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Synopsis 
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Abstract 

 
Arene ligands experience significant ring expansion upon coordination with chromium tricarbonyl, as established 
by precise X-ray crystallographic analyses of various (η6-arene)Cr(CO)3complexes. Such changes in ligand 
structures result from the charge (electron) redistribution, Ar+−Cr-, upon arene coordination, since they are 
closely related to those found in the intermolecular 1:1 complexes of the corresponding series of arenes with 
nitrosonium cation (NO+). The latter are prototypical examples of charge-transfer complexes as described by 
Mulliken. As such, they show enhanced degrees of charge (electron) transfer that approach unity, which is 
confirmed by quantitative comparison with the structural changes measured in the one-electron (oxidative) 
transformation of electron-rich arene donors (Ar) to the cation-radicals (Ar•+). Such a charge redistribution thus 
readily accounts for the enhanced reactivity to nucleophilic attack of the arene ligand in various 
ArCr(CO)3 complexes and related transition-metal/arene analogues. 

Introduction 
Chromium tricarbonyl complexes with various arene ligands are finding increasing use in organic 
synthesis.1,2 Critical to this application is an understanding as to how complexation by chromium 
tricarbonyl affects the aromatic ligand itself. Heretofore, most of the theoretical attention has been 
directed toward an understanding of the bonding of Cr(CO)3 to the arene.3 Although there are 
numerous reports on the X-ray crystallographic characterization of (η6-arene)Cr(CO)3 complexes, only a 
few of them address the bond-length changes in the arene companion upon coordination with 
Cr(CO)3.4 The latter must be an important factor since it has been found that Cr(CO)3 confers upon the 
η6-coordinated arene a higher activity and a greater susceptibility to nucleophilic substitution with 
concomitant reduced reactivity to electrophilic attack.5 A substantial dipole moment (μ ≈ 5 D) has been 
measured in the benzene complex (η6-C6H6)Cr(CO)3 which increases with the number of electron-
donating substituents and decreases with electron-withdrawing substituents, as expected for an 
overall bond moment in the direction (arene) → (Cr).6 These observations lead to the notion that the 
multicentered ligand-to-metal bond in tricarbonylchromium complexes involves the transfer of 
electron density from the arene π-orbitals to the 3d-orbitals of the transition-metal center. Indeed, the 
electrochemical reduction of (η6-arene)Cr(CO)3 complexes is generally much easier than that of the 
free (uncomplexed) arene, qualitatively indicating electron removal from the arene ligand.7,8 On the 
other hand, the first ionization potential (involving electron ejection from the chromium 3d- orbital) 
greatly decreases from IP = 8.40 eV in Cr(CO)69 to 7.42 eV in (η6-C6H6)Cr(CO)3,10 i.e., upon the 
replacement of a weak donor ligand by a stronger (benzene) donor. 
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Earlier, Pauling proposed a direct relationship between the length of a chemical bond and its electron 
population or bond order,11 i.e., 

 
where dN is the length of a particular bond with bond order N, and d1 is the length of the corresponding 
single bond. [Note that the number of bonding electrons is n = 2N.] As such, bond-length 
measurements can provide a quantitative guide to the electron-density distribution. For our purposes 
here, the electron redistribution of the arene ligand upon complexation can be obtained by a precise 
comparison of its bond-length changes relative to that extant in the free (uncomplexed) donor. To 
examine this problem, we focused in Chart 1 on two classes of electron-rich arenes, as measured by 
their oxidation potentials of E°ox < 1.6 V vs SCE.12 

 
Chart 1 
 

The arene donors in class I are highly alkylated benzenes of more or less the same donor strengths, as 
measured by their reversible oxidation potentials E°ox.13 Class II donors are electron-rich polycyclic 
aromatics with rather low oxidation potentials (E°ox < 1.34 V).14 

Results and Discussion 
The chromium tricarbonyl complexes of the aromatic donors in Chart 1 were prepared according to the 
method of Mahaffy and Pauson,15 i.e., 

 
Single crystals of the (arene)Cr(CO)3 complexes were mounted for X-ray crystallographic analysis at 
−150 °C, unless specified otherwise. As a comparative basis, X-ray crystal structures of the free 
(uncomplexed) aromatic donor were determined under the same conditions, or the structural data 
were retrieved from the Cambridge Crystallographic Database.16 
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1. Structural Changes of Class I Aromatic Donors in Tricarbonylchromium Complexes. The molecular 
structures of the 1:1 complexes of Cr(CO)3 and class I arene donors adopt the usual staggered 
conformation, with Cr lying above the benzenoid ring (equidistant from each ring carbon), as illustrated 
in the top perspectives for HMB and TET in Figure 1. The distance between chromium and the center 
of the benzenoid ring in the HMB complex is 1.731(3) Å, but it is longer in the hindered TET (1.753 Å) 
and DMA (1.770 Å) analogues, the faces of which are shielded by bicyclic substituents against the 
approach of Cr(CO)3.17 

 
Figure 1 Molecular structures (top perspective) of typical (arene)Cr(CO)3 complexes where arene 
= HMB (a) and TET (b) as described in Chart 1. Hydrogens are omitted for clarity. Thermal ellipsoids are 
shown at 50% probability level. 
 

The expansion of the benzenoid ligand upon complexation is the structural feature that we consider 
most important in this study. As such, Table 1 reports the average aromatic (C−C) bond distance (d) in 
the complexed aromatic ligand relative to that in the free arene donor.18,19 Most importantly, the 
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notable increase in the average C−C bond lengths of Δ = 1.0−1.9 pm is observed in all cases and 
establishes the significant expansion of the aromatic ligand upon Cr(CO)3coordination. 

Table 1.  Average C−C Bond Length (Å) within the Aromatic Rings of Substituted Monocyclic Arenes in 
the Neutral Donors and upon Complexation with Cr(CO)3 and NO+(Values in Bold Indicate the Bond 
Length Changes (Δ) Relative to the Neutral Donor) 

 

a See ref 40.b From ref 16a.c From ref 16c.d From ref 26.e From ref 16. 
 

2. Structural Changes of Class I Aromatic Donors in Charge-Transfer Complexes with Nitrosonium 
Cation. To place the structural alteration of the arene ligand in perspective, let us compare the change 
in arene structure when it is involved in the intermolecular noncovalent interaction with a bona fide 
electron acceptor such as nitrosonium (NO+),20 e.g., where X- = BF4-, SbCl6-, AlCl4-, etc. The nitrosonium 
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complexation in eq 3 is kinetically reversible, and the results in Table 2 show that the formation 
constants KEDA for the class I donors are uniformly high in acetonitrile solutions. Table 2 also includes 
the absorption maximum of the diagnostic (UV−vis) absorption band (λCT) of the 
arene/NO+ complexes.21 

 

Table 2.  Donor/Acceptor Association of Hexaalkylbenzenes with Nitrosonium Tetrafluoroboratea 
donor λCT (nm) KEDA (M-1) εCT (M-1 cm-1) 
HMB 337 31 000 3100 
CRET 350 28 000 b 
DMA 340 b b 
TMT 352 34 000 3500 
TET 355 33 500 3400 
HEB 347 32 500 2900 
a In acetonitrile containing 1 mM NOBF4 and 5−10 mM donor at 20 °C.b Not available. 

X-ray crystallographic analysis of the various aromatic complexes with NO+ has established the general 
π-character of the intermolecular interaction (Figure 2), which is indeed highly reminiscent of the 
symmetric (3-fold) structures of (arene)Cr(CO)3 shown in Figure 1. However, the main-group acceptor 
(NO+) can utilize only the limited 2s- and 2p-orbitals for π-bonding to the arene donor,22 unlike the 
transition-metal moiety Cr(CO)3, which has highly delocalized (multicenter) 3d-orbitals available for 
charge-transfer bonding. The spectral complexity of the latter can obscure the essential electron 
redistribution in the arene ligand. On the other hand, the various π-complexes of NO+ and arene 
donors represent prototypical charge-transfer interactions. Most importantly, they are fully (and 
quantitatively) formulated by Mulliken theory,23,24 which is particularly useful in the delineation of 
electron redistribution in intermolecular interactions (DA) between electron donors (D) and acceptors 
(A), i.e., 

 

where ψDA represents the wave function of the electron donor/acceptor complex, and ψD,A and 
ψD+A- represent those of the van der Waals and the dative (charge-transfer) components, respectively. 
As such, the arene donor is subject to a delocalized (charge-transfer) perturbation by NO+, the 
magnitude of which is given as a spectral shift of λCT and proportional to E°ox.25 With an electron-rich 
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donor such as HMB, the degree of charge transfer is approximated by the (conceptual) structural 
change illustrated in eq 5, in which the donor moiety largely takes on the structure of the aromatic 
cation radical and the acceptor that of nitric oxide.20,26 

 
Figure 2 Charge-transfer complex of hexamethylbenzene (HMB) and NO+ in 45° perspective (a) and top 
perspective (b). Hydrogens and SbCl6- counterion omitted for clarity. 
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3. Comparative Ring Expansions of Arene Ligands upon Cr(CO)3 and NO+ Complexation.For 
comparison, the X-ray data for the (η6-arene)Cr(CO)3 complexes in Table 1 also include the structural 
changes of the arene donor when subjected to the “noncovalent” interaction with NO+. It is 
noteworthy that the values of the structural changes, as denoted by Δ in the last column (bold type), 
are sizable and consistently similar to the Δ values for Cr(CO)3 complexation. According to Pauling's 
bond-length/bond-order relationship in eq 1, the significant magnitudes of Δ in Table 1 point to the 
transfer of charge (electron) density from the aromatic donor to Cr(CO)3 in amounts comparable to 
that with NO+.19 

To obtain a more quantitative measure of electron transference, we next turned to the class II arene 
donors in which the transfer of a full electron can be directly evaluated by comparing Δ in the 
formation of the aromatic cation radical itself, i.e., 

 

4. Structural Changes in Aromatic Cation Radicals. As molecular entities, aromatic cation radicals are 
highly reactive, and those in class I are too transient to isolate as crystalline salts.27However, the 
multiring aromatic ligands in class II are better electron donors (with E°ox < 1.3 V vs SCE), and most 
importantly they yield substantially more persistent cation radicals, the salts of which can be isolated 
at low temperatures as single crystals suitable for X-ray diffraction analysis.28 As such, Table 3 lists the 
important structural changes attendant upon the conversion of the class II donors OMB, OMN, 
and CRET to their cation radicals. 

Table 3.  Structural Changes of Class II Arene Donors Attendant upon One-Electron Oxidation to Their 
Cation Radicalsa 

 

a All structures have a crystallographic center of symmetry.b In units of Å, except for Δ in pm, unless indicated 
otherwise.c O.S. is the oxidation state for the neutral donor (D) and its cation radical (D•+).d Dihedral angle 
between the benzene plane and the methoxy substituent in degrees. 
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The comparison of the interatomic bond lengths in neutral OMB with those in the cation 
radical OMB•+ in Table 3 reveals the average C−C bond length in the phenyl rings of OMB•+ to be 0.9 
pm longer than that in the neutral donor, indicative of a significant ring expansion upon electron 
removal.29 

The ring-expansion phenomenon is also observed in the cation radical of the encumbered 
hydroquinone ether CRET•+. Thus Table 3 shows that, upon one-electron oxidation, the average C−C 
bond length within the central aromatic ring of CRET increases substantially by 1.1 pm in the cation 
radical relative to that in the neutral precursor. In addition, upon oxidation the central ring 
inCRET suffers a quinoidal distortion and the peripheral OMe groups rotate into the aromatic plane 
(Figure 3). For convenience, the equivalent bonds in CRET are denoted by letters α, β, and γ in 
structure C. 

 

Table 3 shows that upon one-electron oxidation bonds α and γ become 2.9 and 6.5 pm shorter, 
respectively, whereas bond β becomes 3.1 pm longer, owing to a major contribution from the 
quinoidal structure D,30 i.e., 

 
The last structural feature in CRET•+ concerns the motion of the peripheral methoxy arms. As depicted 
in Figure 3, when the CRET molecule is oxidized, the OMe arms rotate until they lie in the plane of the 
central ring (torsion angle C−C−O−Me is 2°), whereas they are perpendicular to this plane in 
neutral CRET (torsion angle C−C−O−Me is 72°, see Table 3 and Figure 3).31 

5. Aromatic Ring Expansion versus Degree of Charge Transfer upon Cr(CO)3 Complexation.Structural 
changes as measured by the increase Δ in the average aromatic bond length of the cation 



radical OMB•+ relative to the neutral aromatic donor OMB are plotted in Figure 4 as a function of the 
number of electrons removed. Note that an intermediate point at 0.5 is also available from our 
previous structural study of the dimeric cation radical (OMB)2•+, in which an electron is removed from a 
pair of equivalent cofacial donors.14,32 The line in Figure 4 is arbitrarily drawn 
between OMB and OMB•+ to emphasize the linear relationship between bond-length changes 
of OMB and the (formal) number of electrons removed (i.e., oxidation). 

The linear plot of the average bond-length changes in OMB in Figure 4 can be employed for a 
quantitative measure of the degree of electron redistribution upon complexation by Cr(CO)3.19Thus the 
inclusion of the point for (OMB)Cr(CO)3 onto the line in Figure 4 indicates that roughly one electron is 
redistributed from the OMB ligand onto the Cr(CO)3 moiety. In other words, the degree of charge 
transfer from OMB upon Cr(CO)3 complexation is roughly one.34 Although the point for the 
NO+ complex of OMB cannot be included,35 we deem from the trend in Δ values listed in Table 4 that 
NO+ complexation also results in about the same amount of electron redistribution. 

 
Figure 3 Aromatic donor CRET (a) and its cation radical CRET•+ (b) showing the 90° rotation of both methoxy 
groups upon one-electron oxidation. 
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Figure 4 Linear increase in the average (aromatic) bond lengths in OMB attendant upon the successive removal 
of 0.5 and 1.0 electron in (OMB)2

•+ and OMB•+, respectively. The fit of the point for the (OMB)Cr(CO)3 complex 
indicates an effective degree of charge (electron) transfer of essentially unity. 

Table 4.  Comparative Expansion of Aromatic Donors in Ligand Complexation [Cr(CO)3and NO+] Relative 
to One-Electron Oxidation 
  average ring expansiona 
arene ΔD•+ ΔCr(CO)3 ΔNO+ 
OMB 0.9(4) 1.0(3) [0.0/2.1]   
OMN 0.2(2) 0.7(3) [0.2/1.4] 0.4(5) [0.0/0.9] 
CRET 1.1(2) 1.8(3) 1.3(4) 
a The Δ values in pm are the average bond length in the complexed ligand (or cation radical) minus that in the 
neutral donor. The individual Δ values of the noncomplexed and complexed rings are given in brackets. 
 

To quantify the degree of charge transfer in the Cr(CO)3 complex of CRET, we compared the structural 
changes relative to the characteristic changes in the cation radical CRET•+. We found that the average 
C−C bond length in the central aromatic ring increases by similar values in both CRET species, i.e., 1.8 
pm in the chromium complex and 1.1 pm in the cation radical, indicating that the charge removed 
from CRET and transferred to the tricarbonylchromium cluster corresponds to about one electron. The 
degree of charge transfer from CRET can also be gauged by considering the orientation of the 
peripheral methoxy groups relative to the plane defined by the central aromatic ring (approximately 
perpendicular in neutral CRET and periplanar in the CRET•+cation radical). Upon coordination with 



Cr(CO)3, both methoxy arms also rotate toward the aromatic plane (torsion angles C−C−O−Me are 
46.5° and −30.5° for two symmetrically nonequivalent methoxy groups; see Figure 5a).36 

 
Figure 5 Rotation of the pair of methoxy groups in CRET (top perspective) upon its complexation with Cr(CO)3 (a) 
and NO+ (b). Compare with the conformational change of the methoxy groups in CRET•+ relative to CRET in 
Figure 3. 
 

6. Comments on the Mechanism of Electron Redistribution in Arene Ligands upon 
Cr(CO)3Complexation. A. Unsymmetrical Distortion in Polycyclic Aromatic Donors upon 
Complexation by Cr(CO)3 and NO+ Donors. The polycyclic aromatic donors OMB and OMN in class II 
provide some interesting insight into the mechanism of electron redistribution in the aromatic ligand 
upon complexation with Cr(CO)3. 

The X-ray crystal structure determination of (OMB)Cr(CO)3 in Figure 6 reveals the average C−C bond 
length in the complexed ring to be dramatically increased by 2.1 pm, whereas that in the free ring 
remains unchanged within experimental error (see Table 4). Interestingly, the 2.1 pm elongation is 
twice that observed in both rings of the monomeric OMB•+ cation radical and therefore may be seen as 
the structural consequence of the transfer of approximately one electron with the positive charge 
concentrated in only one ring rather than delocalized over both rings of OMB. 

javascript:void(0);


 
Figure 6 Complexation of Cr(CO)3 with the biphenylene donor OMB showing preferential complexation with a 
single (benzenoid) ring only in a class II donor. 
 

Similarly, in the naphthalenoid complex (OMN)Cr(CO)3, the complexed ring (see Figure 7a) directly 
connected to the free ring experiences significant dilation, the average C−C bond length in the 
coordinated ring being 1.4 pm longer than that in neutral OMN, whereas the uncomplexed ring is 
largely unaltered. Both sets of structural data suggest that the electronic charge deficiency created in 
condensed aromatic hydrocarbons by the 1:1 complexation with Cr(CO)3 remains localized on the 
complexed ring and that no significant electronic delocalization takes place between the connected 
rings to stabilize this deficiency. 

 
Figure 7 Complexation of the naphthalenoid donor OMN with Cr(CO)3 (a) and NO+ (b) showing the preferential 
complexation with a single (benzenoid) ring reminiscent of that shown for the biphenylene donor in Figure 6. 



 

Whatever the mechanism of such an electron redistribution by Cr(CO)3 may be, essentially 
the same applies to the main group acceptor NO+. Figure 7b shows that the NO+ acceptor in the 1:1 
complex with OMN is located directly over only one of the six-membered aromatic rings.37 As a result, 
the naphthalenoid chromophore in the NO+ complex is subject to an unsymmetrical distortion:  the 
average C−C bond length in the complexed ring increases by 0.9 pm, whereas the uncomplexed ring is 
essentially unaltered from that in the neutral donor OMN (Table 4). 

In other words, the substantial delocalization of the charge deficiency created in a polyaromatic ligand 
upon coordination by the transition-metal acceptor Cr(CO)3 is undistinguishable from that induced by 
NO+ as the main group analogue in which d-orbital participation is not a relevant factor in the 
intermolecular bonding. 

B. Bond Alternation in Benzenoid Donors upon Complexation by Cr(CO)3 and NO+. The comparable 
manner in which both Cr(CO)3 and NO+ distort aromatic ligands is also shown with class I donors, but in 
a more subtle way. For example, the X-ray crystallographic analysis of the hexamethylbenzene complex 
(HMB)Cr(CO)3 at −150 °C reveals a significant (aromatic) bond alternation first observed in the benzene 
complex at −195 °C.38 Thus, the three aromatic bonds eclipsed by the Cr−CO bond (see Figure 1a) are 
dramatically elongated by 2.5 pm, but the three staggered ones are essentially unaltered, being only 
slightly elongated by 0.5 pm. This result confirms the earlier theoretical analysis39 and shows that the 
tricarbonylchromium cluster interrupts the conjugation in planar aromatic systems by inducing a 
significant short−long bond alternation within the complexed arene ligand. 

Such a distortion induced by Cr(CO)3 is strikingly reminiscent of that in the 1:1 complex of HMBwith 
NO+, the X-ray crystallographic structure of which is shown in Figure 2. In this charge-transfer complex, 
the NO+ acceptor binds to the aromatic ring through the nitrogen center, which is at a short distance of 
2.07 Å from the mean plane of the aromatic ring, and the N−O tilt eclipses one aromatic C−C bond, as 
shown in the top perspective (Figure 2b). Most notably, only that unique aromatic C−C bond which is 
eclipsed by N−O+ is significantly elongated to 1.6 pm, whereas the remaining five bonds are unchanged 
within experimental error.40,41 

In a similar vein, let us consider the class I aromatic donor DMA with both Cr(CO)3 and NO+ since the 
NO+ complex shows a specific orientation of the acceptor.41,42 For example, the neutral 
donor DMA possesses two kinds of C−C bonds in the central aromatic ring, i.e., two short α and four 
long β bonds, the difference being ca. 2 pm (Table 5). Upon complexation with Cr(CO)3 (Figure 8A), one 
α and two β bonds are covered by CO arms. Again these covered (eclipsed) C−C bonds suffer from a 
greater elongation than the staggered ones, especially the two eclipsed β bonds that are elongated by 
2.3 pm as compared with the two staggered ones. The same phenomenon is observed in 
the DMA complex with the nitrosonium acceptor, in which NO+ is displaced from the center of the 
aromatic ring and tilted toward one β C−C bond (Figure 8b). It is specifically this bond that becomes 1.1 
pm longer, whereas the three other β bonds are unchanged within experimental error (0.2 pm). This 
result is consistent with that obtained with [HMB, NO+] and shows that the noncovalent complexation 
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with NO+ leads to a repulsion of electron density of the eclipsed C−C bond without significantly 
affecting the other bonds. 

 
Figure 8 Complexation of the sterically hindered benzenoid donor DMA with Cr(CO)3 (a) and NO+ (b), showing 
the strong similarity in their bonding (exo and endo) modes. 
 

Let us now consider the sterically encumbered donor CRET, in which we earlier described (structure D) 
the quinoidal distortion similar to that observed upon one-electron oxidation. A closer inspection 
shows the distortion of the aromatic ring of CRET by Cr(CO)3 akin to that in DMA. In particular, the α 
bond which is eclipsed by a Cr−CO bond in Figure 5a is elongated by 3.1 pm more than the staggered α 
bond, and the two eclipsed β bonds are stretched by more than 1.6 pm relative to the two staggered 
ones. In a related manner, CRET also suffers the same kind of distortion upon complexation with 
Cr(CO)3 and NO+. With the NO+ complex, two crystallographically independent units are observed that 
differ only in the location of the acceptor. In crystal unit A, the tilted NO+ acceptor lies on the edge of 
the central ring of CRET and eclipses one β bond (Figure 5b) which is 0.8 pm longer than the average of 
the three other β bonds. In crystal unit B, the NO+ is more vertical and lies closer to the centroid. As a 
result, there is no marked distinction between eclipsed/staggered β bonds, and all the β bonds are 
more or less equally elongated (by 1.4 pm). 

The conformational dependence of the NO+ acceptor on the aromatic distortion of CRET as described 
above is also underscored in the structure of the [HEB, NO+] complex, in which NO+ is sterically 
constrained to lie (vertically) along the centroid axis (Figure 9). As a result, there can be only one type 
of aromatic C−C bond, and it is important to note that all aromatic bonds are equally elongated by 1.4 
pm. Such a homogeneous elongation of all aromatic bonds is not an intrinsic property of HEB, since the 



characteristic bond alternation like that in (HMB)Cr(CO)3 (vide supra) is observed upon 
Cr(CO)3 complexation. 

 
Figure 9 Axial bonding of NO+ along the 3-fold symmetry axis of the sterically encumbered HEB donor in side 
(45°) and top perspectives (a and b, respectively), showing the equivalence of all aromatic C−C bonds in contrast 
to those in the [HMB, NO+] complex in Figure 2. 
 

Steric encumbrance can also act in another way on the aromatic donor to orient the tripodal Cr(CO)3 in 
such a way that the carbonyl “arms” will eclipse the shorter C−C aromatic bonds and thus compete for 
electron density in the free ligand. For example, the hindered aromatic donor TET possesses an 
alternating sequence of long α bond and shorter β bonds arising from the Mills−Nixon effect.43 In 
(TET)Cr(CO)3, steric hindrance by the bicyclohexyl substituents forces the Cr(CO)3 to orient its CO arms 
over the short β bonds, as shown in Figure 1b. In turn, both eclipsed (α) and staggered (β) bonds of the 
aromatic ring are lengthened upon complexation, but the eclipsed ones are much more altered (+3.0 
pm instead of +0.8 pm for the staggered ones). Consequently, the previously short β bonds in the free 
ligand are elongated by 0.5 pm more than the α bonds in the chromium complex because of the effect 
of the carbonyl groups. Thus the (η6-TET)Cr(CO)3 complex may be seen as a complex in which structural 
constraints due to the Mills−Nixon effect and those originating from the coordination of 
Cr(CO)3 oppose each other and lead to an almost complete cancellation of bond-length alternation 
in TET. As a result, an interesting comparison can be made between the chromium complexes 
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of HMB and TET. The effect of Cr(CO)3 on these ligands remains the same upon complexation 
(expansion of the eclipsed C−C bonds), but it leads to opposite results, that is, the interruption of 
conjugation in (η6-HMB)Cr(CO)3 but almost complete equalization of all C−C bonds in (η6-TET)Cr(CO)3. 
As a comparison, it is to be noted that in the nitrosonium complex [TET, NO+], the central ring gets 
larger, but the β bonds on one hand and the α bonds on the other hand expand homogeneously. 

Summary and Conclusions 
Arenes such as benzene (Ar) are electron donors by virtue of their ready (i) one-electron oxidation to 
cation radicals (Ar•+),12 (ii) formation of charge-transfer complexes [Ar,A] with π-acceptors such as A = 
nitrosonium cation (NO+),20 (iii) self-association to form dimeric cation radicals (Ar2•+),33and (iv) 
complexation with coordinatively unsaturated transition-metal fragments such as MLn = Cr(CO)3 to 
form the π-coordination complexes (η6-Ar)Cr(CO)3,4 as schematically represented in Chart 2. 

 
Chart 2 
 

In this report, we show that the precise measurement of the structural changes in the arene ligand 
provides considerable insight into the common nature of such intermolecular interactions. 

Complexation of various arene donors with Cr(CO)3 invariably lead to significant ring expansion. In fact, 
the magnitude of the structural change quantitatively parallels that observed in the production of the 
cation radical (Ar•+) itself and in the complexation with nitrosonium cation as the prototypical (main 
group) electron acceptor in charge-transfer complexes [Ar, NO+] as classified by Mulliken.23,24 As such, 
the transfer (outflow) effectively of a full unit of charge from the aromatic ligand is a common 
characteristic of the intermolecular interactions in Chart 2. 

The detailed comparison of the structural changes in various aromatic ligands shows that complexation 
by Cr(CO)3 and NO+ effects the same type of ring distortion, leading on one hand to selective ring 
enlargement of polycyclic aromatic donors of class II and on the other hand to specific bond 
alternation in benzenoid donors in class I. We believe both types of distortion are intimately related to 
the donor/acceptor bonding and underscore the common nature of intermolecular bonding of an 



arene ligand, be it with a transition metal [Cr(CO)3] or main group [NO+] acceptor. As such, we hope 
that the collaborative interaction now in progress will provide the theoretical basis for unifying the 
classical concepts of ligand coordination with the Mulliken concept of charge transfer. 

Experimental Section 
Materials. Hexamethylbenzene (HMB) (Aldrich) and hexaethylbenzene (HEB) (Acros) were purified by 
repeated crystallization from ethanol and heptane. The synthesis of the various electron donors such 
as 9,10-dimethoxy-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracene (CRET),31 1,2,3,4,5,6,7,8-
octahydro-1,4:5,8-dimethanoanthracene (DMA),441,2,3,4,5,6,7,8,9,10,11,12-dodecahydro-1,4:5,8:9,12-
trimethanotriphenylene (TMT),451,2,3,4,5,6,7,8,9,10,11,12-dodecahydro-1,4:5,8:9,12-
triethanotriphenylene (TET),461,2,3,4,5,6,7,8-octamethylbiphenylene (OMB),47 and 1,2,3,4,7,8,9,10-
octahydro-1,1,4,4,7,7,10,10-octamethylnaphthacene (OMN)48 have been described previously. 
Cr(CO)6 was purchased from Acros Chemical Co. and used without any further purification. 
Nitrosonium hexachloroantimonate49 was stored in a Vacuum Atmosphere HE-493 drybox kept free of 
oxygen. Dichloromethane (Mallinckrodt analytical reagent) was repeatedly stirred with fresh aliquots 
of concentrated sulfuric acid (∼20 vol %) until the acid layer remained colorless. After separation, it 
was washed successively with water, aqueous sodium bicarbonate, water, and aqueous sodium 
chloride and dried over anhydrous calcium chloride. The dichloromethane was distilled twice from 
P2O5 under an argon atmosphere and stored in a Schlenk flask equipped with a Teflon valve fitted with 
Viton O-rings. The hexane, toluene, and tetrahydrofuran were distilled from P2O5 under an argon 
atmosphere and then refluxed over calcium hydride (∼12 h). After distillation from CaH2, the solvents 
were stored in the Schlenk flasks under an argon atmosphere. The dibutyl ether was purchased from 
Aldrich Chemical Co. and stored in a Schlenk flask equipped with a Teflon valve fitted with Viton O-
rings. 

The cation radicals of octamethylbiphenylene (OMB) and of the hydroquinone ether CRET were 
prepared by using triethyloxonium hexachloroantimonate as oxidant.14 

Preparation of (η6-Arene)Tricarbonylchromium Complexes. The tricarbonylchromium complexes of 
hexamethylbenzene (HMB), the hydroquinone ether CRET, dimethanoanthracene (DMA), 
triethanotriphenylene (TET), octamethylbiphenylene (OMB), and octamethylnaphthacene (OMN) 
have been prepared according to the method of Mahaffy and Pauson,15 as follows. 

General Procedure. Typically, in a 50 mL flask fitted with a Schlenk adapter and under argon flow were 
placed hexacarbonylchromium (100 mg, 0.45 mmol), the neutral arene (1 equiv), dibutyl ether (20 mL), 
and tetrahydrofuran (2 mL). The argon stream was stopped, and the mixture was heated at reflux for 
24 h. Upon slow cooling, well-shaped yellow crystals of (η6-arene)tricarbonylchromium suitable for X-
ray single-crystal analysis separated from the solution. 

X-ray Crystallography. The intensity data for all the compounds were collected with the aid of a 
Siemens SMART diffractometer equipped with a CCD detector using Mo Kα radiation (λ = 0.71073 Å), at 
−150 °C unless otherwise specified. The structures were solved by direct methods50 and refined by full-
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matrix least-squares procedure with IBM Pentium and SGI O2 computers. [Note that the X-ray structure 
details of various compounds mentioned here are on deposit and can be obtained from Cambridge 
Crystallographic Data Center, U.K.] 

Crystal Data for HMB.51 Brutto formula: C12H18. MW = 162.26, triclinic P1,̄ a = 5.2602(2), b = 
6.1990(3), c = 8.0040(3) Å, α = 103.818(1)°, β = 98.718(1)°, γ = 100.192(1)°, Dc = 1.103 g cm-3, V= 
244.26(3) Å3, Z = 1. The total number of reflections measured was 2363, of which 1622 reflections were 
symmetrically nonequivalent. Final residuals were R1 = 0.0469 and wR2 = 0.1330 for 1403 reflections 
with I > 2σ (I). 

Crystal Data for DMA. Brutto formula:  C16H18. MW = 210.30, monoclinic C2/c, a = 10.5037(6), b= 
5.5865(3), c = 19.400(1) Å, β = 92.563(1)°, Dc = 1.228 g cm-3, V = 1137.2(1) Å3, Z = 4. The total number of 
reflections measured was 7207, of which 2594 reflections were symmetrically nonequivalent. Final 
residuals were R1 = 0.0973 and wR2 = 0.2285 for 1773 reflections with I > 2σ(I). 

Crystal Data for TET.52 Brutto formula: C24H30. MW = 318.48, monoclinic P21/c, a = 15.5421(4), b = 
10.2264(3), c = 11.4845(3) Å, β = 100.692(1)°, Dc = 1.179 g cm-3, V = 1793.65(8) Å3, Z = 4. The total 
number of reflections measured was 22 484, of which 8114 reflections were symmetrically 
nonequivalent. Final residuals were R1 = 0.0550 and wR2 = 0.1202 for 8110 reflections with I > 2σ(I). 

Crystal Data for OMB.53 Brutto formula: C20H24. MW = 264.39, monoclinic C2/m, at −180 °C, a = 
11.459(2), b = 7.003(1), c = 9.985(2) Å, β = 106.67(3)°, Dc = 1.144 g cm-3, V = 767.6(8) Å3, Z = 2. The total 
number of reflections measured was 4090, of which 1748 reflections were symmetrically 
nonequivalent. Final residuals were R1 = 0.0628 and wR2 = 0.1256 for 377 reflections with I > 2σ(I). 

Crystal Data for OMN. Brutto formula: C26H36. MW = 348.55, monoclinic P21/n, a = 5.8991(1), b= 
22.0559(5), c = 8.3897(2) Å, β = 108.880(1)°, Dc = 1.121 g cm-3, V = 1032.85(4) Å3, Z = 2. The total 
number of reflections measured was 12 915, of which 4646 reflections were symmetrically 
nonequivalent. Final residuals were R1 = 0.0478 and wR2 = 0.1232 for 3926 reflections with I > 2σ(I). 

Crystal Data for CRET.54 Brutto formula: C18H22O2. MW = 270.36, triclinic P1̄, a = 5.8113(1), b = 
8.5913(2), c = 14.4752(1) Å, α = 85.457(1)°, β = 89.104(1)°, γ = 77.373(1)°, V = 703.00(2) Å3, Z = 2. The 
total number of reflections measured was 8917, of which 6122 reflections were symmetrically 
nonequivalent. Final residuals were R1 = 0.0474 and wR2 = 0.1114 for 5061 reflections with I > 2σ(I). 

Crystal Data for CRET Cation Radical.55 Brutto formula: C18H22Cl6O2Sb. MW = 604.81, 
monoclinic P21/c, a = 8.4582(3), b = 14.3770(5), and c = 9.9283(3) Å, β = 112.334(1)°, V = 1116.75(6) 
Å3, Z = 2. The total number of reflections measured was 14 307, of which 5005 reflections were 
symmetrically nonequivalent. Final residuals were R1 = 0.0200 and wR2 = 0.0421 for 3894 reflections 
with I > 2σ(I). 

Crystal Data for (η6-HMB)Cr(CO)3 Complex.56 Brutto formula:  C15H18CrO3. MW = 298.29, 
orthorhombic Pbca, at −180 °C a = 13.5997(5), b = 13.2814(5), c = 15.1233(6) Å, Dc = 1.451 g cm-3, V = 
2731.6(1) Å3, Z = 8. The total number of reflections measured were 38 002, of which 5978 reflections 
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were symmetrically nonequivalent. Final residuals were R1 = 0.0254 and wR2 = 0.0722 for 5045 
reflections with I > 2σ(I). 

Crystal Data for (η6-DMA)Cr(CO)3 Complex. Brutto formula:  C19H18CrO3. MW = 346.33, 
monoclinic P21/c, a = 9.8790(3), b = 12.7753(4), c = 12.5201(4) Å, β = 104.85(1)°, Dc = 1.506 g cm-3, V = 
1527.3(1) Å3, Z = 4. The total number of reflections measured were 18 781, of which 6717 reflections 
were symmetrically nonequivalent. Final residuals were R1 = 0.0759 and wR2 = 0.1589 for 3904 
reflections with I > 2σ(I). 

Crystal Data for (η6-TET)Cr(CO)3 Complex. Brutto formula:  C27H30CrO3. MW = 454.51, 
orthorhombic Pnma, a = 13.6584(3), b = 15.5046(3), c = 10.0386(3) Å, Dc = 1.420 g cm-3, V = 2125.9(1) 
Å3, Z = 4. The total number of reflections measured were 26 708, of which 5103 reflections were 
symmetrically nonequivalent. Final residuals were R1 = 0.0481 and wR2 = 0.0882 for 3505 reflections 
with I > 2σ(I). 

Crystal Data for (η6-OMB)Cr(CO)3 Complex. Brutto formula:  C23H24CrO3. MW = 400.42, 
monoclinic P21/c, at −180 °C, a = 9.2859(5), b = 12.5942(7), c = 16.1218(9) Å, β = 94.313(1)°, Dc= 1.415 g 
cm-3, V = 1880.1(2) Å3, Z = 4. The total number of reflections measured were 23 647, of which 8322 
reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0397 and wR2 = 0.0903 for 
6467 reflections with I > 2σ(I). 

Crystal Data for (η6-OMN)Cr(CO)3 Complex. Brutto formula:  C29H36CrO3. MW = 484.58, 
monoclinic P21/n, a = 12.6747(2), b = 15.2089(2), c = 13.0697(2) Å, β = 90.544(1)°, Dc = 1.278 g cm-3, V = 
2519.3(1) Å3, Z = 4. The total number of reflections measured were 32 012, of which 11 493 reflections 
were symmetrically nonequivalent. Final residuals were R1 = 0.0625 and wR2 = 0.1160 for 6131 
reflections with I > 2σ(I). 

Crystal Data for (η6-CRET)Cr(CO)3 Complex. Brutto formula:  C21H22CrO5. MW = 406.39, 
monoclinic P21/n, a = 10.9954(5), b = 11.4633(5), c = 14.4954(12) Å, β = 91.072(1)°, Dc = 1.478 g cm-

3, V = 1826.7(2) Å3, Z = 4. The total number of reflections measured were 23 054, of which 8277 
reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0598 and wR2 = 0.0976 for 
4588 reflections with I > 2σ (I). 

Crystal Data for [HMB, NO+SbF6-] Complex. Brutto formula:  C12H18F6NOSb. MW = 428.02, 
monoclinic C2/c, a = 12.9243(3), b = 17.9474(4), c = 13.3904(4) Å, β = 100.090(1)°, Dc = 1.859 g cm-

3, V = 3058.0(1) Å3, Z = 8. The total number of reflections measured were 18 967, of which 6941 
reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0291 and wR2 = 0.0608 for 
5652 reflections with I > 2σ(I). 

Crystal Data for [DMA, NO+SbCl6-] Complex. Brutto formula:  C16H18Cl6NOSb. MW = 574.76, 
monoclinic P21/c, a = 8.0724(2), b = 17.2516(4), c = 15.0853(3) Å, β = 91.680(1)°, Dc = 1.818 g cm-3, V = 
2099.9(1) Å3, Z = 4. The total number of reflections measured were 25 586, of which 9514 reflections 
were symmetrically nonequivalent. Final residuals were R1 = 0.0238 and wR2 = 0.0494 for 8457 
reflections with I > 2σ(I). 



Crystal Data for [TMT, NO+SbCl6-]·1/2CH2Cl2·1/4C7H8 Complex. Brutto formula:  C23.25H27Cl6NOSb. MW 
= 706.36, triclinic P1̄, a = 10.3371(1), b = 13.5511(2), c = 20.7179(3) Å, α = 92.498(1)°, β = 99.831(1)°, γ 
= 102.093(1)°, Dc = 1.684 g cm-3, V = 2786.6(1) Å3, Z = 4. The total number of reflections measured were 
45 575, of which 24 220 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0610 
and wR2 = 0.1021 for 16 607 reflections with I > 2σ(I). 

Crystal Data for [OMN, NO+SbCl6-]·2CH2Cl2 Complex. Brutto formula:  C28H40Cl10NOSb. MW = 882.86, 
orthorhombic P212121, a = 12.7689(3), b = 13.0980(3), c = 22.4779(1) Å, Dc = 1.560 g cm-3, V = 3759.4(1) 
Å3, Z = 4. The total number of reflections measured were 44 079, of which 16 677 reflections were 
symmetrically nonequivalent. Final residuals were R1 = 0.0614 and wR2 = 0.1127 for 12 559 reflections 
with I > 2σ(I). 

Crystal Data for [CRET, NO+SbCl6-] Complex. Brutto formula:  C18H22Cl6NO3Sb. MW = 634.82, 
monoclinic P21, a = 8.8385(1), b = 20.9771(2), c = 12.7867(1) Å, β = 91.567(1)°, Dc = 1.779 g cm-3, V = 
2369.85(4) Å3, Z = 4. The total number of reflections measured were 43 584, of which 20 632 
reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0353 and wR2 = 0.0739 for 
18 131 reflections with I > 2σ(I). 
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Note Added in Proof:  The X-ray structure of TET•+SbCl6- has been recently reported, but the low 
precision does not allow any reasonable structural analysis. See:  Matsuura, A.; Nishinaga, T.; Komatsu, 
K. J. Am. Chem. Soc. 2000, 122, 10007. 
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	Synopsis
	Structural changes of arene ligands upon coordination with Cr(CO)3 result from charge transfer, and they are shown to be quite similar to those found in π-complexes with NO+ and arene cation radicals.
	Abstract
	/
	Arene ligands experience significant ring expansion upon coordination with chromium tricarbonyl, as established by precise X-ray crystallographic analyses of various (η6-arene)Cr(CO)3complexes. Such changes in ligand structures result from the charge (electron) redistribution, Ar+−Cr-, upon arene coordination, since they are closely related to those found in the intermolecular 1:1 complexes of the corresponding series of arenes with nitrosonium cation (NO+). The latter are prototypical examples of charge-transfer complexes as described by Mulliken. As such, they show enhanced degrees of charge (electron) transfer that approach unity, which is confirmed by quantitative comparison with the structural changes measured in the one-electron (oxidative) transformation of electron-rich arene donors (Ar) to the cation-radicals (Ar•+). Such a charge redistribution thus readily accounts for the enhanced reactivity to nucleophilic attack of the arene ligand in various ArCr(CO)3 complexes and related transition-metal/arene analogues.
	Introduction
	Chromium tricarbonyl complexes with various arene ligands are finding increasing use in organic synthesis.1,2 Critical to this application is an understanding as to how complexation by chromium tricarbonyl affects the aromatic ligand itself. Heretofore, most of the theoretical attention has been directed toward an understanding of the bonding of Cr(CO)3 to the arene.3 Although there are numerous reports on the X-ray crystallographic characterization of (η6-arene)Cr(CO)3 complexes, only a few of them address the bond-length changes in the arene companion upon coordination with Cr(CO)3.4 The latter must be an important factor since it has been found that Cr(CO)3 confers upon the η6-coordinated arene a higher activity and a greater susceptibility to nucleophilic substitution with concomitant reduced reactivity to electrophilic attack.5 A substantial dipole moment (μ ≈ 5 D) has been measured in the benzene complex (η6-C6H6)Cr(CO)3 which increases with the number of electron-donating substituents and decreases with electron-withdrawing substituents, as expected for an overall bond moment in the direction (arene) → (Cr).6 These observations lead to the notion that the multicentered ligand-to-metal bond in tricarbonylchromium complexes involves the transfer of electron density from the arene π-orbitals to the 3d-orbitals of the transition-metal center. Indeed, the electrochemical reduction of (η6-arene)Cr(CO)3 complexes is generally much easier than that of the free (uncomplexed) arene, qualitatively indicating electron removal from the arene ligand.7,8 On the other hand, the first ionization potential (involving electron ejection from the chromium 3d- orbital) greatly decreases from IP = 8.40 eV in Cr(CO)69 to 7.42 eV in (η6-C6H6)Cr(CO)3,10 i.e., upon the replacement of a weak donor ligand by a stronger (benzene) donor.
	Earlier, Pauling proposed a direct relationship between the length of a chemical bond and its electron population or bond order,11 i.e.,
	/
	where dN is the length of a particular bond with bond order N, and d1 is the length of the corresponding single bond. [Note that the number of bonding electrons is n = 2N.] As such, bond-length measurements can provide a quantitative guide to the electron-density distribution. For our purposes here, the electron redistribution of the arene ligand upon complexation can be obtained by a precise comparison of its bond-length changes relative to that extant in the free (uncomplexed) donor. To examine this problem, we focused in Chart 1 on two classes of electron-rich arenes, as measured by their oxidation potentials of E°ox < 1.6 V vs SCE.12
	/
	Chart 1
	The arene donors in class I are highly alkylated benzenes of more or less the same donor strengths, as measured by their reversible oxidation potentials E°ox.13 Class II donors are electron-rich polycyclic aromatics with rather low oxidation potentials (E°ox < 1.34 V).14
	Results and Discussion
	The chromium tricarbonyl complexes of the aromatic donors in Chart 1 were prepared according to the method of Mahaffy and Pauson,15 i.e.,
	/
	Single crystals of the (arene)Cr(CO)3 complexes were mounted for X-ray crystallographic analysis at −150 °C, unless specified otherwise. As a comparative basis, X-ray crystal structures of the free (uncomplexed) aromatic donor were determined under the same conditions, or the structural data were retrieved from the Cambridge Crystallographic Database.16
	1. Structural Changes of Class I Aromatic Donors in Tricarbonylchromium Complexes. The molecular structures of the 1:1 complexes of Cr(CO)3 and class I arene donors adopt the usual staggered conformation, with Cr lying above the benzenoid ring (equidistant from each ring carbon), as illustrated in the top perspectives for HMB and TET in Figure 1. The distance between chromium and the center of the benzenoid ring in the HMB complex is 1.731(3) Å, but it is longer in the hindered TET (1.753 Å) and DMA (1.770 Å) analogues, the faces of which are shielded by bicyclic substituents against the approach of Cr(CO)3.17
	/
	Figure 1 Molecular structures (top perspective) of typical (arene)Cr(CO)3 complexes where arene = HMB (a) and TET (b) as described in Chart 1. Hydrogens are omitted for clarity. Thermal ellipsoids are shown at 50% probability level.
	The expansion of the benzenoid ligand upon complexation is the structural feature that we consider most important in this study. As such, Table 1 reports the average aromatic (C−C) bond distance (d) in the complexed aromatic ligand relative to that in the free arene donor.18,19 Most importantly, the notable increase in the average C−C bond lengths of Δ = 1.0−1.9 pm is observed in all cases and establishes the significant expansion of the aromatic ligand upon Cr(CO)3coordination.
	Table 1.  Average C−C Bond Length (Å) within the Aromatic Rings of Substituted Monocyclic Arenes in the Neutral Donors and upon Complexation with Cr(CO)3 and NO+(Values in Bold Indicate the Bond Length Changes (Δ) Relative to the Neutral Donor)
	a See ref 40.b From ref 16a.c From ref 16c.d From ref 26.e From ref 16.
	2. Structural Changes of Class I Aromatic Donors in Charge-Transfer Complexes with Nitrosonium Cation. To place the structural alteration of the arene ligand in perspective, let us compare the change in arene structure when it is involved in the intermolecular noncovalent interaction with a bona fide electron acceptor such as nitrosonium (NO+),20 e.g., where X- = BF4-, SbCl6-, AlCl4-, etc. The nitrosonium complexation in eq 3 is kinetically reversible, and the results in Table 2 show that the formation constants KEDA for the class I donors are uniformly high in acetonitrile solutions. Table 2 also includes the absorption maximum of the diagnostic (UV−vis) absorption band (λCT) of the arene/NO+ complexes.21
	/
	Table 2.  Donor/Acceptor Association of Hexaalkylbenzenes with Nitrosonium Tetrafluoroboratea
	εCT (M-1 cm-1)
	KEDA (M-1)
	λCT (nm)
	donor
	3100
	31 000
	337
	HMB
	b
	28 000
	350
	CRET
	b
	b
	340
	DMA
	3500
	34 000
	352
	TMT
	3400
	33 500
	355
	TET
	2900
	32 500
	347
	HEB
	a In acetonitrile containing 1 mM NOBF4 and 5−10 mM donor at 20 °C.b Not available.
	X-ray crystallographic analysis of the various aromatic complexes with NO+ has established the general π-character of the intermolecular interaction (Figure 2), which is indeed highly reminiscent of the symmetric (3-fold) structures of (arene)Cr(CO)3 shown in Figure 1. However, the main-group acceptor (NO+) can utilize only the limited 2s- and 2p-orbitals for π-bonding to the arene donor,22 unlike the transition-metal moiety Cr(CO)3, which has highly delocalized (multicenter) 3d-orbitals available for charge-transfer bonding. The spectral complexity of the latter can obscure the essential electron redistribution in the arene ligand. On the other hand, the various π-complexes of NO+ and arene donors represent prototypical charge-transfer interactions. Most importantly, they are fully (and quantitatively) formulated by Mulliken theory,23,24 which is particularly useful in the delineation of electron redistribution in intermolecular interactions (DA) between electron donors (D) and acceptors (A), i.e.,
	/
	where ψDA represents the wave function of the electron donor/acceptor complex, and ψD,A and ψD+A- represent those of the van der Waals and the dative (charge-transfer) components, respectively. As such, the arene donor is subject to a delocalized (charge-transfer) perturbation by NO+, the magnitude of which is given as a spectral shift of λCT and proportional to E°ox.25 With an electron-rich donor such as HMB, the degree of charge transfer is approximated by the (conceptual) structural change illustrated in eq 5, in which the donor moiety largely takes on the structure of the aromatic cation radical and the acceptor that of nitric oxide.20,26
	/
	Figure 2 Charge-transfer complex of hexamethylbenzene (HMB) and NO+ in 45° perspective (a) and top perspective (b). Hydrogens and SbCl6- counterion omitted for clarity.
	/
	3. Comparative Ring Expansions of Arene Ligands upon Cr(CO)3 and NO+ Complexation.For comparison, the X-ray data for the (η6-arene)Cr(CO)3 complexes in Table 1 also include the structural changes of the arene donor when subjected to the “noncovalent” interaction with NO+. It is noteworthy that the values of the structural changes, as denoted by Δ in the last column (bold type), are sizable and consistently similar to the Δ values for Cr(CO)3 complexation. According to Pauling's bond-length/bond-order relationship in eq 1, the significant magnitudes of Δ in Table 1 point to the transfer of charge (electron) density from the aromatic donor to Cr(CO)3 in amounts comparable to that with NO+.19
	To obtain a more quantitative measure of electron transference, we next turned to the class II arene donors in which the transfer of a full electron can be directly evaluated by comparing Δ in the formation of the aromatic cation radical itself, i.e.,
	/
	4. Structural Changes in Aromatic Cation Radicals. As molecular entities, aromatic cation radicals are highly reactive, and those in class I are too transient to isolate as crystalline salts.27However, the multiring aromatic ligands in class II are better electron donors (with E°ox < 1.3 V vs SCE), and most importantly they yield substantially more persistent cation radicals, the salts of which can be isolated at low temperatures as single crystals suitable for X-ray diffraction analysis.28 As such, Table 3 lists the important structural changes attendant upon the conversion of the class II donors OMB, OMN, and CRET to their cation radicals.
	Table 3.  Structural Changes of Class II Arene Donors Attendant upon One-Electron Oxidation to Their Cation Radicalsa
	a All structures have a crystallographic center of symmetry.b In units of Å, except for Δ in pm, unless indicated otherwise.c O.S. is the oxidation state for the neutral donor (D) and its cation radical (D•+).d Dihedral angle between the benzene plane and the methoxy substituent in degrees.
	The comparison of the interatomic bond lengths in neutral OMB with those in the cation radical OMB•+ in Table 3 reveals the average C−C bond length in the phenyl rings of OMB•+ to be 0.9 pm longer than that in the neutral donor, indicative of a significant ring expansion upon electron removal.29
	The ring-expansion phenomenon is also observed in the cation radical of the encumbered hydroquinone ether CRET•+. Thus Table 3 shows that, upon one-electron oxidation, the average C−C bond length within the central aromatic ring of CRET increases substantially by 1.1 pm in the cation radical relative to that in the neutral precursor. In addition, upon oxidation the central ring inCRET suffers a quinoidal distortion and the peripheral OMe groups rotate into the aromatic plane (Figure 3). For convenience, the equivalent bonds in CRET are denoted by letters α, β, and γ in structure C.
	/
	Table 3 shows that upon one-electron oxidation bonds α and γ become 2.9 and 6.5 pm shorter, respectively, whereas bond β becomes 3.1 pm longer, owing to a major contribution from the quinoidal structure D,30 i.e.,
	/
	The last structural feature in CRET•+ concerns the motion of the peripheral methoxy arms. As depicted in Figure 3, when the CRET molecule is oxidized, the OMe arms rotate until they lie in the plane of the central ring (torsion angle C−C−O−Me is 2°), whereas they are perpendicular to this plane in neutral CRET (torsion angle C−C−O−Me is 72°, see Table 3 and Figure 3).31
	5. Aromatic Ring Expansion versus Degree of Charge Transfer upon Cr(CO)3 Complexation.Structural changes as measured by the increase Δ in the average aromatic bond length of the cation radical OMB•+ relative to the neutral aromatic donor OMB are plotted in Figure 4 as a function of the number of electrons removed. Note that an intermediate point at 0.5 is also available from our previous structural study of the dimeric cation radical (OMB)2•+, in which an electron is removed from a pair of equivalent cofacial donors.14,32 The line in Figure 4 is arbitrarily drawn between OMB and OMB•+ to emphasize the linear relationship between bond-length changes of OMB and the (formal) number of electrons removed (i.e., oxidation).
	The linear plot of the average bond-length changes in OMB in Figure 4 can be employed for a quantitative measure of the degree of electron redistribution upon complexation by Cr(CO)3.19Thus the inclusion of the point for (OMB)Cr(CO)3 onto the line in Figure 4 indicates that roughly one electron is redistributed from the OMB ligand onto the Cr(CO)3 moiety. In other words, the degree of charge transfer from OMB upon Cr(CO)3 complexation is roughly one.34 Although the point for the NO+ complex of OMB cannot be included,35 we deem from the trend in Δ values listed in Table 4 that NO+ complexation also results in about the same amount of electron redistribution.
	/
	Figure 3 Aromatic donor CRET (a) and its cation radical CRET•+ (b) showing the 90° rotation of both methoxy groups upon one-electron oxidation.
	/
	Figure 4 Linear increase in the average (aromatic) bond lengths in OMB attendant upon the successive removal of 0.5 and 1.0 electron in (OMB)2•+ and OMB•+, respectively. The fit of the point for the (OMB)Cr(CO)3 complex indicates an effective degree of charge (electron) transfer of essentially unity.
	Table 4.  Comparative Expansion of Aromatic Donors in Ligand Complexation [Cr(CO)3and NO+] Relative to One-Electron Oxidation
	average ring expansiona
	 
	ΔNO+
	ΔCr(CO)3
	ΔD•+
	arene
	 
	1.0(3) [0.0/2.1]
	0.9(4)
	OMB
	0.4(5) [0.0/0.9]
	0.7(3) [0.2/1.4]
	0.2(2)
	OMN
	1.3(4)
	1.8(3)
	1.1(2)
	CRET
	a The Δ values in pm are the average bond length in the complexed ligand (or cation radical) minus that in the neutral donor. The individual Δ values of the noncomplexed and complexed rings are given in brackets.
	To quantify the degree of charge transfer in the Cr(CO)3 complex of CRET, we compared the structural changes relative to the characteristic changes in the cation radical CRET•+. We found that the average C−C bond length in the central aromatic ring increases by similar values in both CRET species, i.e., 1.8 pm in the chromium complex and 1.1 pm in the cation radical, indicating that the charge removed from CRET and transferred to the tricarbonylchromium cluster corresponds to about one electron. The degree of charge transfer from CRET can also be gauged by considering the orientation of the peripheral methoxy groups relative to the plane defined by the central aromatic ring (approximately perpendicular in neutral CRET and periplanar in the CRET•+cation radical). Upon coordination with Cr(CO)3, both methoxy arms also rotate toward the aromatic plane (torsion angles C−C−O−Me are 46.5° and −30.5° for two symmetrically nonequivalent methoxy groups; see Figure 5a).36
	/
	Figure 5 Rotation of the pair of methoxy groups in CRET (top perspective) upon its complexation with Cr(CO)3 (a) and NO+ (b). Compare with the conformational change of the methoxy groups in CRET•+ relative to CRET in Figure 3.
	6. Comments on the Mechanism of Electron Redistribution in Arene Ligands upon Cr(CO)3Complexation. A. Unsymmetrical Distortion in Polycyclic Aromatic Donors upon Complexation by Cr(CO)3 and NO+ Donors. The polycyclic aromatic donors OMB and OMN in class II provide some interesting insight into the mechanism of electron redistribution in the aromatic ligand upon complexation with Cr(CO)3.
	The X-ray crystal structure determination of (OMB)Cr(CO)3 in Figure 6 reveals the average C−C bond length in the complexed ring to be dramatically increased by 2.1 pm, whereas that in the free ring remains unchanged within experimental error (see Table 4). Interestingly, the 2.1 pm elongation is twice that observed in both rings of the monomeric OMB•+ cation radical and therefore may be seen as the structural consequence of the transfer of approximately one electron with the positive charge concentrated in only one ring rather than delocalized over both rings of OMB.
	/
	Figure 6 Complexation of Cr(CO)3 with the biphenylene donor OMB showing preferential complexation with a single (benzenoid) ring only in a class II donor.
	Similarly, in the naphthalenoid complex (OMN)Cr(CO)3, the complexed ring (see Figure 7a) directly connected to the free ring experiences significant dilation, the average C−C bond length in the coordinated ring being 1.4 pm longer than that in neutral OMN, whereas the uncomplexed ring is largely unaltered. Both sets of structural data suggest that the electronic charge deficiency created in condensed aromatic hydrocarbons by the 1:1 complexation with Cr(CO)3 remains localized on the complexed ring and that no significant electronic delocalization takes place between the connected rings to stabilize this deficiency.
	/
	Figure 7 Complexation of the naphthalenoid donor OMN with Cr(CO)3 (a) and NO+ (b) showing the preferential complexation with a single (benzenoid) ring reminiscent of that shown for the biphenylene donor in Figure 6.
	Whatever the mechanism of such an electron redistribution by Cr(CO)3 may be, essentially the same applies to the main group acceptor NO+. Figure 7b shows that the NO+ acceptor in the 1:1 complex with OMN is located directly over only one of the six-membered aromatic rings.37 As a result, the naphthalenoid chromophore in the NO+ complex is subject to an unsymmetrical distortion:  the average C−C bond length in the complexed ring increases by 0.9 pm, whereas the uncomplexed ring is essentially unaltered from that in the neutral donor OMN (Table 4).
	In other words, the substantial delocalization of the charge deficiency created in a polyaromatic ligand upon coordination by the transition-metal acceptor Cr(CO)3 is undistinguishable from that induced by NO+ as the main group analogue in which d-orbital participation is not a relevant factor in the intermolecular bonding.
	B. Bond Alternation in Benzenoid Donors upon Complexation by Cr(CO)3 and NO+. The comparable manner in which both Cr(CO)3 and NO+ distort aromatic ligands is also shown with class I donors, but in a more subtle way. For example, the X-ray crystallographic analysis of the hexamethylbenzene complex (HMB)Cr(CO)3 at −150 °C reveals a significant (aromatic) bond alternation first observed in the benzene complex at −195 °C.38 Thus, the three aromatic bonds eclipsed by the Cr−CO bond (see Figure 1a) are dramatically elongated by 2.5 pm, but the three staggered ones are essentially unaltered, being only slightly elongated by 0.5 pm. This result confirms the earlier theoretical analysis39 and shows that the tricarbonylchromium cluster interrupts the conjugation in planar aromatic systems by inducing a significant short−long bond alternation within the complexed arene ligand.
	Such a distortion induced by Cr(CO)3 is strikingly reminiscent of that in the 1:1 complex of HMBwith NO+, the X-ray crystallographic structure of which is shown in Figure 2. In this charge-transfer complex, the NO+ acceptor binds to the aromatic ring through the nitrogen center, which is at a short distance of 2.07 Å from the mean plane of the aromatic ring, and the N−O tilt eclipses one aromatic C−C bond, as shown in the top perspective (Figure 2b). Most notably, only that unique aromatic C−C bond which is eclipsed by N−O+ is significantly elongated to 1.6 pm, whereas the remaining five bonds are unchanged within experimental error.40,41
	In a similar vein, let us consider the class I aromatic donor DMA with both Cr(CO)3 and NO+ since the NO+ complex shows a specific orientation of the acceptor.41,42 For example, the neutral donor DMA possesses two kinds of C−C bonds in the central aromatic ring, i.e., two short α and four long β bonds, the difference being ca. 2 pm (Table 5). Upon complexation with Cr(CO)3 (Figure 8A), one α and two β bonds are covered by CO arms. Again these covered (eclipsed) C−C bonds suffer from a greater elongation than the staggered ones, especially the two eclipsed β bonds that are elongated by 2.3 pm as compared with the two staggered ones. The same phenomenon is observed in the DMA complex with the nitrosonium acceptor, in which NO+ is displaced from the center of the aromatic ring and tilted toward one β C−C bond (Figure 8b). It is specifically this bond that becomes 1.1 pm longer, whereas the three other β bonds are unchanged within experimental error (0.2 pm). This result is consistent with that obtained with [HMB, NO+] and shows that the noncovalent complexation with NO+ leads to a repulsion of electron density of the eclipsed C−C bond without significantly affecting the other bonds.
	/
	Figure 8 Complexation of the sterically hindered benzenoid donor DMA with Cr(CO)3 (a) and NO+ (b), showing the strong similarity in their bonding (exo and endo) modes.
	Let us now consider the sterically encumbered donor CRET, in which we earlier described (structure D) the quinoidal distortion similar to that observed upon one-electron oxidation. A closer inspection shows the distortion of the aromatic ring of CRET by Cr(CO)3 akin to that in DMA. In particular, the α bond which is eclipsed by a Cr−CO bond in Figure 5a is elongated by 3.1 pm more than the staggered α bond, and the two eclipsed β bonds are stretched by more than 1.6 pm relative to the two staggered ones. In a related manner, CRET also suffers the same kind of distortion upon complexation with Cr(CO)3 and NO+. With the NO+ complex, two crystallographically independent units are observed that differ only in the location of the acceptor. In crystal unit A, the tilted NO+ acceptor lies on the edge of the central ring of CRET and eclipses one β bond (Figure 5b) which is 0.8 pm longer than the average of the three other β bonds. In crystal unit B, the NO+ is more vertical and lies closer to the centroid. As a result, there is no marked distinction between eclipsed/staggered β bonds, and all the β bonds are more or less equally elongated (by 1.4 pm).
	The conformational dependence of the NO+ acceptor on the aromatic distortion of CRET as described above is also underscored in the structure of the [HEB, NO+] complex, in which NO+ is sterically constrained to lie (vertically) along the centroid axis (Figure 9). As a result, there can be only one type of aromatic C−C bond, and it is important to note that all aromatic bonds are equally elongated by 1.4 pm. Such a homogeneous elongation of all aromatic bonds is not an intrinsic property of HEB, since the characteristic bond alternation like that in (HMB)Cr(CO)3 (vide supra) is observed upon Cr(CO)3 complexation.
	/
	Figure 9 Axial bonding of NO+ along the 3-fold symmetry axis of the sterically encumbered HEB donor in side (45°) and top perspectives (a and b, respectively), showing the equivalence of all aromatic C−C bonds in contrast to those in the [HMB, NO+] complex in Figure 2.
	Steric encumbrance can also act in another way on the aromatic donor to orient the tripodal Cr(CO)3 in such a way that the carbonyl “arms” will eclipse the shorter C−C aromatic bonds and thus compete for electron density in the free ligand. For example, the hindered aromatic donor TET possesses an alternating sequence of long α bond and shorter β bonds arising from the Mills−Nixon effect.43 In (TET)Cr(CO)3, steric hindrance by the bicyclohexyl substituents forces the Cr(CO)3 to orient its CO arms over the short β bonds, as shown in Figure 1b. In turn, both eclipsed (α) and staggered (β) bonds of the aromatic ring are lengthened upon complexation, but the eclipsed ones are much more altered (+3.0 pm instead of +0.8 pm for the staggered ones). Consequently, the previously short β bonds in the free ligand are elongated by 0.5 pm more than the α bonds in the chromium complex because of the effect of the carbonyl groups. Thus the (η6-TET)Cr(CO)3 complex may be seen as a complex in which structural constraints due to the Mills−Nixon effect and those originating from the coordination of Cr(CO)3 oppose each other and lead to an almost complete cancellation of bond-length alternation in TET. As a result, an interesting comparison can be made between the chromium complexes of HMB and TET. The effect of Cr(CO)3 on these ligands remains the same upon complexation (expansion of the eclipsed C−C bonds), but it leads to opposite results, that is, the interruption of conjugation in (η6-HMB)Cr(CO)3 but almost complete equalization of all C−C bonds in (η6-TET)Cr(CO)3. As a comparison, it is to be noted that in the nitrosonium complex [TET, NO+], the central ring gets larger, but the β bonds on one hand and the α bonds on the other hand expand homogeneously.
	Summary and Conclusions
	Arenes such as benzene (Ar) are electron donors by virtue of their ready (i) one-electron oxidation to cation radicals (Ar•+),12 (ii) formation of charge-transfer complexes [Ar,A] with π-acceptors such as A = nitrosonium cation (NO+),20 (iii) self-association to form dimeric cation radicals (Ar2•+),33and (iv) complexation with coordinatively unsaturated transition-metal fragments such as MLn = Cr(CO)3 to form the π-coordination complexes (η6-Ar)Cr(CO)3,4 as schematically represented in Chart 2.
	/
	Chart 2
	In this report, we show that the precise measurement of the structural changes in the arene ligand provides considerable insight into the common nature of such intermolecular interactions.
	Complexation of various arene donors with Cr(CO)3 invariably lead to significant ring expansion. In fact, the magnitude of the structural change quantitatively parallels that observed in the production of the cation radical (Ar•+) itself and in the complexation with nitrosonium cation as the prototypical (main group) electron acceptor in charge-transfer complexes [Ar, NO+] as classified by Mulliken.23,24 As such, the transfer (outflow) effectively of a full unit of charge from the aromatic ligand is a common characteristic of the intermolecular interactions in Chart 2.
	The detailed comparison of the structural changes in various aromatic ligands shows that complexation by Cr(CO)3 and NO+ effects the same type of ring distortion, leading on one hand to selective ring enlargement of polycyclic aromatic donors of class II and on the other hand to specific bond alternation in benzenoid donors in class I. We believe both types of distortion are intimately related to the donor/acceptor bonding and underscore the common nature of intermolecular bonding of an arene ligand, be it with a transition metal [Cr(CO)3] or main group [NO+] acceptor. As such, we hope that the collaborative interaction now in progress will provide the theoretical basis for unifying the classical concepts of ligand coordination with the Mulliken concept of charge transfer.
	Experimental Section
	Materials. Hexamethylbenzene (HMB) (Aldrich) and hexaethylbenzene (HEB) (Acros) were purified by repeated crystallization from ethanol and heptane. The synthesis of the various electron donors such as 9,10-dimethoxy-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracene (CRET),31 1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracene (DMA),441,2,3,4,5,6,7,8,9,10,11,12-dodecahydro-1,4:5,8:9,12-trimethanotriphenylene (TMT),451,2,3,4,5,6,7,8,9,10,11,12-dodecahydro-1,4:5,8:9,12-triethanotriphenylene (TET),461,2,3,4,5,6,7,8-octamethylbiphenylene (OMB),47 and 1,2,3,4,7,8,9,10-octahydro-1,1,4,4,7,7,10,10-octamethylnaphthacene (OMN)48 have been described previously. Cr(CO)6 was purchased from Acros Chemical Co. and used without any further purification. Nitrosonium hexachloroantimonate49 was stored in a Vacuum Atmosphere HE-493 drybox kept free of oxygen. Dichloromethane (Mallinckrodt analytical reagent) was repeatedly stirred with fresh aliquots of concentrated sulfuric acid (∼20 vol %) until the acid layer remained colorless. After separation, it was washed successively with water, aqueous sodium bicarbonate, water, and aqueous sodium chloride and dried over anhydrous calcium chloride. The dichloromethane was distilled twice from P2O5 under an argon atmosphere and stored in a Schlenk flask equipped with a Teflon valve fitted with Viton O-rings. The hexane, toluene, and tetrahydrofuran were distilled from P2O5 under an argon atmosphere and then refluxed over calcium hydride (∼12 h). After distillation from CaH2, the solvents were stored in the Schlenk flasks under an argon atmosphere. The dibutyl ether was purchased from Aldrich Chemical Co. and stored in a Schlenk flask equipped with a Teflon valve fitted with Viton O-rings.
	The cation radicals of octamethylbiphenylene (OMB) and of the hydroquinone ether CRET were prepared by using triethyloxonium hexachloroantimonate as oxidant.14
	Preparation of (η6-Arene)Tricarbonylchromium Complexes. The tricarbonylchromium complexes of hexamethylbenzene (HMB), the hydroquinone ether CRET, dimethanoanthracene (DMA), triethanotriphenylene (TET), octamethylbiphenylene (OMB), and octamethylnaphthacene (OMN) have been prepared according to the method of Mahaffy and Pauson,15 as follows.
	General Procedure. Typically, in a 50 mL flask fitted with a Schlenk adapter and under argon flow were placed hexacarbonylchromium (100 mg, 0.45 mmol), the neutral arene (1 equiv), dibutyl ether (20 mL), and tetrahydrofuran (2 mL). The argon stream was stopped, and the mixture was heated at reflux for 24 h. Upon slow cooling, well-shaped yellow crystals of (η6-arene)tricarbonylchromium suitable for X-ray single-crystal analysis separated from the solution.
	X-ray Crystallography. The intensity data for all the compounds were collected with the aid of a Siemens SMART diffractometer equipped with a CCD detector using Mo Kα radiation (λ = 0.71073 Å), at −150 °C unless otherwise specified. The structures were solved by direct methods50 and refined by full-matrix least-squares procedure with IBM Pentium and SGI O2 computers. [Note that the X-ray structure details of various compounds mentioned here are on deposit and can be obtained from Cambridge Crystallographic Data Center, U.K.]
	Crystal Data for HMB.51 Brutto formula: C12H18. MW = 162.26, triclinic P1̄, a = 5.2602(2), b = 6.1990(3), c = 8.0040(3) Å, α = 103.818(1)°, β = 98.718(1)°, γ = 100.192(1)°, Dc = 1.103 g cm-3, V= 244.26(3) Å3, Z = 1. The total number of reflections measured was 2363, of which 1622 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0469 and wR2 = 0.1330 for 1403 reflections with I > 2σ (I).
	Crystal Data for DMA. Brutto formula:  C16H18. MW = 210.30, monoclinic C2/c, a = 10.5037(6), b= 5.5865(3), c = 19.400(1) Å, β = 92.563(1)°, Dc = 1.228 g cm-3, V = 1137.2(1) Å3, Z = 4. The total number of reflections measured was 7207, of which 2594 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0973 and wR2 = 0.2285 for 1773 reflections with I > 2σ(I).
	Crystal Data for TET.52 Brutto formula: C24H30. MW = 318.48, monoclinic P21/c, a = 15.5421(4), b = 10.2264(3), c = 11.4845(3) Å, β = 100.692(1)°, Dc = 1.179 g cm-3, V = 1793.65(8) Å3, Z = 4. The total number of reflections measured was 22 484, of which 8114 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0550 and wR2 = 0.1202 for 8110 reflections with I > 2σ(I).
	Crystal Data for OMB.53 Brutto formula: C20H24. MW = 264.39, monoclinic C2/m, at −180 °C, a = 11.459(2), b = 7.003(1), c = 9.985(2) Å, β = 106.67(3)°, Dc = 1.144 g cm-3, V = 767.6(8) Å3, Z = 2. The total number of reflections measured was 4090, of which 1748 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0628 and wR2 = 0.1256 for 377 reflections with I > 2σ(I).
	Crystal Data for OMN. Brutto formula: C26H36. MW = 348.55, monoclinic P21/n, a = 5.8991(1), b= 22.0559(5), c = 8.3897(2) Å, β = 108.880(1)°, Dc = 1.121 g cm-3, V = 1032.85(4) Å3, Z = 2. The total number of reflections measured was 12 915, of which 4646 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0478 and wR2 = 0.1232 for 3926 reflections with I > 2σ(I).
	Crystal Data for CRET.54 Brutto formula: C18H22O2. MW = 270.36, triclinic P1̄, a = 5.8113(1), b = 8.5913(2), c = 14.4752(1) Å, α = 85.457(1)°, β = 89.104(1)°, γ = 77.373(1)°, V = 703.00(2) Å3, Z = 2. The total number of reflections measured was 8917, of which 6122 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0474 and wR2 = 0.1114 for 5061 reflections with I > 2σ(I).
	Crystal Data for CRET Cation Radical.55 Brutto formula: C18H22Cl6O2Sb. MW = 604.81, monoclinic P21/c, a = 8.4582(3), b = 14.3770(5), and c = 9.9283(3) Å, β = 112.334(1)°, V = 1116.75(6) Å3, Z = 2. The total number of reflections measured was 14 307, of which 5005 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0200 and wR2 = 0.0421 for 3894 reflections with I > 2σ(I).
	Crystal Data for (η6-HMB)Cr(CO)3 Complex.56 Brutto formula:  C15H18CrO3. MW = 298.29, orthorhombic Pbca, at −180 °C a = 13.5997(5), b = 13.2814(5), c = 15.1233(6) Å, Dc = 1.451 g cm-3, V = 2731.6(1) Å3, Z = 8. The total number of reflections measured were 38 002, of which 5978 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0254 and wR2 = 0.0722 for 5045 reflections with I > 2σ(I).
	Crystal Data for (η6-DMA)Cr(CO)3 Complex. Brutto formula:  C19H18CrO3. MW = 346.33, monoclinic P21/c, a = 9.8790(3), b = 12.7753(4), c = 12.5201(4) Å, β = 104.85(1)°, Dc = 1.506 g cm-3, V = 1527.3(1) Å3, Z = 4. The total number of reflections measured were 18 781, of which 6717 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0759 and wR2 = 0.1589 for 3904 reflections with I > 2σ(I).
	Crystal Data for (η6-TET)Cr(CO)3 Complex. Brutto formula:  C27H30CrO3. MW = 454.51, orthorhombic Pnma, a = 13.6584(3), b = 15.5046(3), c = 10.0386(3) Å, Dc = 1.420 g cm-3, V = 2125.9(1) Å3, Z = 4. The total number of reflections measured were 26 708, of which 5103 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0481 and wR2 = 0.0882 for 3505 reflections with I > 2σ(I).
	Crystal Data for (η6-OMB)Cr(CO)3 Complex. Brutto formula:  C23H24CrO3. MW = 400.42, monoclinic P21/c, at −180 °C, a = 9.2859(5), b = 12.5942(7), c = 16.1218(9) Å, β = 94.313(1)°, Dc= 1.415 g cm-3, V = 1880.1(2) Å3, Z = 4. The total number of reflections measured were 23 647, of which 8322 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0397 and wR2 = 0.0903 for 6467 reflections with I > 2σ(I).
	Crystal Data for (η6-OMN)Cr(CO)3 Complex. Brutto formula:  C29H36CrO3. MW = 484.58, monoclinic P21/n, a = 12.6747(2), b = 15.2089(2), c = 13.0697(2) Å, β = 90.544(1)°, Dc = 1.278 g cm-3, V = 2519.3(1) Å3, Z = 4. The total number of reflections measured were 32 012, of which 11 493 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0625 and wR2 = 0.1160 for 6131 reflections with I > 2σ(I).
	Crystal Data for (η6-CRET)Cr(CO)3 Complex. Brutto formula:  C21H22CrO5. MW = 406.39, monoclinic P21/n, a = 10.9954(5), b = 11.4633(5), c = 14.4954(12) Å, β = 91.072(1)°, Dc = 1.478 g cm-3, V = 1826.7(2) Å3, Z = 4. The total number of reflections measured were 23 054, of which 8277 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0598 and wR2 = 0.0976 for 4588 reflections with I > 2σ (I).
	Crystal Data for [HMB, NO+SbF6-] Complex. Brutto formula:  C12H18F6NOSb. MW = 428.02, monoclinic C2/c, a = 12.9243(3), b = 17.9474(4), c = 13.3904(4) Å, β = 100.090(1)°, Dc = 1.859 g cm-3, V = 3058.0(1) Å3, Z = 8. The total number of reflections measured were 18 967, of which 6941 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0291 and wR2 = 0.0608 for 5652 reflections with I > 2σ(I).
	Crystal Data for [DMA, NO+SbCl6-] Complex. Brutto formula:  C16H18Cl6NOSb. MW = 574.76, monoclinic P21/c, a = 8.0724(2), b = 17.2516(4), c = 15.0853(3) Å, β = 91.680(1)°, Dc = 1.818 g cm-3, V = 2099.9(1) Å3, Z = 4. The total number of reflections measured were 25 586, of which 9514 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0238 and wR2 = 0.0494 for 8457 reflections with I > 2σ(I).
	Crystal Data for [TMT, NO+SbCl6-]·1/2CH2Cl2·1/4C7H8 Complex. Brutto formula:  C23.25H27Cl6NOSb. MW = 706.36, triclinic P1̄, a = 10.3371(1), b = 13.5511(2), c = 20.7179(3) Å, α = 92.498(1)°, β = 99.831(1)°, γ = 102.093(1)°, Dc = 1.684 g cm-3, V = 2786.6(1) Å3, Z = 4. The total number of reflections measured were 45 575, of which 24 220 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0610 and wR2 = 0.1021 for 16 607 reflections with I > 2σ(I).
	Crystal Data for [OMN, NO+SbCl6-]·2CH2Cl2 Complex. Brutto formula:  C28H40Cl10NOSb. MW = 882.86, orthorhombic P212121, a = 12.7689(3), b = 13.0980(3), c = 22.4779(1) Å, Dc = 1.560 g cm-3, V = 3759.4(1) Å3, Z = 4. The total number of reflections measured were 44 079, of which 16 677 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0614 and wR2 = 0.1127 for 12 559 reflections with I > 2σ(I).
	Crystal Data for [CRET, NO+SbCl6-] Complex. Brutto formula:  C18H22Cl6NO3Sb. MW = 634.82, monoclinic P21, a = 8.8385(1), b = 20.9771(2), c = 12.7867(1) Å, β = 91.567(1)°, Dc = 1.779 g cm-3, V = 2369.85(4) Å3, Z = 4. The total number of reflections measured were 43 584, of which 20 632 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0353 and wR2 = 0.0739 for 18 131 reflections with I > 2σ(I).
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