
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Master's Theses (2009 -) Dissertations, Theses, and Professional 
Projects 

Accuracy and Computational Cost Assessment of Radiation Accuracy and Computational Cost Assessment of Radiation 

Solvers for Combustion Simulations Solvers for Combustion Simulations 

Chloe David 
Marquette University 

Follow this and additional works at: https://epublications.marquette.edu/theses_open 

 Part of the Engineering Commons 

Recommended Citation Recommended Citation 
David, Chloe, "Accuracy and Computational Cost Assessment of Radiation Solvers for Combustion 
Simulations" (2021). Master's Theses (2009 -). 659. 
https://epublications.marquette.edu/theses_open/659 

https://epublications.marquette.edu/
https://epublications.marquette.edu/theses_open
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/theses_open?utm_source=epublications.marquette.edu%2Ftheses_open%2F659&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=epublications.marquette.edu%2Ftheses_open%2F659&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/theses_open/659?utm_source=epublications.marquette.edu%2Ftheses_open%2F659&utm_medium=PDF&utm_campaign=PDFCoverPages


ACCURACY AND COMPUTATIONAL COST
ASSESSMENT OF RADIATION
SOLVERS FOR COMBUSTION

SIMULATIONS

by

Chloe S. David, B.S.

A Thesis submitted to the Faculty of the Graduate School,
Marquette University,

in Partial Fulfillment of the Requirements for
the Degree of Master of Science

Milwaukee, Wisconsin

May 2021



ABSTRACT
ACCURACY AND COMPUTATIONAL COST

ASSESSMENT OF RADIATION
SOLVERS FOR COMBUSTION

SIMULATIONS

Chloe S. David, B.S.

Marquette University, 2021

High-fidelity combustion simulations necessitate the accurate and efficient calculation of
radiative heat transfer. A successful radiation calculation requires the use of a spectral model,
which describes the variation of radiative properties across the entire electromagnetic spectrum,
and a radiative transfer equation (RTE) solver, which solves the governing equation for radiation
transport. Three primary categories of RTE solvers are the discrete ordinates method (DOM), the
spherical harmonics method (SHM), and the photon Monte Carlo (PMC) method. The accuracy
and computational cost of each type of RTE solver is compared in detail in this work. The PMC
RTE solver is considered the most accurate and rightly handles irregular geometries and highly
nonhomogenous participating media. A deeper analysis of the computational load distribution of
the PMC solver is conducted. Relations between the global computational load for PMC and local
variables like temperature, Planck mean absorption coefficient, and cell volume are investigated.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The investigation of computational cost and accuracy in radiation solvers is important for

two primary reasons. First, radiative heat transfer is a necessary component of accurate

combustion modeling, especially in turbulent combustion. In other words, the results of

combustion simulations that consider the radiation effect better match experimental data. Thus,

high-fidelity combustion simulations necessitate accurate radiation calculations.

Second, radiation is a challenging mathematical and computational problem. Since

radiation is particularly difficult to model, various numerical methods have been proposed to

approximate the radiation component in combustion simulations. Although some of these

numerical solvers have been compared in the literature, a comprehensive accuracy and

computational cost comparison of the three main types of radiation solvers – Discrete Ordinates

Method (DOM), Spherical Harmonics Method (SHM), and the Photon Monte Carlo (PMC)

method – has not been completed. Moreover, the most accurate method, the PMC method, is

computationally cumbersome and expensive. Potential areas of improvement to the efficiency of

the PMC method is an active field of research and is a primary motivation for this work.

1.2 Scope

As established in the previous section, radiative heat transfer is a significant component

of high-fidelity combustion simulations. Negligence of radiation or vastly inaccurate radiation

calculations can lead to large inaccuracies in results. Furthermore, radiation is difficult to model,

and the most accurate radiation calculations are also computationally expensive. In this work, a

detailed comparison of the three main types of radiation solvers will be performed. The three

solvers will be tested on a single snapshot of a scaled-up Sandia Flame D, a flame that is widely

used to validate combustion models in the literature. Both the computational cost and accuracy of

each solver will be included in this comparison.

Additionally, a throrough investigation of the computational load of the PMC method

will be conducted. A load distribution study of a finite-volume based PMC code will be used to

compare computational load statistics with local variables like temperature, volume, and Planck
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mean absorption coefficient. The results of the load distribution study could eventually be used to

develop an a priori estimation of the load and to better distribute the computational load across

multiple processors, improving the parallel efficiency of the PMC code. Specific investigation of

ray bundling, a potential improvement to PMC calculations, will also be conducted.

1.3 Literature Review

The effect of thermal radiation in combustion simulations has been well-researched. First,

I present a sampling of articles that investigate the effect of radiation in laminar flames. Zhu and

Gore study the effect of radiation on numerical simulations of one-dimensional opposed-flow

laminar methane-air diffusion flames [1]. It was found that radiation heat loss has significant

effects on the prediction of pressure, temperature, soot and NO emissions, and pollutant mole

fractions. Liu et al compare the effect of different radiation models on an axisymmetric laminar

methane-air diffusion flame as well as the computational cost of different radiation models [2].

They conclude that use of an approximate radiation model affects predictions for temperature,

species concentrations, soot information, and flame structure. Liu et al present findings on the

effect of radiation in relatively small-scale diffusion flames at normal gravity and microgravity [3].

It was found that the impact of radiative transfer in conditions of microgravity are even more

important than for similar simulations conducted at normal gravity. Other findings on the impact

of radiation in combustion of laminar flames can be found in [4], [5], and [6].

Radiation is also found to be important in turbulent combustion simulations. Here, I

present a sample of the literature on the radiation effect in turbulent combustion simulations. Bidi

et al investigate the radiation effect in turbulent premixed methane-air combustion [7]. They

found that the effects of radiative heat transfer on temperature and species concentration profiles,

especially in regions of highly-emitting non-gray gases, is significant. They also report that the

maximum flame temperature decreases when the radiation effect is considered. Two temperature

profiles, one calculated with radiation and one calculated without radiation, are presented in

Figure 1.1 [7]. The differences between the two temperature profiles are stark. Damien et al study

the interaction of turbulent combustion and radiation by coupling large eddy simulation (LES)

turbulence modeling with a radiation model that combines the discrete ordinate method (DOM)

and a global spectral model [8]. They report significant radiation effects on the overall energy

distribution, temperature profiles, and species concentrations in the flame, similar to the findings

in [7]. They also find that radiative transfer impacts the overall flame structure and that
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Figure 1.1: Two temperature profiles calculated without radiation (top) and with radiation (bottom)
from [7]

turbulence radiation interaction (TRI) correlations must be considered in turbulent combustion

simulations. Yin et al conduct a computational fluid dynamics (CFD) study on chemistry and

radiation in oxy-fuel combustion [9]. One of the main objectives of their study was to implement

and validate a new weighted sum of gray gases model (WSGGM) for gaseous radiative properties.

The new WSGGM performs significantly better than the old, demonstrating the advantages of

accurate radiation modeling. Yoshikawa and Reitz investigate the relationship between radiation

and NOx emissions in diesel engine combustion [14]. They report a reduction in NOx and soot

emissions as a result of radiation heat loss. Tkachenko et al study the interaction of radiation and

turbulence on turbulence statistics and temperature distributions in convective channel flow [10].

They found that wall-to-wall radiation has significant effects on temperature values and that gas

radiation has an impact on turbulent statistics throughout the flow. Other findings on TRI and the

radiation effect in turbulent combustion simulations can be found in [11], [12], and [13].

Accurate radiation calculations also factor into the design of combustion components.

Naraghi et al present a radiation model for liquid rocket engines [15]. They found that radiation

significantly affects wall temperature, pressure drop of the coolant, and coolant Mach number.
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These findings would necessitate changes to the design of the cooling system. Goebel et al present

similar findings on the influence of radiation in modern rocket combustion that are a necessary

consideration in the design process [16].

All in all, the literature supports the importance of accurate radiation modeling in

high-fidelity combustion simulations. A comprehensive overview of radiation heat transfer in

turbulent combustion simulations can be found in [17]. More detailed literature review of the

specific areas of study that are covered in this work is detailed in later chapters.

1.4 Organization

First, a brief theoretical background of radiation, spectral models, and radiative transfer

equation (RTE) solvers will be presented. Then, the computational cost and accuracy comparison

of the DOM, SHM, and PMC method will be described with detailed results. Following that, the

results of the PMC load distribution assessment and ray bundling investigation will be recounted.

Final conclusions will be made, and a guide to future work will be suggested.
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CHAPTER 2

THEORY

2.1 Introduction

Of the three primary forms of heat transfer, radiation is the most complex to model.

Unlike conduction and convection, radiative energy travels by way of electromagnetic waves. The

energy content of an electromagnetic wave depends on its wavenumber whose possible values

range the entire electromagnetic spectrum. Radiation also varies with time, temperature, spatial

location, and direction. Even in the most basic black body cases, radiation still has a highly

nonlinear relationship with temperature. Thus, the contribution of radiation in combustion

reactions becomes a difficult computation. In most combustion models, radiation is solved by

combining a spectral model with an RTE solver. An RTE solver solves the governing equation of

radiation for a single wavenumber, while a spectral model captures the variation of radiative

properties with wavenumber. Implementing these two primary components, one solves for the

divergence of the radiative heat flux, ∇ · qrad, which is used as a source term in the energy

equation given by [17]

∂ρh
∂t

+
∂ρhui

∂xi
= −

∂Jh
i

∂xi
+

Dp
Dt

+ τij
∂uj

∂xi
+ Srad (2.1)

where xi is the ith spatial coordinate, ui is the ith component of velocity, h is the specific enthalpy

of the medium, ρ is the density, p is the pressure, τij is the viscous stress tensor, Jh
i is the ith

component of the molecular flux of enthalpy, and Srad is the radiative source term. The divergence

of the heat flux and the radiative source term are related by the following equation:

Srad = −∇ · qrad. (2.2)

The divergence of the radiative heat flux ∇ · qrad will be referred to as ∇ · q for the remainder of

this work. All equations presented later in this chapter, unless otherwise noted, are taken from

[18].

2.1.1 Radiative Transfer Equation

The radiative transfer equation (RTE) is an integro-differential equation that solves for

radiative intensity (radiative energy flow per time per area normal to radiation direction per solid
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angle) as it varies with time, temperature, spatial location, and direction. It is given by

1
c

∂Iη

∂t
+

∂Iη

∂r
= jη − κη Iη − ση Iη +

ση

4π

∫
4π

Iη(ŝi)Φη(ŝi, ŝ) dΩi. (2.3)

The variables for Equation 2.3 are defined as follows:

c = speed of light [m/s]

t = time [s]

r = position along a path [m]

ŝ and ŝi = unit direction vectors along a path [m]

η = wavenumber of radiation [m−1]

Iη = intensity due to wavenumber η [W/m2]

jη = κη Ibη = emission term [W/m3]

κη = absorption coefficient of the medium at wavenumber η [m−1]

Ibη = Planck function or blackbody intensity at wavenumber η [W/m2]

ση = scattering coefficient of the medium at wavenumber η [m−1]

φη(ŝi, ŝ) = phase function [-]

Ωi = solid angle [sr]

ση Iη = out-scattering term [W/m]
ση

4π

∫
4π Iη(ŝi)Φη(ŝi, ŝ) dΩi = in-scattering from other directions [W/m].

One common simplification to the RTE is the quasi-steady approximation, which neglects

the time derivative of Iη . The quasi-steady approximation assumes that the medium is at rest

compared to the speed of light, which is a good approximation for most applications. Thus, the

independent variable time t is removed, and Equation 2.3 is reduced to

dIη

dr
= jη − κη Iη − ση Iη +

ση

4π

∫
4π

Iη(ŝi)Φη(ŝi, ŝ) dΩi. (2.4)

Each term on the right hand side of Equation 2.4 corresponds to an attenuation (decrease) or

augmentation (increase) of radiative energy due to emission, absorption, or scattering. Analytical

solutions to the RTE can only be found in very simple combustion configurations, so various

numerical methods have also been developed to solve the RTE.

2.2 Numerical Solution Methods

The three commonly used types of numerical RTE models are the discrete ordinate

method (DOM), the spherical harmonics method (SHM), and the photon Monte Carlo (PMC)
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method. The DOM and SHM are both deterministic methods, while the PMC method is

stochastic. These three methods vary in accuracy and computational cost.

2.2.1 Discrete Ordinates Method

The Discrete Ordinates Method (DOM) discretizes the directional variation of radiative

intensity. Instead of a continuous function, the intensity is expressed as a finite number of partial

intensities on a set of prescribed directions, called ordinates. Each partial intensity is multiplied

by a corresponding quadrature weight and summed to calculate the radiative flux q or incident

radiation G. Equation 2.4 is converted to

dIiη

dr
= jiη − κiη Iiη − σiη Iiη +

σiη

4π

n

∑
j=0

Ijη(ŝj)Φiη(ŝj, ŝi) dΩi, i = 1, 2, . . . , N (2.5)

where N is the total number of ordinates, i specifies the ordinate direction, Iiη is the partial

intensity in ordinate direction i at wavenumber η, and ŝi is the ordinate direction specified by i.

Therefore, Equation 2.4 is transformed into a set of N first-order partial differential equations. The

equations for radiative heat flux q and incident radiation G for a single wavenumber η are given

by

qη(r) =
∫

4π
Iη(r, ŝ)ŝdΩ ≈

n

∑
i=1

wi Iiη(r)ŝi (2.6)

Gη(r) =
∫

4π
Iη(r, ŝ)dΩ ≈

n

∑
i=1

wi Iiη(r). (2.7)

A detailed explanation of the DOM can be found in [18].

For complex geometries and a large number of ordinate directions, the DOM can become

computationally expensive. However, for axisymmetric geometry, where relevant properties vary

only radially and axially, simplifications can be made to reduce the computational cost. In [19],

two boundary conditions for the DOM are proposed. The first boundary condition is the

specularly reflective boundary condition. This condition maintains that every intensity that

reaches a computational wedge boundary is reflected in the same way that light reflects off a

mirror. The formulation for this can be found in [19]. The second boundary condition is the

rotationally invariant boundary condition, derived from the rotationally invariant formulation of

the RTE proposed in [19]. The rotationally invariant boundary condition is implemented in all

DOM radiation calculations in this work.
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In axisymmetric or rotationally invariant geometries, the RTE does not vary azimuthally

as defined by a cylindrical coordinate system. Thus, in cylindrical coordinates, the intensity can be

written as

I(r, z, φ θ, γ) = I(r, z, 0 θ, γ− φ) (2.8)

where r, z, and φ are the radial, axial, and azimuthal spatial coordinates and θ and γ are the polar

and azimuthal directional coordinates. From the detailed derivation in [19], the rotationally

invariant RTE in cylindrical coordinates for an emitting and absorbing medium at a single

wavenumber is given by

sin θ cos β
∂Iη

∂r
+ cos θ

∂Iη

∂z
− sin θ sin β

r
∂Iη

∂β
= κ Ibη − κ Iη (2.9)

where β = γ− φ from Equation 2.8. The rotationally invariant formulation of the DOM method is

easily extended to scattering and nongray mediums. This formulation with its corresponding

boundary conditions detailed in [19] is implemented on OpenFOAM using a finite volume

discretization scheme for wedge geometry containing a single azimuthal layer of cells.

2.2.2 Spherical Harmonics Method

The Spherical Harmonics Method (SHM) transforms the RTE into a system of elliptic

PDEs. The radiative intensity, the solution to the RTE, is approximated as a truncated series of

spherical harmonics. The new expression for intensity is given by

I(r, ŝ) =
∞

∑
l=0

l

∑
m=−1

Im
l (r)Ym

l (ŝ). (2.10)

where Im
l (r) are intensity coefficients and Ym

l (ŝ) are spherical harmonics, given by

Ym
l =


cos(mφ)Pm

n (cosθ) for m ≥ 0

sin(mφ)Pm
n (cosθ) for m < 0

(2.11)

where Pm
n are the associated Legendre polynomials.

The SHM can be implemented to an arbitrary order of accuracy by truncating the series at

a maximum value of l, deemed N. When applying the SHM to a generic 3-D combustion problem,

the RTE is transformed into N(N + 1)/2 elliptic PDEs where the highest order derivative is N.

Hence, the SHM can also be referred to as the PN method or PN approximation. A detailed

mathematical formulation of the PN method for a generalized 3-D geometry is given in [20].

Derived equations for the P1, P3, P5, and P7 approximations can also be found in [21].
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For all PN calculations that will be performed in this work, the geometries are

axisymmetric or rotationally invariant, effectively making the problem two-dimensional. As

stated before, relevant properties only vary radially and axially. So, a simpler PN solver for

axisymmetric geometries is used. A detailed formulation of the 2-D axisymmetric PN method,

including the full set of PN governing equations and boundary conditions, is reported in [22]. This

2-D axisymmetric PN method reduces the total number of PDEs and boundary conditions from

N(N + 1)/2 to (N + 1)2/4. The governing equations are derived by applying axisymmetric

relations to the generalized 3-D formulation of the PN method found in [20]. The boundary

conditions are derived from Marshak’s boundary conditions in the 3-D formulation of the PN

method [23]. The PDEs are then solved iteratively on OpenFOAM using the preconditioned

conjugate gradient (PCG) algorithm described in [24].

Since the mathematical complexity of the PN approximation increases quickly with order

N, the simplified PN (SPN) approximation is also investigated in this work as a mathematically

simpler approach to the SHM. The SPN RTE equations, formulated in [25], extend the formulation

of the SHM for a one-dimensional slab to three dimensions, resulting in a total of 2(N + 1) elliptic

PDEs instead of (N + 1)2/4 for the axisymmetric PN formulation or N(N + 1)/2 for the

generalized 3D PN formulation. These equations contain no cross-derivatives and are subject to

“nearly-decoupled” Marshak boundary conditions, leading to a simpler radiation calculation. In

this work, both SP3 and SP5 are used.

2.2.3 Photon Monte Carlo Method

As stated before, while the DOM and SHM are deterministic solution methods, the

Photon Monte Carlo (PMC) method is stochastic. In the PMC method, a large number of “rays” or

“photon bundles” of radiative energy are traced from their point of emission to their point of

absorption or until they reach a computational boundary. The spatial location of the origin,

direction, wavenumber, and path of each emitted photon bundle can all be determined by random

number relations detailed in [18]. In a typical finite volume-based Monte Carlo solver, a

statistically significant number of photon bundles with a predetermined amount of radiative

energy are traced from emission to depletion. Then, the radiative source term is computed by

subtracting the absorbed energy from the emitted energy within each finite volume cell.

In this work, a finite volume-based PMC code is used to compute the radiative source

term for each finite volume cell. The minutiae of this solver are described in [26]. Farmer and Roy
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also propose a quasi-Monte Carlo (QMC) method that is implemented as a user-defined option in

the finite volume PMC code. In the PMC method, independent random numbers are generated.

Contrarily, in the QMC method, a deterministic algorithm is used to generate a sequence of

numbers that mimic random behavior in a ”self-avoiding fashion.” This sequence is termed as a

low-discrepancy sequence (LDS). Results in [26] show that if a large enough sample of LDS

numbers is used, the distribution across the sampling domain approaches uniformity in the same

way that true random sampling does. Both the PMC and QMC methods are used in this work.

2.3 Spectral Properties

As stated above, radiation travels via electromagnetic waves. Thus, the range of possible

wavenumbers of radiation spans the electromagnetic spectrum. The radiative properties of a

medium, including emission, absorption, and scattering coefficients, can vary with the

wavenumber of radiation, and these variations must be considered when solving the RTE.

Spectral models can range in accuracy, mathematical complexity, and computational cost.

2.3.1 Gray Assumption

One simplifying assumption that can be made is the gray assumption. If a medium is

assumed to be gray, radiative properties do not vary with the wavenumber of radiation. Instead,

averaged values for radiative properties are used when solving the RTE. The RTE under the gray

assumption is given by

∂I
∂r

= j− κ I − σI +
σ

4π

∫
4π

I(ŝi)Φ(ŝi, ŝ) dΩi. (2.12)

A commonly used gray model is the Planck-mean absorption coefficient given by Equation 2.13.

κP =

∫ ∞
0 κη Ibηdη∫ ∞

0 Ibηdη
=

1
Ib

∫ ∞

0
κη Ibηdη (2.13)

Once the averaged values are determined, the gray assumption significantly reduces the

overall computational cost of a radiation solver. Since the gray assumption does not account for

any variation in spectral properties, it is likely that accuracy will be sacrificed in the calculation of

radiation.
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2.3.2 Non-Gray Radiation

Though there are many types of spectral models that are used in radiation calculations,

the two spectral models that are utilized in this work are the full-spectrum k-distribution (FSK)

method and the line-by-line (LBL) model. Descriptions of other spectral models can be found in

[18].

Line-by-Line Model

At the atomic level, emission and absorption is caused by electrons moving energy levels

within an atom. These energy transitions cause changes in radiative intensity, producing spectral

lines. The line-by-line (LBL) spectral model accounts for contributions to intensity from all

spectral lines across the electromagnetic spectrum. Because of this, it is considered the most

accurate spectral model. The LBL model requires detailed knowledge of the size and shape of

each spectral line, and this information is provided by high-resolution spectroscopic databases,

such as HITRAN [27] or HITEMP [28], which record the strengths and locations of individual

lines on the spectrum. For PN and DOM calculations, the LBL model requires an excessive

computational cost because an RTE must be solved for each spectral line, resulting in millions of

calculations. On the contrary, for PMC calculations, the LBL model can be applied without any

additional computational cost. PMC LBL calculations, when used with a sufficiently large

statistical sample of photon bundles, are considered ”exact.” For the benchmark solution in

Chapter 3, the PMC RTE solver with the LBL spectral model will be used. Ren and Modest’s

hybrid selection scheme for wavenumber η is used for all PMC LBL calculations in this work [29].

Full Spectrum k-Distribution Method

Although the LBL spectral model is the most accurate, its computational cost can become

excessive, especially for PN and DOM RTE solvers. An alternative to the LBL model that does not

require the same computational expense is the full-spectrum k-distribution (FSK) method. The

FSK method utilizes a probability distribution that spans the electromagnetic spectrum. This

distribution, termed as a k-distribution, is defined as

fφ̄,T(k φ̄, T) =
1

Ib(T)

∫ ∞

0
Ibη(T)δ(k− κη(φ̄)dη. (2.14)

In this equation, φ̄ is a vector containing thermodynamic state-defining variables, T is the

temperature, Ib(T) is the Planck function at temperature T, δ is the Dirac-delta function, and κη(φ̄)



12

is the absorption coefficient for wavenumber η at the thermodynamic state defined by φ̄. The

cumulative full-spectrum k-distribution is given by

gφ̄,T(k φ̄, T) =
∫ k

0
fφ̄,T(k

′ φ̄, T)dk′. (2.15)

which describes the fraction of the spectrum whose absorption coefficients fall below k. In

Equation 2.14, it is clear that the k-distribution accounts for the spectral variation of the Planck

function and the absorption coefficient. Thus, it is considerably more accurate to employ the FSK

method than the gray assumption.

In this work, the FSK method is applied using a look-up table constructed by Wang et al

[30]. This look-up table is valid for a mixture of CO2, H2O, and CO at a wide range of values for

temperature and pressure. The g-distribution in Equation 2.15 is integrated using 8 quadrature

points. The FSK look-up table is used for all nongray PN and DOM calculations in this work.
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CHAPTER 3

COMPARISON OF RTE SOLVERS IN A TURBULENT JET FLAME

This chapter gives a detailed comparison of the accuracy and computational cost of

different RTE solvers. The discrete ordinate method (DOM), the spherical harmonics method

(SHM), and the photon Monte Carlo (PMC) method are all evaluated. For each RTE solver, the

divergence of the heat flux (∇ · q) is calculated for a frozen-field snapshot of Sandia Flame D, a

turbulent piloted jet flame with a Reynolds number of approximately 22,400 [31].

3.1 Literature Review

Detailed comparison of different radiation models is sparsely found in the literature. Pal

et al compare the effect of different radiation models and turbulence-radiation interaction (TRI) on

peak flame temperature, NO emission, and the radiative source term in combustion simulations

of optically thin and optically thick flames [33]. Both PN and DOM approximations are

benchmarked against PMC LBL accuracy. For the PN method, only P1 and P3 are assessed for

accuracy and computational expense, and for the DOM, only 6× 2 and 16× 4 ordinates are

evaluated. Pal et al found that for optically thin flames, all RTE solvers produce results at a similar

level of accuracy. Thus, a computationally cheap radiation model like the P1 RTE solver with the

gray assumption should be used. On the contrary, for optically thick flames, the P3 RTE solver

yields results closest to PMC LBL accuracy at a fraction of the computational cost of DOM and

PMC RTE solvers. In this work, PN approximations up to P7, simplified PN models SP3 and SP5,

and 2× 4, 2× 8, 4× 4, 4× 8, 4× 16, 8× 8, 8× 16, and 16× 32 ordinates for the DOM will be

evaluated for computational cost and accuracy using PMC LBL results as a benchmark. QMC

results will also be included. Therefore, a more comprehensive comparison of the accuracy and

computational cost of RTE solvers is accomplished.

PN and DOM RTE solvers have been evaluated separately in the literature. For example,

Cai et al compare the accuracy and computational cost of P1, P3, and simplified SP3 and SP5

methods while also comparing the effects of different mixing models and spectral models on

radiation calculations [34]. The performance of the DOM formulation used in this work is also

detailed in [19]. Cai et al use 2× 4, 4× 8, 8× 16, and 16× 32 ordinates to compare the two sets of

boundary conditions described in Chapter 2: specularly reflective and rotationally invariant. Yet,

neither [34] nor [19] evaluate the accuracy and computational cost of the PN and DOM RTE
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solvers to the degree of detail that is reported in this work. A detailed description and

performance evaluation of the QMC method is given by Farmer in [26]. It was found that QMC

performs well when compared with PMC LBL results. Nonetheless, there is yet to be a

comparison of the QMC RTE solver with other RTE solvers like DOM and PN .

3.2 Results

For each RTE solver, the divergence of the heat flux, ∇ · q, is sampled at different axial

locations. For each simulation, the RTE solver is run for one time step on a dedicated HPC cluster,

and the total execution time is recorded as the compuational cost for the RTE solver. Each

simulation is run five times, and the smallest computational cost is recorded. For a sufficiently

large sample of photon bundles, the solution calculated using the PMC RTE solver and LBL

spectral model is close to exact. Thus, results given by the PMC LBL solver with 2 million rays or

photon bundles (10 statistical runs at 200,000 rays per run) are used as the benchmark of accuracy

for all other RTE solvers.

3.2.1 Target Flame

Sandia Flame D is a turbulent piloted jet flame with a main jet diameter of dj = 7.2 mm

and a pilot diameter of dp = 18.2 mm [31]. The jet composition is 25% methane and 75% air, while

the pilot burns a mixture of C2H2, H2, air, CO2, and N2 with an equivalence ratio of φ = 0.77. The

Sandia D flame is commonly used to verify the accuracy of combustion models owing to the

meticulous experimental measurements available in [31].

Pal et al found that for optically thin flames such as the original Sandia D flame, the effect

of radiation is small. Thus, a difference in the RTE solver will not affect results for variables like

temperature and species mass fractions. In this work, the Sandia D flame is scaled up by a factor

of 4 to better evaluate the differences in radiation models (dj = 28.8 mm, dp = 72.8 mm), and a

snapshot of the flame is taken from [32]. Contour plots for scalar fields of relevant species mass

fractions, temperature, and Planck mean absorption coefficient for the snapshot used in this work

are shown in Figure 3.1.

The divergence of the heat flux ∇ · q is sampled at three different axial locations:

z/d = 14.93, z/d = 29.79, and z/d = 44.65, where z/d is the ratio of the axial location z to the

diameter of the main jet d. A sample plot of ∇ · q at axial location z/d = 14.93 is given by Figure

3.2. The mean value is plotted, and the standard deviation is used as the statistical error shown by
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Figure 3.1: Scalar field values of Sandia D×4 for (left to right) CO2 mass fraction, H2O mass
fraction, CO mass fraction, Temperature [K], and Planck mean absorption coefficient [1/m] with
marked axial locations

the error bars in Figure 3.2.

3.2.2 RTE Solver Results

As stated in Chapter 2, the line-by-line (LBL) spectral model is generally the most

accurate spectral model since every spectral line is accounted for. Additionally, it is stated that

using the LBL spectral model in PMC calculations does not significantly add to the computational

cost. Thus, PMC results shown in this chapter utilize the LBL spectral model to achieve the

greatest level of accuracy. PMC LBL results are also used as a benchmark for accuracy.

If the LBL spectral model is used in conjunction with DOM or PN RTE solvers, one would

need to compute the solution to millions of RTEs. Because of this, the computational cost of the

LBL spectral model becomes excessive. [30] shows that the FSK look-up table described in

Chapter 2 produces LBL accuracy at a fraction of the computational cost. Thus, for all DOM and

PN RTE solvers that are used in this work, the FSK look-up table will be used as the primary

spectral model.
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Figure 3.2: ∇ · q at z/d = 14.93 for PMC LBL

SHM or PN Results

The results for ∇ · q for the P1, P3, P5, and P7 RTE solvers are compared with PMC LBL

results in Figure 3.3. In general, for PN results, a higher value of N corresponds to a higher level of

accuracy. This is expected given the nature of the SHM described in 2.2.2. It is also shown that for

most radial locations, except those greater than 0.1 meters, PN RTE solvers tend to overpredict

∇ · q. The gain in accuracy also seems to lessen for each increase in N. For example, the gain in

accuracy from P1 to P3 is larger than the gain in accuracy from P3 to P5. Furthermore, in this

snapshot case, there is no visible gain in accuracy from P5 to P7.

Next, the performance of simplified PN solvers SP3 and SP5 is evaluated. Figure 3.4 shows

that both SP3 and SP5 perform reasonably well. SP5 gives slightly more accurate results than SP3.

When compared with PN results in Figure 3.4, SP3 and SP5 seem to yield a similar level of

accuracy as the PN RTE solvers with the same order of accuracy. For example, P5 and SP5 give

siimlarly accurate values of ∇ · q at the axial locations sampled in this work.

The computational cost for all PN and SPN RTE solvers is tabulated in Table 3.1. A plot of

the computational cost versus the order of accuracy N for all PN RTE solvers is also shown in

Figure 3.5. Figure 3.5 shows a good R-squared value for a quadratic fit of the relationship between

computational cost and order of accuracy N. This is consistent with the axisymmetric formulation
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(a) z/d = 14.93 (b) z/d = 29.79

(c) z/d = 44.65

Figure 3.3: ∇ · q for PN with FSK table and PMC LBL

of the PN approximation described in [22] which necessitates that for order of accuracy N, (N+1)4

2

PDEs must be solved, suggesting a quadratic relationship between N and computational cost.

Furthermore, each SPN RTE solver has a slightly lower computational cost than the corresponding

PN RTE solver. For example, SP3 has a slightly lower computational cost than P3. Since all PN

solvers utilize the same spectral model, the differences in accuracy and computational cost can be

attributed to the difference in RTE solver. In this case, the order of accuracy N determines the

change in RTE solver.

DOM Results

For the DOM solver used in this work, the solid angle can be discretized in both the

azimuthal (φ) and polar (θ) directions. In order to provide a comprehensive assessment of the

accuracy and computational cost of the DOM, the number of ordinates in the azimuthal direction
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(a) z/d = 14.93 (b) z/d = 29.79

(c) z/d = 44.65

Figure 3.4: ∇ · q for SP3, SP5, P3, P5 with FSK table and PMC LBL

Table 3.1: Computational cost for PN RTE solvers with FSK table

RTE Solver Computational Cost (s)
P1 1.91
P3 2.93
P5 5.12
P7 9.74

SP3 2.47
SP5 2.91

(nφ), the number of ordinates in the polar direction nθ , and the total number of ordinates (nθ × nφ)

are all varied. The results for ∇ · q for 2× 4, 2× 8, 4× 4, 4× 8, 4× 16, 8× 8, 8× 16, and 16× 32

ordinates are compared with PMC LBL results in Figure 3.6. In general, a sufficiently high total

number of ordinates yields adequately accurate values for ∇ · q. Moreover, at first glance, most
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Figure 3.5: Computational cost vs. order of accuracy N for PN RTE solver

DOM results seem to fall within the standard PMC LBL error except for higher numbers of

ordinates at z/d = 44.65. Nonetheless, a more detailed evaluation of the effect of nφ and nθ on

accuracy is required.

Figure 3.7 shows results for ∇ · q given by 2× 8 ordinates and 4× 4 ordinates compared

with PMC LBL accuracy. Although the total number of ordinates remains the same between the

two (2× 8 = 4× 4 = 16), there remains a small but noticeable difference in accuracy. Results for

all DOM RTE solvers from the centerline to a radius of approximately 0.04 meters where nφ

remains constant at nφ = 8 and nθ varies are shown in Figure 3.8. Although an increase in nθ

shows a slight change in the value of ∇ · q, the difference is not significant. Results for all DOM

RTE solvers for the same radius where nθ remains constant at nθ = 4 and nφ varies are shown in

Figure 3.9. There is also a change in the value of ∇ · q as nφ increases, and this advantage in

accuracy is more significant than the advantage in accuracy gained by an increase in nθ .

Conclusively, the impact on accuracy is greater for the number of azimuthal ordinates (nφ) than

the number of polar ordinates (nθ) for the chosen figuration.

The relative computational cost for all numbers of ordinates is tabulated in Table 3.2. A

plot of the computational cost versus the total number of ordinates is given in Figure 3.10. In

general, the computational cost is proportional to the total number of ordinates. Figure 3.10 shows

a good R-squared value for a linear relationship between the total number of ordinates and the

computational cost. Also, Table 3.2 shows that DOM RTE solvers that use the same total number

of ordinates require a similar computational cost (e.g. 4× 16 and 8× 8). Thus, the greater

advantage in accuracy comes with using a higher number of ordinates in the azimuthal direction.
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(a) z/d = 14.93 (b) z/d = 29.79

(c) z/d = 44.65

Figure 3.6: ∇ · q for DOM with FSK table and PMC LBL

As stated in the previous section, all DOM RTE solvers use the same spectral model. Therefore,

differences in accuracy and computational cost can be ascribed to the difference in RTE solvers. In

this case, the total number of ordinates, the number of azimuthal ordinates nφ, and the number of

polar ordinates nθ determine the change in RTE solver.

QMC Results

As detailed in Chapter 2, there exists an alternate version of the photon Monte Carlo

(PMC) method called the quasi-Monte Carlo (QMC) method which uses low-discrepancy

sequences (LDS) to simulate random number generation. Figure 3.11 shows QMC LBL and PMC

LBL results side-by-side, and Table 3.3 shows the computational cost of each. For most axial

locations, the values for ∇ · q obtained using the QMC RTE solver fall within PMC LBL standard

error. This is consistent with the description of the QMC method in Chapter 2. According to



21

(a) z/d = 14.93 (b) z/d = 29.79

(c) z/d = 44.65

Figure 3.7: ∇ · q for DOM with 2× 8 and 4× 4 ordinates and PMC LBL

Table 3.2: Computational cost for DOM RTE solvers with FSK table

RTE Solver Computational Cost (s)
DOM 2× 4 8.95
DOM 2× 8 15.88
DOM 4× 4 9.01
DOM 4× 8 24.09

DOM 4× 16 51.20
DOM 8× 8 52.14

DOM 8× 16 99.00
DOM 16× 32 368.98

Chapter 2, a large enough sample of numbers obtained with an LDS approaches a uniform

distribution, similar to true random behavior. As expected, the computational cost is significantly

reduced when using the QMC method. Thus, the QMC method achieves sufficiently small error at
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(a) z/d = 14.93 (b) z/d = 29.79

(c) z/d = 44.65

Figure 3.8: ∇ · q for DOM with varying nθ and PMC LBL

a lower number of rays. This is confirmed by the results in Table 3.3.

Table 3.3: Computational cost for PMC RTE solvers with LBL spectral model

RTE Solver Computational Cost (s)
QMC (200,000 rays) 4.55
PMC (2 million rays) 32.66

Comparison of DOM, PN , and QMC

In this section, the three alternatives to PMC RTE solvers (DOM, PN , QMC) are briefly

compared. P7 and DOM with 4× 4 ordinates are selected because their respective computational

costs are approximately equal. The computational costs of P7 and DOM with 4× 4 ordinates are
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(a) z/d = 14.93 (b) z/d = 29.79

(c) z/d = 44.65

Figure 3.9: ∇ · q for DOM with varying nφ and PMC LBL

also on the same order as the computational cost of the QMC method. One should note that this

comparison must be taken as an approximate comparison only. This is because there are many

contributing factors to the overall execution time, and thus the computational cost, of each

method. These factors could include the tolerances and number of iterations used in the

numerical differential equation solvers implemented in OpenFOAM. Other implementation

details of the RTE solver that may also impact the total execution time. A difference in any one of

these factors could lead to different conclusions about the relative accuracy and computational

cost of RTE solvers. Additionally, the computational cost of each RTE solver can be tuned by the

user by changing the maximum number of iterations required by OpenFOAM’s built-in numerical

PDE solvers.

Figure 3.12 presents the divergence of the heat flux (∇ · q) calculated using P7 with FSK

table, DOM (4× 4) with FSK table, and QMC LBL. These results are also compared with PMC LBL
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Figure 3.10: Computational cost vs. total number of ordinates nθ × nφ for DOM RTE solver

(a) z/d = 14.93 (b) z/d = 29.79

(c) z/d = 44.65

Figure 3.11: ∇ · q for QMC LBL and PMC LBL
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accuracy. In this figure, the P7 results are notably less accurate than the DOM (4× 4) results and

the QMC results. Thus, in this specific case, the discrete ordinate method (DOM) and QMC

perform better than the spherical harmonics method (SHM) at a similar computational cost. As

stated before, the computational cost could be affected by other factors that are not simply the

type of RTE solver used. Hence, this result cannot be applied for all combustion configurations.

(a) z/d = 14.93 (b) z/d = 29.79

(c) z/d = 44.65

Figure 3.12: ∇ · q for DOM, PN , QMC, and PMC LBL

3.3 Discussion

In summary, PN RTE solvers generally perform better with greater order of accuracy N,

but the computational cost also increases quadratically with N. The increase in computational

cost is expected as the axisymmetric PN formulation solves (N + 1)2/4 elliptic PDEs. SPN solvers

perform similarly to the PN solvers of the same order of accuracy (e.g. P3 and SP3). The



26

computational cost is reduced slightly when using SPN solvers instead of PN solvers. This follows

from the fact that the PN formulation in this work requires solutions to (N+1)2

4 PDEs, while the

SPN formulation only requires solutions to 2(N + 1) PDEs.

For the DOM, the accuracy of the RTE solver depends loosely on the total number of

ordinates nθ × nφ. However, the number of azimuthal ordinates nφ affects the accuracy more than

the number of polar ordinates nθ . This is largely due to the thin wedge geometry of the problem.

Because such a thin wedge angle is used, more azimuthal ordinates are needed to resolve all

directions of intensity, consistent with results in [19]. In general, for locations closer to the center

(r = 0), all DOM solvers perform well. However, for radial locations farther from the center

(r > 0.5), those with lower numbers of ordinates slightly underpredict the divergence of the heat

flux ∇ · q. These include 2× 4 and 4× 4 ordinates. The computational cost of DOM solvers also

appears to be proportional to the total number of ordinates. This proceeds from the fact that the

DOM solves nθ × nφ PDEs to compute ∇ · q.

Compared to PMC LBL, the QMC method performs very well. Most values of ∇ · q fall

within the standard error of PMC LBL results. Because of the nature of LDS sequences and the

sufficient size of the sample of photon bundles, the QMC method is expected to perform well.

Furthermore, the computational cost is a fraction of the cost of PMC LBL.

Overall, in this work, DOM seems to perform better than PN in terms of accuracy.

However, the current implementation of DOM is also notably more expensive than the PN

approximation. In Figure 3.12 where P7 and DOM with 4× 4 ordinates are compared side-by-side,

DOM produces more accurate values for the divergence of the heat flux ∇ · q than PN . However,

as stated before, the total execution time is recorded as the figure for computational cost. Since the

total execution time factors in both the evaluation of the spectral model and the evaluation of the

RTE and is affected by other implementation details of the RTE solver, differences in

computational costs across different RTE solvers cannot always be attributed to the difference in

RTE solvers. Additionally, both DOM and PN can be tuned by changing the maximum number of

iterations allowed for OpenFOAM’s PDE solvers, which would also affect the total execution time

of each simulation. On the other hand, QMC seems to perform better than both DOM with 4× 4

ordinates and P7, and the computational cost of QMC with 200,000 rays is about half the

computational cost required by DOM with 4× 4 ordinates and P7. Thus, for this combustion

configuration, QMC seems to perform the best while not requiring an excessively high

computational expense like PMC normally requires.
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Although these results are specific to a laboratory-scale turbulent-piloted jet flame and

other similar types of flames, the Sandia D×4 flame provides a good representation of the

radiation effect, and thus the importance of RTE solvers, in nonhomogenous participating media.

Depending on the combustion configuration that is chosen, the results from this work could be

used to select an RTE solver that meets the accuracy and computational cost requirements of the

desired application.
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CHAPTER 4

IMPROVEMENT OF PMC CALCULATIONS

This chapter explores the photon Monte Carlo (PMC) RTE solver in more detail. As stated

in Chapter 2, the PMC RTE solver used in conjunction with the LBL spectral model produces the

most accurate value of the divergence of the heat flux, ∇ · q. However, this method is also

considerably more expensive than other RTE solvers like DOM and PN . There remain areas of

improvement to the efficiency of PMC calculations. Some of these areas of improvement will be

investigated in this chapter, and others will be suggested in Chapter 6 for future avenues of

exploration.

4.1 Literature Review

In the literature, there is a wide range of studies on improvements to Monte Carlo

radiation calculations. One main category of these improvements is variance reduction methods,

which attempt to decrease the statistical error of Monte Carlo calculations. One such variance

reduction technique for surface-to-surface radiation calculations, called the control variate

method, is discussed in [35]. This technique starts with the RTE given by Equation 2.4 and splits

the radiative intensity Iη into a control intensity and a deviational intensity. The control intensity

is selected to be the blackbody intensity at wavenumber η, Ibη , and can be calculated analytically.

Thus, a Monte Carlo calculation is only needed to calculate the deviational intensity. Since the

variance in the deviational intensity is expected to be smaller than the variance in the original

intensity Iη , the overall variation of the Monte Carlo method should decrease. Another variance

reduction technique for Monte Carlo transport calculations is investigated in [36]. This method is

deemed MAGIC (Method of Automatic Generation of Importances by Calculation), and it seeks to

predict the distribution of particles using information obtained from an initial analog run of the

Monte Carlo transport code. The main objective in [36] of predicting the computational load

distribution in Monte Carlo particle transport calculations is also an objective of this work.

However, I seek to provide a correlation between local variables and computational load that does

not require an initial run of the PMC code.

An improvement to the efficiency of Monte Carlo radiation transport calculations is

suggested by [38]. In this study, a random walk procedure is derived to represent the absorption

and reemission of radiation for one advance of spatial coordinates and time of a single particle.
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This random walk procedure, especially in optically thick areas of the computational domain, is

found to lower the computational cost of the Monte Carlo calculations without lowering the

accuracy. A separate modification to PMC calculations is the implementation of low-discrepancy

sequences (LDS) to simulate random number generation [26]. This method is called the

quasi-Monte Carlo (QMC) method and has been described previously in this work. Any

improvements discussed in this chapter are also applicable to QMC calculations.

No detailed work on the estimation of computational load in PMC calculations using

local variables was found in the literature.

4.2 Assessment of Computational Load

For large and complicated combustion simulations, it is practical and sometimes

necessary to parallelize PMC calculations in order to divide the computational load between

processors. Thus, the finite volume-based Monte Carlo radiation code that is used in this work is

capable of parallel calculations by decomposing the computational domain. The parallel

efficiency of a calculation depends on how balanced the load is between processors. In other

words, the more evenly the computational load is divided between processors, the better the

parallel solver will perform. However, the domain decomposition that is implemented in this

work evenly divides the physical domain between processors and does not account for the load

distribution across the entire domain. Consequently, the computational load is often imbalanced

between processors. In order to balance the load before running a simulation, it is necessary to

find a way to predict the load distribution, which is a primary motivation of this work.

In this section, I attempt to find a correlation between the computational load and local

variables like temperature, cell volume, and Planck-mean absorption coefficient. In PMC

calculations, two types of computational load are most prevalent: emission and tracing. In an

actual PMC calculation, the computational load attributed to emission consists of calculating an

origin point, direction of emission, and wavenumber for each ray using random number relations

[18]. In this assessment of computational load, I define the local emission load as the number of

rays emitted from each computational cell, which can be directly attributed to the energy content

of each cell. The energy content of each cell is proportional to κpVT4 where κp is the local

Planck-mean absorption coefficient, V is the cell volume, and T is the local temperature. The
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calculation for the local emission load is given by

ni =
(κpVT4)i

∑N
j (κpV4

T)j
nray (4.1)

where ni is the number of rays emitted by cell i (emission load for cell i), nray is the total number

of rays, and N is the total number of finite volume cells.

The other contributor to computational cost is ray tracing. After a ray is emitted, it must

be traced to the next cell face that it intersects. Then, the ray is followed through the next cell,

depositing some of its energy into the cell, until the next intersection face is found. This process

continues until the ray’s energy is depleted. Tracing the intersection of a ray with faces of

computational cells requires a computationally intensive geometric search. This geometric search

constitutes the computational load attributed to tracing. I define the local tracing load as the

number of times a finite volume cell is intersected by an incoming ray, which is also the measure

of the number of times the ray-face intersection search subroutine is invoked for each cell. This

type of load does not have a direct mathematical relationship with local variables. Thus, in this

section, investigation will focus on prediction of the tracing load. Note that the absolute

numerical values of emission and tracing load are somewhat arbitrary as they depends on the

number of total rays (nray), the number of cells in the computational domain, and the combustion

configuration itself. Hence, I will focus on assessment of emission and tracing load on a

case-by-case basis and not generalized across all cases. Figure 4.1 shows a basic flowchart of the

PMC code to further illustrate the difference between emission and tracing load.

In Figure 4.1, every time a ray is emitted (e.g. “Emit ray j”), the emission load for that cell

is increased by 1. Every time the process “Find next cell face intersection” is performed, the

tracing load of the next cell is increased by 1. Note that these “loads” do not directly provide a

numerical value of CPU times; rather, they indicate how many times a block of subroutines were

called in the PMC program.

4.2.1 Target Cases

To assess the computational load distribution on a wide breadth of combustion

configurations, four atmospheric pressure cases and three high-pressure cases are studied.
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Turbulent-piloted jet flame

The first atmospheric pressure configuration is the scaled-up Sandia D flame that is used

to validate radiation models in Chapter 3, named sandiaDx4. A more detailed description of this

turbulent-piloted jet flame and contour plots of the relevant scalar fields can be found in [31] and

Chapter 2. The geometry of the flame is assumed to be axisymmetric, so the model is solved on a

computational mesh for a wedge with a single azimuthal layer of finite volume cells totaling 3325.

The snapshot is again provided by [32]. This case is solved using 200,000, 500,000, and 1 million

rays.

OpenFOAM three-dimensional pool fire case

The second atmospheric pressure case that is studied is one of OpenFOAM’s fireFoam

solver tutorial cases called smallPoolfire3D. This simulation is run using a large-eddy simulation

(LES) approach to turbulence and an “infinitely fast chemistry combustion model” [37]. A

snapshot of this case is obtained by selecting a timestep, specifically t=0.5 seconds, where there is

a noticeable presence of hot gases CO2, CO, and H2O. The temperature at the inlet is set to a

constant value of 300 K. The computational domain is 1 m×1 m×1 m and is solved on a

computational mesh of 216,000 finite volume cells. This case is solved using 2 million, 5 million,

and 10 million rays.

Laboratory-scale turbulent pool fire

The third atmospheric pressure case studied in this work is a snapshot of an n-heptane

turbulent pool fire case studied in [40], deemed poolfire2. The diameter of the pool is 7.1 cm,

and the flame height is approximately 34.5 cm. This pool fire has strong tendency to soot; thus,

radiation effects are important. The original simulation is conducted using an LES turbulence

model using approximately 9.6 million cells coupled with chemistry and soot models that are

detailed in [41]. The temperature at the inlet is set to a constant value of 300 K. The original

computational domain was coarsened by mapping 9.6 million cells onto a new mesh with 216,000

cells for computational ease. This case is solved using 1 million, 2 million, and 5 million rays.

Flame cube

The final atmospheric pressure case is an artificial case with 490,000 finite volume cells,

called flameCube in this work [42]. This case was artificially created to mimic a smooth flame-like
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contour of combustion products and temperature. The artificially created scalar field emulates a

stationary steady methane flame in a rectangular box of size 1.04 m × 1.04 m × 2.88 m. Radiation

is solved using 10 million, 20 million, and 50 million rays.

High-pressure gas turbine

The first high-pressure configuration is a high-pressure gas turbine combustor based on

the SGT-100 industrial gas turbine combustor found in [43]. The snapshot of this case is taken

from a study by Ren et al [44], and in this work, it is referred to as gasTurbine. This simulation is

run using a Reynolds-averaged simulation approach to turbulence and a partially stirred reactor

turbulent combustion model [37]. The walls are set as black with fixed temperature values of 673

K. Combustion occurs at a pressure of approximately 16 atm. The case has a computational mesh

of 15,718 finite volume cells and is solved using 200,000, 500,000, and 1 million rays.

OpenFOAM aachenBomb tutorial case

The second high-pressure case is one of OpenFOAM’s sprayFoam solver tutorial cases

called aachenBomb. This simulation is run using an RAS approach to turbulence and a partially

stirred reactor turbulent combustion model [37], and a snapshot is taking at t=0.01 seconds.

Similar to gasTurbine, combustion occurs at a high pressure of about 7.5 atm. The simulation also

enforces a zero gradient boundary condition for the temperature at the walls, and the walls are set

to be black. The computational domain is .02 m×.1 m×.02 m with a computational mesh of

168,100 finite volume cells. Radiation is solved using 20 million, 50 million, and 100 million rays.

Constant-volume spray combustion chamber

The final combustion configuration that is studied in this work is the high-temperature,

high-pressure Spray-A configuration provided by Engine Combustion Network [45], referred to

in this work as sprayA. The snapshot is taken from [46]. In this configuration, combustion occurs

in a constant-volume combustion chamber. The fuel is liquid n-dodecane, injected as a

pressurized spray. The simulation is run using an RAS turbulence model combined with a

partially stirred reactor turbulent combustion model [37]. Combustion occurs at a pressure of

approximately 60 atm. The walls are hot and black, set at a fixed value of 850 K. The

computational domain consists of 12,800 cells, and 100,000, 200,000, and 500,000 rays are used.
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4.2.2 Results

A majority of the computational cost of PMC calculations is contributed by ray tracing.

Table 4.1 shows the relative computational cost of emission and tracing as well as the hot cell

fraction for each combustion case. The hot cell fraction is defined as the percentage of cells whose

energy content (κPVT4) falls above the mean energy content for all cells within the computational

domain. In general, tracing seems to contribute the majority of the overall computational cost of

all PMC calculations. For a single combustion case, the ratio remains roughly constant, and the

overall cost scales with the number of rays. However, the exact proportion of the computational

cost that is taken up by tracing varies from case to case. This could be due to a number of factors.

For combustion cases with a smaller hot cell fraction like smallPoolfire3D and smallPoolfire

(see contour plots in Appendix A), the tracing time is approximately 15 times the emission time

which is large compared to other cases. In general, it seems that the ratio of tracing to emission

time is related to the hot cell fraction ratio. Combustion configurations with smaller hot cell

fraction have a smaller percentage of the computational domain that is highly emitting, so rays

will have a farther distance to travel before getting absorbed or reaching a computational

boundary. Also, for high pressure cases, the ratio of tracing to emission time seems generally

smaller than the same ratio for atmospheric pressure cases. This could follow from the fact that

the hot cell fraction in high pressure cases is larger. This could also be due to the local optical

thickness of the medium which mostly depends on Planck-mean absorption coefficient κp. In high

pressure cases, the values for κp are, on average, larger than they are for atmopsheric pressure

cases. Thus, emitted rays in high pressure cases are generally absorbed more locally. The

computational time information in Table 4.1 allows one to eventually calculate the average

computational load per cell in terms of seconds which would improve any correlation that is

developed.

The load contributed by emission of rays can be calculated prior to running the Monte

Carlo code. Thus, emphasis will be placed on the relationship between the tracing load and a

priori variables including temperature, Planck-mean absorption coefficient, and cell volume.

Because these variables can be used to directly predict the emission load, they are expected to play

an important role in predicting the tracing load as well. In this work, the number of photon

bundles or rays emitted by each cell is recorded as the emission load, and the number of times a

cell is intersected by an incoming ray or photon bundle is recorded as the tracing load. Another
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Table 4.1: Computational cost and hot cell fraction for all combustion configurations and number
of rays

Number of rays Emission time (s) Tracing time (s) Tracing-Emission Ratio Hot Cell Fraction
sandiaDx4

100,000 0.29 1.56 4.45 0.191
200,000 0.59 3.19 5.41 0.191
500,000 1.46 7.84 5.37 0.191

smallPoolfire3D

2 million 5.70 81.89 14.37 0.027
5 million 14.64 204.60 13.98 0.027
10 million 27.35 362.09 13.24 0.027

poolfire2

1 million 3.27 51.11 15.63 0.018
2 million 6.49 99.39 15.31 0.018
5 million 16.12 246.37 15.28 0.018

flameCube

10 million 36.39 363.77 10.00 0.142
20 million 71.47 733.32 10.26 0.142
50 million 172.92 1807.64 10.45 0.142

gasTurbine

200,000 0.54 3.75 6.94 0.389
500,000 1.44 10.00 6.94 0.389
1 million 2.80 19.41 6.93 0.389

aachenBomb

20 million 22.97 129.59 5.64 0.339
50 million 58.13 344.99 5.93 0.339
100 million 111.30 648.92 5.83 0.339

sprayA

100,000 0.23 0.77 3.35 0.503
200,000 0.46 1.52 3.30 0.503
500,000 1.15 3.83 3.33 0.503

variable that is considered in the load distribution study is the optical thickness of each cell. This

is defined as the Planck-mean absorption coefficient κP multiplied by some length scale l. The

length scale is defined as the diameter of the sphere of equivalent volume for each cell. Given a

cell volume V, the length scale is l = ( 3V
4π )

1/3.

To gain a wide breadth of understanding on the correlation between the tracing load and

a priori variables in PMC calculations, the PMC code is run for multiple combustion

configurations and varying total number of rays. Atmospheric pressure cases include the Sandia

D×4 flame sandiaDx4, OpenFOAM’s tutorial case smallPoolfire3D, another poolfire case

poolfire2, and artificial case flameCube. High pressure cases include OpenFOAM’s tutorial case

aachenBomb, combustion in a gas turbine chamber gasTurbine, and sprayA.
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The correlation coefficients between values in this work are computed using a python

postprocessing code. A linear regression analysis between tracing load and emission load, tracing

load and optical thickness, and emission load and optical thickness is also performed.

Qualitative Assessment

Contour plots of temperature, Planck-mean absorption coefficient (κp), cell volume,

emission load, and tracing load for gasTurbine are given in Figure 4.2, and contour plots for

sandiaDx4 are given in Figure 4.3. Contour plots of the other five combustion cases can be found

in Appendix A. The contour plots were taken as an x-z plane center slice on Paraview.

In both sandiaDx4 and gasTurbine, there is an observable correlation between the

emission and tracing loads. A similar trend can be seen in the contour plots for other cases (see

Appendix A). Since the emission load is directly proportional to κpVT4 where κp is the

Planck-mean absorption coefficient, V is the cell volume, and T is the absolute temperature, there

are also some visible correlations between these three variables and the tracing load. For

OpenFOAM tutorial cases like aachenBomb where the finite volume cells are cuboid and uniform

in volume, there will naturally be no correlation between volume and tracing load (see Figure A.4

in Appendix A). Overall, the greatest observable trend is a similarity between the emission and

tracing load distributions in all cases. However, it should be noted that in atmospheric pressure

cases like sandiaDx4, the correlation is generally less obvious than in high pressure cases like

gasTurbine, where the similarities between emission and tracing load distributions are more

noticeable.

Histograms of volume, temperature, Planck-mean absorption coefficient, optical

thickness, emission load, and tracing load for sandiaDx4 and gasTurbine that depict the number

of data points that fall within a certain range of values are found in Figures 4.4 and 4.5. The

correlation coefficients between emission load, tracing load, optical thickness, and other local

variables are also tabulated in Tables 4.2 and 4.3. Histograms and correlation results for the other

cases can be found in Appendix A.

At first glance, the histograms show data sets that are imbalanced, especially sandiaDx4.

An imbalanced data set indicates that most of the data points are skewed towards one end of the

range or another. For example, in Figure 4.5, it is clear that most values for the emission load are

on the low end of the range, with the highest frequency falling in the 0-5 range. This means that

any correlation that is developed with the current data set will be skewed towards data points
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Table 4.2: Correlation coefficient data for gasTurbine

Relation Variables Correlation Coefficient
Emission Load - Optical Thickness 0.6055
Emission Load - kPlanck 0.0897
Emission Load - Temperature 0.2348
Emission Load - Volume 0.7606
Tracing Load - Optical Thickness 0.5467
Tracing Load - kPlanck 0.03333
Tracing Load - Temperature 0.2231
Tracing Load - Volume 0.6966
Tracing Load - Emission Load 0.9764

Table 4.3: Correlation coefficient data for sandiaDx4

Relation Variables Correlation Coefficient
Emission Load - Optical Thickness 0.2594
Emission Load - kPlanck 0.1972
Emission Load - Temperature 0.4591
Emission Load - Volume -0.1227
Tracing Load - Optical Thickness 0.1999
Tracing Load - kPlanck -0.0713
Tracing Load - Temperature 0.1322
Tracing Load - Volume 0.2733
Tracing Load - Emission Load 0.6767

with extremely low emission values. This extends to other imbalanced variables like tracing load

and κp. The data sets for gasTurbine and other high pressure cases appear more balanced than

the data sets for sandiaDx4 and other atmospheric pressure cases (see Figures 4.4 and 4.5 and

Appendix A). Table 4.2 shows a high correlation coefficient between tracing and emission loads at

around 0.98. Table 4.3 also shows the highest correlation coefficient to be between tracing and

emission loads at around 0.68, which is much lower than the tracing-emission correlation

coefficient for gasTurbine. For other high pressure cases, there is a high correlation between

tracing and emission loads, and for other atmospheric cases, the correlation coefficient between

tracing and emission loads is moderately high (see Appendix A). These correlation coefficient

values confirm the visible similarities that are seen between the tracing and emission loads in the

contour plots (see Figures 4.3 and 4.2 and Appendix A). Computational cost information for

emission and tracing for all cases are tabulated in Table 4.1.
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Linear Regression

For each combustion case, three scatter plots are presented: tracing load vs. emission

load, tracing load vs. optical thickness, and emission load vs. optical thickness. In each case, the

tracing and emission loads have been scaled with the number of rays used in each simulation

divided by 100,000 (i.e. 100, 200, and 500 for flameCube) and the hot cell fraction which was

defined previously. The tracing and emission loads have first been normalized by the number of

rays because each combustion configuration was run for three different numbers of rays. The

loads have also been normalized by the hot cell fraction so that the range of values are consistent

between different combustion cases. The new load Li for cell i would be given by

Li =
100, 000 ∗ L0

i
nrayh

(4.2)

where L0
i is the non-normalized load in cell i, h is the hot cell fraction, and nray is the total number

of rays used. The scatter plots can be found in Figures 4.6 through 4.12.

The high pressure cases, gasTurbine, aachenBomb, and sprayA, are presented first. In

these cases, a linear regression represents the relation between emission and tracing loads fairly

well. Each high pressure case gives an R-squared value of at least 0.8, suggesting a strong linear

dependence of tracing load on emission load. For the high pressure cases, the scatter plots for

tracing load vs. optical thickness and emission load vs. optical thickness show similar

distributions and a relatively low correlation between either type of load and optical thickness

with R-squared values ranging from 0.285 to 0.659.

The atmospheric pressure cases, sandiaDx4, flameCube, poolfire2, and

smallPoolfire3D, are presented next. In these cases, the correlation between the tracing load and

the emission load is much worse with R-squared values ranging from 0.451 to 0.612, excluding a

good R-squared value of approximately 0.85 for the artificial case flameCube. Both sandiaDx4 and

flameCube show extremely low correlations between the tracing and emission loads and the

optical thickness, with R-squared values ranging from 0.028 to 0.137. On the other hand, the

poolfire2 and smallPoolfire3D cases show slightly higher correlations between tracing and

emission loads, tracing load and optical thickness, and emission load and optical thickness.

The best relationship shown by the scatter plots is still tracing and emission loads.

However, in most atmospheric pressure cases, the correlation is much worse than for high

pressure cases, and the optical thickness does not offer a good prediction of either tracing or
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emission loads.

4.2.3 Discussion

Qualitative analysis of the contour plots for all combustion cases show a noticeable

similarity between emission and tracing load distributions. Since emission is calculated directly

from the volume, Planck-mean absorption coefficient, and temperature of each cell, there are some

notable similarities between these three variables and the tracing load distributions as well. This

makes sense given the nature of the PMC method. Cells that are neighboring highly emitting cells

are likely to experience high tracing loads as well. Since the highly emitting cells in most cases are

concentrated in certain parts of the domain, the cells with high tracing loads will also most likely

be concentrated in a particular area of the domain. It is also expected that the tracing load

distribution may be more spread out than the emission load distribution since emitted rays, more

often than not, travel beyond the borders of their origin cells, sometimes crossing into areas of the

domain that are not highly emitting.

However, although there is a visible similarity between emission and tracing load

distributions, the actual correlation data does not support a strong enough relationship between

the two variables for all combustion cases. For high pressure cases and for the artificial case

flameCube, the correlation values are reasonably strong, and the scatter plots of tracing vs.

emission loads in Figures 4.6, 4.7, 4.8, and 4.10 show R-squared values of at least 0.8. However, for

the other atmospheric pressure cases, the correlation values are weak, and the scatter plots show

very low R-squared values (see Figures 4.9, 4.11, 4.12). As shown in the histogram plots for κp, the

average value for the Planck-mean absorption coefficient and overall distribution of Planck-mean

absorption coefficient values is much higher for high pressure cases. This would make regions of

high Planck-mean absorption coefficient more optically thick. Thus, rays or photon bundles

would tend to be absorbed more locally to where they were emitted. This would lead to a better

prediction of tracing load using the emission load. Therefore, for high pressure cases, a direct

correlation between the tracing and emission load can be drawn. Although this correlation may

not be exact, it could be used to predict the overall load distribution and balance the load between

processors by decomposing the domain accordingly. Still, this correlation does not apply for most

atmospheric cases. Moreover, for the artificial case flameCube, the optical thickness cannot be

used as a justification as to why the correlation between the emission loads and tracing loads is

good. For atmospheric pressure cases, more investigation is needed to find a suitable correlation



39

between the tracing load and local variables.

4.3 Ray Bundling

Another feature of the Monte Carlo code used in this work is the user option to trace

multiple wavenumbers per ray or photon bundle. This feature is expected to decrease the overall

computational cost of PMC calculations using the same total number of wavenumbers. This is

because the same random number sequence can be used to trace the path of multiple

wavenumbers instead of one, thereby reducing tracing by a factor of however many

wavenumbers are traced per ray. Since tracing contributes the most to the overall computational

cost of a PMC calculation, this should significantly reduce the overall computational cost.

However, there is expected to be a trade-off in the accuracy or variance of the PMC method. This

is because the randomness of the PMC calculation is lowered if more than one wavenumber is

traced per ray. This would increase the statistical error of the PMC calculation. The impact of this

feature on the accuracy and computational cost of the PMC method will be explored in this

section in order to find an optimized value for the number of wavenumbers per ray.

4.3.1 Results

Snapshot cases of both gasTurbine and sandiaDx4 are run to see the effects of changing

the number of wavenumbers per ray or photon bundle. For both combustion cases, the total

number of wavenumbers (number of wavenumbers per ray × number of rays) remains the same.

500,000 total wavenumbers are used for sandiaDx4, and 1 million total wavenumbers are used for

gasTurbine. The plots of ∇ · q and the standard deviation or statistical error of ∇ · q for

gasTurbine are found in Figures 4.13 through 4.17, and the corresponding plots for sandiaDx4 are

found in Figures 4.18 through 4.20. The minimum, maximum, and mean values of the standard

deviation of∇ · q for all cells in the domain for gasTurbine and sandiaDx4 are found in Tables 4.4

and 4.5 respectively. Finally, the computational cost for gasTurbine and sandiaDx4 while varying

the number of wavenumbers per ray is found in Tables 4.6 and 4.7 respectively.

Observing Figures 4.13 through 4.20, for both gasTurbine and sandiaDx4, changing the

value of the number of wavenumbers per ray does not change the mean values of ∇ · q by any

significant amount. However, they also show a noticeable difference in the statistical error of the

PMC calculation at the sampled loactions. On average, when increasing the number of

wavenumbers per ray and holding the total number of wavenumbers constant, the statistical error
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Table 4.4: Standard deviation of ∇ · q statistics for gasTurbine (All units in kW/m3)

1×1M 2×500,000 4×250,000 5×200,000
Minimum 26.07 20.12 20.91 20.75
Maximum 14,132.98 20,709.70 19,383.49 22,986.37
Mean 1174.79 1485.45 1915.59 2095.29

Table 4.5: Standard deviation of ∇ · q statistics for sandiaDx4 (All units in kW/m3)

1×1×500,000 2×250,000 4×125,000 5×100,000 10×50,000
Minimum 2.44×10−12 2.24×10−12 4.03×10−12 3.64×10−12 3.40×10−12

Maximum 84.33 90.87 110.06 131.38 193.28
Mean 6.57 7.72 9.72 10.47 13.80

Table 4.6: Computational costs for varying number of wavenumbers per ray for gasTurbine

1×1M 2×500,000 4×250,000 5×200,000
Emission 26.43 19.92 16.32 15.88
Tracing 178.74 147.18 118.44 112.33
Total 246.27 193.93 154.30 146.38

Table 4.7: Computational costs for varying number of wavenumbers per ray for sandiaDx4

1×500,000 2×250,000 4×125,000 5×100,000 10×50,000
Emission 14.60 11.35 9.55 9.08 7.78
Tracing 78.56 61.45 48.65 45.29 37.18
Total 105.52 79.49 62.00 57.67 47.14

also increases. This is confirmed by Tables 4.4 and 4.5. The mean value of the standard deviation

of ∇ · q for both gasTurbine and sandiaDx4 increases with increasing number of wavenumbers

per ray. With a few exceptions, the minimum and maximum values follow suit. Thus, the

statistical error of the PMC calculation tends to increase with an increase in the number of

wavenumbers per ray while holding the total number of wavenumbers constant. However, the

mean value of ∇ · q is relatively unaffected.

Tables 4.6 and 4.7 show that the computational cost of the PMC method decreases if the

number of wavenumbers per ray increases while holding the total number of wavenumbers
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constant. This holds true for separate emission and tracing times as well as the total execution

time. To find an approximate optimized value for the number wavenumbers per ray, the

computational cost and mean standard deviation of ∇ · q were plotted against the number

wavenumbers per ray. These plots are given by Figures 4.21 and 4.22.

It is assumed that the optimized value for the number of wavenumbers per ray is

achieved where the two curves for computational cost and standard deviation of ∇ · q meet. For

sandiaDx4, this occurs around three wavenumbers per ray, and for gasTurbine, this occurs

around two wavenumbers per ray. For larger numbers of wavenumbers per ray (i.e. 4 or greater),

the sharp increase in the statistical error may not be worth the savings in the computational cost.

Still, an increase from one to two wavenumbers per ray causes about a 25% decrease in the

computational cost while increasing the statistical error by less than 10%.

4.3.2 Discussion

Changing the number of wavenumbers per ray or photon bundle affects both the

computational cost and the accuracy of the PMC method. An increase in the number of

wavenumbers per ray while holding the total number of wavenumbers constant causes an

increase in the statistical error of the PMC method. This follows from the fact that in order to hold

the total number of wavenumbers constant, the number of rays that are emitted and traced in a

statistical run are decreased. Consider the example of two wavenumbers per ray. Instead of two

wavenumbers following two separate paths that are determined by two different random number

sequences, the wavenumbers are emitted and traced together. In essence, some of the samples are

now correlated with each other. Thus, the randomness of the method is decreased, therefore

increasing both the standard deviation and the variance of the statistical method.

The advantage of increasing the number of wavenumbers per ray is found in the

computational cost, which decreases as the number of wavenumbers per ray increases. This can

also be concluded from the fact that the number of rays must decrease in order to hold the total

number of wavenumbers constant. Theoretically, tracing and overall execution time should be

almost cut in half when the number of wavenumbers per ray is doubled. While this is not the case

for the gasTurbine and sandiaDx4 results shown in this work, there is a noticeable decrease in

computational cost with an increase in the number of wavenumbers per ray. Furthermore, an

optimal value for the number of wavenumbers per ray is achieved at around two or three

wavenumbers ray. For one wavenumber per ray, the computational cost is significantly higher,
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but for a higher number of wavenumbers per ray, the statistical error of the PMC calculation

increases dramatically. These findings could be used to tune the number of wavenumbers per ray

for the required application in future combustion simulations.
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Figure 4.1: Basic flowchart of PMC code modified from [39] with labeled emission and tracing
subroutines
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(a) Temperature [K] (b) κp [1/m]

(c) Volume [m3] (d) Emission load

(e) Tracing load

Figure 4.2: Contour plots of scalar fields for gasTurbine

(a) Temperature [K] (b) κp [1/m] (c) Volume [m3] (d) Emission load (e) Tracing load

Figure 4.3: Contour plots of scalar fields for sandiaDx4
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(a) Histogram for Planck-mean absorption coeffi-
cient values for gasTurbine

(b) Histogram for temperature values for
gasTurbine

(c) Histogram for volume values for gasTurbine
(d) Histogram for optical thickness values for
gasTurbine

(e) Histogram for emission load values for
gasTurbine (f) Histogram for tracing load values for gasTurbine

Figure 4.4: Histograms for gasTurbine data set
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(a) Histogram for Planck-mean absorption coeffi-
cient values for sandiaDx4 (b) Histogram for temperature values for sandiaDx4

(c) Histogram for volume values for sandiaDx4
(d) Histogram for optical thickness values for
sandiaDx4

(e) Histogram for emission load values for
sandiaDx4 (f) Histogram for tracing load values for sandiaDx4

Figure 4.5: Histograms for sandiaDx4 data set
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(a) Tracing load vs. emission load (scaled with num-
ber of rays and hot cell fraction) for gasTurbine

(b) Tracing load (scaled with number of rays and hot
cell fraction) vs. optical thickness for gasTurbine

(c) Emission load (scaled with number of rays and
hot cell fraction) vs. optical thickness for gasTurbine

Figure 4.6: Correlation among various components of emission and tracing load for gasTurbine
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(a) Tracing load vs. emission load (scaled with num-
ber of rays and hot cell fraction) for aachenBomb

(b) Tracing load (scaled with number of rays and hot
cell fraction) vs. optical thickness for aachenBomb

(c) Emission load (scaled with number of rays and
hot cell fraction) vs. optical thickness for aachenBomb

Figure 4.7: Correlation among various components of emission and tracing load for aachenBomb



49

(a) Tracing load vs. emission load (scaled with num-
ber of rays and hot cell fraction) for sprayA

(b) Tracing load (scaled with number of rays and hot
cell fraction) vs. optical thickness for sprayA

(c) Emission load (scaled with number of rays and
hot cell fraction) vs. optical thickness for sprayA

Figure 4.8: Correlation among various components of emission and tracing load for sprayA
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(a) Tracing load vs. emission load (scaled with num-
ber of rays and hot cell fraction) for sandiaDx4

(b) Tracing load (scaled with number of rays and hot
cell fraction) vs. optical thickness for sandiaDx4

(c) Emission load (scaled with number of rays and
hot cell fraction) vs. optical thickness for sandiaDx4

Figure 4.9: Correlation among various components of emission and tracing load for sandiaDx4
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(a) Tracing load vs. emission load (scaled with num-
ber of rays and hot cell fraction) for flameCube

(b) Tracing load (scaled with number of rays and hot
cell fraction) vs. optical thickness for flameCube

(c) Emission load (scaled with number of rays and
hot cell fraction) vs. optical thickness for flameCube

Figure 4.10: Correlation among various components of emission and tracing load for flameCube



52

(a) Tracing load vs. emission load (scaled with num-
ber of rays and hot cell fraction) for poolfire2

(b) Tracing load (scaled with number of rays and hot
cell fraction) vs. optical thickness for poolfire2

(c) Emission load (scaled with number of rays and
hot cell fraction) vs. optical thickness for poolfire2

Figure 4.11: Correlation among various components of emission and tracing load for poolfire2
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(a) Tracing load vs. emission load (scaled
with number of rays and hot cell fraction) for
smallPoolfire3D

(b) Tracing load (scaled with number of rays
and hot cell fraction) vs. optical thickness for
smallPoolfire3D

(c) Emission load (scaled with number of rays
and hot cell fraction) vs. optical thickness for
smallPoolfire3D

Figure 4.12: Correlation among various components of emission and tracing load for
smallPoolfire3D

(a) ∇ · q vs. y (meters) (b) Standard deviation of ∇ · q vs. y (meters)

Figure 4.13: ∇ · q and standard deviation for gasTurbine at x=0.1 meters
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(a) ∇ · q vs. y (meters) (b) Standard deviation of ∇ · q vs. y (meters)

Figure 4.14: ∇ · q and standard deviation for gasTurbine at x=0.15 meters

(a) ∇ · q vs. y (meters) (b) Standard deviation of ∇ · q vs. y (meters)

Figure 4.15: ∇ · q and standard deviation for gasTurbine at x=0.3 meters

(a) ∇ · q vs. y (meters) (b) Standard deviation of ∇ · q vs. y (meters)

Figure 4.16: ∇ · q and standard deviation for gasTurbine at x=0.4 meters
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(a) ∇ · q vs. y (meters) (b) Standard deviation of ∇ · q vs. y (meters)

Figure 4.17: ∇ · q and standard deviation for gasTurbine at x=0.5 meters

(a) ∇ · q vs. r (meters) (b) Standard deviation of ∇ · q vs. r (meters)

Figure 4.18: ∇ · q and standard deviation for sandiaDx4 at z/d=14.93

(a) ∇ · q vs. r (meters) (b) Standard deviation of ∇ · q vs. r (meters)

Figure 4.19: ∇ · q and standard deviation for sandiaDx4 at z/d=29.79
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(a) ∇ · q vs. r (meters) (b) Standard deviation of ∇ · q vs. r (meters)

Figure 4.20: ∇ · q and standard deviation for sandiaDx4 at z/d=44.65

Figure 4.21: Computational cost and standard deviation of ∇ · q vs. number of wavenumbers per
ray for gasTurbine
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Figure 4.22: Computational cost and standard deviation of ∇ · q vs. number of wavenumbers per
ray for sandiaDx4
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CHAPTER 5

CONCLUSION

In this work, the three types of RTE solvers are compared in detail. Then, further

investigation of potential improvements to the PMC method is conducted.

Overall, the PN method increased in both accuracy and computational cost with order N.

However, the advantage gained in accuracy decreases for each successive increase in N. P5 and P7

perform at a similar level of accuracy. The computational cost increased quadratically with order

N, which is consistent with the axisymmetric formulation that is used in this work. Finally, SP3

and SP5 performed relatively well – at a similar level of accuracy as P3 and P5 while exhibiting

some savings in computational cost.

In general, the DOM increased in accuracy with the total number of ordinates (nθ × nφ).

However, it was shown that, due to the thin wedge geometry of the problem, discretization in the

azimuthal (φ) direction had a greater effect on the performance of the RTE solver. Also,

computational cost directly correlated to the total number of ordinates used. Thus, different

discretization schemes with the same number of total ordinates (e.g. 4× 4 and 2× 8) required

almost equivalent computational cost. From this, the conclusion can be drawn that for the selected

configuration, the number of azimuthal ordinates nφ should be increased over the number of

polar ordinates nθ .

The QMC method also retains a high level of accuracy for a smaller number of rays than

the PMC method. For most locations, the value for ∇ · q calculated by QMC fell within the

standard error of PMC LBL calculations.

When one PN RTE solver and one DOM solver that require an approximately equal

computational cost are compared with QMC results, the DOM RTE solver is shown to perform

better than PN . However, QMC still performs better compared to both PN and DOM at half the

computational cost. Thus, for the chosen configuration, QMC performs the best, followed by

DOM. However, this conclusion can only be drawn for the specific implementation of RTE solvers

that is used in this work. A major limitation of this study is that the computational cost is affected

by more than just the RTE solver. For example, the differential equation solvers that are used by

OpenFOAM can be tuned for a maximum number of iterations or a desired tolerance. Thus, these

comparisons are qualitative only.
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Two primary improvements to the PMC method are suggested: an a priori estimation of

computational load using local variables and a feature to trace multiple wavenumbers per ray,

deemed “ray bundling.” Qualitatively, the a priori estimation results show a noticeable

correlation between the tracing load and the emission load, which can be calculated directly from

the volume, temperature, and Planck mean absorption coefficient. However, a linear regression

analysis of the relation between tracing load and emission load show that the correlation between

these two variables is only good for high-pressure cases and for artificial case flameCube. The

relationship between tracing load and optical thickness is also investigated, but the results suggest

that there is little to no correlation between these two variables. Hence, it can be concluded that a

good correlation between emission load and tracing load can be drawn for high-pressure cases.

Thus, local values for temperature, volume, and Planck mean absorption coefficient can be used to

estimate the computational load distribution of a PMC calculation before it is conducted. This

opens the potential to distribute the computational load evenly between processors in parallel

Monte Carlo calculations. For atmospheric pressure cases, further investigation is required before

a suitable correlation can be formed.

Tracing multiple wavenumbers per ray is shown to increase the statistical error and

decrease the computational cost of PMC calculations. Thus, optimized values for the number of

wavenumbers per ray for the gasTurbine and sandiaDx4 cases are found. These results can also

be used to tune the number of wavenumbers per ray for a specific application.
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CHAPTER 6

FUTURE WORK

6.1 Parallelization in the Wavenumber Domain

In [47], O’brien et al describe two primary methods of parallelizing Monte Carlo particle

transport calculations, spatial parallelism and particle parallelism. These are illustrated in Figure

6.1. Spatial parallelism is the parallelization method where the computational domain is

decomposed and each subdomain is assigned to a single processor. In Figure 6.1, spatial

parallelism is illustrated by using subdomains of different colors. Particle parallelism instead

assigns a specific number of particles or rays to each processor. Each processor stores a copy of the

entire computational domain and proceeds to emit and trace all the particles that are assigned to

it. In Figure 6.1, two copies of the domain are seen, and an equal number of rays are traced

separately on each copy of the domain, indicating that each subset of rays would be traced across

the entire domain by a single processor. This method of parallelization may not be feasible for

extremely large computational domains such that a copy of the domain exceeds the memory of a

single processor. Nonetheless, its parallel efficiency is significantly higher than that of spatial

parallelism. Communication between processors is only required once after all particles have

been traced, and the computational load is more balanced across all processors.

(a) Spatial parallelism (i.e. domain decomposition) (b) Particle parallelism (i.e. domain replication)

Figure 6.1: Illustration of two methods of Monte Carlo parallelization motivated by [47]

Particle parallelism could be implemented in radiation Monte Carlo calculations by

dividing the computational load based on wavenumber η. For example, wavenumbers

η ∈ [ηi, ηi+1] could be assigned to processor i, and so on. For smaller combustion simulations that
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do not require a large portion of memory, the option to parallelize by wavenumber could speed

up PMC calculations immensely. Since the PMC code in this work is implemented on the CFD

software OpenFOAM, it may be necessary to create a separate mesh for radiation calculations.

Still, the efficiency advantage of particle parallelism is significant.

6.2 Dynamic Load Balancing of Monte Carlo Calculations

O’Brien et al also detail a new implementation of dynamic load balancing in Monte Carlo

particle transport calculations in [48], building on the previous work in [47]. For calculations

where the entire computational domain cannot be stored by a single processors, this may be a

valuable avenue of exploration. Dynamic load balancing combines spatial parallelism and particle

parallelism by dividing the domain into subdomains and assigning multiple processors to a single

subdomain. For subdomains of high particle density and thus high predicted computational load,

more processors are allocated, and vice versa. This uneven distribution among subdomains

balances the computational load between processors. Furthermore, as the computational load

changes from one timestep to the next, the allocation of processors to each subdomain also

changes.

The load balancing algorithm in [47] requires each processor to have knowledge of the

computational load across the entire domain in order to balance the load. As the number of

processors gets extremely large, the load balancing step can surprisingly take more time than the

Monte Carlo calculation itself. However, the algorithm in [48] requires each processor to only

know the predicted computational load of its “neighbor.” For more and more processors, the

efficiency of this load balancing algorithm exceeds the efficiency of the other. Implementation of

both of these load balancing algorithms would be an improvement to the current Monte Carlo

solver used in radiation calculations in this work, which does not feature any load-balancing

option.

6.3 Improved Correlation between Local Variables and Tracing Load for Atmospheric
Pressure Cases

A primary limitation of this work is that a sufficient correlation between local variables

(e.g. temperature) and the tracing load for all atmospheric pressure cases could not be developed.

There are a few avenues that are worth more exploration. First, there is the possibility of

redefining the optical thickness of each cell using the mean beam length as the length scale instead
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of the diameter of a sphere of equivalent volume. An approximate equation for the mean beam

length Lm for a generic volume V with surface area A is given by [18]

Lm = 3.6
V
A

. (6.1)

This could potentially provide a more accurate measure of the average distance that a ray travels

when passing through a finite volume cell, and since face area and volume information is

available through OpenFOAM, this is a natural next step in the search for a meaningful

correlation between tracing load and local variables. Other local variables that were not included

in the analysis in this work are species mass fractions, which could affect the computational load

distribution and should therefore be investigated in future work.
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APPENDIX A

QUALITITATIVE LOAD DISTRIBUTION DATA

(a) Temperature [K] (b) κp [1/m] (c) Volume [m3]

(d) Emission load (e) Tracing load

Figure A.1: Contour plots of scalar fields for smallPoolfire3D

Table A.1: Correlation coefficient data for smallPoolfire3D

Relation Variables Correlation Coefficient)
Emission Load - Optical Thickness 0.5384
Emission Load - kPlanck 0.5384
Emission Load - Temperature 0.7940
Emission Load - Volume N/A
Tracing Load - Optical Thickness 0.6612
Tracing Load - kPlanck 0.6612
Tracing Load - Temperature 0.7382
Tracing Load - Volume N/A
Tracing Load - Emission Load 0.7680
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(a) Temperature [K] (b) κp [1/m] (c) Volume [m3]

(d) Emission load (e) Tracing load

Figure A.2: Contour plots of scalar fields for poolfire2

(a) Temperature [K] (b) κp [1/m] (c) Volume [m3] (d) Emission load (e) Tracing load

Figure A.3: Contour plots of scalar fields for flameCube

Table A.2: Correlation coefficient data for smallPoolfire

Relation Variables Correlation Coefficient
Emission Load - Optical Thickness 0.5724
Emission Load - kPlanck 0.5724
Emission Load - Temperature 0.9128
Emission Load - Volume N/A
Tracing Load - Optical Thickness 0.7172
Tracing Load - kPlanck 0.7172
Tracing Load - Temperature 0.8525
Tracing Load - Volume N/A
Tracing Load - Emission Load 0.7771
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(a) Temperature [K] (b) κp [1/m] (c) Volume [m3] (d) Emission load (e) Tracing load

Figure A.4: Contour plots of scalar fields for aachenBomb

Table A.3: Correlation coefficient data for FlameCube

Relation Variables Correlation Coefficient
Emission Load - Optical Thickness 0.1286
Emission Load - kPlanck 0.2105
Emission Load - Temperature 0.6481
Emission Load - Volume -0.4565
Tracing Load - Optical Thickness 0.1257
Tracing Load - kPlanck 0.1225
Tracing Load - Temperature 0.3330
Tracing Load - Volume -0.1035
Tracing Load - Emission Load 0.7310

Table A.4: Correlation coefficient data for aachenBomb

Relation Variables Correlation Coefficient
Emission Load - Optical Thickness 0.4331
Emission Load - kPlanck 0.4331
Emission Load - Temperature 0.7946
Emission Load - Volume N/A
Tracing Load - Optical Thickness 0.4937
Tracing Load - kPlanck 0.4937
Tracing Load - Temperature 0.7390
Tracing Load - Volume N/A
Tracing Load - Emission Load 0.9380
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(a) Temperature [K] (b) κp [1/m] (c) Volume [m3]

(d) Emission load (e) Tracing load

Figure A.5: Contour plots of scalar fields for sprayA

Table A.5: Correlation coefficient data for sprayA

Relation Variables Correlation Coefficient
Emission Load - Optical Thickness 0.3937
Emission Load - kPlanck 0.1108
Emission Load - Temperature -0.1219
Emission Load - Volume 0.4906
Tracing Load - Optical Thickness 0.4549
Tracing Load - kPlanck 0.2031
Tracing Load - Temperature -0.2042
Tracing Load - Volume 0.5082
Tracing Load - Emission Load 0.9478
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(a) Histogram for Planck mean absorption coefficient
values for smallPoolfire3D

(b) Histogram for temperature values for
smallPoolfire3D

(c) Histogram for volume values for
smallPoolfire3D

(d) Histogram for optical thickness values for
smallPoolfire3D

(e) Histogram for emission load values for
smallPoolfire3D

(f) Histogram for tracing load values for
smallPoolfire3D

Figure A.6: Histograms for smallPoolfire3D data set
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(a) Histogram for Planck mean absorption coefficient
values for smallPoolfire

(b) Histogram for temperature values for
smallPoolfire

(c) Histogram for volume values for smallPoolfire
(d) Histogram for optical thickness values for
smallPoolfire

(e) Histogram for emission load values for
smallPoolfire

(f) Histogram for tracing load values for
smallPoolfire

Figure A.7: Histograms for smallPoolfire data set
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(a) Histogram for Planck mean absorption coefficient
values for FlameCube (b) Histogram for temperature values for FlameCube

(c) Histogram for volume values for FlameCube
(d) Histogram for optical thickness values for
FlameCube

(e) Histogram for emission load values for
FlameCube (f) Histogram for tracing load values for FlameCube

Figure A.8: Histograms for FlameCube data set
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(a) Histogram for Planck mean absorption coefficient
values for aachenBomb

(b) Histogram for temperature values for
aachenBomb

(c) Histogram for volume values for aachenBomb
(d) Histogram for optical thickness values for
aachenBomb

(e) Histogram for emission load values for
aachenBomb (f) Histogram for tracing load values for aachenBomb

Figure A.9: Histograms for aachenBomb data set
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(a) Histogram for Planck mean absorption coefficient
values for sprayA (b) Histogram for temperature values for sprayA

(c) Histogram for volume values for sprayA (d) Histogram for optical thickness values for sprayA

(e) Histogram for emission load values for sprayA (f) Histogram for tracing load values for sprayA

Figure A.10: Histograms for sprayA data set
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