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Abstract

After mating, female mosquitoes need animal blood to develop their eggs. In the process of

acquiring blood, they may acquire pathogens, which may cause different diseases in

humans such as malaria, zika, dengue, and chikungunya. Therefore, knowing the parity sta-

tus of mosquitoes is useful in control and evaluation of infectious diseases transmitted by

mosquitoes, where parous mosquitoes are assumed to be potentially infectious. Ovary dis-

sections, which are currently used to determine the parity status of mosquitoes, are very

tedious and limited to few experts. An alternative to ovary dissections is near-infrared spec-

troscopy (NIRS), which can estimate the age in days and the infectious state of laboratory

and semi-field reared mosquitoes with accuracies between 80 and 99%. No study has

tested the accuracy of NIRS for estimating the parity status of wild mosquitoes. In this study,

we train an artificial neural network (ANN) models on NIR spectra to estimate the parity sta-

tus of wild mosquitoes. We use four different datasets: An. arabiensis collected from

Minepa, Tanzania (Minepa-ARA); An. gambiae s.s collected from Muleba, Tanzania

(Muleba-GA); An. gambiae s.s collected from Burkina Faso (Burkina-GA); and An.gambiae

s.s from Muleba and Burkina Faso combined (Muleba-Burkina-GA). We train ANN models

on datasets with spectra preprocessed according to previous protocols. We then use auto-

encoders to reduce the spectra feature dimensions from 1851 to 10 and re-train the ANN

models. Before the autoencoder was applied, ANN models estimated parity status of mos-

quitoes in Minepa-ARA, Muleba-GA, Burkina-GA and Muleba-Burkina-GA with out-of-sam-

ple accuracies of 81.9±2.8 (N = 274), 68.7±4.8 (N = 43), 80.3±2.0 (N = 48), and 75.7±2.5 (N

= 91), respectively. With the autoencoder, ANN models tested on out-of-sample data

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0234557 June 18, 2020 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Milali MP, Kiware SS, Govella NJ, Okumu

F, Bansal N, Bozdag S, et al. (2020) An

autoencoder and artificial neural network-based

method to estimate parity status of wild

mosquitoes from near-infrared spectra. PLoS ONE

15(6): e0234557. https://doi.org/10.1371/journal.

pone.0234557

Editor: Jie Zhang, Newcastle University, UNITED

KINGDOM

Received: January 27, 2020

Accepted: May 27, 2020

Published: June 18, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0234557

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

http://orcid.org/0000-0001-6527-1088
http://orcid.org/0000-0002-4813-4310
http://orcid.org/0000-0001-8270-4578
http://orcid.org/0000-0002-9346-2970
http://orcid.org/0000-0001-8439-0146
https://doi.org/10.1371/journal.pone.0234557
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234557&domain=pdf&date_stamp=2020-06-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234557&domain=pdf&date_stamp=2020-06-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234557&domain=pdf&date_stamp=2020-06-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234557&domain=pdf&date_stamp=2020-06-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234557&domain=pdf&date_stamp=2020-06-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234557&domain=pdf&date_stamp=2020-06-18
https://doi.org/10.1371/journal.pone.0234557
https://doi.org/10.1371/journal.pone.0234557
https://doi.org/10.1371/journal.pone.0234557
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


achieved 97.1±2.2% (N = 274), 89.8 ± 1.7% (N = 43), 93.3±1.2% (N = 48), and 92.7±1.8%

(N = 91) accuracies for Minepa-ARA, Muleba-GA, Burkina-GA, and Muleba-Burkina-GA,

respectively. These results show that a combination of an autoencoder and an ANN trained

on NIR spectra to estimate the parity status of wild mosquitoes yields models that can be

used as an alternative tool to estimate parity status of wild mosquitoes, especially since

NIRS is a high-throughput, reagent-free, and simple-to-use technique compared to ovary

dissections.

Introduction

Evaluation of existing malaria control interventions such as insecticide-treated nets (ITNs)

and indoor residual spraying (IRS) relies upon, among other factors, the assessment of the

changes occurring in the mosquito parity structure prior to and after implementation of an

intervention [1–3]. The parity status of mosquitoes corresponds with their capability to trans-

mit Plasmodium parasites, with an assumption that parous mosquitoes are more highly capa-

ble than nulliparous mosquitoes, as they may have accessed parasite-infected blood. A shift in

the parity structure towards a population with more nulliparous mosquitoes signifies a reduc-

tion in the risk of disease transmission [2, 4, 5], as the chances that mosquitoes carry the

malaria parasite declines [6].

The current standard technique for estimating the parity status of female mosquitoes

involves dissection of their ovaries to separate mosquitoes into those that have previously laid

eggs, known as the parous group (assumed to be old and potentially infectious), and those that

do not have a gonotrophic history, known as the nulliparous group (assumed to be young and

non-infectious) [7]. Another standard technique also based on the dissection of ovaries deter-

mines the number of times a female mosquito has laid eggs [8]. However, both techniques are

laborious, time consuming, and require skilled technicians. These technical difficulties lead to

analysis of small sample sizes that often fail to capture the heterogeneity of a mosquito

population.

Near infrared spectroscopy (NIRS) complimented by techniques from machine learning,

have been demonstrated to be alternative tools for predicting age, species, and infectious status

of laboratory and semi-field raised mosquitoes [9–20]. NIRS is a rapid, non-invasive, reagent-

free technique that requires minimal skills to operate, allowing hundreds of samples to be ana-

lyzed in a day. However, the accuracy of NIRS techniques for predicting the parity status of

wild mosquitoes has not been tested. Moreover, recently, it has been reported that models

trained on NIR spectra using an artificial neural network (ANN) estimate the age of labora-

tory-reared An. arabiensis, An.gambiae, Aedes aegypti, and Aedes albopictus with accuracies

higher than models trained on NIR spectra using partial least squares (PLS) [20].

In this study, we train ANN models on NIR spectra preprocessed according to an existing

protocol [9] to estimate the parity status of wild An. gambiae s.s. and An. arabiensis. We then

apply autoencoders to reduce the spectra feature space from 1851 to 10 and re-train ANN

models. The ANN model achieved an average accuracy of 72% and 93% before and after apply-

ing the autoencoder, respectively. These results suggest ANN models trained on autoencoded

NIR spectra as an alternative tool to estimate the parity status of wild An. gambiae and An. ara-
biensis. High-throughput, non-invasive, reagent free, and simple to use NIRS analyses compli-

ment the limitations of ovary dissections.
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Materials and methods

Ethics approvals

Ethics approvals for collecting mosquitoes in Minepa-ARA, Burkina-GA and Muleba-GA

datasets from residents’ homes were obtained from Ethics Review Boards of the Ifakara Health

Institute (IHI-IRB/No. 17–2015), the Colorado State University (approval No. 09-1148H), and

the Kilimanjaro Christian Medical College (Certificate No. 781), respectively.

Data

We use data from wild An. arabiensis (Minepa-ARA) collected from Minepa, a village in

southeastern Tanzania (published in [21] and publicly available for reuse), from wild An. gam-
biae s.s (Muleba-GA) collected from Muleba, northwestern Tanzania (mosquitoes published

in [22], permission to reuse was obtained from the senior author) and from wild An. gambiae
s.s collected from Bougouriba and Diarkadou-gou villages in Burkina Faso (Burkina-GA)

(published in [12] and publicly available for reuse).

Mosquitoes in the Minepa-ARA and Muleba-GA datasets were captured using CDC light

traps placed inside residential homes. Mosquitoes that were morphologically identified as

members of the Anopheles gambiae complex were processed further. Prior to scanning, wild

mosquitoes collected in Minepa were killed by freezing them for 20 minutes in a freezer that is

calibrated to -20º C. After freezing the mosquitoes were re-equilibrated to room temperature

for 30 minutes. Wild mosquitoes collected in Muleba were killed using 75% ethanol, dissected

according to the technique described by Detinova [23] to determine their parity status, and

preserved in silica gel. Mosquitoes in Minepa-ARA were dissected after scanning. Following a

previous published protocol to collect spectra [9], mosquitoes in both Minepa-ARA and

Muleba-GA were scanned using a LabSpec 5000 near-infrared spectrometer with an integrated

light source (ASD Inc., Malvern, UK). After spectra collection, mosquitoes in Minepa-ARA

were dissected to score their parity status. Then polymerase chain reaction (PCR) was con-

ducted on DNA extracted from mosquito legs (in both Minepa-ARA and Muleba-GA) to iden-

tify species type as previously described [24]. Each mosquito was labeled with a unique

identifier code linking each NIR spectrum to parity dissection and PCR information.

Data from wild An. gambiae s.s from Burkina Faso were published in [12] and publicly

available for reuse. These mosquitoes are referred to as independent test sets 2 and 3 (ITS 2

and ITS 3) in [12]. ITS 2 has 40 nulliparous and 40 parous mosquitoes, and ITS 3 has 40 nullip-

arous and 38 parous mosquitoes. In this study, we combine these two datasets into one dataset

and refer it as Burkina-GA. Mosquitoes in Burkina-GA (N = 158) were collected in 2013 in

Burkina Faso from Bougouriba and Diarkadou-gou villages using either indoor aspiration or a

human baited tent trap, and their ovaries were dissected according to the Detinova method

[23]. Mosquitoes were preserved in silica gel before their spectra were collected using a Lab-

Spec4i spectrometer (ASD Inc., Boulder, CO, USA).

Model training and testing

We trained models on four datasets, namely Minepa-ARA, Muleba-GA, Burkina-GA, and

Muleba-Burkina-GA (Muleba-GA and Burkina-GA combined). Before training models, spec-

tra in all datasets were pre-processed according to the previously published protocol [9] and

divided into two groups (nulliparous and parous). Spectra in the nulliparous and parous

groups were labeled zero and one, respectively. The two groups were then merged, random-

ized, and divided into a training set (75%; N = 927 for Minepa-ARA, N = 140 for the Muleba-

GA, N = 158 for Burkina-GA and N = 298 for Muleba-Burkina-GA) and a test set (the
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remaining 25% in each dataset). On each dataset, using ten Monte-Carlo cross validations [20,

25] and Levenberg-Marquardt optimization, a one hidden layer, ten-neuron feed-forward

ANN model with logistic regression as a transfer function was trained and tested in MATLAB

(Fig 1).

Based on the accuracy of the model presented in Table 1 in the Results and Discussion sec-

tion, we explored how to improve the model accuracy. Normally a parous class, unlike a nul-

liparous class, often is represented by a limited number of samples, posing a problem of data

imbalance during model training. In this case, a large amount of data is required to obtain

enough samples in a parous class for a model to learn and characterize it accurately. Obtaining

enough data for model training is always challenging. The most common ways of dealing with

the data imbalance are either to discard samples from a nulliparous class to equal the number

of samples in a parous class or to bootstrap samples in a parous class [26]. However, discarding

data to equalize the data distribution in two classes in the training set leaves an imbalanced test

set. Also, it is this imbalanced scenario to which the model will be applied in real cases. In addi-

tion, throwing away samples, especially from data sets with a high dimension feature space,

can lead to over-fitting the model. Alternatively, for datasets with a high dimension feature

space, instead of discarding data from a class with a large number of samples, feature reduction

techniques are employed [26]. Feature reduction reduces the size of the hypothesis space ini-

tially presented in the original data, thereby reducing the size of data required to adequately

train the model. Principal component analysis (PCA) and partial least squares (PLS) are the

commonly used unsupervised and supervised feature reduction methods, respectively,

Fig 1. Training and testing ANN model on spectra preprocessed according to Mayagaya et al. [9]. “M” is either Minepa-

ARA, Muleba-GA, Burkina-GA, or Muleba-Burkina-GA.

https://doi.org/10.1371/journal.pone.0234557.g001

Table 1. Accuracies of reconstructing original feature spaces from encoded feature spaces. MSE = mean square error.

Metric Steps Encoded-Minepa-ARA Encoded-Muleba-GA Encoded-Burkina-GA

MSE Step 1 0.0046 0.0029 0.0031

Step 2 0.00005 0.0027 0.0022

Step 3 0.00008 0.0029 0.0011

https://doi.org/10.1371/journal.pone.0234557.t001
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especially for cases whose features are linearly related [27, 28]. Autoencoders recently are used

as an alternative to PCA in cases involving both linear and non-linear relationships [29–32].

An autoencoder is an unsupervised ANN that learns both linear and non-linear relation-

ships present in data and represents them in a new reduced dimension data space (which also

can be used to regenerate the original data space) without losing important information [33–

35]. The autoencoder has two parts, the encoder part, where an original dataset is encoded to a

desired reduced feature space (encoded dataset) and the decoder part where the encoded data-

set is decoded to an original dataset to determine how accurately the encoded dataset repre-

sents the original dataset. Fig 2 illustrates an example of an autoencoder in which an

1850-feature dataset is stepwise encoded to a 10-feature dataset. There is no formula for the

number and size of steps to take to get to a desired feature size. However, taking several steps

results on losing very little information, compared with taking a single step.

Once an encoded feature space can reconstruct the original feature space with an acceptable

accuracy, the decoder is detached, and a desired model (in our case an ANN binary classifier)

is trained on the encoded feature space as shown in Fig 3.

Egg laying appears to be affected by both linear and non-linear relationships. Hence, we

separately train autoencoders on the Minepa-ARA, Muleba-GA, Burkina-GA, and Muleba-

Burkina-GA datasets to reduce spectra feature dimensions from 1851 to 10 (Fig 4).

Table 1 presents accuracies of reconstructing original feature spaces from their respective

encoded feature spaces. We refer to the autoencoded Minepa-ARA, Muleba-GA, Burkina-GA,

and Muleba-Burkina-GA datasets as Encoded-Minepa-ARA, Encoded-Muleba-GA, Encoded-

Burkina-GA, and Encoded-Muleba-Burkina-GA, respectively. We then train ANN models on

Fig 2. Autoencoder reducing feature space dimension.

https://doi.org/10.1371/journal.pone.0234557.g002
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Encoded-Minepa-ARA, Encoded-Muleba-GA, Encoded-Burkina-GA, and Encoded-Muleba-

Burkina-GA (Fig 5).

Finally, we used the Encoded-Burkina-GA and the Encoded-Muleba-GA datasets as inde-

pendent test sets to test accuracies of ANN models trained on the Encoded-Muleba-GA dataset

and on the Encoded-Burkina-GA dataset, respectively (Fig 6A and 6B).

Results and discussion

In this study, we demonstrated that near-infrared spectroscopy (NIRS) can estimate accurately

the parity status of wild collected An. arabiensis and An. gambiae s.s. Referring to the published

results in [11] (ANN models achieve higher accuracies than PLS models), we trained and

tested an ANN model on NIRS spectra in four different datasets, pre-processed according to a

previously published protocol [9]. The model achieved accuracies between 68.7 and 81.9%

(Table 2, Figs 7 and 8). Table 2 further presents various metrics to score the performance of

our classifiers, namely sensitivity, specificity, precision, and area under the receiver operating

characteristic (ROC) curve (AUC). We calculated sensitivity, specificity, precision and accu-

racy of the model using Equs 1, 2, 3, and 4, respectively [36–39]. Sensitivity (also known as

recall) is the percentage of correctly predicted parous mosquitoes, specificity is the percentage

of correctly predicted nulliparous mosquitoes [20], and precision is the proportion of true par-

ous mosquitoes out of all mosquitoes estimated by the model as parous [39]. We presented

Fig 3. ANN model trained on a dataset with an encoded feature space.

https://doi.org/10.1371/journal.pone.0234557.g003
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Fig 4. Reducing spectra feature space using an autoencoder and re-constructing original feature spaces from their

respective encoded feature spaces (reconstruction accuracies presented in Table 1). Figures generated from MATLAB.

https://doi.org/10.1371/journal.pone.0234557.g004

Fig 5. Training and testing of ANN model on autoencoded spectra. M is either Minepa-ARA, Muleba-GA, Burkina-GA, or

Muleba-Burkina-GA dataset.

https://doi.org/10.1371/journal.pone.0234557.g005
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both sensitivity and precision because different scholars prefer one metric to another especially

for cases with imbalanced data [39].

Let

True Positive (TP) = Number of mosquitoes correctly classified by the model as parous,

False Positive (FP) = Number of mosquitoes wrongly classified by the model as parous,

True Negative (TN) = Number of mosquitoes correctly classified by the model as nulliparous,

Positive (P) = Total number of mosquitoes in test set that are parous, and

Negative (N) = Total number of mosquitoes in test set that are nulliparous.

Then

Sensitivity ¼
TP
P
; ð1Þ

Specif icity ¼
TN
N
; ð2Þ

Accuracy ¼
TPþ TN
PþN

; and ð3Þ

Fig 6. Independent testing of ANN model trained on encoded datasets. A) Applying an ANN model trained on the Encoded-

Muleba-GA dataset to estimate the parity status of mosquitoes in the autoencoded Burkina-GA dataset. B) Applying the ANN

model trained on the Encoded-Burkina-GA dataset to estimate the parity status of mosquitoes in the Encoded-Muleba-GA

dataset.

https://doi.org/10.1371/journal.pone.0234557.g006

Table 2. Performance of an ANN model trained on 75% of mosquito spectra with 1851 features (before autoencoder) and tested on the remaining 25% spectra (out

of the sample testing). AUC values are the area of the ROC curves in Fig 8. Minepa-ARA (Nulliparous = 656, Parous = 271), Muleba-GA (Nulliparous = 119, Parous = 21)

Burkina-GA (Nulliparous = 80, Parous = 78).

Minepa-ARA (N = 927) Muleba-GA (N = 140) Burkina-GA (N = 158) Muleba-Burkina-GA (N = 298)

Accuracy (%) 81.9 ± 2.8 68.7 ± 4.8 80.3 ± 2.0 75.7 ± 2.5

Sensitivity (%) 79.7 ± 3.2 37.8 ± 6.6 76.5 ± 2.1 70.2 ± 3.1

Specificity (%) 86.0 ± 1.6 80.1 ± 2.7 88.3 ± 2.3 77.6 ± 2.9

Precision (%) 74.3 ± 3.4 31.3 ± 5.2 77.8 ± 1.8 68.8 ± 3.2

AUC (%) 77.2 55.9 83.6 76.4

https://doi.org/10.1371/journal.pone.0234557.t002
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Precision ¼
TP

TPþ FP
: ð4Þ

AUC was computed from the receiver operating characteristic (ROC) curve shown in Fig 8

generated by plotting the true parous rate against the false parous rate at different threshold

settings. A higher AUC is interpreted as higher predictivity performance of the model [40, 41].

The ROC curve normally presents the performance of the model at different thresholds (cut

off points), providing more information on the accuracy of the classifier [40, 41]. Table 3 pro-

vides confusion matrices from the last (tenth) Monte-Carlo cross validation showing model

accuracy in absolute values.

We hypothesized that results presented in Tables 2 and 3, and in Figs 7 and 8 were influ-

enced by the size of a dataset used to train the model. The model that was trained on a dataset

with a relatively larger number of mosquitoes, especially in the parous class, performed better

than the model trained on the dataset with fewer mosquitoes.

The current standard preprocessing technique [9] leaves a mosquito spectrum with an

1851- dimensional feature space. Mathematically, binary inputs with a 1851-dimensional fea-

ture space present 22ð1851Þ

hypothesis space dimensions for the model to learn [42–44].

Fig 7. Box plots of parity estimation score when ANN models trained on 75% of spectra before the autoencoder

was applied and tested on the remaining spectra (25%) (out of the sample testing). A, B, C, and D represent results

for the Minepa-ARA, Muleba-GA, Burkina-GA, and Muleba-Burkina-GA (mosquitoes in Muleba-GA and Burkina-GA

datasets combined) datasets, respectively.

https://doi.org/10.1371/journal.pone.0234557.g007
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Fig 8. ROC curves (AUCs presented in the last row of Table 2) showing results when ANN models trained on 75% of

spectra before the autoencoder was applied and tested on the remaining spectra (25%) (out of the sample testing). A,

B, C, and D represent results for the Minepa-ARA, Muleba-GA, Burkina-GA, and Muleba-Burkina-GA (mosquitoes in

Muleba-GA and Burkina-GA datasets combined) datasets, respectively. In each ROC curve, a threshold of 0.5 was used to

compute true positive rate and false positive rate.

https://doi.org/10.1371/journal.pone.0234557.g008

Table 3. Confusion matrices showing accuracies of the models in absolute values when the models were trained on spectra before feature reduction by autoencoder.

A) Minepa-ARA, B) Muleba-GA, C) Burkina-GA and D) Muleba-Burkina-GA. Results from the last Monte-Carlo cross validation.

Actual Parity

Estimates Nulliparous Parous Total

Nulliparous 165 17 182

A Parous 31 61 92

Total 196 78 274

Nulliparous 28 4 32

B Parous 8 3 11

Total 36 7 43

Nulliparous 20 6 26

C Parous 4 18 22

Total 24 24 48

Nulliparous 46 9 55

D Parous 14 22 36

Total 60 31 91

https://doi.org/10.1371/journal.pone.0234557.t003
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Successful learning of such hypothesis space dimensions requires many data points (mosqui-

toes in our case). Finding enough wild mosquitoes, especially parous mosquitoes, for a model

to learn such a hypothesis space is expensive and time consuming. Feature reduction is an

alternative to overcome this, as it reduces the hypothesis space dimension initially presented

by the original data, hence lowering the number of data required to train the model efficiently.

Techniques such as principal component analysis (PCA) [27, 28], partial least squares (PLS)

[27, 45, 46], singular value decomposition (SVD) [30, 46, 47], and autoencoders can reduce a

feature space to a size that can be learned by the available data without losing important infor-

mation. PCA, PLS, and SVD are commonly used when features are linearly dependent [27,

28], otherwise, an autoencoder, which can be thought as a nonlinear version of PCA, is used

[29–32].

Therefore, we applied an autoencoder as illustrated in Figs 2 and 4 to reduce the spectra fea-

ture space from 1851 features to 10 features (Table 1 presents the accuracies of reconstructing

original feature spaces from the encoded (reduced) feature spaces), cutting down the hypothe-

sis space dimensions from 22ð1851Þ

to 22ð10Þ

, and re-trained ANN models (Figs 3 and 5). As pre-

sented in Tables 4 and 5, and in Figs 9 and 10, the accuracy of the model improved from an

average of 72% to 93%, suggesting an ANN model trained on autoencoded NIR spectra as an

appropriate tool to estimate the parity status of wild mosquitoes.

We further applied a model trained on encoded Muleba-GA dataset to estimate the parity

status of mosquitoes in the encoded Burkina-GA dataset and a model trained on encoded Bur-

kina-GA dataset to estimate the parity status of mosquitoes in encoded Muleba-GA. Here we

Table 4. Performance of an ANN model trained on 75% of the encoded mosquito spectra (10 features) and tested on the remaining 25% of the encoded mosquito

spectra. AUC values are the area of the ROC curves in Fig 10. Minepa-ARA (Nulliparous = 656, Parous = 271), Muleba-GA (Nulliparous = 119, Parous = 21), Burkina-

GA (Nulliparous = 80, Parous = 78).

Minepa-ARA (N = 927) Muleba-GA (N = 140) Burkina-GA (N = 158) Muleba-Burkina-GA (N = 298)

Accuracy (%) 97.1 ± 2.2 89.8 ± 1.7 93.3 ± 1.2 92.7 ± 1.8

Sensitivity (%) 94.9 ± 1.6 70.1 ± 2.3 91.7 ± 1.9 88.2 ± 2.9

Specificity (%) 98.6 ± 1.3 96.9 ± 1.2 96.4 ± 1.6 94.7 ± 2.1

Precision (%) 93.7 ± 2.4 62.5 ± 3.2 91.3 ± 1.4 93.1 ± 2.5

AUC (%) 96.7 91.5 93.1 94.9

https://doi.org/10.1371/journal.pone.0234557.t004

Table 5. Confusion matrices showing accuracies of the models in absolute values when the models were trained on spectra after feature reduction by autoencoder.

A) Minepa-ARA, B) Muleba-GA, C) Burkina-GA, and D) Muleba-Burkina-GA. Results from the last Monte-Carlo cross validation.

Actual Parity

Estimates Nulliparous Parous Total

Nulliparous 192 7 199

A Parous 4 71 95

Total 196 78 274

Nulliparous 33 2 35

B Parous 3 5 8

Total 36 7 43

Nulliparous 22 3 25

C Parous 2 21 23

Total 24 24 48

Nulliparous 58 4 62

D Parous 2 27 29

Total 60 31 91

https://doi.org/10.1371/journal.pone.0234557.t005
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wanted to test how the model performs on mosquitoes from different cohorts. As presented in

Table 6, the model performed with accuracies of 68.6% and 88.3%, respectively, showing a

model trained on encoded Burkina-GA dataset extrapolates well to mosquitoes from a differ-

ent cohort than a model trained on the encoded Muleba-GA dataset.

A possible explanation of the results shown in Table 6 could be that, unlike for the Burkina-

GA dataset, the number of parous mosquitoes (N = 21) in the Muleba-GA dataset was not rep-

resentative enough for a model to learn important characteristics that extrapolate to mosqui-

toes in a cohort other than the one used to train the model. Although the Muleba-GA model

had the poor sensitivity as presented in Table 6, the Burkina-GA model results still suggest that

ANN model trained on acceptable number of both encoded parous and nulliparous can be

applied to estimate parity status of mosquitoes from different cohorts other than the one used

to train the model.

Conclusion

These results suggest that applying autoencoders and artificial neural networks to NIRS spectra

as an appropriate complementary method to ovary dissections to estimate parity status of wild

mosquitoes. The high-throughput nature of near-infrared spectroscopy provides a statistically

acceptable sample size to draw conclusions on parity status of a particular wild mosquito

Fig 9. Box plots showing results when ANN models trained on 75% of encoded spectra in datasets were tested on the

remaining encoded spectra (25%). A, B, C, and D represent results for the Encoded-Minepa-ARA, Encoded-Muleba-GA,

Encoded-Burkina-GA, and Encoded-Muleba & Burkina-GA (mosquitoes in Encoded-Muleba-GA and Encoded-Burkina-

GA datasets combined) datasets, respectively.

https://doi.org/10.1371/journal.pone.0234557.g009
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population. Before this method can be used as a stand-alone method to estimate the parity sta-

tus of wild mosquitoes, we suggest repeating of the analysis on different datasets with much

larger mosquito sample sizes to test the reproducibility of the results. Hence, with the results

presented in this manuscript, we recommend complementing ovary dissection with ANN

models trained on NIRS spectra with their feature reduced by an autoencoder to estimate par-

ity status of wild mosquito population.

Fig 10. ROC curves (AUCs presented in the last row of Table 4) showing results when ANN models trained on 75% of

encoded spectra were tested on the remaining encoded spectra (25%). A, B, C, and D represent results for the Encoded-

Minepa-ARA, Encoded-Muleba-GA, Encoded-Burkina-GA, and Encoded-Muleba-Burkina-GA (mosquitoes in Encoded-

Muleba-GA and Encoded-Burkina-GA datasets combined) datasets, respectively. In all ROC curves, a 0.5 threshold was

used to calculate false positive rate and true positive rate.

https://doi.org/10.1371/journal.pone.0234557.g010

Table 6. Independent testing of ANN models trained on Muleba-GA and Burkina-GA encoded datasets.

ANN model trained on Encoded-Muleba-GA,

tested on Encoded-Burkina-GA

ANN model trained on Encoded-Burkina-GA,

tested on Encoded-Muleba-GA

Accuracy

(%)

68.6 88.3

Sensitivity

(%)

26.5 86.1

Specificity

(%)

94.4 92.2

https://doi.org/10.1371/journal.pone.0234557.t006
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S1 Appendix. Zip folder with Minepa-ARA, Muleba-GA and Burkina-GA datasets. Col-
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