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Figure 4.5: Heat map of high-throughput sequencing data showing relative abundance at 
genus level/unclassified family level  
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4.3.3 Effect of Increased OLR on Syntrophic Microbial Communities 

Within reactor set OLR 5, Syntrophobacter decreased in abundance whereas 

Pelotomaculum increased when the OLR was stepped up each HRT (Fig. 4.6). Steady state (60 

d) data at different OLRs confirmed this observation as Syntrophobacter was the dominant 

propionate degrader at OLRs 1 and 2, while Pelotomaculum became dominant from OLR 3 

onward (Fig. 4.7 A-C). High-throughput sequencing analysis also supported this observation 

(Fig. 4.5). Data suggest that Syntrophobacter is not able to maintain numbers at high dilution 

rates, which agrees with the observation by Shigematsu et al. (2006). Smithella was at least 

two orders of magnitude lower in abundance than the dominant propionate degrader. 

Syntrophobacter numbers did not change during the transition to the deteriorative phase (105-

120 d), whereas Smithella and Pelotomaculum increased 2-3 fold. This finding relates well to 

those presented in chapter 3 where Smithella and Pelotomaculum grew faster than Syntrophobacter 

during propionate buildup. Similar results were observed for Syntrophomonas, which increased 

in abundance (2-3 fold) prior to process deterioration (Fig. 4.7). All syntrophic fatty acid 

degraders (SFAB) drastically declined in abundance after the loading rate was raised to 6 g 

COD L-1, which was characterized by sudden VFA accumulation (Fig. 4.2). Despite 

increased substrate availability, it is likely that the onset of unfavorable conditions such as 

elevated acetate (>7g L-1) levels and low pH inhibited the SFAB growth (Schmidt and 

Ahring, 1993; Fukuzaki et al., 1990; Lier et al., 1993; Labib et al., 1992; Ahring and 

Westermann, 1988; Boone and Xun, 1987; Mawson et al., 1991). Acid-tolerant SFAB have 

not been identified to this date.  

Methanosaetaceae was the dominant acetoclastic methanogen group and was 3-4 

orders of magnitude higher in abundance than Methanosarcinaceae (Fig. 4.6; Fig. 4.7). The 

dominance of Methanosaetaceae could be explained as acetate was not detected in reactor 
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set OLR 5 until day 114. Previous studies have reported that Methanosaetaceae outcompete 

Methanosarcinaceae at low acetate concentrations (Yu et al., 2006; Conklin et al., 2006). 

Nevertheless, a gradual reduction in Methanosaetaceae numbers was observed 75 d onward, 

which was 15 days post OLR increase from 4 g to 5 g COD L-1. A substantial decrease in 

Methanosaetaceae numbers was observed after further OLR increase (120 d). It is interesting 

that Methanosarcinaceae numbers did not increase between 121-150 d despite increased 

acetate concentrations. Koster et al. (1988) reported that methanogenesis was more sensitive 

than acidogenesis to ammonia inhibition. In particular, methane production via the 

acetoclastic route is considered more sensitive to elevated ammonia concentrations (Koster 

and Lettinga, 1984; Sprott and Patel, 1986; Robbins et al., 1989; Bhattacharya and Parkin, 

1989; Angelidaki and Ahring, 1993). Though hydrogenotrophic methanogens 

(Methanobacteriales, Methanomicrobiales) decreased with increased OLR, a drastic increase 

in Methanomicrobiales numbers (~3 orders of magnitude) was observed between 105-120 d. 

Further analysis using genus-specific primers (Franke-Whittle et al., 2009) revealed this 

group to be Methanoculleus (data not shown).  

The gradual decline in Methanosaetaceae and sudden increase in Methanoculleus led to 

an evaluation of whether a shift in acetate utilization pathways occurred from acetoclastic 

methanogenesis to syntrophic acetate oxidation. It has been previously suggested that acetate 

oxidation could be the major route of methanogenesis in the absence of Methanosaetaceae 

(Karakashev et al., 2006). A remarkable increase (~6 orders of magnitude) in Tepidanaerobacter 

acetatoxydans abundance was observed between 75 d and 150 d, which corresponded well 

with the increase in Methanoculleus (Fig. 4.6 E). High-throughput sequencing also confirmed 

this finding (Fig. 4.5). T. acetatoxydans was first isolated from ammonia-enriched 

methanogenic systems and was able to oxidize acetate only when co-cultured with 
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Methanoculleus sp. (Westerholm et al., 2011b). Elevated ammonia levels (>3 g L-1 total 

ammonia nitrogen, TAN) are reported to inhibit acetoclastic more than hydrogenotrophic 

methanogens (Koster and Lettinga, 1984; Sprott and Patel, 1986; Robbins et al., 1989; 

Bhattacharya and Parkin, 1989; Angelidaki and Ahring, 1993). Moreover, Schnurer et al. 

(2008) reported that increased ammonia levels selects for syntrophic acetate oxidation. 

Theoretical calculation of feedstock showed that ammonia levels reached 3.3 g L-1 at 4 g 

COD L-1, 4.1 g L-1  at 5 g COD L-1  and 5 g L-1 at 6 g COD L-1. Thus, TAN levels generated 

at OLR 4 g COD L-1 and higher is more that those previously reported to be inhibitory. It 

should be noted that T. acetatoxydans was not detected in reactors operated below an OLR of 

4 g COD L-1, which further strengthen the conclusion that syntrophic acetate oxidation was 

triggered at high OLRs due to ammonia buildup. On similar lines, abundance of 

Syntrophaceticus schinkii (Westerholm et al., 2010) increased 4-10 fold when OLR was raised 

from 4 to 5 g COD L-1 and overall, 10-20 times between 60-120 d (Fig. 4.6 E). However, 

Clostridium ultunense, another mesophilic syntrophic acetate oxidizer (Schnurer et al., 1996) 

was not detected in all samples analyzed. It should be noted that the shift in acetate 

utilization did not help mitigate acetate levels, which could be attributed to the relatively 

slow growth rates of syntrophic acetate oxidizers. In addition, Schnurer et al. (1999) 

proposed that SAO route of acetate utilization is 10-800 times less efficient than acetoclastic 

methanogenesis.  
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Figure 4.6: Quantification of syntrophic microbial communities in reactor set OLR 5.  
Legend: (A) grey: Syntrophobacter, white : Pelotomaculum, black: Smithella ; (B) white : 
Syntrophomonas, (C) white : Methanosaetaceae, grey : Methanosarcinaceae ; (D) white : 
Methanobacteriales, grey : Methanomicrobiales ; (E) white : Tepidanaerobacter acetatoxydans, 
grey : Syntrophaceticus schinkii 
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Figure 4.7: Quantification of syntrophic microbial communities at steady state (60 d at 
desired OLR) in reactor sets OLR 1, OLR 2, OLR 3 and OLR 4. Seed inoculum also 
depicted. (A) Syntrophobacter, (B) Smithella, (C) Pelotomaculum, (D) Syntrophomonas, (E) 
Methanosaetaceae, (F) Methanosarcinaceae, (G) Methanobacteriales, (H) 
Methanomicrobiales, (I) Tepidanaerobacter acetatoxydans, and (J) Syntrophaceticus schinkii.  
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4.4 Conclusions 

In summary, increased organic loading rate resulted in functional and microbial 

community structural changes in AD. Increases in OLR resulted in reduction in richness, 

evenness and diversity, though these indices increased prior to system collapse. Acidogens 

increased in relative abundance with increasing OLR, while syntrophic microbial 

communities decreased. Microbial community structure shifted during the transition from 

stable to deteriorative phase. A decline in acetoclastic methanogens was followed by a drastic 

increase in syntrophic acetate oxidizers and hydrogenotrophic methanogens. In addition, the 

abundance of VFA degraders increased during the transitionary phase between stable reactor 

performance and failure. Results from this study indicate that the monitoring syntrophic 

fatty-acid degrading microbial communities could help improve process stability. 

.
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CONCLUDING REMARKS 
 
 
 

Volatile fatty acids are major intermediates in anaerobic digestion and account for a 

significant proportion of the total methane produced. However, due to the dynamic nature 

of waste production, the composition and volume of digester influent may change regularly. 

Such fluctuations could result in process imbalance and even failure when VFA production 

exceeds its degradation, leading to reactor acidification. Process stability can be improved by 

developing a greater understanding of the dynamics of the key microbial players involved in 

VFA degradation. Despite their indispensible role in VFA degradation, little information 

exists on the microbial communities involved. A detailed insight on structure-function 

relationships of SMC is essential to comprehend AD processes. The overall goal of this 

dissertation was to understand the contribution of SMC to anaerobic digestion function and 

stability. 

To facilitate ecological studies, four quantitative PCR assays based on the 16S rRNA 

gene were developed targeting genera of propionate- and butyrate-degrading bacteria. These 

were applied to a variety of natural and engineered methanogenic environments. The highest 

SFAB abundance was observed in propionate enrichment cultures and anaerobic reactors. In 

addition, SFAB and methanogen abundance varied with reactor configuration and substrate 

identity. The importance of developing these assays is that it will enable investigators to 

monitor these bacteria in both natural and artificial engineered habitats and provide data that 

will elucidate how they respond to fluctuating resources and conditions. This represents the 

first report of qPCR assays that are applicable to investigating these bacteria in the laboratory 

and the field.   

The contribution of SMC to AD function and stability was investigated in lab-scale 
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reactors, using the above designed assays, exposed to two forms of disturbance: shock 

overload (pulse disturbance) and increased OLR (press disturbance). SMC dynamics were 

linked to AD function using physicochemical and molecular techniques.  

First, the effect of shock overloads on SMC structure and function was examined. 

Results showed that functional resilience to the pulse disturbance in reactors was linked to 

the abundance of propionate-degraders and Methanosarcinaceae (acetoclastic methanogens). 

Reactors with reduced numbers of these microorganisms displayed increased VFA buildup, 

however, there was a subsequent increase in the abundance of propionate-degraders and 

Methanosarcinaceae which improved the functional resilience in these reactors to the next 

perturbation. These results indicate that SMC drive the functional resilience of anaerobic 

reactors in response to organic overload perturbations. 

Second, the effect of increased OLRs on SMC structure and function was examined. 

SMC steadily decreased in abundance with increasing OLR. Prior to system collapse, a 

decrease in acetoclastic methanogens was observed which corresponded to an increase in 

syntrophic acetate oxidizers and hydrogenotrophic methanogens. These results indicate that 

monitoring SMC could help improve predict process imbalance. 

Overall, the results of these two experiments demonstrated that an increased 

abundance of syntrophic fatty acid degrading microbial communities were essential in AD 

during stressed conditions, such as organic overload and high OLRs. 

Future work should examine the application of these assays in at least two broad 

aspects of research.  Although the assays were demonstrated to be useful in measuring the 

abundance of these bacteria in the natural environment, this area of research was not 

pursued further in this dissertation. It is hoped that the primer sets will be valuable to 

investigators working in habitats with biological methane production in the environment and 
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help them further understand the processes and microbial interactions involved. 

Additionally, in engineered habitats, the assays should be employed to determine the effect 

of different operational conditions (e.g., temperature, retention time) on the dynamics of 

syntrophic communities, and consequently identify conditions that could either maintain or 

promote these communities. As demonstrated here, these communities play important roles 

in digester function when confronted with at least two forms of perturbation. How these 

microbial communities respond to other forms of disturbance also needs to be investigated.  

Results from these studies could change how digesters are monitored and aid in the design 

of better anaerobic treatment processes. 
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