. Each subtask is offloaded
to an AP with computing capacity, so that it can be finished
before the user moves out of the coverage of its current AP.
Therefore, the current user task completion status should be
incorporated in the RAT selection in the scheduling stage.

4) MULTI-CONNECTIVITY
In addition to the multi-mode capacity which allows only one
RAT connection at any time, multi-connectivity/multi-homing

terminals have the ability to support multiple RAT
connections simultaneously [108], [109]. Using concurrent
connections for a single service has the benefit of improving
service reliability [110]. The multi-homing related RAT
selection has been investigated from different perspectives.
From the perspective of networks, the service operator aims to
optimally allocate downlink (DL) bandwidth among multiple
radio connections to support users with different services in a
multi-RAT environment [108]. In contrast, from the perspec-
tive of a single user, the goal is to enhance QoS by optimally
distributing packets among multiple radio interfaces during an
uplink (UL) transmission [109]. In general, an RAT selection
problem for multi-homing terminals is much more compli-
cated than a problem of multi-mode, since we need to deter-
mine how many connections to establish and which set of the
available radio networks to connect for the user. Preliminary
work on multi-homing connection does not consider network
slicing and focuses only on communication resources [111].

D. AI-BASED RAT SELECTION
Here, we first review optimization-based solutions, and then
the learning-based solutions, followed by a discussion of the
challenges in applying AI to RAT selection. Table 3 summa-
rizes a few related works on user association in heterogeneous
networks. Some works adopt optimization techniques, while
others use learning-based approaches.5

Optimization-based approaches for solving user association
problems can be categorized into two classes: deterministic
optimization based approaches [67], [69], [79] and stochastic
optimization based approaches [98]. Both classes have the
following limitations. Firstly, user association related prob-
lems, in general, are formulated as combinatorial optimiza-
tion problems, which are non-convex and usually NP-hard.
Therefore, applying optimization-based methods can result
in significant computation latency and overhead [97]. Even
if the optimal solution can be found, the cost of finding the
solution can be prohibitive as the network size or the set of
service types grows due to the exponentially increasing com-
plexity. Secondly, optimization-based approaches rely on the
prior knowledge of the network (e.g., network topology, user
density, mobility, channel statistics, and service requirements)
and/or the assumptions made for mathematical tractability
(e.g., Poisson arrivals, exponential service time, uniform user
distribution, and so on). When network dynamics vary, estab-
lished theoretical models may no longer be applicable and the
performance of a previously obtained association solution can
degrade significantly.

Different from optimization-based approaches, model-free
RL provides an alternative approach for finding the optimal
solution of a problem through “trial and error” in the inter-
actions with the networking environment. According to the
type of the learning agent, RL-based RAT selection can be

5The Markov chain-based approach is considered as a special case of
optimization, where the objective is to optimize the steady-state performance
of a network.
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classified into two classes. The first class chooses individ-
ual users as the learning agents. In [112], a distributed Q-
learning-based handoff is proposed to optimize the long-term
discounted rewards of users. RL can also be combined with a
traditional RAT selection algorithm for performance improve-
ment. In [113], RL is adopted by users to learn the optimal cell
range extension bias with the global objective of minimizing
the total number of devices in outage. In the scenario of edge
computing, RL can help with user association decisions to im-
prove computing energy efficiency [61]. The second class of
RL-related works assume the APs as the learning agents. For
example, the BS can be the learning agent to achieve load bal-
ancing through user association in a vehicular network [60].

There are technical challenges in developing ML-based
approaches for solving the RAT selection problem. The un-
derlying MDP model may not accurately capture the RAT au-
tomation problem. It is possible that only partial information
is available, or there exist observation errors. In such cases,
a generalized partially observable MDP (POMDP) model can
be adopted [114]. Also, deriving models and metrics to char-
acterize the performance, or even a performance bound, of the
learning algorithm is not an easy task. Most learning algo-
rithms are evaluated only numerically. Sun et al. present proof
on the performance bounds for their proposed learning algo-
rithm in [61]. However, a unified framework on the conver-
gence and performance analysis of RL is yet to be developed.

V. MOBILE EDGE CACHING AND CONTENT DELIVERY
As mentioned previously, resources in NGWNs will extend
beyond communication resources and include caching re-
sources. Mobile edge caching leverages storage spaces at the
network edge to cache popular contents within the RAN.
As a result, mobile edge caching can help to reduce content

retrieval time for users and alleviate backhaul congestion for
the network [115]. As mobile edge caching is usually limited
by the cache size, it is necessary to optimize caching strate-
gies for maximal caching resource utilization. In this section,
we present research challenges of mobile edge caching in
conventional and network-slicing based wireless networks,
respectively. The related research works are reviewed, and
future research directions on AI-based mobile edge caching
are discussed.

A. RESEARCH CHALLENGES
There are two main research issues in mobile edge caching,
i.e., content placement and content delivery. Content place-
ment determines which contents to be cached at the edge,
while content delivery determines how to deliver cached con-
tents to users [116]. The first major challenge in content
placement roots from time-variant content popularity and/or
an evolving content catalogue. If the content popularity could
be accurately estimated, the problem of maximizing cache
hit rate would be simple. However, it can be very difficult to
predict the content popularity, especially when the popularity
demonstrates spatial-temporal variations [117]. The second
challenge in content placement is due to the multi-tier cache
system with overlapped spatial coverage in heterogeneous
wireless networks [118]. When content delivery is considered,
the joint optimization of communication and caching strategy,
which corresponds to a complex decision-making problem,
becomes another major challenge.

NGWNs demonstrate heterogeneity in both resources and
service types. In the network-slicing based architecture, the
resources in RAN, including communication, caching, and
computing resources, are orchestrated and sliced to support
the corresponding virtual networks with QoS guarantee [119].
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FIGURE 8. Overview of caching-centric resource management in a network-slicing based architecture.

An overview of caching-centric resource management in a
network-slicing based architecture is illustrated in Fig. 8. Af-
ter slicing the resources in the planning stage, the resources
will be further scheduled in each slice to improve user ser-
vice experience. In resource scheduling, in addition to content
placement and content delivery, joint caching and commu-
nication resource management should be taken into account.
Under this network-slicing based architecture, new challenges
in content placement and content delivery are summarized as
follows.
� Heterogeneity among different slices: The physical

cache for an edge entity can be sliced into several log-
ical caches for serving different applications with di-
verse QoS requirements. Different from the conventional
caching, content requests are accommodated into differ-
ent slices in NGWNs. User access patterns and popu-
lar contents in different virtual networks can have dis-
tinct characteristics. For example, in IoT applications,
users usually fetch contents from a static content cata-
logue periodically while, in mobile applications, users
typically request contents from an evolving catalogue.
Hence, designing a customized content placement policy
to support diversified virtual networks is challenging and
requires further investigation;

� Dynamic cache size: By resource virtualization, the
cache size for a slice can be modified as a result of
dynamic slicing on a large timescale. The cache place-
ment policy should be updated dynamically to adapt
to the variable cache size. When the cache size allo-
cated to a slice is sufficient, contents with a large size
can be cached to reduce the backhaul usage. Otherwise,

popular contents with a small size should be cached to
improve the cache hit rate. Thus, in addition to time-
variant content popularity and evolving content cata-
logue, new uncertainty is introduced due to the variable
cache size, which can make the content placement prob-
lem intractable;

� Multi-resource allocation: MEC is expected to be a basic
element in NGWNs. The contents cached by an edge
will not only include popular contents such as videos,
but also include the essential files for implementing
computing functions. To improve the computing service
performance, the allocation of computing, caching, and
communication resources should be jointly optimized in
terms of content delivery. However, the multi-resource
allocation problem can be too complicated to solve in
real-time using model-based approaches.

B. STATE-OF-THE-ART CACHING SOLUTIONS
Here, we review existing works on content placement and
content delivery. For content placement, we summarize re-
search efforts on content updating strategies at a single
caching server. For content delivery, we focus on research
works for joint caching and communication resource manage-
ment. A summary of the literature is provided in Table 4.

1) CONTENT PLACEMENT
Content popularity is time-varying in general and, hence, the
cached contents stored at a server need to be updated dynam-
ically. The main goal of content placement is to maximize the
cache hit probability. As illustrated in Fig. 8, there are two
types of caching policies to update the contents in a cache,

58 VOLUME 1, 2020



TABLE 4. Summary of Literature on Caching Resource Management

namely the reactive caching policy and the proactive caching
policy.

In a reactive caching policy, the edge node determines
whether or not to cache a content after a request for that
content arrives [127]. A common assumption is that the con-
tent popularity follows a stochastic distribution, such as Zipf
distribution [125]. However, the popularity of contents varies
over time, and different types of contents can exhibit a variety
of popularity evolution patterns. To adapt to non-stationary
traffic and content popularity, content updating policies have
been proposed. For example, the least recently used (LRU)
policy replaces the least recently requested content in the
cache when the cache is full. To improve the cache hit rate, the
content popularity can be estimated according to the content
request during a period of time [120]. However, in practice,
the reactive caching policies adapt slowly to changes in con-
tent popularity [116], [128].

Proactive caching policies aim to prefetch popular con-
tents that are likely to be requested by users ahead of time.
Therefore, proactive caching can mitigate backhaul usage
if prefetching is scheduled during off-peak hours. Proactive
caching is illustrated in the bottom part of Fig. 8, where his-
torical content requests used for predicting popular contents
are added into a data set as records. Future content requests
can be predicted by exploiting the spatio-temporal association
among the records in the data set, such that the edge server
can proactively cache contents for improving the cache hit
rate [123]. Another category of solutions does not directly
predict requests, but formulates an MDP problem to find an
optimal content placement policy which maximizes the cache
hit rate in the long term [40], [64], [126]. Since the content
placement problem has large state-action space and unknown
state transition probabilities caused by a dynamic network
environment, it is difficult to solve the MDP problem by
the conventional dynamic programming method. RL can be
utilized to solve the MDP problem according to the reward

feedback from the network environment. However, RL has
some limitations in solving the content placement problem.
The first limitation is the Markov property of the underlying
MDP, which is assumed when RL is applied. As a result,
it is difficult for RL to explore the temporal correlation in
a sequence of historical user requests. Second, most works
using RL for optimizing caching strategies assume that the
catalogue of contents is known in advance, which can be
unrealistic for the scenario in which the content catalogue
changes dynamically. Therefore, in the case when new con-
tents dynamically emerge, the RL based approaches in most
existing studies, such as [64], [126], cannot be applied since
they cannot predict the popularity of new contents. One po-
tential solution to handle a changing content catalogue is to
add or remove contents based on their lifetime, as proposed
in [40], so that caching decisions can be made for an evolv-
ing catalogue of contents. However, such an approach yields
another challenge, i.e., estimating the lifetime of contents. In
addition, existing works predict content requests according to
all content requests received at the server, without considering
the type of services or applications. However, such granu-
larity is not fine enough in a network-slicing based network
architecture as different slices may have different traffic and
content popularity patterns.

In summary, both reactive and proactive content place-
ment approaches aim to improve the cache hit rate. A reac-
tive caching policy can handle a varying content catalogue
or evolving content popularity via an online content update,
while a proactive caching policy exploits historical user re-
quests and predicts the content popularity offline. Since the
pattern of the evolving content popularity can become more
evident after the network resources are sliced based on service
types, proactive caching can be a potential approach to find a
customized content placement policy for virtual networks. In
addition to the spatio-temporal features of user requests, other
features can be excavated to further improve the performance
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FIGURE 9. An illustration of the relation between caching placement and
content delivery.

of service-specific content request prediction, such as the QoS
requirements and application types for the corresponding vir-
tual network. In addition, existing works generally assume
that all contents have an identical size, which is not practical.
The content size can substantially affect caching performance
due to the dynamic slicing of the physical cache. Therefore,
the trade-off between the backhaul usage decrease and cache
hit rate improvement needs to be studied in the context of
dynamic slicing of the physical cache.

2) CONTENT DELIVERY
The main goal of content delivery is to reduce content
transmission time. In order to achieve this objective, except
caching popular contents in the edge servers, the average com-
munication delay between users and the edge server should
be minimized. A trade-off between the transmission delay
and caching service coverage is discussed in [125], where
a cache-enabled UAV is deployed as an edge server. When
the UAV is deployed at a high altitude, it can cover a large
number of users and reduce content delivery time for these
served users. However, the data rate of content delivery from
the UAV to the users can be low, due to the high altitude of the
UAV. By contrast, when the UAV is deployed at a low altitude,
the data rate can be improved, but fewer users can benefit from
the cached contents due to the reduced coverage of the UAV.

In a more general scenario, e.g., when there are multiple
edge servers connected with each other, a dependency relation
between cache and communication resources emerges across
the servers [124]. As shown in Fig. 9, in addition to deter-
mining which content to be cached, the cooperation among
edge servers and the network topology should be considered
in the content placement and delivery problem. The edge
servers can cooperate with each other in content placement
and delivery in order to improve the overall cache hit rate and,
as a result, reduce the backhaul congestion. A user can access
contents from both its own server and, via the relay of its
server, other edge servers (shown as the virtual link in Fig. 9).
The joint problem of content placement and routing among
the servers can be formulated as a mixed-integer problem,
which generally has high complexity. For example, a Hopfield

neural network (HNN) framework can be explored to solve the
problem of routing without considering resource allocation in
cooperative caching [63]. However, solving the joint resource
allocation and routing problem in a scalable manner for coop-
erative caching with multiple edge servers remains an open
research problem. As the network topology becomes more
complex in NGWNs, the association between users and edge
devices should be considered, while deciding content place-
ment, in order to minimize the content delivery delay. In this
case, a user can connect with multiple edge servers that cache
popular contents. The trade-off between caching diversity and
spectrum efficiency is investigated in [129], while cooperative
caching and transmission is considered in [130] in the context
of coordinated multi-point transmission. In addition, with net-
work topology dynamics, the optimal content placement and
delivery decision can vary significantly [131]. The network
connectivity graph is analyzed in [118] for allocating content
to multiple edge servers given the network topology and the
content popularity. When the number of users increases, the
optimal content placement policy becomes intractable.

With the emergence of MEC in 5G networks, contents
stored in the cache include the files and data for imple-
menting various computing functions. To satisfy QoS re-
quirements of MEC, the resources (including communica-
tion, caching, and computing resources) should be jointly
optimized. As mentioned, RL is known for solving complex
decision-making problems and has been adopted in existing
studies to jointly allocate caching, computing, and commu-
nication resources [64], [126]. While the resulting caching
strategies obtained using RL can achieve a near-optimal per-
formance, they cannot handle an evolving content catalogue
in general. Moreover, existing works assume that computing
and caching resources can be allocated independently, while
computing tasks can only be executed when the corresponding
files and data are stored at the edge. Such dependency can
further complicate the content placement and computing of-
floading decision.

In summary, the essence of content delivery is a multi-
dimensional resource management problem. In a conventional
caching scenario, communication and caching resources are
jointly optimized to balance the content delivery time and
the cache hit rate. In the network-slicing based architecture,
computing resources at the edge are utilized to perform
latency-critical tasks in virtual networks. Thus, the concept
of content delivery is extended to computing offloading and
execution. The multi-resource allocation problem incurs
high complexity in problem solving, while the conventional
optimization techniques are hard to make real-time caching
and offloading decisions. Moreover, the dependency among
caching, computation, and communication resources needs
to be further investigated. The caching performance is not
only restricted by sliced caching resources (i.e., the size of
logical caches), but also constrained by sliced computing and
communication resources. Last, users with high mobility can
fail to download the content from or offload their tasks to
the edge due to intermittent connections [119]. Thus, user
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mobility prediction should be incorporated to improve the
performance of content delivery.

C. FUTURE RESEARCH DIRECTIONS IN AI-BASED CACHING
Given the aforementioned challenges, next, we discuss the
potential applications of ML for caching from three aspects:
content popularity prediction in proactive content placement,
dynamic content placement policy adjustment, and multi-
resource allocation in content delivery.

For content popularity prediction, ML based approaches,
e.g., DNN, can extract features from recorded content re-
quest data to facilitate the content popularity prediction. In
the network-slicing based architecture, a local SDN controller
can be deployed to monitor content requests and associate
the requests with user IDs, request time instants, and lo-
cations [132]. Given a sufficiently large data set of request
records collected by the controller, DNN can utilize the
records for predicting the content requests in future. Com-
pared with conventional statistical methods, such as linear
regression or Kalman filter, DNN has the advantage of ex-
ploiting a large data set to make more accurate predictions.
However, the performance of content popularity prediction
can be degraded by many factors, such as an evolving con-
tent catalogue or time-variant content popularity. As a variant
of DNN, recurrent neural network (RNN) has been widely
adopted for prediction from historical data due to its ability
to track time-variant patterns [133], [134]. Compared to the
conventional neural networks, RNN applies internal memory
to capture temporal correlations in the input data. Therefore,
RNN has been adopted to track time-variant content popular-
ity in the literature [123]. In addition to the temporal corre-
lation in the content requests, ML based approaches can be
used to capture the spatial correlation in the requests. Con-
volution neural network (CNN) can be a potential tool for
capturing such spatial correlations. Despite the various advan-
tages, several issues need to be addressed while developing
ML based approaches for caching in future communication
networks. Firstly, while CNN and RNN have the potential
to predict future content requests with a high accuracy based
on spatio-temporal features, deploying CNN/RNN based pre-
diction modules for content placement can lead to a high
computation load. This, in turn, requires a characterization
of the improvement in caching performance versus the result-
ing computation load. As a result, a trade-off between com-
putation and caching performance needs to be investigated.
Secondly, in the network-slicing based architecture, content
requests are distributed into different virtual networks. Conse-
quently, deploying one neural network as an open module that
all slices can use is preferred in terms of complexity, but may
not adapt to the specific characteristics of individual slices. By
contrast, deploying one neural network for each slice allows a
customized prediction module for each service or application,
but can lead to prohibitive complexity.

For caching policy adjustment, RL is a potential approach
to update the content placement policy in a dynamic environ-
ment with flexible cache size for each slice and time-variant

content request pattern. The instantaneous cache size, cached
contents, requested content, etc., can be modeled as states, and
the content update can be modeled as actions. The resulting
MDP model with unknown state transition probabilities can
explore RL techniques to find an efficient content updating
policy [135]. However, the assumption of an underlying MDP
model, and the associated Markov property in state transi-
tions, can be impractical. The RL based approach may not
fully capture the correlations of content requests over the time
domain. In addition, as mentioned in Subsection V.B, the
ML algorithm should be able to handle an evolving content
catalogue while updating the caching policy. Devising such
an ML algorithm without incurring significant complexity,
e.g., having to deploy an additional module for predicting
the lifetime of all contents, remains an open and challenging
problem.

For content delivery, deep RL has a potential to provide a
tractable approach to coordinate and allocate multiple types
of resources, including communication, computation, and
caching. While the state-action space of multi-dimensional
decision making in joint caching, computing, and communi-
cation resource allocation can be too large for conventional
RL, deep RL adopts deep learning techniques to estimate
policy and value function, and thus can handle the large
state-action space from the joint allocation of multiple re-
sources for content delivery. However, classic deep RL has
limitations when dealing with constrained decision-making
problems, in which the dependency among the resources ex-
ists and introduces constraints in resource allocation. For ex-
ample, a user with a computing task to offload prefers an
edge server that caches the data and files for this computing
task. In such a case, the content placement at the edge server
yields a constraint on the task offloading decision of the user.
Constrained MDP can be a possible model for incorporat-
ing the constraints [136], while how to develop a deep RL
based solution for the constrained MDP problem needs further
investigation.

VI. CONCLUSION
In this paper, we have illustrated the network-slicing based
architecture, focusing particularly on the RAN, and elaborated
how AI can potentially empower this architecture for NG-
WNs. Through the investigation of three research problems,
i.e., RAN slicing, automated RAT selection/user association,
and content placement and delivery, we have demonstrated
new challenges, as a result of the heterogeneity, dynamic en-
vironment, and/or strict and diversified service requirements,
in network management and resource orchestration under the
network-slicing based architecture. Most of these challenges
cannot be addressed by directly extending existing research.
Therefore, it is necessary to develop novel models, technique
tools, and/or problem-solving approaches. Summarizing re-
lated research efforts, we have demonstrated the potential
approaches and benefits in the application of AI for solv-
ing the three problems. Meanwhile, we have also noted the
challenges of applying AI-based approaches, e.g., handling
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non-stationary network environment. Through the three con-
sidered problems, this paper takes an initial step towards un-
derstanding the development of models and algorithms for
intelligent network management and resource orchestration in
network-slicing based NGWNs.
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