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Lianas in gaps reduce carbon accumulation in a tropical forest
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Abstract. Treefall gaps are the ‘‘engines of regeneration’’ in tropical forests and are loci of
high tree recruitment, growth, and carbon accumulation. Gaps, however, are also sites of
intense competition between lianas and trees, whereby lianas can dramatically reduce tree
carbon uptake and accumulation. Because lianas have relatively low biomass, they may
displace far more biomass than they contribute, a hypothesis that has never been tested with
the appropriate experiments. We tested this hypothesis with an 8-yr liana removal experiment
in central Panama. After 8 years, mean tree biomass accumulation was 180% greater in liana-
free treefall gaps compared to control gaps. Lianas themselves contributed only 24% of the
tree biomass accumulation they displaced. Scaling to the forest level revealed that lianas in
gaps reduced net forest woody biomass accumulation by 8.9% to nearly 18%. Consequently,
lianas reduce whole-forest carbon uptake despite their relatively low biomass. This is the first
study to demonstrate experimentally that plant–plant competition can result in ecosystem-
wide losses in forest carbon, and it has critical implications for recently observed increases in
liana density and biomass on tropical forest carbon dynamics.

Key words: annual increment; Barro Colorado Nature Monument; biomass; carbon storage; gap-phase
regeneration; lianas; Panama; treefall gaps; tropical forests.

INTRODUCTION

Tropical forests store more than one-third of all

terrestrial carbon and are responsible for nearly one-

third of terrestrial net primary productivity on the

planet, and thus they are a critical component of the

global carbon cycle (Beer et al. 2008, Pan et al. 2011).

Nearly all of the aboveground carbon in tropical forests

is held in tree biomass, and long-term carbon fluxes are

balanced largely by tree growth, which removes carbon

from the atmosphere, and tree death, which releases

carbon into the atmosphere (Clark et al. 2001).

Therefore, the vast majority of research on tropical

forest carbon dynamics has focused on the growth and

mortality of canopy trees (e.g., Clark et al. 2001, Chave

et al. 2008, Asner et al. 2010).

Canopy tree mortality results in the creation of

treefall gaps, which are a common form of natural

disturbance in tropical forests (e.g., Brokaw 1985,

Denslow 1987, Hubbell et al. 1999), and gaps have

important consequences for tree regeneration and forest

carbon accumulation. In many forests, 1–2% of canopy

trees fall each year (e.g., Swaine et al. 1987), and the

length of time for a tall canopy to regenerate within a

gap typically ranges from eight to 10 years or longer

(Brokaw 1985). Therefore, at any given time, 8–20% (or

more) of total forest area can be in a state of gap-phase

regeneration. The rate of carbon accumulation in gaps is

likely to be important because of rapid woody plant

recruitment and growth in these resource rich habitats

(e.g., Denslow 1987, Brokaw and Busing 2000). Fur-

thermore, the speed of gap-phase regeneration will

determine the amount of carbon accumulation in gaps,

which affects the capacity of tropical forests to store

carbon and, ultimately, influences the global carbon

balance. Nonetheless it remains unknown how the

intense competitive sorting of woody species that occurs

in gaps contributes to forest-wide carbon dynamics.

Gap-phase regeneration in tropical forests can follow

two primary trajectories. In the first, rapid tree

recruitment and growth reforms a high-canopy forest

within the first 10 years, concomitant with the rapid

accumulation of forest biomass and thus carbon (e.g.,

Brokaw 1985). Alternatively, lianas can proliferate

rapidly in gaps soon after gap formation, where they

compete intensely with trees, reducing tree recruitment,

growth, diversity, and abundance (Putz 1984, Schnitzer

et al. 2000, 2012, Schnitzer and Carson 2001, Dalling et

al. 2012, Ledo and Schnitzer 2014). Lianas can thus

redirect gap-phase regeneration away from a tree-

dominated state to one where lianas are far more

prevalent (Schnitzer et al. 2000, Foster et al. 2008).

Because lianas allocate little to structural support

relative to trees, it is likely that the biomass that would

have been stored in trees is not fully compensated for by

the lianas that supplanted them (van der Heijden and
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Phillips 2009, Schnitzer and Bongers 2011, van der

Heijden et al. 2013).
For example, on and in the vicinity of Barro Colorado

Island, Panama (BCI), lianas have been shown to have a
strong competitive effect on trees (Putz 1984, Schnitzer

et al. 2000, Schnitzer and Carson 2001, 2010, Ingwell et
al. 2010). Yet, in the BCI 50-ha forest dynamics plot,

lianas constituted 25% of the rooted woody stem density
(trees plus lianas) and 35% of the woody species
diversity, but only 3% of the woody plant basal area

(Schnitzer et al. 2012). Indeed, lianas commonly
constitute less than 5% of the woody plant biomass in

tropical forests (DeWalt and Chave 2004). In an
Amazonian forest in Peru, the correlation between tree

growth and liana infestation revealed that liana biomass
increment (based on diameter growth) compensated

only one-third of the biomass increment that they
displaced in trees (van der Heijden and Phillips 2009).

Thus, competition from lianas on trees may reduce net
forest carbon accumulation because lianas uptake far

less biomass than they displace in trees. Furthermore,
lianas are increasing in abundance, productivity, and

biomass in neotropical forests (reviewed by Schnitzer
and Bongers [2011]; Schnitzer, in press) and are

particularly abundant in treefall gaps (Schnitzer et al.
2000, 2012, Dalling et al. 2012, Ledo and Schnitzer
2014). Thus, the detrimental effect of lianas on gap-

phase regeneration and biomass accumulation and
storage is also likely to increase (Schnitzer et al. 2011).

To date, however, there have been no experimental
tests of the reduction of tree biomass accumulation due

to lianas and the contribution of liana stem growth and
mortality to forest-level biomass. We used an 8-yr liana

removal experiment to test three main hypotheses. First,
lianas reduce tree biomass accumulation in treefall gaps

by reducing tree recruitment and growth rate (and thus
biomass increment) and increasing tree mortality.

Second, liana biomass accumulation does not compen-
sate for the liana-induced loss of tree biomass accumu-

lation (recruitment, growth, and mortality) during gap-
phase regeneration. If the second hypothesis is correct,

then the displacement of trees by lianas will reduce
carbon sequestration in treefall gaps. We then used our

empirical data to parameterize a statistical model to test
and quantify our third hypothesis, that lianas reduce

forest-level carbon accumulation through their effect on
tree regeneration in treefall gaps. If lianas reduce tree
growth and survival rates in gaps, then more gaps will

remain in a low biomass state, which will lower the
capacity of tropical forests to sequester carbon.

MATERIALS AND METHODS

Study site and experimental design

We conducted the study from 1997 until 2006 in a
secondary, seasonally moist lowland tropical forest on

the Gigante Peninsula, a protected mainland forest that is
part of the Barro Colorado Nature Monument, Panama

(see Plate 1). Mean annual rainfall of this forest is 2600

mm, with a dry season from December until April. The

study site is described in more detail in Schnitzer and

Carson (2010).

In 1997, we located all (17) recent (,1 yr-old) natural

treefall gaps on the relatively flat, upland central plateau

of the Gigante Peninsula. We selected the gaps that were

present and did not exclude any gaps because of liana

density (high or low). We determined gap age by the

presence and condition of the fallen tree, and each gap

was defined as the area where a vertical line from the

edge of the canopy intersected the ground (Brokaw

1982, van der Meer and Bongers 2001). The gaps varied

in size from 145 m2 to 499 m2, which is a common gap

size range in tropical forests (Brokaw 1985, Sanford et

al. 1986, van der Meer and Bongers 2001). Gaps were

paired by size for the purpose of randomly assigning

treatments, either liana-removal or control. The liana-

removal and control gaps were statistically indistin-

guishable in total gap area (ANOVA: F1,15 ¼ 0.26, P ¼
0.62; Schnitzer and Carson 2010).

In 1997, we tagged, mapped, measured the diameter,

and identified to species all lianas and trees .1.3 m tall

in all 17 gaps. We censused all gaps again in 1998 using

identical methods to the 1997 census, and then cut all of

the lianas in eight of the gaps, leaving nine non-

manipulated gaps as controls. We cut 109 6 17 (mean

6 SE) lianas in each gap, comprising 20 6 2 species. We

cut lianas near the forest floor using machetes, but we

did not attempt to remove the lianas from the trees

because of the risk of damaging the tree crowns

(Schnitzer and Carson 2010, Tobin et al. 2012). Prior

to liana cutting, liana abundance, diversity, basal area,

and biomass, as well as tree biomass, recruitment,

growth (relative growth rate; RGR), and mortality

(from 1997 to 1998) did not differ between the controls

and the gaps where lianas were eventually removed

(Schnitzer and Carson 2010; see also Appendix A).

We visited all gaps monthly for the first two months

after liana cutting and then bimonthly for the next six

months to monitor the gaps and to cut resprouting liana

shoots in the removal gaps. After eight months, the cut

lianas were no longer resprouting vigorously, and thus

we visited the gaps to monitor them and to cut

resprouting liana shoots every 3–4 months between

censuses. We monitored liana removal and control gaps

with the same approximate frequency and intensity so

that we did not introduce a researcher visitation bias

among the treatments (Cahill et al. 2001, Schnitzer et al.

2002). We recensused the gaps in 1999, 2000, 2001, 2003,

and 2006 to quantify tree and liana growth, recruitment,

and mortality. We omitted the 2006 measurement for

two gaps because they were completely covered by the

crowns of newly fallen trees in that year (see Schnitzer

and Carson 2010). We calculated biomass for lianas and

trees using allometric equations from Schnitzer et al.

(2006) and Chave et al. (2005), respectively. We

calculated biomass accumulation per gap as the sum of
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stem growth plus recruitment minus mortality for both

trees and lianas.

Data analysis and modeling

We analyzed our data using a linear mixed effects

(LME) model, which can handle repeated measurements

of the same gaps over time, as well as missing data and

unbalanced designs without compromising the results

(Zuur et al. 2010). Linear mixed effects models include

fixed effects, which are explanatory variables associated

with an entire population or with repeatable experimen-

tal treatments, and random effects, which are associated

with individual experimental units, in this case, the

individual gaps, drawn at random from a population

(Pinheiro and Bates 2000). We constructed an LME

model to test whether cumulative tree biomass accumu-

lation (stem growth plus recruitment minus mortality),

biomass increment due to growth, and biomass loss due

to mortality over time differed between the treatments.

Recruitment represented less than 1% of tree biomass

accumulation, so we did not model it separately. We

included initial tree biomass in the model because gaps

with higher initial biomass may have stronger responses

in their cumulative rate of biomass increment (growth

and recruitment) and loss (mortality) compared to gaps

with lower initial biomass. The response variables were

cumulative and all started at zero at the time of liana

cutting, so we excluded the intercept from the model.

The initial fixed effects component of the model was

y ¼ b1treati þ b2timei þ b2timei þ b3AGBini

þ b4treati 3 timei þ b5timei 3 AGBini

þ b6treati 3 timei 3 AGBini ð1Þ

where y is the response variable, i.e. the gain in biomass

due to stem increment and recruitment minus biomass

loss due to mortality, treat is treatment (i.e., control or

removal), AGBin is initial tree biomass, and b’s are the

fixed effects parameters. Polynomial terms for time were

included as necessary.

Individual gaps were included as a grouping variable

in the random effects component of the model, because

the cumulative biomass variables in the gaps were

repeatedly measured over time. Individual gaps may

experience different abiotic and biotic conditions, which

may influence the extent of the change in cumulative

biomass over time. Therefore, we allowed individual

gaps to vary in their rate of change in biomass

accumulation by including gap size, initial biomass

(Appendix A), and their interactions with time in the

random effects model. Our full initial model including

fixed and random effects was

ygap ¼ fixed effect modelð1Þ þ a1gapgapsizei

þ a2gaptimei 3 gapsizei þ a3gaptimei 3 AGBini ð2Þ

where a’s are the random effects parameters.

The contribution of each fixed and random effect was

assessed by deleting variables one at a time from the full

model and comparing the depleted models with the full

model using a v2 test based on log-likelihood ratios

(Pinheiro and Bates 2000) and an Akaike information

criterion with a correction for finite sample sizes (AICc),

favoring models with low AIC (Burnham and Anderson

2002). We used restricted maximum likelihood (REML)

to compare nested models in which only the random

effects differed and maximum likelihood to compare

nested models where the fixed effects differed (Burnham

and Anderson 2002). Models were considered compet-

itive when DAICc � 2, and in these instances the most

parsimonious model (i.e., the model with the fewest

parameters) was used. We used REML to calculate the

estimates of the parameters for the ‘‘best’’ model.

To estimate the effect of lianas on biomass accumu-

lation in gaps, we generated two models for each of the

three response variables: (1) cumulative biomass accu-

mulation (growth plus recruitment minus mortality), (2)

cumulative biomass accumulation due to growth, and

(3) cumulative biomass loss due to mortality. In the first

model, we examined only tree biomass accumulation

with the aim of assessing the effect of liana removal on

tree biomass dynamics. In the second model, we

included the biomass accumulation of both trees and

lianas for the control gaps to quantify the extent to

which liana biomass dynamics compensate for the liana-

induced reduction in tree biomass accumulation. The

difference between biomass accumulation of the control

gaps excluding lianas and the control gaps including

lianas was taken to be the extent of the compensatory

effect of lianas.

The resulting best-fit models for each of the response

variables followed a similar format

ygap ¼ b1timei 3 treati 3 AGBini þ a1gaptimei 3 AGBini:

ð3Þ
Only the model for biomass increment due to growth

contained b2time for the first model, and b2time þ
b3time2 for the models including lianas (Appendix B).

Initial tree biomass and gap size were positively

correlated, but initial biomass in the fixed effect part of

the model resulted in a better overall model fit (DAICc

.2). To test whether predicted values from the model

matched the empirical data that we collected over the

8-yr period, we used the model to predict cumulative

biomass accumulation for each time period for each gap

and compared this with the observed values. The model

output closely matched the empirical data (Appendix C).

To extend the gap-level effects to the forest level, we

estimated the effects of lianas in gaps by using the

conservative assumptions of a 1% annual canopy tree

mortality rate, a more realistic 2% annual canopy tree

mortality rate (Swaine et al. 1987), and a gap-phase

regeneration rate of 8 years, i.e., 8% of the total forest

area is in a gap state. Based on the fixed effects model

using average initial biomass values, we then calculated

STEFAN A. SCHNITZER ET AL.3010 Ecology, Vol. 95, No. 11



the mean cumulative biomass increment for each year

over the 8-yr period for trees in the liana-free gaps and

in the control gaps, and the relative contribution of liana

biomass increment to that of trees in the control gaps

and extrapolated this over 0.08 ha of forest (the

proportion of forest in some stage of gap-phase

regeneration, assuming a 1% disturbance rate).

RESULTS

Lianas substantially reduced tree biomass accumula-

tion in gaps. At every census period, the relative tree

biomass accumulation was higher in liana-free gaps than

in control gaps where lianas were present (Fig. 1). After

8 years, tree biomass accumulation was 180% higher in

the liana-free gaps than the control gaps (dashed black

line vs. solid black line in Fig. 2). Liana-free gaps

accumulated a mean tree biomass of 2.47 kg/m2 in this

time period, whereas control gaps gained a mean tree

biomass of 0.88 kg/m2, demonstrating that lianas

reduced mean tree biomass accumulation in gaps by

1.59 kg/m2.

Adding the contribution of liana biomass accumula-

tion to tree biomass accumulation in the control gaps

did not compensate for the large liana-induced loss of

tree biomass. Over the 8-yr period, liana biomass

accumulation added 24% (0.38 kg biomass/m2) of the

biomass accumulation that lianas displaced in trees

(gray line vs. solid black line in Fig. 2). These findings

demonstrate that lianas displaced three times more tree

biomass accumulation than they themselves contributed

to woody plant biomass regeneration in treefall gaps.

Over the 8-yr period, lianas reduced biomass accu-

mulation by both reducing tree growth (i.e., increment;

Fig. 3a) and increasing tree mortality (Fig. 3b). Tree

biomass increment due to growth was two times greater

in liana-free gaps compared to control gaps (Fig. 3a).

Trees in liana-free gaps accumulated 2.23 kg/m2 biomass

from growth over the 8-yr period, whereas trees in

control gaps accumulated 1.12 kg/m2 biomass from

growth. Thus, lianas substantially limited tree biomass

increment by reducing tree growth. Lianas also reduced

tree biomass accumulation by increasing tree mortality

(Fig. 3b). However, the loss of biomass increment due to

liana-induced tree mortality was relatively minor (16%
loss of gap-level tree biomass accumulation) compared

to the 84% loss due to liana-induced reduction in tree

growth (Fig. 3a). Liana biomass increment (from

growth) largely offset the liana-induced reduction in

tree biomass from decreased growth (Fig. 3a); however,

liana mortality was high (Fig. 3b), which reduced their

cumulative contribution to woody plant biomass accu-

mulation to only 24% of what they displaced in trees

(Fig. 2).

The degree to which lianas reduced tree annual

biomass accumulation depended on the initial tree

biomass in the gap. Lianas in gaps with high initial tree

biomass had a relatively large effect on total annual

biomass accumulation, whereas the lianas in gaps with

low initial tree biomass had a much smaller effect on

total annual biomass accumulation (Fig. 4, Appendix

D). Nonetheless, the mean effect of lianas on total

annual biomass accumulation considering all gaps was

substantial, demonstrating that lianas in gaps can have a

large effect on forest-level biomass accumulation.

We expanded these findings to the forest level to test the

hypothesis that lianas reduce forest-level carbon seques-

FIG. 1. Mean relative biomass accumulation (growth and mortality measured as a percentage of the previous census) over an 8-
yr period (1998–2006) in treefall gaps with lianas removed and in control gaps with lianas present on Gigante Peninsula, Barro
Colorado Nature Monument, Panama. The dark bars represent mean annual biomass accumulation in the absence of lianas (liana
removal gaps), the gray bars represent annual biomass accumulation of trees in control gaps, and the white bars represent the sum
of tree and liana annual biomass accumulation in control gaps. Error bars represent standard error. Significant differences between
the treatments are indicated by asterisks. Adding liana biomass increment to tree biomass increment in the control plots did
significantly change the results.

* P � 0.10, ** P � 0.05.
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tration using the assumptions of a gap-phase regeneration

rate of 8 years and a 1% or 2% canopy tree mortality rate

(Swaine et al. 1987). Using the conservative 1% canopy

tree mortality rate, we found that lianas in gaps reduced

forest-level tree biomass accumulation by 0.159

Mg�ha�1�yr�1 (equivalent to 0.08 Mg C�ha�1�yr�1). Lianas
themselves, however, added just 0.038 Mg�ha�1�yr�1
(equivalent to 0.019 Mg C�ha�1�yr�1) to forest-level

biomass accumulation. In total, the net liana-induced loss

of annual biomass increment (the effect of lianas on trees

minus the contribution of lianas to annual biomass

increment) was 0.121Mg�ha�1�yr�1 (0.06 Mg C�ha�1�yr�1)
for a 1% tree mortality rate. Doubling the tree mortality

rate doubled the forest-level biomass and carbon accu-

mulation to 0.242Mg�ha�1�yr�1 and 0.12 Mg C�ha�1�yr�1,
respectively. Tree annual increment of the surrounding

forest on the Gigante Peninsula was 1.356 Mg�ha�1�yr�1,
based on tree biomass increment of more than 2000 trees

�10 cm diameter from 2008 to 2011 in 16 603 60 m plots

(Schnitzer et al. unpublished data). Thus, lianas in gaps

displaced 8.9–17.8% of the forest-level annual biomass

accumulation in this forest.

DISCUSSION

This is one of the first studies to demonstrate

experimentally that competition between plants (in this

case lianas and trees) in tropical forests can lead to

substantial decreases in biomass accumulation. Compe-

tition is often thought to be a zero-sum game with

respect to annual biomass accumulation because bio-

mass displaced in one individual is incorporated into

another, and the overall productivity of an ecosystem is

thought to be regulated by the total amount of resources

available (e.g., Tilman 1982, Hubbell 2001). Indeed, this

scenario may be largely true for competition within a

given growth form (e.g., tree vs. tree, liana vs. liana, herb

vs. herb). Among growth forms, however, the zero-sum-

game assumption breaks down because biomass storage

capacities among competing growth forms can differ far

more than among competing individuals within a given

growth form.

Lianas competed intensely with trees in this forest, but

failed to compensate for the tree biomass accumulation

that they displaced, because lianas have relatively low

wood volume and a high rate of turnover. Liana wood

volume is low because, as structural parasites that use

the architecture of trees to ascend to the forest canopy,

they do not develop a large supportive stem (Ewers et al.

1991, Schnitzer et al. 2006). Liana stems are generally

porous and maximized for water transport rather than

structural support (e.g., Ewers et al. 1991). Relatively

high liana mortality found in this study further limited

FIG. 2. Aboveground biomass (AGB) accumulation in treefall gaps over an 8-yr period (1998–2006) on Gigante Peninsula. The
dashed black line represents tree biomass accumulation from growth and mortality in gaps without lianas, the solid black line
represents tree biomass accumulation from growth and mortality in control gaps with lianas present, and the solid gray line
represents the additive aboveground biomass accumulation of lianas and trees (growth and mortality) in the control gaps.
Confidence intervals (90%) are shown for each of the aboveground biomass increment lines.
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the contribution of lianas to forest carbon accumula-

tion.

Our study, along with three previous studies (Phillips

et al. 2005, Ingwell et al. 2010, Yorke et al. 2013),

document the relatively rapid turnover of lianas

compared to trees. Phillips et al. (2005) suggested that

lianas were a ‘‘hyperdynamic’’ element in tropical forests

because they had a fast rate of disappearance compared

to trees, presumably from death. Ingwell et al. (2010)

corroborated the idea of lianas being extremely dynamic

by showing that over a 10-yr period, liana-free trees

could become completely inundated by lianas (.75% of

FIG. 3. (a) Cumulative aboveground biomass increment from woody plant growth and (b) loss from tree mortality in treefall
gaps on Gigante Peninsula. The dashed black line represents tree aboveground biomass increment in liana-free gaps, the solid black
line represents tree aboveground biomass increment in control gaps where lianas were present, and the gray line represents the
additive aboveground biomass increment of lianas and trees in control plots. Confidence intervals (90%) are shown for each of the
aboveground biomass increment lines. Note that the y-axes are different, giving in panel (b) cumulative aboveground mortality the
appearance of a larger contribution than it actually has.
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the crown covered), and some trees that were completely

covered by lianas could become liana-free during this
period. Yorke et al. (2013) highlighted the complexities

of liana turnover, demonstrating that many liana stems

recruit into the community by falling from the canopy

and subsequently rooting and reestablishing in the

understory, which indicates that a liana individual can
theoretically disappear from one location and reappear

in another.

Our finding that lianas displace more biomass than

they contribute is consistent with two other studies.

Tobin et al. (2012) tested whether lianas have a stronger

competitive effect than trees in the Gigante Peninsula
forest by removing the same amount of either liana

biomass or tree biomass from around selected target

trees. The authors found that tree sap velocity increased

immediately following liana removal, whereas tree sap
velocity did not change following tree removal, indicat-

ing that lianas have a much stronger competitive effect

per unit biomass than do trees. Similarly, van der

Heijden and Phillips (2009) examined the correlative

relationship between tree growth and liana infestation in
a mature forest in Amazonian Peru and estimated that

lianas reduced tree biomass increment by 10%, and that

lianas compensated 30% of this liana-induced reduction

in biomass increment. Biomass accumulation from liana

growth in our study was higher than that reported by

van der Heijden and Phillips (2009), which may have

been due to our focus on gaps and the high concentra-
tion of lianas in gaps (Putz 1984, Schnitzer and Carson

2000, 2001, 2010, Dalling et al. 2012, Schnitzer et al.

2012), as well as the presumably greater number of

lianas in secondary forests such as the Gigante Peninsula

(DeWalt et al. 2000). However, the high loss of biomass
due to liana mortality (Fig. 3b) substantially reduced

total liana biomass accumulation, resulting in lianas

compensating only 24% of the biomass uptake that they

displaced in trees.

Lianas and whole-forest biomass accumulation

Considering the huge contribution of tropical forests

to aboveground terrestrial carbon stocks and net

primary productivity (Beer et al. 2008, Pan et al.

2011), even small losses in carbon storage capacity
represent an enormous absolute volume of carbon that

will remain in the atmosphere. We found that the net

reduction in biomass accumulation from lianas was 8.9–

17.8%; a substantial loss in the capacity of this forest to

sequester biomass. Furthermore, we believe that our
estimate is conservative and that lianas likely have a

much greater effect on forest biomass increment and

thus carbon accumulation. Canopy tree mortality and

forest turnover rates are typically much greater than 1%
and can even exceed 2% in many tropical forests (Swaine

FIG. 4. The effect of lianas on mean annual biomass accumulation in gaps that differ in initial tree aboveground biomass on
Gigante Peninsula. Lianas had a substantially greater effect on aboveground biomass accumulation in large gaps with high initial
biomass compared to small gaps with low initial biomass.
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et al. 1987). Carbon accumulation in the Gigante

Peninsula forest using a more realistic forest turnover

rate of 2%, keeping constant the conservative 8-yr gap

regeneration estimate for which we had empirical data

(Schnitzer and Carson 2010), revealed that lianas could

reduce total forest biomass accumulation by nearly 18%.

Our estimated gap closure rate of 8 years is also likely

to be conservative. Treefall gaps can take far longer than

8 years to regenerate, particularly when lianas are

present (Brokaw 1985, Schnitzer et al. 2000). Lianas

reduce tree recruitment, growth, and survival in gaps,

increasing the amount of time that it takes gaps to

recover a tall canopy (Schnitzer et al. 2008, Schnitzer

and Carson 2010). In many cases, lianas arrest tree

regeneration, leaving gaps in a recalcitrant, low-canopy

state for decades (Schnitzer et al. 2000). These liana-

dominated, low-canopy sites can expand outward over

time (Foster et al. 2008), presumably when neighboring

trees fall or are pulled into the gap by lianas (Young and

Hubbell 1991). Lianas also reduce biomass accumula-

tion in the intact forest, where they have an additional

negative effect on forest-level biomass accumulation

(e.g., Grauel and Putz 2004, van der Heijden and Phillips

2009, Tobin et al. 2012). Consequently, using more

realistic estimates of forest turnover and considering

both gap and intact forest, the effects of lianas on

carbon accumulation are likely to be far greater than our

relatively conservative estimate.

Whether liana belowground biomass compensates for

their aboveground effects is unknown, but we think that

it is unlikely. Lianas maximize their root system for

water and nutrient foraging, uptake, and transport

rather than anchoring, and thus lianas likely have long,

porous, highly efficient roots that are able to adequately

provide sufficient amounts of water to their stems (e.g.,

Tyree and Ewers 1996). In contrast, tree roots are likely

to reflect the lower porosity of their stems because of the

lower per-area water demand from the stem, as well as

the important role of tree roots in anchoring the trunk

(Tyree and Ewers 1996). Thus, the same constraints on

liana and tree stems may apply to their roots. The

belowground contribution of lianas and trees to forest

biomass increment and storage may be an important

component of the carbon cycle, but is currently poorly

understood (van der Heijden et al. 2013; Powers, in

press).

Within-forest variation of the liana effect on

forest biomass

The strength of the liana effect on carbon accumula-

tion within a given forest will vary with a number of

factors, including liana density, tree biomass, and the

rates of forest turnover and gap-phase regeneration. In

the current study, lianas imposed the greatest reduction

in carbon accumulation in gaps that had the highest

initial tree biomass compared to gaps with lower initial

tree biomass (Fig. 4, Appendix D). Initial tree biomass

and gap size were positively correlated, and therefore

lianas will likely have the greatest effect on carbon

accumulation in large gaps where the biomass of

regenerating trees is high. Lianas will also likely have a

large effect on carbon accumulation in young secondary

forests, where liana and tree densities can be exceedingly

high (DeWalt et al. 2000; Letcher, in press).

PLATE 1. Lianas in the understory on Barro Colorado Island, Panama. Photo credit: Christian Ziegler.
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The ongoing increase in liana density, biomass, and

productivity in many neotropical forests (reviewed by

Schnitzer and Bongers 2011; Schnitzer, in press) could

result in further loss of carbon accumulation in those

forests. For example, tree biomass on Barro Colorado

Island has decreased substantially over the past 30 years

(Chave et al. 2008), whereas liana abundance, produc-

tivity, and level of canopy tree infestation in this forest

have all increased over this same period (Wright et al.

2004, Ingwell et al. 2010, Schnitzer et al. 2012). While it

is premature to conclude that lianas are the predominant

factor responsible for tree biomass decreases on BCI,

our data, along with other experimental studies on the

negative effects of lianas on trees (Grauel and Putz 2004,

Schnitzer et al. 2005, Toledo-Aceves and Swaine 2008,

Schnitzer and Carson 2010), suggest that this is a viable

hypothesis. Data from this current study and from the

general negative relationship between liana density and

basal area and tree carbon uptake and storage found in

other forests (e.g., van der Heijden and Phillips 2009,

Durán and Gianoli 2013, van der Heijden et al. 2013)

indicate that lianas can have a huge detrimental effect on

biomass uptake in tropical forests, which can severely

limit the capacity of tropical forests to accumulate

carbon. Increases in liana abundance will likely further

reduce forest-level biomass and carbon accumulation

and storage.
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