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ABSTRACT 
GENE SET ENRICHMENT AND PROJECTION: A COMPUTATIONAL 

TOOL FOR KNOWLEDGE DISCOVERY IN TRANSCRIPTOMES 
  

 

KARL D. STAMM, M.S. 

Marquette University, 2016 

 

 

Explaining the mechanism behind a genetic disease involves two phases, collecting and 
analyzing data associated to the disease, then interpreting those data in the context of biological 
systems. The objective of this dissertation was to develop a method of integrating 
complementary datasets surrounding any single biological process, with the goal of presenting 
the response to a signal in terms of a set of downstream biological effects. This dissertation 
specifically tests the hypothesis that computational projection methods overlaid with domain 
expertise can direct research towards relevant systems-level signals underlying complex genetic 
disease. To this end, I developed a software algorithm named Geneset Enrichment and Projection 
Displays (GSEPD) that can visualize multidimensional genetic expression to identify the 
biologically relevant gene sets that are altered in response to a biological process.  

This dissertation highlights a problem of data interpretation facing the medical research 
community, and shows how computational sciences can help. By bringing annotation and 
expression datasets together, a new analytical and software method was produced that helps 
unravel complicated experimental and biological data.  

The dissertation shows four coauthored studies where the experts in their field have 
desired to annotate functional significance to a gene-centric experiment. Using GSEPD to show 
inherently high dimensional data as a simple colored graph, a subspace vector projection directly 
calculated how each sample behaves like test conditions. The end-user medical researcher 
understands their data as a series of somewhat-independent subsystems, and GSEPD provides a 
dimensionality reduction for high throughput experiments of limited sample size. Gene Ontology 
analyses are accessible on a sample-to-sample level, and this work highlights not just the 
expected biological systems, but many annotated results available in vast online databases. 
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CHAPTER 1 

INTRODUCTION AND OUTLINE 

 

Explaining the mechanism behind any genetic disease involves two phases, 

collecting and analyzing genetic data, then interpreting those data in the context of 

biological systems. While advances have come to both phases, few tools facilitate both 

phases. My objective is to develop a method integrating several datasets surrounding a 

biological process, with the goal of presenting the response to a test condition in terms of a 

set of downstream biological effects. I hypothesize that heuristic methods overlaid with 

automated domain expertise will highlight relevant systems-level signals underlying 

complex biological conditions that have not been seen by previous methods. To this end, I 

have developed an algorithm called Geneset Enrichment and Projection Displays 

(GSEPD), which visualizes multidimensional gene expression data to identify the 

biologically-relevant gene sets that are altered in response to a test condition. With 

inspiration from state of the art model organism experiments, in vitro experiments, and 

genome sequencing, I present a tool that can help to explain the cellular mechanisms of a 

complex test condition.  

1.1 Introducing the Problem Context 

 

Medical researchers are interested in the diseases with as-yet unknown causes. An 

interesting and longstanding research area is human birth defects, broadly defined as a 
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problem present in a newborn [1]. Early genetic screening indicated that “not less than 4% 

of all live births” are impacted by one or more genetic diseases [2]. Presuming a medical 

condition is caused by genetic or environmental factors, or their combination, researchers 

seek to discover the shared cause among independent patient cases.  For some medical 

conditions a common environmental factor can be found through retrospective studies, but 

in the situation of a spontaneous/sporadic birth defect where common environmental 

causes are ruled-out, researchers could search for a mutation impacting a developmental 

pathway. Organ development has not been understood completely; only some vital genetic 

components have been identified [3, 4]. Master control points are known from 

mutagenesis studies of model organisms [5] but subtle effects on complex organs like the 

human brain or heart are still unknown [6].  

Over 100 genes are required to work together to construct a mammalian heart [7] 

and altering any one will cause some form of a visible final trait [8, 9].  Each separate 

gene malfunction can be considered a subtype of the visible trait, and as each gene may 

malfunction in several ways, a few hundred causally-distinct subtypes of the same visible 

trait are generated. The presence of multiple subtypes causes a problem for statistical 

analyses, as each portion of genetic-location specific evidence is relevant for only a subset 

of the cases with a common disease, thereby decimating the power of a case/control study 

[10, 11].  

Genetic analyses usually are performed by examining “case” and “control” groups 

of subjects. Researchers collect genetic information and analyze the genetic information 

for commonalities that segregate the disease case group from the healthy control group 

[12]. The data collection takes several technical forms depending on the technological and 
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social platforms. Gene usage platforms such as sequencing and microarray assays are 

briefly discussed below, each having different strengths, weaknesses, and costs. When 

studying model organisms, one might create controlled animals, but when studying human 

traits researchers need to work with public health organizations or recruit volunteers. The 

prevalence of a disease and the affected population determine the costs and difficulties 

encountered in collecting samples.  For instance, where something like high blood 

pressure affects millions of adults, it is possible to collect tens of thousands of willing 

participants to give a blood sample. Conversely, to directly study organ development 

researchers need to obtain fetal tissue, or work backwards from subjects who have 

completed organ development.  Ethical considerations generally make direct study of 

healthy human tissue impossible, and researchers are limited to incomplete data and must 

piece together information wherever it is available. 

The simplest solution to the problem of hard to collect samples lies in model 

organisms. Model organisms are the inbred and outbred lab rats, mice and lower animals, 

with the simplest model organisms being yeasts and bacteria.  All of these model 

organisms share some biological systems with Homo sapiens from which we can learn 

human-relevant insights. For example, below I present a work involving mice that is 

relevant to heart development, as the mouse heart is very similar to a human’s [13]. 

However, molecular discrepancies exist between mouse and human too, causing 

difficulties for analysis and interpretation of results [14].  Direct measurements of human 

tissues are key, and I present some data on the heart development of humans in Chapter 

2.  
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There exist decades of statistical research in genetic analysis of single-gene traits 

[15, 16]. A trait that has not been explained by single-gene analyses can safely be assumed 

to require multiple interacting factors. Organ development is known to require many 

genomic factors to proceed correctly [1].  Through natural selection, modern life has 

developed redundant systems and safeguards against breakdown of genetic systems [17], 

and modern research identifies redundant systems that have evolved to work around 

deficiencies [18]. Research focus is shifting to networks of genes because many 

biochemical pathways depend on one another, and some proteins fill multiple roles [19].  

A phenotype may not manifest when a single gene is changed.  This makes detecting the 

genetic cause more difficult because a mutation seen in one gene may not wholly cause 

the disease in any one subject’s particular genetic background [20]. The notion of 

penetrance of a gene variant captures the probability carrying the mutation causes the 

disease.  

As illustrated by breast cancer, often a genetic mutation causes an increase in 

probability of disease without directly influencing the visible trait 100% of the time [21]. 

Incomplete penetrance forces researchers to collect probabilistic results across ever-

increasing subject counts. Any mutation in an active gene can be assumed to have some 

measurable effect on some biological systems. Observing the apparent reaction to a 

mutation should reveal the activity of related systems [22]. To short-circuit the statistical 

power problems present in human disease studies of single mutations, my work is directed 

at biological pathways [23].  If a case/control analysis can be reframed as a perturbed 

system reaction, then medical researchers can learn about impacted components of the 

systems involved with the case/control contrast.  
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My work specifically is to facilitate the endeavors of biological research labs 

mired in copious, complex, and incomplete gene expression data. Computational Sciences 

must be brought to bear in an intelligent way to improve research efficiency. 

Computational time efficiency is not the major factor preventing genetic discoveries: 

biomedical research is in need of intelligently directed and data driven hypothesis 

generating tools. Here I present how to merge disparate data types towards the 

overarching goal of explaining systems that have been opaque to traditional research.  

As example datasets, I focus on heart development. Congenital heart disease 

(CHD) is just one of many examples of a situation that has not been solved by traditional 

experimentation, but computer scientists could help with modern data mining and 

processing techniques. Instead of directly assaying every genetic variation, I propose a 

broad systematic search and refinement system that layers the knowledge we do have into 

a coherent picture. Specifically, I have developed free and open source software that 

automates the conversion of gene expression data from human samples into a perturbed-

systems overview, targeting the interpretation and knowledge extraction problems 

inherent in low-sample-count studies.   

1.2 Dissertation Outline 

 

In this dissertation I present 1) background studies motivating the methods, 2) 

software for mining useful knowledge out of imperfect experimental data, and 3) 

applications to published studies where systems-level results were sought. The 

culmination of these three sections is a new method for determining altered systems in 

complex experimental data as alluded to in Figure 1.1. 
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In this work three independent data types are brought together and two major tools 

are developed.  Application of the developed software herein highlights systems level 

expression patterns in genomic datasets, with the objective of directing further research in 

novel directions.  

Starting on the leftmost column of Figure 1.1 are three major unique data types 

accompanying genetic association analyses. “Structural Alteration” refers to the data 

obtained by the analysis of large-scale genomic alterations, and serves as a solid 

foundation for the idea that a set of genes can collectively be responsible for disease 

phenotypes [24, 25].  

 

 

 

Figure 1.1 Flowchart of Concepts Presented in this Dissertation. Blue boxes represent 
data or information sources, red boxes are published knowledge-generating tools I and 
collaborators have produced, with the overall goal is presented in the green box at right.  
Arrows represent information flow, from primary sources in blue, through toolkits in red, 
towards the goal in green. 
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“Functional Annotation” refers to the apriori domain specific knowledge obtained 

from published studies. Primarily Gene Ontology [26], but also the Ingenuity Pathway 

database [27] are used in my work to mark novel findings in the context of prior 

information.   

“Gene Expression” refers to data sets of mRNA abundance, or transcriptomes. A 

transcriptome may be measured from any tissue sample or cell culture, and represents a 

high-dimensional data type. The primary algorithm “Geneset Enrichment and Projection 

Displays” is developed to help analyze and interpret transcriptomic datasets.  

The upper red box, “Regulatory Network,” refers to a novel method and 

application of identifying gene expression dependencies.  In Chapter 2 I describe two 

studies where we built a set of genes relevant for organ development, show their impact, 

then build a network of putative gene-gene interactions and refine the interactions listing 

to testable novel hypotheses.  

The lower red box, “Geneset Enrichment and Projection Displays,” is a novel 

algorithm developed herein (abbreviated GSEPD), specifically aiming to aid biological 

research labs in interpreting their gene expression data. By automating best-practice 

statistical analyses, then recombining data in a novel way, we can understand genetic-

pathway-based sample behavior. GSEPD is the focus of Chapter 3.  

Both of these tools are brought together on the right of Figure 1.1 and in Chapter 

4, where we explore specific case studies in both commercially available stem cells and 

human CHD. I present how these tools shed more light on more complex situations than 

was previously possible.  
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1.3 Motivation to Data Refinement 

 

Observational sciences often work with uncontrolled variability with under-

specified hypotheses, and researchers demand computational support to find signal among 

the noise.  The scale of new measurement technologies in biology is overwhelming: a 

quantitative measure is available associated to every one of the nearly four billion unique 

locations within a person’s DNA. Because no researcher can review each and every 

finding manually, computationally filtering and prioritizing results is key.  If not 

conducted carefully, genome-wide association analyses may inadvertently lead to errors, 

biases and misunderstandings. Therefore a very high degree of certainty (such as p < 10-6) 

is required and often no significant results are achieved [28].  

When no single factor can be pinned as the global cause of a disease/trait, we need 

to consider multi-factor hypotheses. Multi-factor association is susceptible to 

combinatoric explosion [29] where the number of evaluated variables corresponds to the 

dimensionality of the search space. For example, there are only twenty ways to choose one 

gene from twenty genes, but there are 1,140 ways to choose three genes from twenty 

genes. Acknowledging the unfeasibly large scope of searching for pairs or triples of genes 

in the whole genome, my strategy is a heuristic search, using informed priors to boost the 

success rate in a restricted relevant space.  

One may move beyond the DNA to the next level: gene expression, where other 

kinds of analysis can shed light on what is and is not relevant for whichever process being 

studied. Recent advances in data acquisition technologies around genomics are starting to 

shed light on unexplored biological systems, at unprecedented data volumes [30]. New 
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datasets and analysis methods have formed the field of bioinformatics, wherein computer 

science meets biology. Modern high-performance computing resources are often required 

to process and review the results of routine genomic analyses in timely fashion [31, 32]. 

The genomic approaches mentioned above are used routinely by teams of scientists and 

healthcare providers, but improved methods are required to better discover knowledge 

from the volume of data obtained.  

1.3.1 Forward Development 

Standard genetic analysis methods have focused on controllable experiments in 

yeasts, mice, or simulation. Human developmental genetic analysis is ripe for 

computational advancement. Human tissues studies in particular struggle with restricted 

sample collection opportunities, and restricted experimental designs while supporting high 

levels of complexity in data and outcome [33]. 

Low-dimensional outcomes are required for statistical power, but the 

transcriptomic measurements are inherently high dimensional [34]. Recognizing the 

multiple testing problem inherent in a high dimensional test, we turn to intelligently biased 

strategies. Gene sets are the relevant determinant of physiological outcome [35], but 

searching all possible sets for an association signal guarantees spurious results. Therefore I 

propose searching restricted spaces with prior knowledge that certain genes are relevant to 

the organ function [36], or certain gene tuples which are known to interact [37]. Instead of 

reinventing the wheel, we can proceed from the state of the art by building on curated 

knowledgebases available online [26, 38]. 
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1.3.2 Relevant Hypothesis Generation 

Exploratory or observational studies are considered hypothesis-generating in that 

they are not designed to test any precise statistical statement, but rather to give an 

overview and direct more precise future studies. A genome-wide search can produce more 

results than can be followed up on, so restricting the reported results to those with 

likelihood of usability would be helpful. Regarding human disease studies, note that every 

human sample has tens of thousands of unique mutations [39, 40], such that researchers 

need guidance in the form of curated knowledgebases to sift through the results and find 

the real cause of disease or tested condition.  

1.4 Summary 

 

Bioinformatics covers many disciplines: scaled at its smallest, protein atomic 

structures, at its largest, writing the tree of life. I see the study of organ development as a 

high dimensional physical system that is exciting to work with, and an opportunity to give 

fruitful advances to medicine. The software rgsepd, (implementing the method GSEPD) 

can help make discoveries in human tissues studies such as inborn disease, cancers, drug 

treatments, stem cells, or trauma and healing situations.  

Presently it is not exactly known how organs are formed, or why this process goes 

wrong sometimes. Our best organ regeneration methods reanimate cellular skeletons with 

reprogrammed cells [41]. The challenge lies in monitoring ever-smaller and more precious 

subjects and the destructive measurement process. Only very recently has anyone 

measured gene usage in time series for a gestational mammal’s heart [13], and we 

subsequently conducted a study to see what kind of gene-gene causality inferences we 
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could make [7].  To assuage the great cost of bio-specimen acquisition, many studies are 

designed around the bare minimum number of samples able to be obtained and processed. 

The cost and sample size problems create a field of independent laboratories working over 

complex data with simple tools. My goal is to create automatable intelligence to 

accelerate knowledge discovery. 

The goal of this dissertation is to highlight the biological research community’s 

need for data analysis support, and show how computational sciences can help by 

developing automated software tools. Primarily by integrating high-dimensional datasets, I 

have produced a new analytical software to accelerate knowledge discovery in 

transcriptomes. An overview of what follows in the remaining chapters is concisely 

revisited below.  

In Chapter 2 I reinforce the method of searching for clues in complementary data 

types in both human and mouse. Chapter 2 explores two biological studies to set the 

context and motivation of the GSEPD method. In one study, I quantified the genomes of 

humans with and without congenital heart disease. That study of human genomes 

solidifies the concept that some experimental conditions are necessarily uncontrolled 

[25]. In the second study, I build a gene regulatory network from a time series gene 

expression data set in mouse heart ventricle development. The gene regulatory network 

study shows the importance of uniquely verifiable results as distinct from the bulk of 

possible results [7]. These two studies’ result set overlap reveals a core of genetic effects 

necessary for mammalian life, highlighting the utility of independent data types, and the 

associated needs for computational analysis to integrate such data types, regardless of the 

studied condition.  
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In Chapter 3 I briefly review transcriptomics: the measuring and exploration of 

the messenger transcripts responsible for gene usage. New technologies are revealing 

more detail in transcriptomes (such as exon splicing probabilistic effects), and analytical 

methods have fallen behind the needs of biomedical researchers. The standard method is 

to compare samples in batches and collect a list of the dimensions with the most difference 

between two classes, then to query the set of dimensions for meaning. This two-step 

process of collecting genes and querying the set for biological implication is highly error 

prone and does not use the full scope of information present in a gene expression data set. 

I attempt to remedy these concerns by introducing a new software on Bioconductor named 

rgsepd that performs GSEPD: a complete transcriptome analysis from raw sequencing 

read counts through a novel bio-pathway perturbation detection. GSEPD is novel in that it 

simplifies the workflow for a biomedical researcher by identifying segregating gene sets 

between test conditions. I have published rgsepd as an open-source toolkit on 

Bioconductor to let everyone access these automated knowledge discovery methods. 

In Chapter 4 I describe two case studies, their original manual results with limited 

functional findings, and systematic application of both GSEPD and another popular 

functional analysis tool to highlight what further functional findings are possible with 

data-driven tools. The first case study follows stem cell differentiation, tracking the steps 

nature uses to generate pumping muscle cells.  The second case study involves the CHD 

cohort at the Children’s Hospital of Wisconsin and the genomic analyses that have been 

performed to root out the cause of one type of CHD. In each case study three sets of 

results are presented, 1) as originally published by the domain expert, 2) as possible with a 

popular functional analysis tool, and 3) as possible with GSEPD. 
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In Chapter 5 I briefly summarize the findings from GSEPD for the application 

above. Future directions of this avenue of research are identified.  
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CHAPTER 2 

BACKGROUND AND MOTIVATION: COMPLEMENTARY 

DATASETS 

 

This chapter covers two published studies where disparate data types that 

complement one another were used to gather a more complete understanding of a shared 

system. An analysis of the structural alterations in human genomes with known cardiac 

status is paired with an analysis of gene regulatory networks in mouse cardiac 

development.  The findings of either study are particular to its context, and careful 

computational integration is required to achieve efficient knowledge discovery [42]. The 

term “complementary” is used to clarify that each study adds to the other synergistically in 

information content. The two studies are incorporated here to highlight practical 

challenges of data processing that guided the development of GSEPD.  

 The first study, CNV2012, is a study of genomes in CHD patients, resulting in a 

set of associations between genes and congenital heart defects [25]. Gene associations are 

moderately useful on their own, reproducing previous studies and evaluating a population 

for its rate of genetic defect. CNV2012 is included here to show that human populations 

carry large-scale genomic differences, so any tool development should account for this 

sample-specific heterogeneity.  

The second study, GRN2014, is where we built upon the gene associations from 

CNV2012. Seeding from the association results in CNV2012, I built a regulatory gene 
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network in collaboration with The Mayo Clinic and Medical College of Wisconsin 

Biotechnology and Bioengineering Center. We predicted a set of verifiable gene-gene 

interactions found in gestational mouse heart.  The predicted gene-gene interactions can 

direct future experimentalists toward hypotheses that are more likely to be true than those 

in a full genome-wide search. GRN2014 is included in this dissertation to show the 

complexity possible in a field like mammalian organ development, and to reiterate the 

need for the more intelligent data usage developed in Chapter 3, such as the usage of pre-

defined gene sets. 

2.1 Candidate Gene Lists and Copy Number Variants 

 

In 2012 we studied a population of healthy and sick children for their prevalence 

of a class of mutation on a candidate gene list to demonstrate and confirm that class of 

mutations is important in the development of the disease [25].  

Candidate gene listing is a common method to trim the experimental scope such 

that the new finding is almost guaranteed to have interpretable results [36]. A major 

drawback of the candidate gene listing method is the limitation in the search space. A 

study using a candidate gene list can only find results among genes on the list. Building on 

established science increases the interpretability of new findings while decreasing the 

ability to discovery truly new effects [43].  

Most genome-wide analyses do not find significant associations [44] unless they 

are restricted to a few dozen genes of relevance, such that the multiple testing correction 

penalty is not as high [38, 45].  As statistical power is linked to subject counts, 



16 

unrestricted searches require large numbers of independent samples [46, 47], which may 

not be possible with rare diseases or limited budgets.  

Even with nearly a thousand subjects, no significant association was found with a 

genome-wide search. To narrow the scope, a candidate gene list was developed with 

literature review.  “The 100 gene list” of those known to be important for heart 

development was compiled. Table 1 of [12] indicates 85 cited studies that were reviewed.  

We were interested in a particular class of genetic aberration that had not yet been 

thoroughly investigated, the copy number variant. A copy number variant, or CNV, is a 

structural alteration which is difficult to detect by high throughput analyses [48, 49], so a 

study had not been performed investigating their incidence among cardiac development 

cases.  

A CNV is a segment of the genome that is non-diploid. Where most of the human 

genome is expected to have unique sequence, one copy from each parent, non-diploid 

regions are those that somehow become single copy or 3 or more copies. This is a normal 

mutational mode and a mechanism of evolution, but like most mutations, a CNV is most 

often either silent or detrimental. Our study detected CNVs with a microarray technology, 

described in more detail in the literature [25].  Further discussion of CNV detection 

methods is outside the scope of this dissertation.  

Point mutations that damage the gene are known from other instances [50] but are 

difficult to assay in a large cohort. The CNV analysis was an affordable way to broadly 

assay the whole genomes of the cohort.  We used Affymetrix GenomeWide SNP 6.0 

assays, with over one million probes each. 
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After collection of samples, they were analyzed as a batch to account for platform 

biases. CNV segments were called genome-wide and annotated by their underlying gene 

impacts. The number of CNVs found in both a healthy population and a congenital heart 

defect cohort are comparable. An interesting takeaway is that both cases and controls 

show similar counts of CNV losses, the difference being which genes are impacted.  

Affected individuals have nominally more gain segments, but even unaffected individuals 

tend to have >5 segments, indicating some level of genomic instability is normal.  

2.1.2 Six Subtypes Syndromic – Phenotypic Refinement 

In the CNV2012 study, there were 958 subjects with various forms of CHD. If all 

958 shared a single causative genetic defect, it would be apparent. However, no single 

factor was identified, and the implication is that the evidence is spread across several 

different causes. To address the issue of multiple potential causes, the subjects were 

labeled with 42 separate diagnoses by domain experts, which were regrouped into six 

categories. The individual diagnoses are categories summarizing unique individual 

variation by defined codes (specifically the EPCC 2011 coding scheme). The six 

categories are “syndromic” in that they represent major named conditions. We 

hypothesized the categories would show similar genetic burden profiles. We showed the 

prevalence of various CNVs in various groupings of subjects. 

There is reason to believe similar phenotypes have similar causes, i.e. heart valve 

defects having shared genes. In biological genetics it is known that one or more genes are 

responsible for various physical systems, and the genes’ perturbations yield various 

related outcomes [51]. Continuity of causation is key to the belief that gene sets can 

inform complex outcomes [36]. 



18 

A Fisher’s exact test identified 21 genes as significantly differentially impacted by 

CNV among cases and controls. This re-verification of candidate genes cements their 

importance as cardiac development products. Previous indications for each gene came 

from varied platforms and study populations; no genome-wide analysis had been 

performed.  

A result of CNV2012 was the “spectra” or frequency sets of CNVs at each 

analyzed gene. Figure 2.1 notes the rates of gain and loss in each as a frequency with 

standard error bars and chromosomal location. The results indicate genes may be present 

in multiple copies or deleted entirely in both sick and healthy individuals.  

The major takeaways from the CNV study for us are the use of a literature-review 

sourced candidate gene list as a technique, and that precisely phenotyped results are a key 

to precision.  Tables in the CNV manuscript list the genes identified by literature review, 

as well as the CNV findings verifying their association. 

The number of gene copies drives the amount of gene-product produced, and is 

therefore referred to as a gene’s dosage. Higher or lower than normal dosage results in an 

amplification or reduction in the available proteins, which may cause disease [52]. The 

abnormal gene dosage may not always lead to disease, due to the body’s regulatory 

systems that control gene expression [19]. These systems are referred to as “regulatory 

networks” as proteins, genes, and DNA interact with each other to coordinate 

development [1, 53]. 
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Figure 2.1 CNV Frequency Spectra. Calculated incidence rates of CNV gains and losses 
in three cohorts. In red, CHD cohort is the Children’s Hospital of Wisconsin congenital 
heart disease group. In green, CHOP cohort is the Children’s Hospital of Philadelphia 
healthy group and can be considered young controls. In blue, MFHS cohort is the 
Milwaukee Family Heart Study healthy group and can be considered elderly controls.  
Vertical error bars represent one standard error from the mean in the estimated sampling 
distribution.  For example, gains over gene FKBP6 (chr7, just left of center) occur in all 
three cohorts, while losses of the same gene are only seen in the CHD cohort, implying a 
loss could cause CHD. The red point near the top of the diagram shows an 8.5% rate of 
copy number gains at gene RUNX1 in the CHD cohort, mostly indicative of Trisomy 21 
patients.  
 

 

2.2 The GRN2014 Study 

 

The second example source of a complementary dataset comes from our GRN2014 

study [7].  There we built and refined a model of the gene regulatory effects necessary to 

construct a mammalian heart.  That study constructed a regulatory network, and involves 
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model organisms, small sample sizes, tissue specificity, time course dynamics, and 

uncertainty. Our focus was on providing relevant verifiable results. The first step produced 

millions of putative gene-gene regulatory interactions, which were later pared down to 

those that are identifiable, testable, and likely.  The result is a shortlist of actionable 

insights. We estimated correctness via overlap to a gold standard in gene-gene interaction, 

Ingenuity Pathway Analysis [54]. 

2.2.1 Mouse Heart Development Dataset 

Thanks to a partnership with the Todd and Karen Wanek Foundation for 

Hypoplastic Left Heart, in 2014 the Mitchell Lab at The Medical College of Wisconsin 

was part of a data-sharing agreement with the Nelson Lab at Mayo Clinic. We had early 

access to a unique dataset. Starting from a collection of mouse embryonic tissues in time-

course, we had access to the gene expression dynamics of the developing heart for the first 

time [13].  

A time series gene expression dataset is distinct from a case/control study in that 

we have sequential measurements of transcriptome and a notion of causality. By 

measuring the same organ’s transcriptome at various stages of development, we can see 

gene expression evolve through the course of the experiment. We know that 

transcriptomic analyses are sensitive to the cell type peculiarities, so measuring a heart as 

it grows is key to learning about that process. 

The process by which cells grow and divide is regulated by the chemicals present 

within them [1, 55, 56]. A gene regulatory network (GRN) is a graphical representation of 

the factors that activate or deactivate each other at the gene level. The network is a 

graphical representation where genes correspond to vertices, and interactions are 
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represented by edges. The GRN2014 study was an attempt to deduce the GRN of the 

developing mouse heart by numerically exploring the dynamics and modeling 

multidimensional differential equations [7, 57].  

2.2.2 Method 

Our analysis used a parallel computational technique to fit models to the data, and 

report which genes seem like they could be regulators of other genes based solely on their 

time course dynamics [57]. For example, gene A increasing one time step before gene B’s 

rise is mild evidence for A driving B. This is known to be a hard problem computationally 

because every gene may impact every other. A network (vertex graph) is created by 

default with every possible edge present, and the edges can be evaluated for significant 

coefficients.  This is computationally intractable in a genome-wide sense, and with limited 

data many possible network configurations are equivalently supported. Pre-supposing a 

sparse network with effect propagation leads to a computational shortcut [58]. Each gene 

is instead evaluated independently and repeatedly as in a random forest technique, and 

only later overlaid as a probabilistic network.  A ‘confidence’ threshold then filters the 

network to a sparse collection of the most plausible configuration, by dropping edges that 

occur with less than a specified frequency. For a detailed description of this method, see 

the Supplemental Materials of [7, 57]. 

A major drawback with this method is that many genes may share a time course 

profile. For example, any two genes that have the same expression dynamics could fill the 

same role in the network. Although we named the nodes with their originating gene, the 

software is agnostic to gene name metadata, and represents myriad potential connections. 

Each node could represent many genes, and each edge represents the product of the node 
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Figure 4.2 Excerpt from the GSEPD Result’s HMA comparing day 1 to day 3. The 
colored bar along the top notes the comparison samples’ class labels. Sample classes are 
listed along the bottom. Rows and Columns are ordered by a hierarchical clustering such 
that similar samples are adjacent. 

 

 

To take a broader view, unbiased by an individual’s interest in each gene, we can 

perform GSEPD on sequential time-points to identify the broader processes at work. 

GSEPD identified “mesenchyme morphogenesis” at the top of the Figure 4.2. In the 

textual result (Table 4.2), many pathways were identified as completely segregating the 

conditions. The third row of Table 4.2 is an extremely precise “cell surface receptor 

signaling pathway involved in heart development” with 14 genes differentially expressed 

(of 24 total).  Six of the 16 genes on Figure 4.1 are “cell surface receptors” (FGFR1, 

FGFR2, FGFR3, BMPR1A, BMPR1B, and BMPR2). The GSEPD tool is validated by 

identifying the same activities an expert would identify.  
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GO ID GOSeq P 

Differentially 
Expressed 
Genes 

Genes 
in Set GO Term 

GO:0003197 5.49E-11 16 27 endocardial cushion 
development 

GO:0071294 4.99E-10 9 13 cellular response to zinc ion 

GO:0061311 1.26E-09 14 24 
cell surface receptor signaling 
pathway involved in heart 
development 

GO:0072132 6.71E-09 15 30 mesenchyme morphogenesis 

GO:2000826 6.98E-09 14 27 regulation of heart 
morphogenesis 

Table 4.2 H1ESC Study GSEPD Results. Top five rows by significance, from 
generated table GSEPD.HMA.D1x2.D3x2.csv.  These pathways are identified in the 
comparison of day 1 versus day 3 with GSEPD. The columns correspond to gene set ID, 
GOSeq significance, number of genes found differentially expressed, the number of 
genes in the set, and the set’s name. These results are sorted by GOSeq p-value, because 
all sets were found to have equivalent 100% segregation due to low sample variability.  

 

 

We also find many unexpected gene sets with similar evidence levels. In Table 

4.2, second after “GO:endocardial cushion development”, GSEPD finds “GO:cellular 

response to zinc ion” with 9 genes differentially expressed of 13 in the GO term (9/13 

DE).  The cellular sample system seems to be in a known response pattern to zinc ions, 

which may lead to an extension of this heart development pathway in further research. 

 Along the right of Figure 4.1 are manual annotations of gene sets. They are 

recapitulated by GSEPD in a completely database driven manner, bypassing any 

individual’s preconceptions. GSEPD’s ability to quickly identify biologically relevant 

pathway perturbations from transcriptome data enables faster research and unexpected 

findings.  

Four key genes are highlighted as “Bmp signaling” near the bottom of Figure 4.1. 

GSEPD reports “response to BMP” with 13/22 genes DE (data not shown). The top of 
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Figure 4.1 is a group of manually annotated genes under the heading “Fgf signaling”. 

GSEPD reports “type 2 fibroblast growth factor receptor binding” with 4/4 genes DE at 

p<10-4. The middle category, “pan-mesoderm/early cardiomyogenesis” is seen as 

GSEPD’s fifth-most significant set, “regulation of heart morphogenesis“ at 14/27 genes 

DE for p<10-8 (Table 4.2). These 14 identified genes go beyond the three known markers 

represented in the H1ESC publication. Two other interesting results, at 7/9 genes DE 

identified are “neurofilament” and “cell migration involved in heart development” in 

completely disjoint sets.  Specifically, between day 1 and day 3 GSEPD identified 1050 

GO terms (37 after Bonferroni correction).  The segregation scores are maxed-out at 

100% due to the small sample of two versus two cloned samples.  

With GSEPD I propose we can discover new connections, by harnessing entire 

databases and presenting systems biology level results in a compact and convenient 

manner. For example, a novel and unexpected finding is the second row of Table 4.2, 

“cellular response to zinc ion”.  The word zinc appears nowhere in the publication. 

Opening the results file GSEPD.RES.D1x2.D3x2.GO2.csv reveals all genes and how 

each gene’s expression changed underlying each GO term. It lists 13 genes under the 

“cellular response to zinc ion” heading GO:0071294, here included as Table 4.3.  The 

GO2 file (as described in Appendix A) collects mean expression in each class (here 

testing day 1 versus day 3), the test statistics from the differential analysis, and the 

functional analysis statistics as a cross-product. The GO2 file allows a simple 

spreadsheet search function to extract the computed metrics of each gene within the 

identified GO term. Neither DESeq2 nor GOSeq could provide the combined product. 
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Quick retrieval of the gene-based evidence underlying each GO term result is a marked 

functional advancement for the biomedical end-user. 

 

 

Gene D1x2 D3x2 PADJ Gene D1x2 D3x2 PADJ 
CREB1 10.1 10.2 7.13E-01 HVCN1 8.81 11.7 4.50E-12 
MT2A 12.8 8.43 3.05E-43 MT1F 12.3 8.34 1.37E-36 
MT1G 12.2 6.85 1.05E-61 MT1B 6.86 6.66 8.26E-01 
MT1H 10.8 6.58 1.88E-88 TSPO 10 9.97 9.88E-01 
MT1M 9.5 6.49 1.32E-30 MT1E 12.1 7.08 7.51E-95 
MT1A 8.7 6.85 5.14E-11 KCNK3 6.71 6.69 9.88E-01 
MT1X 12.3 8.94 2.22E-43 

	 	 	 	Table 4.3 Subsection of GSEPD.RES.D1x2.D3x2.GO2.csv rows 286,317 through 
286,329. This file includes every moderately significant GO Term and all genes 
underlying each, for the purpose of quickly extracting a genomic profile. Column Gene is 
the HGNC gene name (The Human Genome Organization’s Gene Nomenclature 
Committee is the authority by which genes are given registered identifiers). Column 
D1x2 is the mean expression of the day 1 class, of which there were two samples. Units 
are from DESeq2, as a variance-stabilized and log2-normalized read count of the original 
RNA-Seq, such that 11 is approximately twice the expression of 10. Column D3x2 is the 
day 3 class mean. Column PADJ is the multiple-testing corrected p-value from the 
DESeq2 test for differential expression between those classes. This section of the larger 
listing corresponds to only those genes that are a part of GO:0071294. 
 
 
 
 

 The GSEPD results shown in Table 4.3 note the expression of genes underlying 

“cellular response to zinc ion.” Nine of 13 genes are highly significant with 8 reducing 

between day 1 to day 3, one gene increased (HVCN1 from 8.8 units to 11.7), and four 

unchanged.  Metallothioneins 1G, 1H, 1M, 2A, and 1A drop precipitously between the 

time points, while HVCN1 activates. A zinc-related finding was unexpected and would 

have gone unnoticed without GSEPD’s merging of gene and gene set based results.  A 

simpler functional annotation tool would bury the interesting results: the GSEPD 
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intermediary step GOSeq found 1,894 gene sets overrepresented (p<0.01) in the day 1 

versus day 3 differential expression analysis.  

4.2 Genetic/Mechanistic Link in A Congenital Heart Disease 

 

In the second study of this chapter I demonstrate that GSEPD is useful in 

identifying relevant molecular pathways (gene sets) when sample classes are human 

disease risk factors.  

4.2.1 MYH6 Study Methods 

In 2015 we completed a clinical association study known as MYH6, for the gene 

identified therein, known to be vital for muscle contraction [100]. In the MYH6 study, we 

started with the genomes of a family with a particular CHD, explored a population with 

the same disease and made a case for the role of MYH6 in that CHD subtype.  This 

particular CHD subtype is present in the fetus, and fatal before adulthood [104], 

precluding high penetrance causes from permeating the population, therefore this 

mutation has not been thoroughly explored by the medical community.  

The genomes of a nuclear family were compared to databases of mutational 

significance, and a short list of possibly causal genes was developed. We then looked at a 

population of 190 other patients and evaluated each of the possibly causal genes for 

occurrence frequency in a case/control analysis. We then contrasted tissue transcriptomes 

of carriers and non-carriers for MYH6 variants to find what we call the compensatory 

pathway: the body’s natural response to the mutation.  

The MYH6 study explores the transcriptome of several samples of heart tissue. 

Sequence data collection and processing was as described in section 4.1.1. Because the 
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transcriptomes were predominantly divided by their subject’s age and tissue type, the 

more subtle profiles could be lost to noise [105]. To ensure cleaner results, we used a 

paired test, which limits the available data to those with suitable carrier/non-carrier 

samples of matched subject age and tissue type. Samples were labeled WV and WR, for 

those with variant and those with the reference allele. A paired test controls for covariates 

and yields a short list of genes. We used edgeR [81] with a factor covariate indicating 

manually identified sample pairs.  Criteria for significance was set at p<0.05, effect size 

absolute log2 difference > 1, and high average expression (defined here as logCPM > 6).  

4.2.2 MYH6 Study Results 

Twenty-four gene transcripts were both highly expressed and significantly 

perturbed (Table 4.4). MYH7 was immediately recognized as a gene homologue to 

MYH6 (sharing >95% sequence similarity.) Upregulation of MYH7 is filling the role of a 

defunct MYH6. The compensatory pathway for MYH6 (a muscle contractile protein) 

seems to be elevated expression of several other genes related to muscle contraction. 

Other findings, such as the EEF and RPL families are possibly the pathway the body uses 

to select or regulate the proteins used by cardiac cells.  

4.2.3 MYH6 Study GSEA 

The sample data of the paired analysis can be processed with GSEA. GSEA 

performs two class contrast analyses, designed for microarray chips, but suitable for other 

transcriptome measures. Parameters to GSEA were set to match GSEPD as closely as 

possible: using the Gene Ontology collection (c5.all.v5.1.symbols.gmt) restricted to gene 

sets of size two to 31 genes. GSEA supports several statistical models. Two class 

comparison was configured to use the “tTest” mode.  
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Gene 

Change 
Among 
Carriers P-Value Gene 

Change 
Among 
Carriers P-Value 

ACTA1 315% 0.0051 MYL2 366% 0.0039 
ALDOA 210% 0.0025 RPL12 45% 0.0086 
COX6A2 250% 0.0070 RPL17 23% 0.0003 
DQ668365 265% 0.0007 RPL21 15% 0.0001 
EEF1A1 36% 0.0033 RPL41 21% 0.0017 
EEF1B2 50% 0.0053 RPL9 28% 0.0012 
EF011072 325% 0.0038 RPS26 21% 0.0034 
ENO3 312% 0.0002 RPS27A 36% 0.0003 
H3F3AP4 39% 0.0017 RPS3A 42% 0.0040 
HHATL 241% 0.0026 RPSA 22% 0.0007 
HNRNPA1 46% 0.0015 TNNT2 1231% 0.0028 
MYH7 346% 0.0007 TPM2 221% 0.0009 

Table 4.4 MYH6 Study Paired Test. Twenty-four significant gene level changes were 
found in the carrier versus non-carrier test [100]. The DEG group into twelve identifiable 
gene families. Two sets of 3 columns indicate the gene name, effect size, and significance 
computed with edgeR [81].  
 
 
 
 

The dataset originally contained 38,653 transcripts, and was collapsed to 23,099 

named genes to be compatible with the GSEA annotation of GO. Significant sets were 

calculated from the differentially expressed gene list as a ranked object. The output GO 

collection lists 1,454 sets, 801 of which pass the set size filter.  GSEA reports enrichment 

of 34 sets upregulated in phenotype WV and 2 in WR (with nominal p<1%).  Top ten 

significant sets are shown in Table 4.5. GSEA does not score each sample separately for 

any set’s expression profile.  

The third row of Table 4.5 mentions “contractile fiber” and constitutes the 

agreement with the manual process’s indication of a compensatory pathway. The set 

“mitochondrial respiratory chain,” being upregulated in class WV represents an effect 
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that was unnoticed because the genes that make up this set were not part of the 24 

transcripts identified in the MYH6 study.  

 

 

NAME	 ES	
NOM	
p-val	

FDR	
q-val	

MITOCHONDRIAL_RESPIRATORY_CHAIN	 0.71	 0.00E+00	 0.037	
REGULATION_OF_PROTEIN_AMINO_ACID_PHOSPHORYLATION	 0.63	 0.00E+00	 0.050	

CONTRACTILE_FIBER	 0.64	 1.91E-03	 0.056	
HYDROGEN_ION_TRANSMEMBRANE_TRANSPORTER_ACTIVITY	 0.64	 0.00E+00	 0.061	

RESPIRATORY_CHAIN_COMPLEX_I	 0.73	 0.00E+00	 0.067	
NADH_DEHYDROGENASE_COMPLEX	 0.73	 2.01E-03	 0.073	

CONTRACTILE_FIBER_PART	 0.66	 0.00E+00	 0.079	
GABA_RECEPTOR_ACTIVITY	 0.75	 4.00E-03	 0.094	

PEPTIDYL_TYROSINE_PHOSPHORYLATION	 0.61	 0.00E+00	 0.098	
MITOCHONDRIAL_RESPIRATORY_CHAIN_COMPLEX_I	 0.73	 0.00E+00	 0.106	

Table 4.5 MYH6 Study GSEA Results. Top ten identified gene sets found by the 
analysis of the MYH6 carrier versus non-carrier differential expression analysis [100] 
with GSEA [88] ranked by q-value. Column ES is the enrichment score, NOM p-val is 
the nominal set significance, FDR q-val is the false-discovery rate adjusted significance.  

 

 

4.2.4 MYH6 Study GSEPD 

GSEPD performs two class contrast analyses where the MYH6 study’s manual 

process used a paired-samples test. To circumvent the experimental design limitation, the 

user may take advantage of rgsepd’s file architecture and insert differential gene 

expression results into the pipeline. Inserting the results of the pairwise differential 

expression analysis (Table S3 of [100] consists of Table 4.4 extended to the whole 

genome) as the differential expression table of GSEPD lets the functional annotation and 

projection components operate on the gene results from a more complicated differential 

expression test. 
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The GSEPD pipeline found 617 gene transcripts to be significantly differentially 

expressed, 422 GO terms upregulated in non-mutant, and 254 GO terms upregulated in 

mutant. Combining the 422 and 254 GO terms and filtering to sets with the requested 

number of genes (2 to 31 by default), GSEPD evaluated 392 sets (139 consisting of up, 

230 down, and 23 with mixed up/down) for segregating ability. Finally GSEPD found 33 

gene sets with significant sample segregation (seven of which are represented in Figure 

4.3). The results include (at rows 4,5, and 6) the muscle contraction pathways found by 

both the manual process and GSEA. The other sets identified by GSEPD are potentially 

therapeutic pathways.  

Unique to GSEPD is a sample-to-set scoring, represented by the colors of Figure 

4.3.  The WV class defines the red expression profile, and the WR class defines the 

green. Two samples are seen to be on the wrong side: MAAA1600-WV and VFY-WR, 

indicating their response to the mutation was inconsistent with the trend discovered in the 

other six pairs of samples at these gene sets. Some differences are expected, as each 

subject had a different form of the mutant gene, and a different familial background. The 

unexpected gene expression measures of samples MAAA1600-WV and VFY-WR open 

up further avenues for experimentation.  
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Figure 4.3 MYH6 Paired Analysis with GSEPD, testing 8 MYH6-mutant tissue 
samples (WV: with variant) against 8 non-mutant (WR: with reference), all sourced from 
the CHD subjects’ explanted tissue. Figure is cropped to show only a few rows of a larger 
result set.  Subject pairing identifiers are noted along the bottom and labeled with WV for 
mutant carrier of a MYH6 variant, or WR for wild-type MYH6. 

  

 

4.3 Summary 

 

In Chapter 4 GSEPD and GSEA were applied to two case studies where the 

domain expert manually annotated function of gene sets found interesting by his or her 

transcriptome experiment. Finding expression patterns of gene sets via manual review is 

a major bottleneck of time and effort. The cost potentially prevents complete data 

exploration. For example, in both case studies the findings were limited to genes 

recognized by the domain expert, while other findings went unreported. GSEPD provided 

a window to browse the high dimensional transcriptome data that has to date been 

opaque. I have shown GSEPD can recapitulate the pathway-based findings, while 

providing a sample-specific gene set analysis. The novel multidimensional projection 

technique employed by GSEPD highlights systems-level patterns on individual samples.  
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In the H1ESC study consecutive time points were not carefully analyzed, in part 

because six time points have fifteen ways to contrast, for which the experimental design 

was underpowered. With GSEPD fifteen configurations are quickly run, and the user may 

sort and rank the results together, or quickly browse each comparison’s result set. In the 

MYH6 study we found one weakly defined pathway that was completely novel, as the 

MYH6 knockdown genotype is unstudied in humans. GSEPD identifies specific pathways 

such as “regulation of muscle filament sliding” or “selenium compound metabolic 

process.” which had gone unnoticed, but are avenues of future research for treatment or 

prevention of human CHD.
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CHAPTER 5 

CONCLUSION 

Computational Sciences is an interdisciplinary research field, aiming to bring the 

tools of data analytics to other domains. While many scientific domains are in need of 

computational support, medical bioinformatics is an exciting avenue supporting 

biomedical research: a field where real advances have the opportunity to save lives.  

5.1 Scales Untenable 

 

Biomedical research, specifically human development and genomics, is in a 

particularly difficult state. Samples are rare or precious, we cannot generate experimental 

tissues of human fetuses, and the samples we do obtain have all the diversity of mankind. 

I see this as an opportunity to deploy computational sciences in support of valuable 

medical research. Human genomes are enormous and so diverse that the next generation 

reference maps are nonlinear graphical models, challenging the paradigms of sequence 

alignment and simple gene comparisons. Medicine needs smarter tools. My research 

work is to create smarter tools that integrate broad knowledgebases such that the 

culmination can be applied in every forthcoming transcriptome analysis.  
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5.2 Complementary Datasets 

 

Careful literature review reveals myriad small scale studies where one or a small 

handful of genes’ usages are explained. Collection of these results is a task outside the 

grasp of any one person. Future tools in AI like IBM Watson are being deployed to scour 

the medical literature. In that theme, the tools developed and methods applied in the 

current work aim to bring together large-scale datasets in the form of public databases, 

which, while ostensibly available, are out of reach for routine annotation on everyday 

analyses. Researchers deserve to have large scale databases brought to them on their 

terms, freely and quickly. A wealth of interaction databases are available, but without 

computational support to annotate their findings, medical researchers are manually 

perusing interesting hits piecemeal. My work has been to collapse and process data into a 

meaningful picture.  My future work is to bring down the barriers with intelligent 

automation, amplifying research results. 

5.3 Transcriptomics 

 

Moving beyond point mutations and DNA rearrangements to gene usage and gene 

set usage will enable future researchers to make more effective use of their precious 

tissue samples. More knowledge could be mined from the same animal experiments or 

human surgical discards. Other high throughput experiment types are being developed 

every year, and they too will need intelligent overviews that GSEPD can provide. 

The methods of Chapter 3 can be applied to other data types. Several other 

sequencing technologies generate genome-wide scores analogous to RNA-Seq’s 
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quantification of transcript activity, such as bisulfite sequencing and methylation specific 

sequencing [106]. These could also be fed into rgsepd. Like with RNA-Seq, epigenetic 

activation is quantification at the gene level, inducing the same kinds of data deluge we 

sought to remedy in Chapter 3. Collection to the GO Term level and clustering with 

validity scores could yield more informative results in those research areas [107]. 

Furthermore, adaptation to non-human experiments is an obvious next step for rgsepd 

version 2. The limited input format of rgsepd is RefSeq human transcript identifiers, but 

more flexible gene name conversion routines would enable any model organism.  

5.4 Applications 

 

In this dissertation I have shown two studies in Chapter 4 where the experts in 

their field have desired to annotate functional significance to their gene-centric analyses. 

Although other tools exist, they are limited in interface and applicability. I have created a 

human transcriptome analyzer in GSEPD that shows inherently high dimensional data as 

a simple colored heatmap: using vector projections to directly calculate how each sample 

behaves like each test condition. I believe set-level expression is the way the end-user-

researcher understands their data, and projection provides the most understandable 

dimension reduction. Finally, Gene Ontology analyses are accessible on a sample-to-

sample level, and I hope to highlight not just the expected pathways, but the many 

annotated results that are currently going unseen in vast databases.  

In the MYH6 study we showed the effects of a mutation in a heart muscle being 

compensated by the living host. GSEPD also predicts impacts on the eosinophils and 

forebrain neurons. These effects would have gone unnoticed, as researchers in neuron 
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development are unlikely to be interested in a cardiac-defect publication. Bringing 

together the online databases is the best way to advance biomedical research at the fastest 

pace possible. The MYH6 study’s variant carriers versus non-carriers analysis of 

Chapter 4 mentioned a selenium metabolism process. An expression profile exists with 

statistically significant segregation ability, indicating a real difference related to the 

MYH6 mutant status. GSEPD indicates selenium is potentially an avenue for treatment, 

wherein a drug dose could influence the gene expression, bringing unhealthy patients 

back in line with the non-carriers. 

GSEPD enables a systems-level evaluation of any test treatment on a cell culture. 

In the H1ESC study we evaluated the effects of Activin-A and BMP dosage on heart 

muscle development. GSEPD could reveal the downstream effects and further streamline 

the differentiation protocol.  A systematic analysis of published data sets like the Illumina 

Bodymap project or The Cancer Genome Atlas would reveal thousands of subtle systems 

level effects that have been obscured behind the dimensionality of the transcriptome. 

The role Computational Science plays to non-computing domains is a role of 

analytical and interpretive support. We have a duty to the scientific community to help 

and advance where the need is greatest.  My work has had impacts in the study of organ 

development [7], treatment of congenital diseases [100], and basic stem cell research 

[99]. rgsepd, as open source software, is freely available to facilitate transcriptome 

analyses around the world [91]. I hope it has a positive impact on many future studies. 



79 

BIBLIOGRAPHY 

	

1.	 Langman,	J.	and	T.W.	Sadler,	Langman's	Medical	Embryology.	6th	ed.	1990,	
Baltimore:	Williams	and	Wilkins.	xii,	409	p.	

	
2.	 Day,	N.	and	L.B.	Holmes,	The	Incidence	of	Genetic	Disease	in	a	University	

Hospital	Population.	American	Journal	of	Human	Genetics,	1973.	25(3):	p.	
237-46.	

	
3.	 Roberts-Galbraith,	R.H.	and	P.A.	Newmark,	On	the	Organ	Trail:	Insights	into	

Organ	Regeneration	in	the	Planarian.	Current	Opinion	in	Genetics	and	
Development,	2015.	32:	p.	37-46.	

	
4.	 Tang,	W.W.,	S.	Dietmann,	N.	Irie,	H.G.	Leitch,	V.I.	Floros,	C.R.	Bradshaw,	J.A.	

Hackett,	P.F.	Chinnery,	and	M.A.	Surani,	A	Unique	Gene	Regulatory	Network	
Resets	the	Human	Germline	Epigenome	for	Development.	Cell,	2015.	161(6):	p.	
1453-67.	

	
5.	 Menke,	C.,	M.	Cionni,	T.	Siggers,	M.L.	Bulyk,	D.R.	Beier,	and	R.W.	Stottmann,	

Grhl2	Is	Required	in	Nonneural	Tissues	for	Neural	Progenitor	Survival	and	
Forebrain	Development.	Genesis,	2015.	53(9):	p.	573-582.	

	
6.	 Arrington,	C.B.,	S.B.	Bleyl,	N.	Matsunami,	G.D.	Bonnell,	B.E.	Otterud,	D.C.	

Nielsen,	J.	Stevens,	S.	Levy,	et	al.,	Exome	Analysis	of	a	Family	with	Pleiotropic	
Congenital	Heart	Disease.	Circulation	Cardiovascular	Genetics,	2012.	5(2):	p.	
175-82.	

	
7.	 Bazil,	J.N.,	K.	Stamm,	X.	Li,	R.	Thiagarajan,	T.J.	Nelson,	A.	Tomita-Mitchell,	and	

D.A.	Beard,	The	Inferred	Cardiogenic	Gene	Regulatory	Network	in	the	
Mammalian	Heart.	PLoS	ONE,	2014.	9(6):	p.	e100842.	

	
8.	 Posch,	M.G.,	A.	Perrot,	F.	Berger,	and	C.	Ozcelik,	Molecular	Genetics	of	

Congenital	Atrial	Septal	Defects.	Clinical	Research	in	Cardiology,	2010.	99(3):	
p.	137-47.	

	
9.	 Priest,	J.R.,	K.	Osoegawa,	N.	Mohammed,	V.	Nanda,	R.	Kundu,	K.	Schultz,	E.J.	

Lammer,	S.	Girirajan,	et	al.,	De	Novo	and	Rare	Variants	at	Multiple	Loci	
Support	the	Oligogenic	Origins	of	Atrioventricular	Septal	Heart	Defects.	PLoS	
Genetics,	2016.	12(4):	p.	e1005963.	

	



80 

10.	 Manolio,	T.A.,	F.S.	Collins,	N.J.	Cox,	D.B.	Goldstein,	L.A.	Hindorff,	D.J.	Hunter,	
M.I.	McCarthy,	E.M.	Ramos,	et	al.,	Finding	the	Missing	Heritability	of	Complex	
Diseases.	Nature,	2009.	461(7265):	p.	747-53.	

	
11.	 Lescai,	F.	and	C.	Franceschi,	The	Impact	of	Phenocopy	on	the	Genetic	Analysis	

of	Complex	Traits.	PLoS	ONE,	2010.	5(7):	p.	e11876.	
	
12.	 Balding,	D.J.,	A	Tutorial	on	Statistical	Methods	for	Population	Association	

Studies.	Nature	Reviews	Genetics,	2006.	7(10):	p.	781-91.	
	
13.	 Li,	X.,	A.	Martinez-Fernandez,	K.A.	Hartjes,	J.P.	Kocher,	T.M.	Olson,	A.	Terzic,	

and	T.J.	Nelson,	Transcriptional	Atlas	of	Cardiogenesis	Maps	Congenital	Heart	
Disease	Interactome.	Physiological	Genomics,	2014.	46(13):	p.	482-95.	

	
14.	 Greulich,	F.,	M.O.	Trowe,	A.	Leffler,	C.	Stoetzer,	H.F.	Farin,	and	A.	Kispert,	

Misexpression	of	Tbx18	in	Cardiac	Chambers	of	Fetal	Mice	Interferes	with	
Chamber-Specific	Developmental	Programs	but	Does	Not	Induce	a	Pacemaker-
Like	Gene	Signature.	Journal	of	Molecular	and	Cellular	Cardiology,	2016.	97:	
p.	140-149.	

	
15.	 Hirschhorn,	J.N.,	K.	Lohmueller,	E.	Byrne,	and	K.	Hirschhorn,	A	Comprehensive	

Review	of	Genetic	Association	Studies.	Genetics	in	Medicine,	2002.	4(2):	p.	45-
61.	

	
16.	 Lewis,	C.M.,	Genetic	Association	Studies:	Design,	Analysis	and	Interpretation.	

Briefings	in	Bioinformatics,	2002.	3(2):	p.	146-53.	
	
17.	 Abegglen,	L.M.,	A.F.	Caulin,	A.	Chan,	K.	Lee,	R.	Robinson,	M.S.	Campbell,	W.K.	

Kiso,	D.L.	Schmitt,	et	al.,	Potential	Mechanisms	for	Cancer	Resistance	in	
Elephants	and	Comparative	Cellular	Response	to	DNA	Damage	in	Humans.	The	
Journal	of	the	American	Medical	Association,	2015.	314(17):	p.	1850-60.	

	
18.	 Watson,	E.,	L.T.	MacNeil,	A.D.	Ritter,	L.S.	Yilmaz,	A.P.	Rosebrock,	A.A.	Caudy,	

and	A.J.	Walhout,	Interspecies	Systems	Biology	Uncovers	Metabolites	Affecting	
C.	Elegans	Gene	Expression	and	Life	History	Traits.	Cell,	2014.	156(4):	p.	759-
70.	

	
19.	 Vaquerizas,	J.M.,	S.K.	Kummerfeld,	S.A.	Teichmann,	and	N.M.	Luscombe,	A	

Census	of	Human	Transcription	Factors:	Function,	Expression	and	Evolution.	
Nature	Reviews	Genetics,	2009.	10(4):	p.	252-63.	

	
20.	 Scott,	W.K.,	M.A.	Pericak-Vance,	and	J.L.	Haines,	Genetic	Analysis	of	Complex	

Diseases.	Science,	1997.	275(5304):	p.	1327;	author	reply	1329-30.	
	



81 

21.	 Hughes,	D.J.,	Use	of	Association	Studies	to	Define	Genetic	Modifiers	of	Breast	
Cancer	Risk	in	Brca1	and	Brca2	Mutation	Carriers.	Familial	Cancer,	2008.	
7(3):	p.	233-44.	

	
22.	 Syed,	D.N.,	M.I.	Khan,	M.	Shabbir,	and	H.	Mukhtar,	MicroRNAs	in	Skin	Response	

to	UV	Radiation.	Current	Drug	Targets,	2013.	14(10):	p.	1128-34.	
	
23.	 Emmert-Streib,	F.	and	G.V.	Glazko,	Pathway	Analysis	of	Expression	Data:	

Deciphering	Functional	Building	Blocks	of	Complex	Diseases.	PLoS	
Computational	Biology,	2011.	7(5):	p.	e1002053.	

	
24.	 Shaikh,	T.H.,	X.	Gai,	J.C.	Perin,	J.T.	Glessner,	H.	Xie,	K.	Murphy,	R.	O'Hara,	T.	

Casalunovo,	et	al.,	High-Resolution	Mapping	and	Analysis	of	Copy	Number	
Variations	in	the	Human	Genome:	A	Data	Resource	for	Clinical	and	Research	
Applications.	Genome	Research,	2009.	19(9):	p.	1682-90.	

	
25.	 Tomita-Mitchell,	A.,	D.K.	Mahnke,	C.A.	Struble,	M.E.	Tuffnell,	K.	Stamm,	M.	

Hidestrand,	S.E.	Harris,	M.A.	Goetsch,	et	al.,	Human	Gene	Copy	Number	Spectra	
Analysis	in	Congenital	Heart	Malformations.	Physiological	Genomics,	2012.	
44(9):	p.	518-41.	

	
26.	 Ashburner,	M.,	C.A.	Ball,	J.A.	Blake,	D.	Botstein,	H.	Butler,	J.M.	Cherry,	A.P.	

Davis,	K.	Dolinski,	et	al.,	Gene	Ontology:	Tool	for	the	Unification	of	Biology.	The	
Gene	Ontology	Consortium.	Nature	Genetics,	2000.	25(1):	p.	25-9.	

	
27.	 Kramer,	A.,	J.	Green,	J.	Pollard,	Jr.,	and	S.	Tugendreich,	Causal	Analysis	

Approaches	in	Ingenuity	Pathway	Analysis.	Bioinformatics,	2014.	30(4):	p.	
523-30.	

	
28.	 Ioannidis,	J.P.,	G.	Thomas,	and	M.J.	Daly,	Validating,	Augmenting	and	Refining	

Genome-Wide	Association	Signals.	Nature	Reviews	Genetics,	2009.	10(5):	p.	
318-29.	

	
29.	 Edwards,	R.	and	L.	Glass,	Combinatorial	Explosion	in	Model	Gene	Networks.	

Chaos,	2000.	10(3):	p.	691-704.	
	
30.	 Metzker,	M.L.,	Sequencing	Technologies	-	the	Next	Generation.	Nature	Reviews	

Genetics,	2010.	11(1):	p.	31-46.	
	
31.	 Shanahan,	H.P.,	A.M.	Owen,	and	A.P.	Harrison,	Bioinformatics	on	the	Cloud	

Computing	Platform	Azure.	PLoS	ONE,	2014.	9(7):	p.	e102642.	
	
32.	 Zhou,	S.,	R.	Liao,	and	J.	Guan,	When	Cloud	Computing	Meets	Bioinformatics:	A	

Review.	Journal	of	Bioinformatics	and	Computational	Biology,	2013.	11(5):	p.	
1330002.	



82 

33.	 Roson-Burgo,	B.,	F.	Sanchez-Guijo,	C.	Del	Canizo,	and	J.	De	Las	Rivas,	
Transcriptomic	Portrait	of	Human	Mesenchymal	Stromal/Stem	Cells	Isolated	
from	Bone	Marrow	and	Placenta.	BMC	Genomics,	2014.	15:	p.	1-18.	

	
34.	 Ramskold,	D.,	E.T.	Wang,	C.B.	Burge,	and	R.	Sandberg,	An	Abundance	of	

Ubiquitously	Expressed	Genes	Revealed	by	Tissue	Transcriptome	Sequence	
Data.	PLoS	Computational	Biology,	2009.	5(12):	p.	e1000598.	

	
35.	 Thomas,	D.C.,	D.V.	Conti,	J.	Baurley,	F.	Nijhout,	M.	Reed,	and	C.M.	Ulrich,	Use	of	

Pathway	Information	in	Molecular	Epidemiology.	Human	Genomics,	2009.	
4(1):	p.	21-42.	

	
36.	 Tabor,	H.K.,	N.J.	Risch,	and	R.M.	Myers,	Candidate-Gene	Approaches	for	

Studying	Complex	Genetic	Traits:	Practical	Considerations.	Nature	Reviews	
Genetics,	2002.	3(5):	p.	391-7.	

	
37.	 Pattin,	K.A.	and	J.H.	Moore,	Role	for	Protein-Protein	Interaction	Databases	in	

Human	Genetics.	Expert	Review	of	Proteomics,	2009.	6(6):	p.	647-59.	
	
38.	 Li,	M.J.,	P.	Wang,	X.	Liu,	E.L.	Lim,	Z.	Wang,	M.	Yeager,	M.P.	Wong,	P.C.	Sham,	et	

al.,	GWASdb:	A	Database	for	Human	Genetic	Variants	Identified	by	Genome-
Wide	Association	Studies.	Nucleic	Acids	Research,	2012.	40(Database	issue):	
p.	D1047-54.	

	
39.	 Parla,	J.S.,	I.	Iossifov,	I.	Grabill,	M.S.	Spector,	M.	Kramer,	and	W.R.	McCombie,	A	

Comparative	Analysis	of	Exome	Capture.	Genome	Biology,	2011.	12(9):	p.	1-
17.	

	
40.	 Worthey,	E.A.,	A.N.	Mayer,	G.D.	Syverson,	D.	Helbling,	B.B.	Bonacci,	B.	Decker,	

J.M.	Serpe,	T.	Dasu,	et	al.,	Making	a	Definitive	Diagnosis:	Successful	Clinical	
Application	of	Whole	Exome	Sequencing	in	a	Child	with	Intractable	
Inflammatory	Bowel	Disease.	Genetics	in	Medicine,	2011.	13(3):	p.	255-62.	

	
41.	 Uzarski,	J.S.,	Y.	Xia,	J.C.	Belmonte,	and	J.A.	Wertheim,	New	Strategies	in	Kidney	

Regeneration	and	Tissue	Engineering.	Current	Opinion	in	Nephrology	and	
Hypertension,	2014.	23(4):	p.	399-405.	

	
42.	 O'Malley,	M.A.	and	J.	Dupre,	Fundamental	Issues	in	Systems	Biology.	Bioessays,	

2005.	27(12):	p.	1270-6.	
	
43.	 Goldstein,	D.B.,	K.R.	Ahmadi,	M.E.	Weale,	and	N.W.	Wood,	Genome	Scans	and	

Candidate	Gene	Approaches	in	the	Study	of	Common	Diseases	and	Variable	
Drug	Responses.	Trends	in	Genetics,	2003.	19(11):	p.	615-22.	

	
44.	 Johnson,	A.D.	and	C.J.	O'Donnell,	An	Open	Access	Database	of	Genome-Wide	

Association	Results.	BMC	Medical	Genetics,	2009.	10:	p.	6.	



83 

	
45.	 Dickson,	S.P.,	K.	Wang,	I.	Krantz,	H.	Hakonarson,	and	D.B.	Goldstein,	Rare	

Variants	Create	Synthetic	Genome-Wide	Associations.	PLoS	Biology,	2010.	
8(1):	p.	e1000294.	

	
46.	 Preuss,	M.,	I.R.	Konig,	J.R.	Thompson,	J.	Erdmann,	D.	Absher,	T.L.	Assimes,	S.	

Blankenberg,	E.	Boerwinkle,	et	al.,	Design	of	the	Coronary	Artery	Disease	
Genome-Wide	Replication	and	Meta-Analysis	(Cardiogram)	Study:	A	Genome-
Wide	Association	Meta-Analysis	Involving	More	Than	22	000	Cases	and	60	000	
Controls.	Circulation	Cardiovascular	Genetics,	2010.	3(5):	p.	475-83.	

	
47.	 Myocardial	Infarction	Genetics	Consortium,	S.	Kathiresan,	B.F.	Voight,	S.	

Purcell,	K.	Musunuru,	D.	Ardissino,	P.M.	Mannucci,	S.	Anand,	et	al.,	Genome-
Wide	Association	of	Early-Onset	Myocardial	Infarction	with	Single	Nucleotide	
Polymorphisms	and	Copy	Number	Variants.	Nature	Genetics,	2009.	41(3):	p.	
334-41.	

	
48.	 Winchester,	L.,	C.	Yau,	and	J.	Ragoussis,	Comparing	CNV	Detection	Methods	for	

Snp	Arrays.	Briefings	in	Functional	Genomics	&	Proteomics,	2009.	8(5):	p.	
353-66.	

	
49.	 Cukier,	H.N.,	M.A.	Pericak-Vance,	J.R.	Gilbert,	and	D.J.	Hedges,	Sample	

Degradation	Leads	to	False-Positive	Copy	Number	Variation	Calls	in	Multiplex	
Real-Time	Polymerase	Chain	Reaction	Assays.	Analytical	Biochemistry,	2009.	
386(2):	p.	288-90.	

	
50.	 Amberger,	J.S.,	C.A.	Bocchini,	F.	Schiettecatte,	A.F.	Scott,	and	A.	Hamosh,	

OMIM.org:	Online	Mendelian	Inheritance	in	Man	(OMIM(R)),	an	Online	Catalog	
of	Human	Genes	and	Genetic	Disorders.	Nucleic	Acids	Research,	2015.	
43(Database	issue):	p.	D789-98.	

	
51.	 Thomas,	D.C.,	J.W.	Baurley,	E.E.	Brown,	J.C.	Figueiredo,	A.	Goldstein,	A.	Hazra,	

R.T.	Wilson,	and	N.	Rothman,	Approaches	to	Complex	Pathways	in	Molecular	
Epidemiology:	Summary	of	a	Special	Conference	of	the	American	Association	
for	Cancer	Research.	Cancer	Research,	2008.	68(24):	p.	10028-30.	

	
52.	 Olson,	E.N.,	Gene	Regulatory	Networks	in	the	Evolution	and	Development	of	the	

Heart.	Science,	2006.	313(5795):	p.	1922-1927.	
	
53.	 Hartemink,	A.J.,	D.K.	Gifford,	T.S.	Jaakkola,	and	R.A.	Young,	Combining	

Location	and	Expression	Data	for	Principled	Discovery	of	Genetic	Regulatory	
Network	Models.	Pacific	Symposium	on	Biocomputing,	2002:	p.	437-49.	

	
54.	 Jimenez-Marin,	A.,	M.	Collado-Romero,	M.	Ramirez-Boo,	C.	Arce,	and	J.J.	

Garrido,	Biological	Pathway	Analysis	by	Arrayunlock	and	Ingenuity	Pathway	
Analysis.	BMC	Proceedings,	2009.	3	Suppl	4:	p.	S6.	



84 

	
55.	 Barabasi,	A.L.	and	Z.N.	Oltvai,	Network	Biology:	Understanding	the	Cell's	

Functional	Organization.	Nature	Reviews	Genetics,	2004.	5(2):	p.	101-13.	
	
56.	 Gardner,	T.S.	and	J.J.	Faith,	Reverse-Engineering	Transcription	Control	

Networks.	Physics	of	Life	Reviews,	2005.	2(1):	p.	65-88.	
	
57.	 Bazil,	J.N.,	F.	Qi,	and	D.A.	Beard,	A	Parallel	Algorithm	for	Reverse	Engineering	

of	Biological	Networks.	Integrative	Biology,	2011.	3(12):	p.	1215-23.	
	
58.	 Bazil,	J.N.,	G.T.	Buzzard,	and	A.E.	Rundell,	A	Global	Parallel	Model	Based	

Design	of	Experiments	Method	to	Minimize	Model	Output	Uncertainty.	Bulletin	
of	Mathematical	Biology,	2012.	74(3):	p.	688-716.	

	
59.	 Langfelder,	P.	and	S.	Horvath,	Eigengene	Networks	for	Studying	the	

Relationships	between	Co-Expression	Modules.	BMC	Systems	Biology,	2007.	1:	
p.	54.	

	
60.	 Kohonen,	T.,	Cortical	Maps.	Nature,	1990.	346(6279):	p.	24.	
	
61.	 Myslobodsky,	M.,	Ingenuity	Pathway	Analysis	of	Clozapine-Induced	Obesity.	

Obesity	Facts,	2008.	1(2):	p.	93-102.	
	
62.	 Wat,	M.J.,	O.A.	Shchelochkov,	A.M.	Holder,	A.M.	Breman,	A.	Dagli,	C.	Bacino,	F.	

Scaglia,	R.T.	Zori,	et	al.,	Chromosome	8p23.1	Deletions	as	a	Cause	of	Complex	
Congenital	Heart	Defects	and	Diaphragmatic	Hernia.	American	Journal	of	
Medical	Genetics	Part	A,	2009.	149A(8):	p.	1661-77.	

	
63.	 Baud,	V.,	M.	Lipinski,	E.	Rassart,	L.	Poliquin,	and	D.	Bergeron,	The	Human	

Homolog	of	the	Mouse	Common	Viral	Integration	Region,	Fli1,	Maps	to	11q23-
Q24.	Genomics,	1991.	11(1):	p.	223-4.	

	
64.	 Jain,	P.,	S.	Vig,	M.	Datta,	D.	Jindel,	A.K.	Mathur,	S.K.	Mathur,	and	A.	Sharma,	

Systems	Biology	Approach	Reveals	Genome	to	Phenome	Correlation	in	Type	2	
Diabetes.	PLoS	ONE,	2013.	8(1):	p.	e53522.	

	
65.	 Newaz,	K.,	K.	Sriram,	and	D.	Bera,	Identification	of	Major	Signaling	Pathways	

in	Prion	Disease	Progression	Using	Network	Analysis.	PLoS	ONE,	2015.	10(12):	
p.	e0144389.	

	
66.	 Hunter,	J.E.	and	F.L.	Schmidt,	Methods	of	Meta-Analysis	:	Correcting	Error	and	

Bias	in	Research	Findings.	Third	edition.	2015,	Thousand	Oaks,	California:	
SAGE.	xxxii,	639	pages.	

	
67.	 Graveley,	B.R.,	Alternative	Splicing:	Increasing	Diversity	in	the	Proteomic	

World.	Trends	in	Genetics,	2001.	17(2):	p.	100-7.	



85 

	
68.	 de	Jonge,	H.J.,	R.S.	Fehrmann,	E.S.	de	Bont,	R.M.	Hofstra,	F.	Gerbens,	W.A.	

Kamps,	E.G.	de	Vries,	A.G.	van	der	Zee,	et	al.,	Evidence	Based	Selection	of	
Housekeeping	Genes.	PLoS	ONE,	2007.	2(9):	p.	e898.	

	
69.	 Sumi,	T.,	N.	Tsuneyoshi,	N.	Nakatsuji,	and	H.	Suemori,	Defining	Early	Lineage	

Specification	of	Human	Embryonic	Stem	Cells	by	the	Orchestrated	Balance	of	
Canonical	Wnt/Beta-Catenin,	Activin/Nodal	and	Bmp	Signaling.	Development,	
2008.	135(17):	p.	2969-79.	

	
70.	 Khatri,	P.,	M.	Sirota,	and	A.J.	Butte,	Ten	Years	of	Pathway	Analysis:	Current	

Approaches	and	Outstanding	Challenges.	PLoS	Computational	Biology,	2012.	
8(2):	p.	e1002375.	

	
71.	 Barrett,	T.,	S.E.	Wilhite,	P.	Ledoux,	C.	Evangelista,	I.F.	Kim,	M.	Tomashevsky,	

K.A.	Marshall,	K.H.	Phillippy,	et	al.,	NCBI	GEO:	Archive	for	Functional	Genomics	
Data	Sets--Update.	Nucleic	Acids	Research,	2013.	41(Database	issue):	p.	
D991-5.	

	
72.	 Trapnell,	C.,	B.A.	Williams,	G.	Pertea,	A.	Mortazavi,	G.	Kwan,	M.J.	van	Baren,	

S.L.	Salzberg,	B.J.	Wold,	and	L.	Pachter,	Transcript	Assembly	and	
Quantification	by	RNA-Seq	Reveals	Unannotated	Transcripts	and	Isoform	
Switching	During	Cell	Differentiation.	Nature	Biotechnology,	2010.	28(5):	p.	
511-5.	

	
73.	 Langmead,	B.,	C.	Trapnell,	M.	Pop,	and	S.L.	Salzberg,	Ultrafast	and	Memory-

Efficient	Alignment	of	Short	DNA	Sequences	to	the	Human	Genome.	Genome	
Biology,	2009.	10(3):	p.	R25.	

	
74.	 Trapnell,	C.,	L.	Pachter,	and	S.L.	Salzberg,	Tophat:	Discovering	Splice	Junctions	

with	RNA-Seq.	Bioinformatics,	2009.	25(9):	p.	1105-11.	
	
75.	 Dobin,	A.	and	T.R.	Gingeras,	Mapping	RNA-Seq	Reads	with	Star.	Current	

Protocols	in	Bioinformatics,	2015.	51.	
	
76.	 Trapnell,	C.,	A.	Roberts,	L.	Goff,	G.	Pertea,	D.	Kim,	D.R.	Kelley,	H.	Pimentel,	S.L.	

Salzberg,	et	al.,	Differential	Gene	and	Transcript	Expression	Analysis	of	RNA-
Seq	Experiments	with	Tophat	and	Cufflinks.	Nature	Protocols,	2012.	7(3):	p.	
562-78.	

	
77.	 Malone,	J.H.	and	B.	Oliver,	Microarrays,	Deep	Sequencing	and	the	True	

Measure	of	the	Transcriptome.	BMC	Biology,	2011.	9:	p.	34.	
	
78.	 Roy,	N.C.,	E.	Altermann,	Z.A.	Park,	and	W.C.	McNabb,	A	Comparison	of	Analog	

and	Next-Generation	Transcriptomic	Tools	for	Mammalian	Studies.	Briefings	in	
Functional	Genomics,	2011.	10(3):	p.	135-50.	



86 

	
79.	 Wang,	Z.,	M.	Gerstein,	and	M.	Snyder,	RNA-Seq:	A	Revolutionary	Tool	for	

Transcriptomics.	Nature	Reviews	Genetics,	2009.	10(1):	p.	57-63.	
	
80.	 Ritchie,	M.E.,	B.	Phipson,	D.	Wu,	Y.	Hu,	C.W.	Law,	W.	Shi,	and	G.K.	Smyth,	

Limma	Powers	Differential	Expression	Analyses	for	RNA-Sequencing	and	
Microarray	Studies.	Nucleic	Acids	Research,	2015.	43(7):	p.	e47.	

	
81.	 Robinson,	M.D.,	D.J.	McCarthy,	and	G.K.	Smyth,	EdgeR:	A	Bioconductor	

Package	for	Differential	Expression	Analysis	of	Digital	Gene	Expression	Data.	
Bioinformatics,	2010.	26(1):	p.	139-40.	

	
82.	 Law,	C.W.,	Y.	Chen,	W.	Shi,	and	G.K.	Smyth,	Voom:	Precision	Weights	Unlock	

Linear	Model	Analysis	Tools	for	RNA-Seq	Read	Counts.	Genome	Biology,	2014.	
15(2):	p.	R29.	

	
83.	 Anders,	S.,	D.J.	McCarthy,	Y.	Chen,	M.	Okoniewski,	G.K.	Smyth,	W.	Huber,	and	

M.D.	Robinson,	Count-Based	Differential	Expression	Analysis	of	RNA	
Sequencing	Data	Using	R	and	Bioconductor.	Nature	Protocols,	2013.	8(9):	p.	
1765-86.	

	
84.	 Ghosh,	S.	and	C.K.	Chan,	Analysis	of	RNA-Seq	Data	Using	Tophat	and	Cufflinks.	

Methods	in	Molecular	Biology,	2016.	1374:	p.	339-61.	
	
85.	 Mi,	H.,	A.	Muruganujan,	J.T.	Casagrande,	and	P.D.	Thomas,	Large-Scale	Gene	

Function	Analysis	with	the	Panther	Classification	System.	Nature	Protocols,	
2013.	8(8):	p.	1551-66.	

	
86.	 Eden,	E.,	R.	Navon,	I.	Steinfeld,	D.	Lipson,	and	Z.	Yakhini,	Gorilla:	A	Tool	for	

Discovery	and	Visualization	of	Enriched	Go	Terms	in	Ranked	Gene	Lists.	BMC	
Bioinformatics,	2009.	10:	p.	48.	

	
87.	 Huang,	D.W.,	B.T.	Sherman,	Q.	Tan,	J.	Kir,	D.	Liu,	D.	Bryant,	Y.	Guo,	R.	Stephens,	

et	al.,	DAVID	Bioinformatics	Resources:	Expanded	Annotation	Database	and	
Novel	Algorithms	to	Better	Extract	Biology	from	Large	Gene	Lists.	Nucleic	
Acids	Research,	2007.	35(Web	Server	issue):	p.	W169-75.	

	
88.	 Subramanian,	A.,	P.	Tamayo,	V.K.	Mootha,	S.	Mukherjee,	B.L.	Ebert,	M.A.	

Gillette,	A.	Paulovich,	S.L.	Pomeroy,	et	al.,	Gene	Set	Enrichment	Analysis:	A	
Knowledge-Based	Approach	for	Interpreting	Genome-Wide	Expression	Profiles.	
Proceedings	of	the	National	Academy	of	Sciences,	2005.	102(43):	p.	15545-
50.	

	
	
	



87 

89.	 Sherman,	B.T.,	D.W.	Huang,	Q.	Tan,	Y.	Guo,	S.	Bour,	D.	Liu,	R.	Stephens,	M.W.	
Baseler,	et	al.,	DAVID	Knowledgebase:	A	Gene-Centered	Database	Integrating	
Heterogeneous	Gene	Annotation	Resources	to	Facilitate	High-Throughput	Gene	
Functional	Analysis.	BMC	Bioinformatics,	2007.	8:	p.	426.	

	
90.	 Young,	M.D.,	M.J.	Wakefield,	G.K.	Smyth,	and	A.	Oshlack,	Gene	Ontology	

Analysis	for	RNA-Seq:	Accounting	for	Selection	Bias.	Genome	Biology,	2010.	
11(2):	p.	R14.	

	
91.	 Gentleman,	R.C.,	V.J.	Carey,	D.M.	Bates,	B.	Bolstad,	M.	Dettling,	S.	Dudoit,	B.	

Ellis,	L.	Gautier,	et	al.,	Bioconductor:	Open	Software	Development	for	
Computational	Biology	and	Bioinformatics.	Genome	Biology,	2004.	5(10):	p.	
R80.	

	
92.	 Love,	M.I.,	W.	Huber,	and	S.	Anders,	Moderated	Estimation	of	Fold	Change	and	

Dispersion	for	RNA-Seq	Data	with	Deseq2.	Genome	Biology,	2014.	15(12):	p.	
550.	

	
93.	 R	Core	Team,	R:	A	Language	and	Environment	for	Statistical	Computing.	2011.	
	
94.	 Mi,	G.,	Y.	Di,	S.	Emerson,	J.S.	Cumbie,	and	J.H.	Chang,	Length	Bias	Correction	in	

Gene	Ontology	Enrichment	Analysis	Using	Logistic	Regression.	PLoS	ONE,	
2012.	7(10):	p.	e46128.	

	
95.	 Hirschberg,	J.	and	A.	Rosenberg,	V-Measure:	A	Conditional	Entropy-Based	

External	Cluster	Evaluation	Measure.	Proceedings	of	the	Joint	Conference	on	
Empirical	Methods	in	Natural	Language	Processing	and	Computational	
Natural	Language	Learning	2007.	June:	p.	410-20.	

	
96.	 Jain,	A.K.,	M.N.	Murty,	and	P.J.	Flynn,	Data	Clustering:	A	Review.	ACM	

Computing	Surveys,	1999.	31(3):	p.	264-323.	
	
97.	 Yeung,	K.Y.,	D.R.	Haynor,	and	W.L.	Ruzzo,	Validating	Clustering	for	Gene	

Expression	Data.	Bioinformatics,	2001.	17(4):	p.	309-18.	
	
98.	 MacQueen,	J.,	Some	Methods	for	Classification	and	Analysis	of	Multivariate	

Observations.	Proceedings	of	the	Fifth	Berkeley	Symposium	on	Mathematical	
Statistics	and	Probability,	1967.	1(14):	p.	281-297.	

	
99.	 Kim,	M.S.,	A.	Horst,	S.	Blinka,	K.	Stamm,	D.	Mahnke,	J.	Schuman,	R.	Gundry,	A.	

Tomita-Mitchell,	and	J.	Lough,	Activin-a	and	Bmp4	Levels	Modulate	Cell	Type	
Specification	During	CHIR-Induced	Cardiomyogenesis.	PLoS	ONE,	2015.	10(2):	
p.	e0118670.	

	



88 

100.	 Tomita-Mitchell,	A.,	K.	Stamm,	D.	Mahnke,	P.M.	Hidestrand,	M.S.	Kim,	H.L.	
Liang,	M.A.	Goetsch,	M.	Hidestrand,	et	al.,	Impact	of	Myh6	Genotype	on	
Outcomes	in	Hypoplastic	Left	Heart	Syndrome.	unpublished,	2016.	

	
101.	 Löhle,	M.,	A.	Hermann,	H.	Glaß,	A.	Kempe,	S.C.	Schwarz,	J.B.	Kim,	C.	Poulet,	U.	

Ravens,	et	al.,	Differentiation	Efficiency	of	Induced	Pluripotent	Stem	Cells	
Depends	on	the	Number	of	Reprogramming	Factors.	Stem	Cells,	2012.	30(3):	
p.	570-579.	

	
102.	 Andrews,	P.W.	and	N.	Elvasorre,	The	Origins	of	Stem	Cells	as	Tools	for	

Regenerative	Medicine.	Biochemical	and	Biophysical	Research	
Communications,	2016.	

	
103.	 Li,	B.	and	C.N.	Dewey,	RSEM:	Accurate	Transcript	Quantification	from	RNA-Seq	

Data	with	or	without	a	Reference	Genome.	BMC	Bioinformatics,	2011.	12:	p.	
323.	

	
104.	 Noonan,	J.A.	and	A.S.	Nadas,	The	Hypoplastic	Left	Heart	Syndrome;	an	Analysis	

of	101	Cases.	Pediatric	Clinics	of	North	America,	1958.	5(4):	p.	1029-56.	
	
105.	 Patel,	A.P.,	I.	Tirosh,	J.J.	Trombetta,	A.K.	Shalek,	S.M.	Gillespie,	H.	Wakimoto,	

D.P.	Cahill,	B.V.	Nahed,	et	al.,	Single-Cell	RNA-Seq	Highlights	Intratumoral	
Heterogeneity	in	Primary	Glioblastoma.	Science,	2014.	344(6190):	p.	1396-
401.	

	
106.	 Fraga,	M.F.	and	M.	Esteller,	DNA	Methylation:	A	Profile	of	Methods	and	

Applications.	Biotechniques,	2002.	33(3):	p.	632,	634,	636-49.	
	
107.	 Fraga,	M.F.,	R.	Rodriguez,	and	M.J.	Canal,	Genomic	DNA	Methylation-

Demethylation	During	Aging	and	Reinvigoration	of	Pinus	Radiata.	Tree	
Physiology,	2002.	22(11):	p.	813-6.	
 

  



89 

APPENDIX A 

 

Appendix A is a listing of tables and figures generated during a run of rgsepd. In 

each file/figure/table the filenames are constructed to ensure that the user can find and 

associate the file with the run comparing sample class A with class B.   

A.1 Tables Listing 

 

DESEQ.counts.AxN.BxN.csv - post normalization, sample columns. Tables are 

generated of the normalized counts, produced by DESeq2, but made available in simple 

CSV format. Similar to the input data table, but library scale normalization has been 

computed, so these are ready to visualize for ad-hoc analyses. Corresponds to the orange 

cylinder in Figure 3.1. 

DESEQ.RES.AxN.BxN.csv – Results file from DESeq2, containing transcript ID 

numbers from the input data, and computed statistics for fold-change and p-values. 

DESEQ.RES.AxN.BxN.Annote.csv – annotated version of the previous table. 

After some database calls out to Biomart and Ensemble databases, most transcript ID 

numbers can be associated with a gene name and gene ID number. Here I also annotate 

the sample class means for expression of each transcript/row. This file makes it possible 

for the end user to quickly search a gene name and retrieve simplified expression 

averages. 

DESEQ.RES.AxN.BxN.Annote_Filter.csv filtered version of the previous table. 

Given the constraints of significance presented in advance of a run, a filtered table is 

produced. An rgsepd run culls genes without sufficient change between classes, or 



90 

sufficient statistical significance, or sufficient absolute expression. These three values are 

configurable if the user needs a shorter or longer table of genes for their experimental 

situation. The filtered list is the basis of the latter stages of functional annotation and 

projection.  

GOSEQ.RES.AxN.BxN.GO.csv – the result of the included GOSeq run. GOSeq 

computes the functional annotation to the filtered gene set by searching for 

“overrepresented” gene sets among the space of all GO Terms in a hierarchy. I run it for 

each of the three major GO trees, then filter the list to nominal significance and annotate 

the results with the English names for each GO Term identifier.  Also included for 

convenient interpretation are the summary statistics “number of genes in GO Term” vs 

“number of genes differentially expressed”. This list contains many large GO Terms and 

filtering to the number of genes can quickly refine to precise biological processes found 

differential between classes “A” and “B”. 

GOSEQ.RES.AxN.BxN.GO-UP.csv is a table similar to the previous overall GO 

listing, but here genes are considered only when upregulated in class A versus class B, as 

the user may be interested in seeing which functional sets are “turned on” in response to 

the condition. 

GOSEQ.RES.AxN.BxN.GO-DOWN.csv is a table similar to the overall GO 

listing, but here genes are considered only when downregulated in class A versus class B, 

as the user may be interested in seeing which functional sets are “turned off” in response 

to the condition. 

GOSEQ.RES.AxN.BxN.GO2.csv is a joint table collecting the genewise 

summary statistics of the DESEQ.RES.AxN.BxN.Annote.csv and copying them onto 
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each significant row of each GOSEQ table. Broad GO Terms will carry redundant data 

with more precise terms, so anything greater than 1000 genes is filtered before this table 

is created. The GO2 file is the largest single entity, with approximately 347 thousand 

rows from the run that produced Figures 3.5-7. Here a gene set can be searched by name 

or key word, the genes identified by name and their average and differential expression 

data readily reviewed or further filtered by the user. This table answers the question 

“what genes are in this gene set?” 

GSEPD.RES.AxN.BxN.MERGE.csv is a filtering and collation of the GOSEQ 

tables. Cropping the GOSEQ.RES.AxN.BxN.GO2.csv to the most significant terms, and 

those below a specified gene-count yields a manageable list of interesting functional 

associations. Each is annotated with “Up”, “Down”, or “Mix” depending on which of the 

three GOSeq runs found the term. 

GSEPD.Alpha.AxN.BxN.csv is a table of Alpha scores, samples on columns by 

GO Terms on rows. Alpha scores are defined in Section 3.3.2 and Figures 3.3 and 3.5.  

GSEPD.Beta.AxN.BxN.csv is a table of Beta scores, samples on columns by GO 

Terms on rows. Beta scores are defined in Section 3.3.2 and Figures 3.3. 

GSEPD.HMG1.AxN.BxN.csv is a table of Gamma1 scores, each sample (on 

columns) by their distance (N-dimensional Euclidean distance to class A’s centroid for a 

gene set of size N) to each GO Term (on rows). These Gamma1 values are defined in 

Section 3.3.4 and used in the coloring scheme of Figures 3.4 and 3.7.  

GSEPD.HMG2.AxN.BxN.csv is a table of Gamma2 scores, similar to Gamma1 

but noting the distance to the class B centroid.  
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GSEPD.Segregation_P.AxN.BxN.csv lists the clustering Validity scores and 

associated p-value for each GO Term. Each gene set is evaluated for clustering validity 

(Section 2.3.3) and an empirical p-value is calculated (Section 2.3.4). This table lists 

those results by GO ID. 

GSEPD.HMA.AxN.BxN.csv with gene set segregation completed, the most valid 

GO Terms are represented in this “HMA” file which merges the 

GOSEQ.RES.AxN.BxN.GO.csv with the GSEPD.Segregation_P.AxN.BxN.csv such 

that name-annotated GO Terms can be sorted and selected based on their N-dimensional 

clustering validity. This table corresponds to the selected rows of Figure 3.5. 

A.2 Figures 

 

 Section A.2 is a listing of figures generated by a successful run of the tool. Like 

tables, all files are named with the run so they can be kept between runs and explored as 

needed. All figures are generated without user requesting them individually, and finding 

detailed results of a given analysis is easy with the operating system’s file-search 

commands. Like the tables, these figures are listed in the order they are generated. 

DESEQ.Volcano.AxN.BxN.png A volcano plot is a standard quality assurance 

check when performing differential expression. The y-axis is negative Log10 p-value, 

such that insignificant genes are on the bottom, and highly significant on top. The x-axis 

is the log fold change, indicating whether the gene is up- or down-regulated between 

conditions. We hope to see a mainly symmetrical response with a uniform distribution of 

gene differences and significances. This is a scatterplot with black points non-significant, 

and red with adjusted p below a threshold, giving the appearance of a volcano. 
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HM.AxN.BxN.XXX.pdf is a heatmap of gene expression for significantly 

segregating genes: rows correspond to genes and columns correspond to samples. The 

heatmap is row-normalized, such that each gene’s minimum is green and each gene’s 

maximum is red.  Here “XXX” in the filename corresponds to the number of rows (genes 

found significant by the settings of the run). The image size is automatically scaled with a 

linear function to ensure all row and column labels are legible. This can create a large file 

if many genes are selected.  The file format is kept PDF such that the user can use a 

search feature to get to a gene of interest. Four versions of this figure are included, as 

user preferences and publication requirements dictated various renditions and 

simplifications of the figure. HM is the basic, with row/column annotations, all samples 

in the input data are kept and annotated absolute expression within cells (as in Figure 

4.1).  A version “HM-.AxN.BxN.XXX.pdf” is stripped of annotations to enable tighter 

embedding in a publication where zoomed down text is unacceptable but the colors and 

correlations remain intact.  A version “HMS.AxN.BxN.XXX.pdf” is stripped of the non-

tested samples, showing only the samples in classes A and B (omitting untested samples, 

which can perturb the column ordering). Finally “HMS-AxN.BxN.XXX.pdf” is the 

combination, stripped of extraneous samples and annotations to produce the most 

compact representation of the DESeq2 results.  

GOSEQ.PWF.AxN.BxN.pdf is a byproduct of the GOSeq process. The 

“parameterized weight function” is a diagnostic of the gene set average length correction 

inherent to GOSeq. It displays the correlation between gene length and their probability 

of being found differentially expressed (this is a known bias in RNA-Seq, and the 
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primary reason for GOSeq rather than a more direct hypergeometric enrichment analysis 

for GO Term detection) [90].  

GSEPD.PCA_AG.AxN.BxN.pdf is a principal components analysis of all genes, 

scatterplot for the first two principal components. These are standard meta-analyses to 

evaluate sample clustering and batch effects visually. rgsepd annotates which samples 

belong to which classes with point colors, annotates sample IDs under each point, and 

annotates the top five driver genes along each axis.  

GSEPD.PCA_DEG.AxN.BxN.pdf is a principal components analysis of just 

differentially expressed genes, scatterplot for the first two principal components. This 

version enforces visual segregation and is more interesting for the non-tested samples’ 

clustering. rgsepd annotates which samples belong to which classes with point colors, 

annotates sample IDs under each point, and annotates the top five driver genes along each 

axis.   

 SCA.GSEPD.AxN.BxN.pdf is a series of scatterplots of the samples' Alpha 

scores with respect to two GO Terms, indicating cross-term correlations and the direction 

of divergence among outlier samples. The axes are the scale of Alpha scores, generally 0-

1 with the class A samples near (0,0) and the class B samples near (1,1) by construction.  

 GSEPD.HMA.AxN.BxN.pdf is the projection HeatMap of Alpha scores for 

significant GO Terms (Figure 3.5). Outliers with high Beta values are marked with white 

dots to indicate the cell color may not be an accurate representation of the sample's 

expression. The white dot marks are useful when a gene set cannot be reduced to a one 

dimensional axis. By virtue of the gplots package heatmap.2, we have dendrogram 

correlation by complete linkage clustering, so rows and columns are sorted by their value 
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profiles. Therefore samples with similar expression profiles are displayed near each other 

(columns), as are correlated gene sets (rows). The HMA file is the primary result shown 

in Chapter 4.   

GSEPD.HMG.AxN.BxN.pdf is the HeatMap of Gamma scores (Figure 3.7). 

The same gene sets as the previous “HMA” figure, but colored with the Euclidean 

distances as in Figure 3.4.  

Folder SCGO holds figures exploring the significant gene sets’ expression 

profiles. One to three figures per significant GO Term are generated, displaying each 

sample's behavior with respect to those genes. As a large number of figures is generated, 

these are expected to be of use only when the user is interested in exploring a select few 

GO Terms highlighted earlier in the process. 

SCGO/GSEPD.AxN.BxN.GO#.pdf is generated for each significant set. The GO 

Term name is on the title of the figure, and each pair of genes within the set is displayed 

on subsequent pages (Figure 3.5 is an example of one page of 

GSEPD.D3x2.D5x2.GO0003209.pdf.) Each sample is annotated by the expression 

values as z-scored log-scaled normalized counts, derived from the counts table. The 

Alpha axis is drawn in black between each class centroid, for diagnostic visualization. 

Non-tested samples are annotated with their scores as colored lines indicating which class 

they more closely behave like. Importantly, the drawn lines are orthogonal to the axis, 

indicating the closest possible point, but they will not appear orthogonal due to their high 

dimensional nature being projected into only two genes. These data make up the content 

of the GSEPD.HMA heatmap. 
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SCGO/Pairs.AxN.BxN.GO#.pdf files are generated for significant GO Terms 

with less than ten genes. Gene sets with few dimensions can be efficiently displayed on a 

single 'pairs' plot, for immediate visualization of a partially differentially expressed gene 

set.  Each pairing of genes is visualized as a two dimensional scatterplot.  All samples are 

displayed. Axes are labeled with the log-normalized read counts.  

SCGO/Scatter.AxN.BxN.GO#.pdf files are generated for significant GO Terms 

displaying a PCA plot. As in the GSEPD.PCA_DEG.AxN.BxN.pdf, major genes are 

annotated on each axis, and samples are labeled to facilitate visualization of outlier 

samples. This plot is the PCA across only those genes within the given GO Term, as 

extracted from the full cross product GOSEQ.RES.AxN.BxN.GO2.csv. 

 


