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Abstract 

 
Unusual strength and directionality for the charge-transfer motif (established in solution) are shown to carry 
over into the solid state by the facile synthesis of a series of robust crystals of the [1:1] donor/acceptor 
complexes of carbon tetrabromide with the electron-rich halide anions (chloride, bromide, and iodide). X-ray 
crystallographic analyses identify the consistent formation of diamondoid networks, the dimensionality of which 
is dictated by the size of the tetraalkylammonium counterion. For the tetraethylammonium bromide/carbon 
tetrabromide dyad, the three-dimensional (diamondoid) network consists of donor (bromide) and acceptor 
(CBr4) nodes alternately populated to result in the effective annihilation of centers of symmetry in agreement 
with the sphaleroid structural subclass. Such inherently acentric networks exhibit intensive nonlinear optical 
properties in which the second harmonics generation in the extended charge-transfer system is augmented by 
the effective electronic (HOMO−LUMO) coupling between contiguous CBr4/halide centers. 

Introduction 
Tetrahedrally shaped molecular and ionic entities can be self-assembled to form highly symmetrical crystalline 

networks in the same fashion that sp3-hybridized carbon atoms are covalently linked in the diamond (crystal) 

structure. Thus, Ermer1 first showed how tetracarboxylic acids derived from adamantane and neopentane form 

diamondoid networks interconnected by (strong) double hydrogen bonds between the terminal carboxy groups (see 

Chart 1). This approach has also been used by Wuest,2 Desiraju,3 Galoppini,4 and co-workers, who employed 

substituted tetraphenylmethanes as building blocks coupled with an array of attractive intermolecular forces. The 

second approach exploits intermolecular interactions, not directly between the tetrahedral building blocks, but 

through appropriate (linear) spacers. In this way, Kitazawa, Iwamoto, et al.5 utilized coordination compounds in which 

identical tetrahedral metal centers (Cd2+) are linked through linear bidentate ligands (CN-). Variation of the symmetry 

of the bridging ligands/molecules then results in two different structural classes − cubic silica-related structures from 

symmetric bridges and cubic ice-related structures from asymmetric bridges (see Chart 2). The concept of symmetric 

bridging was developed by Zaworotko and co-workers6 for tetrahedral Mn-clusters hydrogen-bonded through a 

variety of organic spacers, by Ciani et al.7 for some silver(I) complexes, and by Aoyama et al.8 for purely organic 

systems. The use of asymmetric bridging by Evans, Lin, et al.9 exploits the intrinsic lack of inversion symmetry to 
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produce an interesting array of noncentrosymmetric Cd and Zn complexes for nonlinear optical applications. 

Recently, Desiraju, Clearfield, and co-workers10 also attempted the ice-related assembly of asymmetric 

tetraphenylmethane moieties. The third (and the least developed) approach was formulated by Hoskins and 

Robson11 who interconnect tetrahedral organic (tetraarylmethane) or coordination (zinc cyanide) blocks, not through 

linear, but through tetrahedral copper(I) “joints” that result in diamondoid networks with alternate tetrahedral nodes 

(see Chart 3).13 These distinctive arrays in fact belong to the sphalerite (ZnS)12 structural subclass of diamondoid 

networks which intrinsically lack inversion centers. [Yet this important point seems to have been overlooked by 

recent investigators.14] 

 
Chart 1 

 
Chart 2 
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Chart 3 

 

Although seemingly easy to assemble,15 the majority of the diamondoid networks suffer from severe instability 

because of their loose packing. All of these structures inherently contain cavities in which the (large) size is 

determined by the distance between tetrahedral nodes. The close-packing principle can normally be satisfied only for 

the most simple diamondoid structures such as elemental silicon, germanium, gray tin, zinc blende, etc. Yet for 

diamondoid motifs built of the more extended elements, the void space within the adamantane cages can be quite 

significant and constitute more than 50% of the overall structural volume. Without extra supporting features, such 

superporous structures generally suffer from shakiness and are prone to collapse easily.16 

An innate solution of the void problem lies in the spontaneous formation of not one, but several identical diamondoid 

networks that interpenetrate and thus provide the appropriate packing density. This structural phenomenon has 

been found to be of general importance for three-dimensional networks,17 and, in particular, the geometrical 

conditions of the interpenetration have been explicitly formulated for diamondoid networks.18 Another, more 

controllable, option for stabilizing large diamondoid networks can be found in the formation of 

clathrates.19 Importantly, the generally unimpressive stability of clathrate systems can be dramatically improved by 
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strong Coulombic forces, when the neutral guest molecules are substituted by counterions of the appropriate size 

and the diamondoid network itself has the opposite electrical charge.21 

To systematically develop the charge-transfer (CT) motif for the crystal engineering of stable diamondoid networks, 

we wish to now focus on the utilization of carbon tetrabromide (CBr4) as the simplest (tetrahedral) building element. 

Indeed, this prototypical electron acceptor forms intermolecular complexes with one-dimensional donors,24 the 

charge-transfer nature of which has been revealed in a series of physical-chemical studies.25 Although the isolation of 

crystalline solids met significant difficulties due to the relatively low free energy of the complex formation, we earlier 

found stronger charge-transfer complexes of CBr4 using better electron donors, especially tertiary aliphatic 

amines.26 On the basis of that study, Desiraju and co-workers attempted an assembly of crystalline diamondoid 

donor/acceptor networks using hexamethylenetetramine (HMT) as the tetrahedral donor core.13a The resulting 

diamondoid (sphaleroid) network suffered from positional disorder between CBr4 and HMT (because of their similar 

size). A subsequent attempt to stabilize an extended tetrabromoadamantane/HMT network, using an excess of 

tetrahedral CBr4 to fill the cavities, resulted in a much weaker (and also disordered) donor/acceptor 

assembly.13b Additionally, these systems lacked continuous electronic coupling (i.e., through-orbital interaction) within 

their diamondoid networks because of the nonconducting nature of aliphatic CH2-bridges in the HMT and 

(tetrabromo)adamantane units. 

Our interest in electronically coupled27 donor/acceptor diamondoid networks is based on the equimolar combination 

of the carbon tetrabromide acceptor with simple inorganic anionic donors, because the halide ions (chloride, 

bromide, and iodide) are known to form donor/acceptor complexes with CBr4.28,29 Importantly, the use of these 

electrically charged donor units provides us with four significant advantages:  (a) the enhancement of the network-

forming CT interactions, (b) the general structural stabilization due to formation of ionic “clathrate” networks where 

the appropriate packing density is additionally supported by Coulombic forces between “guest” cations and the 

embodying anionic “host” matrix, (c) the variable size of the countercation to allow a controlled adjustment of the 

packing density − the ready availability of a series of tetraalkylammonium ions (NR4+) of progressively different sizes (R 

= Me, Et, Pr, and Bu) being especially important, and (d) we believe the (Br3CBr···halide) association represents quite a 

feasible combination for continuous electronic coupling throughout the entire donor/acceptor network. Finally, we 

stress that such a diamondoid design with the alternate donor/acceptor synthons leads to highly desirable acentric 

structures, because of the polar “sphaleroid” symmetry,14 and these are known to produce crystals with nonlinear 

optical properties.12 

Results 
Although there have been attempts to employ progressively weaker intermolecular interactions for the molecular 

crystal assembly of diamondoid networks,3,4,6,10 such interactions must be sufficiently strong (and directional) to be 

dominant over other (offsetting) crystal packing forces. However, because of controversial estimates of the suitability 
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of carbon tetrabromide for use in stable crystalline (3-D) donor/acceptor assemblies,30 our first goal was to evaluate 

quantitatively the nature and strength of the [1:1] association of CBr4 with various halide anions, as well as the 

magnitude of the charge-transfer electronic coupling element between these acceptor/donor moieties via spectral 

measurements in solution.32 

I. Charge-Transfer Association of Carbon Tetrabromide and Halide Salts. A. Electronic (UV−Vis) Spectra of [1:1] 

CBr4/Halide Complexes. When carbon tetrabromide (λmax = 225 nm, ε225 = 6.2 × 103 M-1 cm-1) was incrementally added 

to tetra-n-propylammonium bromide (λmax < 200 nm) in dichloromethane, a new, distinctive spectral band appeared 

and progressively grew at λmax = 292 nm as illustrated in Figure 1. The application of Job's method33 to the new 

absorbance at different molar ratios of CBr4/Br- confirmed the [1:1] stoichiometry of the electron donor/acceptor 

(EDA) association,34 that is 

 
Similar spectral behavior was observed for carbon tetrabromide with chloride and iodide as the n-propylammonium 

salts (see Table 1).35,36 

 

 
Figure 1 Spectral changes attendant upon the addition of tetrapropylammonium bromide to a 7.5 mM solution of carbon 
tetrabromide in dichloromethane at 22 °C. Concentration of Pr4N+Br- [mM]:  (a) 0; (b) 18; (c) 38; (d) 56; (e) 75; (f) 94. For 
comparison:  (g) is the spectrum of 50 mM Pr4N+Br- alone. Inset:  Mulliken correlation between the energy of the charge-transfer 
band and the oxidation potential of the donor in the complexes of CBr4acceptor with halides (as indicated). 

Table 1.  Spectroscopic and Energetic Characteristics of the Charge-Transfer Complexes between CBr4 and Halide Ionsa 

halide Cl- Br- I- 
λmax [nm] 265 292 345 
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εCT [M-1 cm-1, ×10-4]b 0.6 1.0 1.3 
K [M-1]c 3.0 2.8 3.2 
Epa [V, vs SCE] 1.37 0.96 0.42 
RDA [Å]d 3.09 3.15 3.30 
HDA [eV] 0.62 0.65 0.54 

a As NPr4+ salts in dichloromethane solution at 22 °C.b Estimated standard deviation 0.1 × 104 M-1 cm-1.c Estimated 
standard deviation 0.5 M-1.d The Br···halide separation was determined crystallographically. 

 

B. Mulliken Correlation of the Charge-Transfer Energies. Although the halide association with carbon tetrabromide 

has been tentatively ascribed to an intermolecular donor/acceptor interaction,28c only electronic spectroscopy can 

provide the unambiguous assignment to the charge-transfer nature of the binding. Thus, according to Mulliken,37 the 

energies (hνCT) of the absorption bands of a related series of molecular complexes sharing a common acceptor (CBr4) 

must be linearly dependent on the oxidation potentials of the donors (halides). The latter were quantitatively 

extracted as the cyclic voltammetric peak potentials (Epa, V vs SCE) as listed in Table 1. The linear correlation in Figure 

1 (inset) of these anodic potentials with the spectral energies of the chloride, bromide, and iodide complexes 

establishes the charge-transfer character of the CBr4/halide associations. 

C. Charge-Transfer Bindings of Carbon Tetrabromide to Halide Donors. The thermodynamics of the CBr4/halide 

bindings in eq 1 were quantitatively calculated from the formation constants KEDA according to the Benesi−Hildebrand 

methodology,38 that is 

 

where ACT and εCT are the absorbance and extinction coefficient of the new (charge-transfer) absorption band. 

Essentially the same values of the formation constants were independently obtained using the Drago procedure.33 The 

resulting values of KEDA in Table 1 lay in the rather narrow range of KEDA = 2.8−3.2 M-1, consistent with some earlier 

determinations.28a,32 Indeed, such values represent free energies of formation of −ΔGEDA = 2.7 (chloride), 2.5 (bromide), 

and 2.8 (iodide) kJ/mol and place this class of donor/acceptor interactions in the range of various other charge-

transfer complexes for crystal-forming purposes.39 

D. Electronic (HOMO−LUMO) Coupling of Carbon Tetrabromide and Halide Moieties. The discrete charge-transfer 

bands of the various CBr4/halide complexes in Table 1 allow the effectiveness of the electronic coupling between the 

CBr4 acceptor and the halide donors to be quantitatively evaluated.37,40 Thus, in charge-transfer complexes, the 

Mulliken−Hush theory predicts the electronic coupling element (HDA) between the donor and acceptor moieties to be 

directly related to the spectral properties and the structure of the complex as 

 

where νCT, Δν1/2, and εCT are the energy of the spectral band, its full width at half-height (in eV), and the molar 

extinction coefficient (in M-1 cm-1), respectively. RDA is the spatial separation (Å) between the donor/acceptor centers, 
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which we evaluated from the X-ray crystallographic results (vide infra). The sizable magnitudes of the values of HDA in 

the range 0.5−0.6 eV for the various CBr4/halide complexes in Table 1 are strongly indicative of the considerable 

orbital interaction (electronic coupling) that is extant in the CBr4/halide system.41 

Spectroscopic studies thus point to the binary association of CBr4 and either chloride, bromide, or iodide that is 

uniformly strong and appropriately accompanied by efficient electronic coupling and therefore suitable for the 

charge-transfer assembly of diamondoid (electronically coupled) networks. A variety of crystalline [1:1] complexes of 

the general formula [R4N+halide-,CBr4] can be easily and regularly prepared in different nonaqueous solutions by 

merely mixing equimolar amounts of the constituents.28a,b The fact that such a highly heteropolar mixture of an (ionic) 

salt and neutral (uncharged) acceptor would so readily yield true charge-transfer complexes is by itself rather 

unusual, because it is much more common to experience their separate crystallization as a mixture of homosoric 

crystals. As a result, we could examine two series of charge-transfer crystals to monitor the structural changes arising 

from (a) the nature of the halide donor and (b) the size of the tetraalkylammonium counterion as follows. 

II. X-ray Crystallography of Charge-Transfer Complexes of Carbon Tetrabromide with Alkylammonium Halides. A. 

Effect of Halide Variation. The graded series of the diamondoid donor/acceptor network shown in Figure 2 derive 

from the charge-transfer complexes of tetraethylammonium salts with the halide as chloride, bromide, and iodide, in 

which the tetrahedral CBr4 alternates in a regular manner with the halide at the nodes of adamantane-like cages. The 

general shape of the cages, secluded for scrutiny in Figure 3, is identical for all three isomorphous structures, but their 

size depends on the “length” of the (Br3CBr···halide) interaction. The smallest chloride donor gives Br···Cl- distances of 

3.090 Å (shortened by 0.51 Å from the van der Waals limit31) and a cage volume of 392.8 Å3. The midsize bromide 

gives Br···Br- distances of 3.154 Å (shortened by 0.55 Å from the van der Waals limit31) and a cage volume of 407.3 Å. 

Finally, the largest iodide gives Br···I- distances of 3.298 Å (shortened by 0.53 Å from the van der Waals limit31) and a 

cage volume of 443.5 Å3. 
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Figure 2 The diamondoid donor/acceptor network in the structures of [Et4N+halide-,CBr4] complexes. In all figures, the halide 
anions are shown as green circles, and the donor/acceptor bonds are shown as empty lines. The Et4N+ counterions are omitted for 
clarity. 

 
Figure 3 The elementary adamantane-like cage in the structures of [Et4N+halide-,CBr4] complexes supported from within the cavity 
by NEt4+ counterion. 

 



The significant change of the cell volume (by 13%) in proceeding from chloride to iodide is accommodated by the 

Et4N+ counterions, which support the lacelike anionic diamondoid constructions from within their cavities. It is 

important to mention that these diamondoid structures of the sphaleroid structural class contain adamantane-like 

cavities of two different types, A4D6 and A6D4 (A = CBr4 and D = halide), where the “tetrahedral” and “octahedral” 

vertices are occupied by different components as is schematically illustrated in Chart 4. Generally speaking, the 

electrostatic potential within these two types of cavities is different, and they are structurally nonequivalent, the 

Et4N+ ion being found only in the (CBr4)6(halide)4 cavity (see Figure 3).42Simultaneously, the terminal ethyl arms of the 

countercation interpenetrate from four sides into the adjacent (CBr4)4(halide)6 cavities to effectively fill the void space. 

As a result, the (CBr4)4(halide)6cavities are occupied by quartets of the closely packed Me-groups making van der 

Waals contacts with each other. In the rather expanded iodide structure, the loose fitting of the Et4N+ ions is 

characterized by rotational disorder. 

 
Chart 4 

 

All of the tetraethylammonium complexes crystallize in the space group of symmetry I-4 that reflects the predictable 

absence of inversion centers in such alternated donor/acceptor diamondoid networks (Figure 3).43 However, none of 

the charge-transfer crystals have an ideal (diamondoid) F-centered cubic symmetry.44 The reason for the observed 

tetragonal distortions can be attributed to the shape of the tetraethylammonium cations, which are deprived of 

three-fold symmetry and thus cannot fit ideally into a cubic crystal arrangement.45 Importantly, such tetragonal 

deviations from cubic symmetry are known to enhance nonlinear optical properties of some diamondoid inorganic 

structures.12b 
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Figure 4 The two-dimensional honeycombed donor/acceptor layer in the structure of [Bu4N+Br-,CBr4] as the result of fragmentation 
of the three-dimensional diamondoid network shown in Figure 2. Note:  the noncentrosymmetric structure is polarized across the 
mean plane. 

 

B. Effect of Counterion Variation. The variations in the size of the “supporting” tetraalkylammonium counterions 

were expected to modify, or even break, the diamondoid connectivity of the donor/acceptor moieties in the 

CBr4/halide networks.46 Even if the precise outcome of this modification was difficult to predict, the experimentally 

obtained crystal structures could be rationalized remarkably well for those derived from the charge-transfer 

complexes [NMe4+Br-,2CBr4], [NPr4+Br-,CBr4], [NBu4+Br-,CBr4], and [DBU−H+Br-,CBr4],47 as follows: 

(i) The smallest size of the Me4N+ cation was not sufficient to support the integrity of the diamondoid network, 

although it was envisaged28a,b that the developing voids could be filled with additional CBr4 acceptor. Indeed, the [1:2] 

complex [NMe4+Br-,2CBr4] that precipitated from solution contained an additional molecular equivalent of CBr4 to 

maintain the diamondoid arrangement and (primitive) cell dimensions quite similar to that of its Et4N+ analogue.48 

(ii) With a tetraalkylammonium ion of a larger size than Et4N+, a fragmentation of the pristine diamondoid network 

was likely to occur as a result of the internal (steric) obstacles. Remarkably, we found the structure of 

tetrabutylammonium derivative to result in a two-dimensional donor/acceptor grid (Figure 4) that continues to mimic 

the structure of the original diamondoid network. These fragments represent the exact replica of slices taken across 

three-fold “cubic” axes of the original diamondoid network (cf. Figure 2), and they are separated by layers of 

tetrabutylammonium ions and acetone solvate (see Figure S1 in the Supporting Information). 

Topologically, these grids are built of a number of trans-fused “cyclohexane” rings, in which each donor and acceptor 

unit has its coordination number reduced from 4 to 3. [These trans-fused layers are topologically similar to those 

found in the structure of rhombohedral black phosphorus as well as the common allotropes of As, Sb, and Bi.] The 

(CBr···Br-) distances of 3.252−3.282 Å are slightly longer than those in the corresponding diamondoid network. 

Importantly, the uncoordinated C−Br bonds of the CBr4 acceptor and the “unused” electron pairs of bromide ions are 

oriented in mutually opposite directions. These result in the polarization of such noncentrosymmetric layers in the 

direction perpendicular to their planes and lead to the acentric symmetry of the entire crystal (space group of 

symmetry P21). 
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(iii) Crystallization of the Pr4N+ salt resulted in a different, but topologically closely related, two-dimensional pattern 

illustrated in Figure 5. 

 
Figure 5 The two-dimensional folded donor/acceptor layer in the structure of [Pr4N+Br-,CBr4] as the product of the rearrangement 
of the two-dimensional “diamondoid” layer in Figure 4. Note:  the noncentrosymmetric structure is polarized along the mean 
plane. 

 

The grid is also built of a number of “cyclohexane” units with the rings trans- and cis-fused in two mutually orthogonal 

directions. This results in a more folded shape of the layers, but with the coordination geometry of CBr4 and bromide 

remaining exactly the same as those in the related Bu4N+ structure. [These folded two-dimensional layers 

topologically relate to those found in the structure of orthorhombic black phosphorus.] The (CBr···Br-) distances show 

a somewhat larger variation that lies within the range of 3.19−3.31 Å. The folded layers are also deprived of inversion 

centers, but they are polarized along their mean planes. The alternation of the layers of opposite polarity along the 

crystal results in its overall centric symmetry (see Figure S2 in the Supporting Information). 

(iv) The (tetrahedral) coordination geometry of both the donor (halide) and the acceptor (CBr4) components remains 

very conservative in all of the charge-transfer complexes, and they always attain the maximum possible coordination 

number. These structural features persist even in the presence of other dominant intermolecular forces such as the 

relatively strong hydrogen bonds N+−H···Br (H···Br 2.65 Å) in the structure of the secondary ammonium complex 

[DBU−H+Br-,CBr4] (see Figure S3 in the Supporting Information). Despite this strongly perturbing structural factor, the 

coordination geometry and coordination numbers of the CBr4 and Br- units remain the same as those in the previous 

structures with Br···Br- distances of 3.260−3.375 Å and C−Br···Br- angles of 164.2−172.5°. However, some excessive 

angular distortions around bromide anions produce a new pattern for the donor/acceptor two-dimensional grids, 

which consist of the trans-cis-fused “cyclooctane” and “cyclobutane” rings (Figure 6). The shapes of these rings permit 

inversion centers, and the entire structure is centrosymmetric. 



 
Figure 6 The two-dimensional centrosymmetric donor/acceptor layer in the structure of [DBU−H+Br-,CBr4] distorted by competition 
with H-bonding in the crystal, see text. 

Discussion 
Spectroscopic studies of electron donor/acceptor dyads (in solution) establish the significant strengths of the 

intermolecular (Br3CBr···halide) interactions, which are consonant with their importance in structural manifestations 

for crystal engineering. Such charge-transfer interactions are characterized by measurable shortenings of the 

interhalogen (CBr···halide) distances by 0.50−0.55 Å relative to standard van der Waals separations,31 and this is 

accompanied by the elongation of the (C−Br) σ-bond by ∼0.025 Å as compared to that in the uncoordinated 

CBr4acceptor,49 both in accord with the p-σ* nature of the orbital (HOMO−LUMO) interaction according to Mulliken 

theory.37 

The strict directional character of the (Br3CBr···halide) interaction is illustrated by the uniformly invariant angles of θ = 

175.0−176.5° for the (CBr···halide) ensembles in the diamondoid networks for the series [Et4N+halide,CBr4], and θ = 

164.6−177.1° in the more distorted “sliced” networks in [Pr4N+Br-,CBr4] and [Bu4N+Br-,CBr4]. Moreover, the tetrahedral 

coordination of the CBr4 moieties is unperturbed, with the internal (Br−C−Br) bond angle being close to the ideal value 

of θ = 109.4° in all of these charge-transfer crystals. The intermolecular (Br···halide···Br) angles lie within the range θ = 

101.5−113.6° in the diamondoid structures of [Et4N+halide,CBr4] and are only somewhat more distorted (97.0−126.2°) 

in the coordinationally “unsaturated” structures of [Pr4N+Br-,CBr4] and [Bu4N+Br-,CBr4]. 

The strength and directionality of the intermolecular (Br3CBr···halide) interactions together are important 

prerequisites for use in supramolecular designs, and this donor/acceptor aggregation is persistent throughout all of 

the charge-transfer complexes examined in this study, resulting in quite similar structural patterns. Even in the case 

(reported earlier29) in which severe steric hindrance was imposed by bulky (Ph4P+) counterions, the charge-transfer 

(Br3CBr···Br-) association is the dominant feature of the crystal structure.46 Furthermore, in the presence of the 

protonated amine (DBU−H+) prone to the formation of strong (N+H···Br-) hydrogen bonds, the same charge-transfer 

association prevails (see Figure S3 in the Supporting Information). Indeed, such observations lead to our conclusion 

that the structure-forming capability of the (Br3CBr···halide) interactions is comparable to, or even greater than, that 

possessed by (regular) hydrogen bonds. 
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As a structurally simple and compact acceptor, carbon tetrabromide is an attractive core for the building of novel 

three-dimensional (crystal) structures akin to those constructed earlier with other types of tetrahedral building 

blocks.1-11 In particular, the use of various tetraalkylammonium halides as the electron-donor components bypasses 

the conventional problem usually encountered in dealing with the stability issue imposed by large (adamantane-

shaped) internal cavities inherent to such diamondoid networks.16 Most importantly, the incorporation of the 

tetraethylammonium cation leads to optimal support of the diamondoid network (Figure 2) of CBr4and halide by 

stabilizing the cavity void (Figure 3). Cations of larger size fragment these networks into two-dimensional “slices” 

(Figures 4 and 5), but the sizes of Pr4N+ and Bu4N+ are not yet significant to fill the separations between the resulting 

charge-transfer grids. As a result, the layers in the Pr4N+ structure collapse toward each other to accept a crimped 

structure and induce short interlayer (Br···Br) contacts of 3.35 Å (see Figure S2 in the Supporting Information). In the 

largest Bu4N+ structure, the undistorted diamondoid slices require the intercalation of both the cation as well as an 

additional (acetone) solvate. At the other extreme, the stabilization of the diamondoid core in the smallest 

Me4N+ structure requires an additional equivalent of carbon tetrabromide for filling the voids. 

In addition to the structural integrity of such electron donor/acceptor networks in crystal engineering, two other 

factors are critical to their transformation into useful materials. First, the symmetry factor refers to the absence of 

inversion centers for certain types of supramolecular (diamondoid) networks, because many useful properties arise 

from the crystal acentricity, especially for the second-order hyperpolarizability.51 Second, the electronic factor refers 

to the effective communication between the nodes of the diamondoid nets.52 Indeed, the charge-transfer complexes 

of carbon tetrabromide and alkylammonium halides satisfy (in measure) both of these rather stringent requirements 

by yielding robust charge-transfer crystals that (a) belong to the sphaleroid structural class deprived of inversion 

centers and (b) possess substantial electron coupling (HDA in Table 1) between donor/acceptor centers. 

Summary and Conclusions 
Carbon tetrabromide spontaneously forms a series of intermolecular complexes with electron-rich halide anions 

(chloride, bromide, and iodide) that are characterized by the unusual strength and directionality as well as large 

electronic (HOMO−LUMO) couplings of the halide donor and CBr4acceptor. Spectral (UV−vis) studies in solution 

establish the charge-transfer nature of the (CBr4/halide) interactions, and these combined with the tetrahedral shape 

of the acceptor lead to supramolecular (crystalline) assemblies of advanced 3-D (diamondoid) networks that are 

uniquely stabilized by the proper choice of tetraalkylammonium counterions to fill the adamantanoid cavities. Most 

importantly, the alternate population of the diamondoid nodes, consisting of contiguous donor (halide) and acceptor 

(CBr4) units, effectively results in the annihilation of inversion centers of symmetry, in agreement with the sphaleroid 

structural subclass. 

As we already cited, the sphaleroid structure of the subject complexes is closely related to the structure of inorganic 

binary compounds known for their nonlinear optical properties.12 Indeed, there were already some deliberate 

attempts to utilize organic (diamondoid) networks for the SHG-active crystal designs,9d and thus the charge-transfer 
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nature of (CBr4,halide) complexes represents a factor potentially favorable for high second-order 

hyperpolarizability.27,55 These considerations encouraged us to submit samples of the noncentrosymmetric complexes 

[Et4N+Cl-,CBr4], [Et4N+Br-,CBr4], and [NBu4+Br-,CBr4] to a specialized research facility for evaluation. Preliminary results 

show all of these diamondoid charge-transfer associates to possess unusual nonlinear optical properties; the intensity 

of SHG was found to be qualitatively comparable to that of the best inorganic (LiNbO3) or organic (urea) 

materials.56 We are open to extensive collaborative studies that will provide further quantitative validation and thus 

lead to new designs of acentric diamondoid networks. 

Experimental Section 
Materials. Carbon tetrabromide, tetraethylammonium chloride, bromide, and iodide, tetrapropylammonium 

chloride, bromide, and iodide, tetrabutylammonium bromide, and 1-aza-8-azoniabicyclo(5.4.0)undec-7-ene bromide 

from Aldrich were used without further purification. Dichloromethane, acetone, and acetonitrile from Merck were 

purified according to standard laboratory procedures57 and were stored in Schlenk flasks under an argon atmosphere. 

Measurements of the Charge-Transfer Spectra of [CBr4,Halide] Complexes. All spectroscopic measurements were 

performed in a 1 mm quartz cuvette on a Hewlett-Packard 8453 diode-array UV−vis spectrometer. Freshly prepared 

stock solutions of carbon tetrabromide and alkylammonium salts of halide ions were used. Measurements were 

carried out under air (the complex formation of carbon tetrabromide with iodide ions was studied under protection 

from adventitious light because ambient light irradiation resulted in the formation of I2 and I3-; in other cases, no 

special precautions were taken). 

The incremental addition of alkylammonium halide salts to the CBr4 solution resulted in the appearance of new bands 

(see Figure 1) at 300 ± 50 nm. Because of the partial overlap of the new absorption bands with the tail of absorption 

of CBr4 (for the systems with bromide and especially chloride ions), the accurate spectral characteristics of these 

bands were obtained by digital subtractions of CBr4 spectrum from the spectra of CBr4/halide mixtures. [Carbon 

tetrabromide has an absorption band at λ max = 225 nm with εmax = 6.2 × 103 mol-1 cm-1 and a shoulder at λsh = 255 nm; 

tetrapropylammonium iodide has λ max = 245 nm with ε max = 1.7 × 104mol-1 cm-1; tetrapropylammonium chloride and 

tetrapropylammonium bromide do not have any absorption maxima beyond 220 nm.] To determine the 

stoichiometry of the complexes formed, the stock solutions of the donor and acceptor with the same concentration 

(18 mM) were mixed in ratios varying from 10:1 to 1:10 (Job's method33). The maximal absorption intensity of the new 

CT band was observed when the concentrations of the reagents were equal, indicating that CBr4forms 1:1 complexes 

with halide ions in solutions.34 To determine formation constants KEDA and the molar absorption coefficients εCT of 

various [CBr4,halide] complexes, the stock solutions of the reagents were mixed so that the concentration of the 

acceptor (CBr4) was kept constant (5−10 mM) throughout a series of measurements, while the concentration of the 

donor (halide) was incrementally increased (from 10 to 1000 mM). The measured intensities of the CT bands were 

treated according to the Benesi−Hildebrand procedure in eq 2.38 The plot of [CBr4]/ACT versus reciprocal concentration 

of added halide was linear, and the least-squares fit yielded a correlation coefficient of greater than 0.99. From the 
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slope and the intercept, the values of K and εCT were obtained. These parameters were also obtained via the 

treatment of the CT absorption data with the Drago procedure from the intersection of the K-1 versus 

εCT dependencies plotted for several sets of initial concentrations of the reagents.33 Thus, the K and εCT in Table 1 

represent the average values obtained using both (Benesi−Hildebrand and Drago) methods from three to four series 

of measurements for each of the donor/acceptor dyads. 

Table 2.  Crystallographic Parameters and the Details of the Structure Refinements 

compound NEt4Cl·CBr4 NEt4Br·CBr4 NEt4I·CBr4 NMe4Br· 
2CBr4 

NMe4I· 
2CBr4 

NPr4Br·CBr4 NBu4Br·CBr4· 
C3H6O 

DABU−H+· 
CBr4 

CBr4 

formula C9H20Br4ClN C9H20Br5N C9H20Br4IN C6H12Br9N C6H12Br8IN C13H28Br5N C20H42Br5NO C10H17Br5N2 CBr4 
M 497.35 541.81 588.80 817.36 864.35 597.91 712.10 564.81 331.65 
space group I-4 I-4 I-4 Fm-3m Fm-3m P21/n P21 P21/c C2/c 
a [Å] 8.0215(1) 8.0992(3) 8.2859(1) 12.1850(3) 12.398(1) 8.4857(1) 8.2859(1) 7.6795(1) 21.086(2) 
b [Å] 8.0215(1) 8.0992(3) 8.2859(1) 12.1850(3) 12.398(1) 18.7993(3) 22.4833(4) 12.9359(1) 11.883(1) 
c [Å] 12.2085(2) 12.4173(5) 12.9194(1) 12.1850(3) 12.398(1) 13.0299(3) 8.3652(1) 16.5349(1) 20.674(2) 
β [deg] 90 90 90 90 90 99.992(1) 114.661(1) 101.481(1) 111.38(1) 
V [Å3] 785.55(2) 814.54(5) 887.00(2) 1809.2(1) 1905.7(4) 2047.07(6) 1416.25(3) 1609.73(3) 4823.7(7) 
Z 2 2 2 4 4 4 2 4 32 
Dc [g cm-3] 2.103 2.209 2.205 3.001 3.013 1.940 1.670 2.331 3.653 
Nref (collected) 5084 5125 5723 4886 925 25 640 18 190 11 372 24 064 
Rint 0.0625 0.0252 0.0314 0.0270 0.0191 0.0436 0.0497 0.0269 0.0611 
Nref (ind.) 1820 984 2037 194 201 9344 10 360 6050 7713 
Nref [I > 2σ(I)] 1648 971 1930 183 195 6455 8860 4874 4683 
R1 0.0365 0.0261 0.0414 0.0169 0.0201 0.0459 0.0438 0.0322 0.0431 
wR2 0.0825 0.0642 0.0922 0.0427 0.0527 0.0747 0.0945 0.0652 0.0959 
Flack parameter 0.10(2) 0.5a 0.15(2) n/a n/a n/a 0.01(1) n/a n/a 
a  Regular twin, Friedel equivalents were averaged. 

 

Electrochemical Measurements. Cyclic voltammetry (CV) was performed on a BAS 100A Electrochemical Analyzer. 

The measurements were carried out in a 4 mM alkylammonium halide solution in dry dichloromethane with 0.1 M 

supporting electrolyte (NBu4+PF6-) under argon atmosphere. All cyclic voltammograms were measured at the same 

sweep rate of 100 mV s-1 with iR compensation. The working electrode consisted of an adjustable platinum disk with a 

surface area of ca. 1 mm2. The counterelectrode consisted of a platinum gauze that was separated from the working 

electrode by ca. 3 mm. The saturated calomel electrode (SCE) and its salt bridge were separated from the working 

electrode by a sintered glass frit. Because of the high reactivities of the halogen radicals, the reversible oxidation 

potentials of halide ions are not accessible. Instead, we have used irreversible anodic oxidation potentials, Epa, readily 

obtained from the cyclic voltammograms (Epa = 0.42, 0.96, and 1.37 V vs SCE for I-, Br-, and Cl-, respectively).58Although 

these Epa values contain contributions from kinetic terms (E° = βEpa + const.), they provide the reliable relative values 

of oxidation potentials in a series of chemically similar donors (such as halide ions),59 which can be used in various 

correlations. 
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Mulliken−Hush Calculations of the Electronic Coupling Element HAB. The electronic coupling element, HDA, 

representing the electronic (coupling) interaction between the donor and acceptor in the charge-transfer complex, 

was evaluated experimentally from the spectral data using the Mulliken−Hush methodology expressed in eq 3.37,40 The 

values of νCT and ΔνCT for the HDAcalculation were obtained by Gaussian deconvolution of the corresponding charge-

transfer bands using Microcal Origin 6.0 program. The shortest distances between halide ions and bromine atoms in 

CBr4 determined from X-ray crystallographic data were used as the separation parameter RDA. 

X-ray Crystallography. The single crystals of the complexes were readily obtained by slow evaporation of the 

corresponding saturated equimolar acetone solutions in the air. The intensity data for all of the compounds were 

collected with the aid of a Siemens/Bruker SMART diffractometer equipped with a 1K CCD detector using Mo 

Kα radiation (λ = 0.71073 Å), at −150 °C. In all cases, the semiempirical absorption correction was applied.60 The 

structures were solved by direct methods61 and refined by a full matrix least-squares procedure62 with IBM Pentium 

and SGI O2 computers (see Table 2). [The X-ray structure details of various compounds are on deposit and can be 

obtained from the Cambridge Crystallographic Data Center, U.K.] 

Second Harmonic Measurements. The Kurtz technique63 was applied to measure the nonlinear optical response for 

the powder samples of the crystallographically noncentrosymmetric [Et4N+Cl-,CBr4], [Et4N+Br-,CBr4], and [Bu4N+Br-,CBr4, 

C3H6O]. Green second harmonic signals (λSH = 532 nm) were induced by a 1 Hz Q-switched Nd:YAG laser (λ0 = 1064 nm, 

power output 10 mJ in 7 ns pulse). The elliptic mirror was set up, with the sample in the primary focus and the 

detector (Hamamatsu HC-120 photomultiplier assembly) in the secondary focus. The SH signals were averaged by a 

digital storage scope to suppress noise. The samples of [Et4N+Br-,CBr4]64were tested through a series of powders with 

particle sizes ranging from 20 to 90 μm and loaded in glass ampules with 1 mm diameter. The P(2ω)/P2(ω) second 

harmonic square dependence was obtained for the complexes and compared to that of the reference compound 

(quartz). The results characterize crystalline [Et4N+Br-,CBr4] as a phase-matchable material. Anal. Calcd for C9H20Br5N:  

C, 19.95; H, 3.72; N, 2.59. Found:  C, 20.51; H, 3.83; N, 2.64 (Atlantic Microlab, Inc., Norcross, GA). 
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disordered in the rhombocubooctahedral cavities of this centrosymmetric network to comply with the 
dissimilar symmetry of the voids. 

49Because the earlier data50 on the geometry of pristine CBr4 were of low precision, we redetermined its structure at 
−150 °C. In the four symmetrically independent molecular units, the C−Br bond lengths vary within the range 
1.920−1.940(5) Å with av. 1.930 Å. In the structures of the tetraethylammonium complexes [Et4N+halide-

,CBr4], these bonds are 1.953−1.957(2) Å. 
50More, M.; Baert, F.; LeFebvre, J. L. Acta Crystallogr., Sect. B 1977, 33, 3681. 
51As an example, Evans, Lin, and co-workers deliberately utilized the absence of inversion symmetry in the odd-order 

(interpenetrated) diamondoid networks to assemble a variety of interesting noncentrosymmetric crystal 
structures exhibiting SHG activity.9d 

52For example, strong electron σ-coupling is the source of the unsurpassed hardness of diamond itself53 as well as the 
partial electron delocalization responsible for the unique semiconductive properties of silicon and 
germanium (diamondoid) crystals. Without such interactions, the diamondoid three-dimensional ordering 
does not have any specific advantage other than an aesthetics. Some recent papers already address this 
problem, referring to electronic spin interactions between diamondoid nodes to produce materials with 
advanced magnetic properties.54 

53Some interesting views on the electronic origins of the hardness of the diamond and diamondlike materials can be 
found in:  Proserpio, D. M.; Hoffmann, R.; Preuss, P. J. Am. Chem. Soc. 1994, 116, 9634. 

54(a) Mathevet, F.; Luneau, D. J. Am. Chem. Soc. 2001, 123, 7465. (b) Gieck, C.; Rocker, F.; Ksenofontov, V.; Gütlich, P.; 
Tremel, W. Angew. Chem., Int. Ed. 2001, 40, 908. 

55For binary (covalent) diamondoid crystals such as GaAs or InP, the large hyperpolarizability values were shown to 
arise from the charge asymmetry along the heteropolar bonds.12a 

56The crystalline powders of the charge-transfer complex [Et4N+Br-,CBr4] show relatively strong SHG-intensity that 
appeared to be phase-matchable, and 500 times larger than the SHG response of quartz. Two other samples 
show similar SHG behavior. 

57Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. Purification of Laboratory Chemicals; Pergamon Press:  New York, 
1980. 

58Similar (irreversible) oxidation anodic peaks for halide ions were obtained previously in acetonitrile (but 
systematically shifted by ca. +0.25 V relative to those measured in dichloromethane). See:  Eberson, 
L.Electron-Transfer Reactions in Organic Chemistry; Springer-Verlag:  New York, 1987. These values are 
related to the gas-phase electron affinities of the halogen atoms of 3.61 (Cl•), 3.36 (Br•), and 3.06 (I•) eV, see:  
Dean, J. A. Lange's Handbook of Chemistry, 15th ed.; McGraw-Hill:  New York, 1999. 

59Howell, J. O.; Goncalves, J. M.; Amatore, C.; Klasinc, L.; Wightman, R. M.; Kochi, J. K. J. Am. Chem. Soc.1984, 106, 
3968. 

60Sheldrick, G. M. SADABS (Ver. 2.03) − Bruker/Siemens Area Detector Absorption and Other Corrections; 2000. 
61Sheldrick, G. M. SHELXS 86 − Program for Crystal Structure Solutions; University of Göttingen:  Germany, 1986. 
62Sheldrick, G. M. SHELXL 93 − Program for Crystal Structure Refinement; University of Göttingen:  Germany, 1993. 
63Kurtz, S. K.; Perry, T. T. J. Appl. Phys. 1968, 39, 3798. 
64The powder X-ray diffraction pattern of the sample supplied for the measurements of the second harmonics 

generation coincided with the powder diffraction pattern simulated from the single-crystal X-ray 
measurements as described in Figure S4 in the Supporting Information. This result confirms the 
crystallographic authenticity of the samples used for the structural/optical measurements. 
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	Abstract
	/
	Unusual strength and directionality for the charge-transfer motif (established in solution) are shown to carry over into the solid state by the facile synthesis of a series of robust crystals of the [1:1] donor/acceptor complexes of carbon tetrabromide with the electron-rich halide anions (chloride, bromide, and iodide). X-ray crystallographic analyses identify the consistent formation of diamondoid networks, the dimensionality of which is dictated by the size of the tetraalkylammonium counterion. For the tetraethylammonium bromide/carbon tetrabromide dyad, the three-dimensional (diamondoid) network consists of donor (bromide) and acceptor (CBr4) nodes alternately populated to result in the effective annihilation of centers of symmetry in agreement with the sphaleroid structural subclass. Such inherently acentric networks exhibit intensive nonlinear optical properties in which the second harmonics generation in the extended charge-transfer system is augmented by the effective electronic (HOMO−LUMO) coupling between contiguous CBr4/halide centers.
	Introduction
	Tetrahedrally shaped molecular and ionic entities can be self-assembled to form highly symmetrical crystalline networks in the same fashion that sp3-hybridized carbon atoms are covalently linked in the diamond (crystal) structure. Thus, Ermer1 first showed how tetracarboxylic acids derived from adamantane and neopentane form diamondoid networks interconnected by (strong) double hydrogen bonds between the terminal carboxy groups (see Chart 1). This approach has also been used by Wuest,2 Desiraju,3 Galoppini,4 and co-workers, who employed substituted tetraphenylmethanes as building blocks coupled with an array of attractive intermolecular forces. The second approach exploits intermolecular interactions, not directly between the tetrahedral building blocks, but through appropriate (linear) spacers. In this way, Kitazawa, Iwamoto, et al.5 utilized coordination compounds in which identical tetrahedral metal centers (Cd2+) are linked through linear bidentate ligands (CN-). Variation of the symmetry of the bridging ligands/molecules then results in two different structural classes − cubic silica-related structures from symmetric bridges and cubic ice-related structures from asymmetric bridges (see Chart 2). The concept of symmetric bridging was developed by Zaworotko and co-workers6 for tetrahedral Mn-clusters hydrogen-bonded through a variety of organic spacers, by Ciani et al.7 for some silver(I) complexes, and by Aoyama et al.8 for purely organic systems. The use of asymmetric bridging by Evans, Lin, et al.9 exploits the intrinsic lack of inversion symmetry to produce an interesting array of noncentrosymmetric Cd and Zn complexes for nonlinear optical applications. Recently, Desiraju, Clearfield, and co-workers10 also attempted the ice-related assembly of asymmetric tetraphenylmethane moieties. The third (and the least developed) approach was formulated by Hoskins and Robson11 who interconnect tetrahedral organic (tetraarylmethane) or coordination (zinc cyanide) blocks, not through linear, but through tetrahedral copper(I) “joints” that result in diamondoid networks with alternate tetrahedral nodes (see Chart 3).13 These distinctive arrays in fact belong to the sphalerite (ZnS)12 structural subclass of diamondoid networks which intrinsically lack inversion centers. [Yet this important point seems to have been overlooked by recent investigators.14]
	/
	Chart 1
	/
	Chart 2
	/
	Chart 3
	Although seemingly easy to assemble,15 the majority of the diamondoid networks suffer from severe instability because of their loose packing. All of these structures inherently contain cavities in which the (large) size is determined by the distance between tetrahedral nodes. The close-packing principle can normally be satisfied only for the most simple diamondoid structures such as elemental silicon, germanium, gray tin, zinc blende, etc. Yet for diamondoid motifs built of the more extended elements, the void space within the adamantane cages can be quite significant and constitute more than 50% of the overall structural volume. Without extra supporting features, such superporous structures generally suffer from shakiness and are prone to collapse easily.16
	An innate solution of the void problem lies in the spontaneous formation of not one, but several identical diamondoid networks that interpenetrate and thus provide the appropriate packing density. This structural phenomenon has been found to be of general importance for three-dimensional networks,17 and, in particular, the geometrical conditions of the interpenetration have been explicitly formulated for diamondoid networks.18 Another, more controllable, option for stabilizing large diamondoid networks can be found in the formation of clathrates.19 Importantly, the generally unimpressive stability of clathrate systems can be dramatically improved by strong Coulombic forces, when the neutral guest molecules are substituted by counterions of the appropriate size and the diamondoid network itself has the opposite electrical charge.21
	To systematically develop the charge-transfer (CT) motif for the crystal engineering of stable diamondoid networks, we wish to now focus on the utilization of carbon tetrabromide (CBr4) as the simplest (tetrahedral) building element. Indeed, this prototypical electron acceptor forms intermolecular complexes with one-dimensional donors,24 the charge-transfer nature of which has been revealed in a series of physical-chemical studies.25 Although the isolation of crystalline solids met significant difficulties due to the relatively low free energy of the complex formation, we earlier found stronger charge-transfer complexes of CBr4 using better electron donors, especially tertiary aliphatic amines.26 On the basis of that study, Desiraju and co-workers attempted an assembly of crystalline diamondoid donor/acceptor networks using hexamethylenetetramine (HMT) as the tetrahedral donor core.13a The resulting diamondoid (sphaleroid) network suffered from positional disorder between CBr4 and HMT (because of their similar size). A subsequent attempt to stabilize an extended tetrabromoadamantane/HMT network, using an excess of tetrahedral CBr4 to fill the cavities, resulted in a much weaker (and also disordered) donor/acceptor assembly.13b Additionally, these systems lacked continuous electronic coupling (i.e., through-orbital interaction) within their diamondoid networks because of the nonconducting nature of aliphatic CH2-bridges in the HMT and (tetrabromo)adamantane units.
	Our interest in electronically coupled27 donor/acceptor diamondoid networks is based on the equimolar combination of the carbon tetrabromide acceptor with simple inorganic anionic donors, because the halide ions (chloride, bromide, and iodide) are known to form donor/acceptor complexes with CBr4.28,29 Importantly, the use of these electrically charged donor units provides us with four significant advantages:  (a) the enhancement of the network-forming CT interactions, (b) the general structural stabilization due to formation of ionic “clathrate” networks where the appropriate packing density is additionally supported by Coulombic forces between “guest” cations and the embodying anionic “host” matrix, (c) the variable size of the countercation to allow a controlled adjustment of the packing density − the ready availability of a series of tetraalkylammonium ions (NR4+) of progressively different sizes (R = Me, Et, Pr, and Bu) being especially important, and (d) we believe the (Br3CBr···halide) association represents quite a feasible combination for continuous electronic coupling throughout the entire donor/acceptor network. Finally, we stress that such a diamondoid design with the alternate donor/acceptor synthons leads to highly desirable acentric structures, because of the polar “sphaleroid” symmetry,14 and these are known to produce crystals with nonlinear optical properties.12
	Results
	Although there have been attempts to employ progressively weaker intermolecular interactions for the molecular crystal assembly of diamondoid networks,3,4,6,10 such interactions must be sufficiently strong (and directional) to be dominant over other (offsetting) crystal packing forces. However, because of controversial estimates of the suitability of carbon tetrabromide for use in stable crystalline (3-D) donor/acceptor assemblies,30 our first goal was to evaluate quantitatively the nature and strength of the [1:1] association of CBr4 with various halide anions, as well as the magnitude of the charge-transfer electronic coupling element between these acceptor/donor moieties via spectral measurements in solution.32
	I. Charge-Transfer Association of Carbon Tetrabromide and Halide Salts. A. Electronic (UV−Vis) Spectra of [1:1] CBr4/Halide Complexes. When carbon tetrabromide (λmax = 225 nm, ε225 = 6.2 × 103 M-1 cm-1) was incrementally added to tetra-n-propylammonium bromide (λmax < 200 nm) in dichloromethane, a new, distinctive spectral band appeared and progressively grew at λmax = 292 nm as illustrated in Figure 1. The application of Job's method33 to the new absorbance at different molar ratios of CBr4/Br- confirmed the [1:1] stoichiometry of the electron donor/acceptor (EDA) association,34 that is
	/
	Similar spectral behavior was observed for carbon tetrabromide with chloride and iodide as the n-propylammonium salts (see Table 1).35,36
	/
	Figure 1 Spectral changes attendant upon the addition of tetrapropylammonium bromide to a 7.5 mM solution of carbon tetrabromide in dichloromethane at 22 °C. Concentration of Pr4N+Br- [mM]:  (a) 0; (b) 18; (c) 38; (d) 56; (e) 75; (f) 94. For comparison:  (g) is the spectrum of 50 mM Pr4N+Br- alone. Inset:  Mulliken correlation between the energy of the charge-transfer band and the oxidation potential of the donor in the complexes of CBr4acceptor with halides (as indicated).
	Table 1.  Spectroscopic and Energetic Characteristics of the Charge-Transfer Complexes between CBr4 and Halide Ionsa
	I-
	Br-
	Cl-
	halide
	345
	292
	265
	λmax [nm]
	1.3
	1.0
	0.6
	εCT [M-1 cm-1, ×10-4]b
	3.2
	2.8
	3.0
	K [M-1]c
	0.42
	0.96
	1.37
	Epa [V, vs SCE]
	3.30
	3.15
	3.09
	RDA [Å]d
	0.54
	0.65
	0.62
	HDA [eV]
	a As NPr4+ salts in dichloromethane solution at 22 °C.b Estimated standard deviation 0.1 × 104 M-1 cm-1.c Estimated standard deviation 0.5 M-1.d The Br···halide separation was determined crystallographically.
	B. Mulliken Correlation of the Charge-Transfer Energies. Although the halide association with carbon tetrabromide has been tentatively ascribed to an intermolecular donor/acceptor interaction,28c only electronic spectroscopy can provide the unambiguous assignment to the charge-transfer nature of the binding. Thus, according to Mulliken,37 the energies (hνCT) of the absorption bands of a related series of molecular complexes sharing a common acceptor (CBr4) must be linearly dependent on the oxidation potentials of the donors (halides). The latter were quantitatively extracted as the cyclic voltammetric peak potentials (Epa, V vs SCE) as listed in Table 1. The linear correlation in Figure 1 (inset) of these anodic potentials with the spectral energies of the chloride, bromide, and iodide complexes establishes the charge-transfer character of the CBr4/halide associations.
	C. Charge-Transfer Bindings of Carbon Tetrabromide to Halide Donors. The thermodynamics of the CBr4/halide bindings in eq 1 were quantitatively calculated from the formation constants KEDA according to the Benesi−Hildebrand methodology,38 that is
	/
	where ACT and εCT are the absorbance and extinction coefficient of the new (charge-transfer) absorption band. Essentially the same values of the formation constants were independently obtained using the Drago procedure.33 The resulting values of KEDA in Table 1 lay in the rather narrow range of KEDA = 2.8−3.2 M-1, consistent with some earlier determinations.28a,32 Indeed, such values represent free energies of formation of −ΔGEDA = 2.7 (chloride), 2.5 (bromide), and 2.8 (iodide) kJ/mol and place this class of donor/acceptor interactions in the range of various other charge-transfer complexes for crystal-forming purposes.39
	D. Electronic (HOMO−LUMO) Coupling of Carbon Tetrabromide and Halide Moieties. The discrete charge-transfer bands of the various CBr4/halide complexes in Table 1 allow the effectiveness of the electronic coupling between the CBr4 acceptor and the halide donors to be quantitatively evaluated.37,40 Thus, in charge-transfer complexes, the Mulliken−Hush theory predicts the electronic coupling element (HDA) between the donor and acceptor moieties to be directly related to the spectral properties and the structure of the complex as
	/
	where νCT, Δν1/2, and εCT are the energy of the spectral band, its full width at half-height (in eV), and the molar extinction coefficient (in M-1 cm-1), respectively. RDA is the spatial separation (Å) between the donor/acceptor centers, which we evaluated from the X-ray crystallographic results (vide infra). The sizable magnitudes of the values of HDA in the range 0.5−0.6 eV for the various CBr4/halide complexes in Table 1 are strongly indicative of the considerable orbital interaction (electronic coupling) that is extant in the CBr4/halide system.41
	Spectroscopic studies thus point to the binary association of CBr4 and either chloride, bromide, or iodide that is uniformly strong and appropriately accompanied by efficient electronic coupling and therefore suitable for the charge-transfer assembly of diamondoid (electronically coupled) networks. A variety of crystalline [1:1] complexes of the general formula [R4N+halide-,CBr4] can be easily and regularly prepared in different nonaqueous solutions by merely mixing equimolar amounts of the constituents.28a,b The fact that such a highly heteropolar mixture of an (ionic) salt and neutral (uncharged) acceptor would so readily yield true charge-transfer complexes is by itself rather unusual, because it is much more common to experience their separate crystallization as a mixture of homosoric crystals. As a result, we could examine two series of charge-transfer crystals to monitor the structural changes arising from (a) the nature of the halide donor and (b) the size of the tetraalkylammonium counterion as follows.
	II. X-ray Crystallography of Charge-Transfer Complexes of Carbon Tetrabromide with Alkylammonium Halides. A. Effect of Halide Variation. The graded series of the diamondoid donor/acceptor network shown in Figure 2 derive from the charge-transfer complexes of tetraethylammonium salts with the halide as chloride, bromide, and iodide, in which the tetrahedral CBr4 alternates in a regular manner with the halide at the nodes of adamantane-like cages. The general shape of the cages, secluded for scrutiny in Figure 3, is identical for all three isomorphous structures, but their size depends on the “length” of the (Br3CBr···halide) interaction. The smallest chloride donor gives Br···Cl- distances of 3.090 Å (shortened by 0.51 Å from the van der Waals limit31) and a cage volume of 392.8 Å3. The midsize bromide gives Br···Br- distances of 3.154 Å (shortened by 0.55 Å from the van der Waals limit31) and a cage volume of 407.3 Å. Finally, the largest iodide gives Br···I- distances of 3.298 Å (shortened by 0.53 Å from the van der Waals limit31) and a cage volume of 443.5 Å3.
	/
	Figure 2 The diamondoid donor/acceptor network in the structures of [Et4N+halide-,CBr4] complexes. In all figures, the halide anions are shown as green circles, and the donor/acceptor bonds are shown as empty lines. The Et4N+ counterions are omitted for clarity.
	/
	Figure 3 The elementary adamantane-like cage in the structures of [Et4N+halide-,CBr4] complexes supported from within the cavity by NEt4+ counterion.
	The significant change of the cell volume (by 13%) in proceeding from chloride to iodide is accommodated by the Et4N+ counterions, which support the lacelike anionic diamondoid constructions from within their cavities. It is important to mention that these diamondoid structures of the sphaleroid structural class contain adamantane-like cavities of two different types, A4D6 and A6D4 (A = CBr4 and D = halide), where the “tetrahedral” and “octahedral” vertices are occupied by different components as is schematically illustrated in Chart 4. Generally speaking, the electrostatic potential within these two types of cavities is different, and they are structurally nonequivalent, the Et4N+ ion being found only in the (CBr4)6(halide)4 cavity (see Figure 3).42Simultaneously, the terminal ethyl arms of the countercation interpenetrate from four sides into the adjacent (CBr4)4(halide)6 cavities to effectively fill the void space. As a result, the (CBr4)4(halide)6cavities are occupied by quartets of the closely packed Me-groups making van der Waals contacts with each other. In the rather expanded iodide structure, the loose fitting of the Et4N+ ions is characterized by rotational disorder.
	/
	Chart 4
	All of the tetraethylammonium complexes crystallize in the space group of symmetry I-4 that reflects the predictable absence of inversion centers in such alternated donor/acceptor diamondoid networks (Figure 3).43 However, none of the charge-transfer crystals have an ideal (diamondoid) F-centered cubic symmetry.44 The reason for the observed tetragonal distortions can be attributed to the shape of the tetraethylammonium cations, which are deprived of three-fold symmetry and thus cannot fit ideally into a cubic crystal arrangement.45 Importantly, such tetragonal deviations from cubic symmetry are known to enhance nonlinear optical properties of some diamondoid inorganic structures.12b
	/
	Figure 4 The two-dimensional honeycombed donor/acceptor layer in the structure of [Bu4N+Br-,CBr4] as the result of fragmentation of the three-dimensional diamondoid network shown in Figure 2. Note:  the noncentrosymmetric structure is polarized across the mean plane.
	B. Effect of Counterion Variation. The variations in the size of the “supporting” tetraalkylammonium counterions were expected to modify, or even break, the diamondoid connectivity of the donor/acceptor moieties in the CBr4/halide networks.46 Even if the precise outcome of this modification was difficult to predict, the experimentally obtained crystal structures could be rationalized remarkably well for those derived from the charge-transfer complexes [NMe4+Br-,2CBr4], [NPr4+Br-,CBr4], [NBu4+Br-,CBr4], and [DBU−H+Br-,CBr4],47 as follows:
	(i) The smallest size of the Me4N+ cation was not sufficient to support the integrity of the diamondoid network, although it was envisaged28a,b that the developing voids could be filled with additional CBr4 acceptor. Indeed, the [1:2] complex [NMe4+Br-,2CBr4] that precipitated from solution contained an additional molecular equivalent of CBr4 to maintain the diamondoid arrangement and (primitive) cell dimensions quite similar to that of its Et4N+ analogue.48
	(ii) With a tetraalkylammonium ion of a larger size than Et4N+, a fragmentation of the pristine diamondoid network was likely to occur as a result of the internal (steric) obstacles. Remarkably, we found the structure of tetrabutylammonium derivative to result in a two-dimensional donor/acceptor grid (Figure 4) that continues to mimic the structure of the original diamondoid network. These fragments represent the exact replica of slices taken across three-fold “cubic” axes of the original diamondoid network (cf. Figure 2), and they are separated by layers of tetrabutylammonium ions and acetone solvate (see Figure S1 in the Supporting Information).
	Topologically, these grids are built of a number of trans-fused “cyclohexane” rings, in which each donor and acceptor unit has its coordination number reduced from 4 to 3. [These trans-fused layers are topologically similar to those found in the structure of rhombohedral black phosphorus as well as the common allotropes of As, Sb, and Bi.] The (CBr···Br-) distances of 3.252−3.282 Å are slightly longer than those in the corresponding diamondoid network. Importantly, the uncoordinated C−Br bonds of the CBr4 acceptor and the “unused” electron pairs of bromide ions are oriented in mutually opposite directions. These result in the polarization of such noncentrosymmetric layers in the direction perpendicular to their planes and lead to the acentric symmetry of the entire crystal (space group of symmetry P21).
	(iii) Crystallization of the Pr4N+ salt resulted in a different, but topologically closely related, two-dimensional pattern illustrated in Figure 5.
	/
	Figure 5 The two-dimensional folded donor/acceptor layer in the structure of [Pr4N+Br-,CBr4] as the product of the rearrangement of the two-dimensional “diamondoid” layer in Figure 4. Note:  the noncentrosymmetric structure is polarized along the mean plane.
	The grid is also built of a number of “cyclohexane” units with the rings trans- and cis-fused in two mutually orthogonal directions. This results in a more folded shape of the layers, but with the coordination geometry of CBr4 and bromide remaining exactly the same as those in the related Bu4N+ structure. [These folded two-dimensional layers topologically relate to those found in the structure of orthorhombic black phosphorus.] The (CBr···Br-) distances show a somewhat larger variation that lies within the range of 3.19−3.31 Å. The folded layers are also deprived of inversion centers, but they are polarized along their mean planes. The alternation of the layers of opposite polarity along the crystal results in its overall centric symmetry (see Figure S2 in the Supporting Information).
	(iv) The (tetrahedral) coordination geometry of both the donor (halide) and the acceptor (CBr4) components remains very conservative in all of the charge-transfer complexes, and they always attain the maximum possible coordination number. These structural features persist even in the presence of other dominant intermolecular forces such as the relatively strong hydrogen bonds N+−H···Br (H···Br 2.65 Å) in the structure of the secondary ammonium complex [DBU−H+Br-,CBr4] (see Figure S3 in the Supporting Information). Despite this strongly perturbing structural factor, the coordination geometry and coordination numbers of the CBr4 and Br- units remain the same as those in the previous structures with Br···Br- distances of 3.260−3.375 Å and C−Br···Br- angles of 164.2−172.5°. However, some excessive angular distortions around bromide anions produce a new pattern for the donor/acceptor two-dimensional grids, which consist of the trans-cis-fused “cyclooctane” and “cyclobutane” rings (Figure 6). The shapes of these rings permit inversion centers, and the entire structure is centrosymmetric.
	/
	Figure 6 The two-dimensional centrosymmetric donor/acceptor layer in the structure of [DBU−H+Br-,CBr4] distorted by competition with H-bonding in the crystal, see text.
	Discussion
	Spectroscopic studies of electron donor/acceptor dyads (in solution) establish the significant strengths of the intermolecular (Br3CBr···halide) interactions, which are consonant with their importance in structural manifestations for crystal engineering. Such charge-transfer interactions are characterized by measurable shortenings of the interhalogen (CBr···halide) distances by 0.50−0.55 Å relative to standard van der Waals separations,31 and this is accompanied by the elongation of the (C−Br) σ-bond by ∼0.025 Å as compared to that in the uncoordinated CBr4acceptor,49 both in accord with the p-σ* nature of the orbital (HOMO−LUMO) interaction according to Mulliken theory.37
	The strict directional character of the (Br3CBr···halide) interaction is illustrated by the uniformly invariant angles of θ = 175.0−176.5° for the (CBr···halide) ensembles in the diamondoid networks for the series [Et4N+halide,CBr4], and θ = 164.6−177.1° in the more distorted “sliced” networks in [Pr4N+Br-,CBr4] and [Bu4N+Br-,CBr4]. Moreover, the tetrahedral coordination of the CBr4 moieties is unperturbed, with the internal (Br−C−Br) bond angle being close to the ideal value of θ = 109.4° in all of these charge-transfer crystals. The intermolecular (Br···halide···Br) angles lie within the range θ = 101.5−113.6° in the diamondoid structures of [Et4N+halide,CBr4] and are only somewhat more distorted (97.0−126.2°) in the coordinationally “unsaturated” structures of [Pr4N+Br-,CBr4] and [Bu4N+Br-,CBr4].
	The strength and directionality of the intermolecular (Br3CBr···halide) interactions together are important prerequisites for use in supramolecular designs, and this donor/acceptor aggregation is persistent throughout all of the charge-transfer complexes examined in this study, resulting in quite similar structural patterns. Even in the case (reported earlier29) in which severe steric hindrance was imposed by bulky (Ph4P+) counterions, the charge-transfer (Br3CBr···Br-) association is the dominant feature of the crystal structure.46 Furthermore, in the presence of the protonated amine (DBU−H+) prone to the formation of strong (N+H···Br-) hydrogen bonds, the same charge-transfer association prevails (see Figure S3 in the Supporting Information). Indeed, such observations lead to our conclusion that the structure-forming capability of the (Br3CBr···halide) interactions is comparable to, or even greater than, that possessed by (regular) hydrogen bonds.
	As a structurally simple and compact acceptor, carbon tetrabromide is an attractive core for the building of novel three-dimensional (crystal) structures akin to those constructed earlier with other types of tetrahedral building blocks.1-11 In particular, the use of various tetraalkylammonium halides as the electron-donor components bypasses the conventional problem usually encountered in dealing with the stability issue imposed by large (adamantane-shaped) internal cavities inherent to such diamondoid networks.16 Most importantly, the incorporation of the tetraethylammonium cation leads to optimal support of the diamondoid network (Figure 2) of CBr4and halide by stabilizing the cavity void (Figure 3). Cations of larger size fragment these networks into two-dimensional “slices” (Figures 4 and 5), but the sizes of Pr4N+ and Bu4N+ are not yet significant to fill the separations between the resulting charge-transfer grids. As a result, the layers in the Pr4N+ structure collapse toward each other to accept a crimped structure and induce short interlayer (Br···Br) contacts of 3.35 Å (see Figure S2 in the Supporting Information). In the largest Bu4N+ structure, the undistorted diamondoid slices require the intercalation of both the cation as well as an additional (acetone) solvate. At the other extreme, the stabilization of the diamondoid core in the smallest Me4N+ structure requires an additional equivalent of carbon tetrabromide for filling the voids.
	In addition to the structural integrity of such electron donor/acceptor networks in crystal engineering, two other factors are critical to their transformation into useful materials. First, the symmetry factor refers to the absence of inversion centers for certain types of supramolecular (diamondoid) networks, because many useful properties arise from the crystal acentricity, especially for the second-order hyperpolarizability.51 Second, the electronic factor refers to the effective communication between the nodes of the diamondoid nets.52 Indeed, the charge-transfer complexes of carbon tetrabromide and alkylammonium halides satisfy (in measure) both of these rather stringent requirements by yielding robust charge-transfer crystals that (a) belong to the sphaleroid structural class deprived of inversion centers and (b) possess substantial electron coupling (HDA in Table 1) between donor/acceptor centers.
	Summary and Conclusions
	Carbon tetrabromide spontaneously forms a series of intermolecular complexes with electron-rich halide anions (chloride, bromide, and iodide) that are characterized by the unusual strength and directionality as well as large electronic (HOMO−LUMO) couplings of the halide donor and CBr4acceptor. Spectral (UV−vis) studies in solution establish the charge-transfer nature of the (CBr4/halide) interactions, and these combined with the tetrahedral shape of the acceptor lead to supramolecular (crystalline) assemblies of advanced 3-D (diamondoid) networks that are uniquely stabilized by the proper choice of tetraalkylammonium counterions to fill the adamantanoid cavities. Most importantly, the alternate population of the diamondoid nodes, consisting of contiguous donor (halide) and acceptor (CBr4) units, effectively results in the annihilation of inversion centers of symmetry, in agreement with the sphaleroid structural subclass.
	As we already cited, the sphaleroid structure of the subject complexes is closely related to the structure of inorganic binary compounds known for their nonlinear optical properties.12 Indeed, there were already some deliberate attempts to utilize organic (diamondoid) networks for the SHG-active crystal designs,9d and thus the charge-transfer nature of (CBr4,halide) complexes represents a factor potentially favorable for high second-order hyperpolarizability.27,55 These considerations encouraged us to submit samples of the noncentrosymmetric complexes [Et4N+Cl-,CBr4], [Et4N+Br-,CBr4], and [NBu4+Br-,CBr4] to a specialized research facility for evaluation. Preliminary results show all of these diamondoid charge-transfer associates to possess unusual nonlinear optical properties; the intensity of SHG was found to be qualitatively comparable to that of the best inorganic (LiNbO3) or organic (urea) materials.56 We are open to extensive collaborative studies that will provide further quantitative validation and thus lead to new designs of acentric diamondoid networks.
	Experimental Section
	Materials. Carbon tetrabromide, tetraethylammonium chloride, bromide, and iodide, tetrapropylammonium chloride, bromide, and iodide, tetrabutylammonium bromide, and 1-aza-8-azoniabicyclo(5.4.0)undec-7-ene bromide from Aldrich were used without further purification. Dichloromethane, acetone, and acetonitrile from Merck were purified according to standard laboratory procedures57 and were stored in Schlenk flasks under an argon atmosphere.
	Measurements of the Charge-Transfer Spectra of [CBr4,Halide] Complexes. All spectroscopic measurements were performed in a 1 mm quartz cuvette on a Hewlett-Packard 8453 diode-array UV−vis spectrometer. Freshly prepared stock solutions of carbon tetrabromide and alkylammonium salts of halide ions were used. Measurements were carried out under air (the complex formation of carbon tetrabromide with iodide ions was studied under protection from adventitious light because ambient light irradiation resulted in the formation of I2 and I3-; in other cases, no special precautions were taken).
	The incremental addition of alkylammonium halide salts to the CBr4 solution resulted in the appearance of new bands (see Figure 1) at 300 ± 50 nm. Because of the partial overlap of the new absorption bands with the tail of absorption of CBr4 (for the systems with bromide and especially chloride ions), the accurate spectral characteristics of these bands were obtained by digital subtractions of CBr4 spectrum from the spectra of CBr4/halide mixtures. [Carbon tetrabromide has an absorption band at λ max = 225 nm with εmax = 6.2 × 103 mol-1 cm-1 and a shoulder at λsh = 255 nm; tetrapropylammonium iodide has λ max = 245 nm with ε max = 1.7 × 104mol-1 cm-1; tetrapropylammonium chloride and tetrapropylammonium bromide do not have any absorption maxima beyond 220 nm.] To determine the stoichiometry of the complexes formed, the stock solutions of the donor and acceptor with the same concentration (18 mM) were mixed in ratios varying from 10:1 to 1:10 (Job's method33). The maximal absorption intensity of the new CT band was observed when the concentrations of the reagents were equal, indicating that CBr4forms 1:1 complexes with halide ions in solutions.34 To determine formation constants KEDA and the molar absorption coefficients εCT of various [CBr4,halide] complexes, the stock solutions of the reagents were mixed so that the concentration of the acceptor (CBr4) was kept constant (5−10 mM) throughout a series of measurements, while the concentration of the donor (halide) was incrementally increased (from 10 to 1000 mM). The measured intensities of the CT bands were treated according to the Benesi−Hildebrand procedure in eq 2.38 The plot of [CBr4]/ACT versus reciprocal concentration of added halide was linear, and the least-squares fit yielded a correlation coefficient of greater than 0.99. From the slope and the intercept, the values of K and εCT were obtained. These parameters were also obtained via the treatment of the CT absorption data with the Drago procedure from the intersection of the K-1 versus εCT dependencies plotted for several sets of initial concentrations of the reagents.33 Thus, the K and εCT in Table 1 represent the average values obtained using both (Benesi−Hildebrand and Drago) methods from three to four series of measurements for each of the donor/acceptor dyads.
	Table 2.  Crystallographic Parameters and the Details of the Structure Refinements
	CBr4
	DABU−H+· CBr4
	NBu4Br·CBr4· C3H6O
	NPr4Br·CBr4
	NMe4I· 2CBr4
	NMe4Br· 2CBr4
	NEt4I·CBr4
	NEt4Br·CBr4
	NEt4Cl·CBr4
	compound
	CBr4
	C10H17Br5N2
	C20H42Br5NO
	C13H28Br5N
	C6H12Br8IN
	C6H12Br9N
	C9H20Br4IN
	C9H20Br5N
	C9H20Br4ClN
	formula
	331.65
	564.81
	712.10
	597.91
	864.35
	817.36
	588.80
	541.81
	497.35
	M
	C2/c
	P21/c
	P21
	P21/n
	Fm-3m
	Fm-3m
	I-4
	I-4
	I-4
	space group
	21.086(2)
	7.6795(1)
	8.2859(1)
	8.4857(1)
	12.398(1)
	12.1850(3)
	8.2859(1)
	8.0992(3)
	8.0215(1)
	a [Å]
	11.883(1)
	12.9359(1)
	22.4833(4)
	18.7993(3)
	12.398(1)
	12.1850(3)
	8.2859(1)
	8.0992(3)
	8.0215(1)
	b [Å]
	20.674(2)
	16.5349(1)
	8.3652(1)
	13.0299(3)
	12.398(1)
	12.1850(3)
	12.9194(1)
	12.4173(5)
	12.2085(2)
	c [Å]
	111.38(1)
	101.481(1)
	114.661(1)
	99.992(1)
	90
	90
	90
	90
	90
	β [deg]
	4823.7(7)
	1609.73(3)
	1416.25(3)
	2047.07(6)
	1905.7(4)
	1809.2(1)
	887.00(2)
	814.54(5)
	785.55(2)
	V [Å3]
	32
	4
	2
	4
	4
	4
	2
	2
	2
	Z
	3.653
	2.331
	1.670
	1.940
	3.013
	3.001
	2.205
	2.209
	2.103
	Dc [g cm-3]
	24 064
	11 372
	18 190
	25 640
	925
	4886
	5723
	5125
	5084
	Nref (collected)
	0.0611
	0.0269
	0.0497
	0.0436
	0.0191
	0.0270
	0.0314
	0.0252
	0.0625
	Rint
	7713
	6050
	10 360
	9344
	201
	194
	2037
	984
	1820
	Nref (ind.)
	4683
	4874
	8860
	6455
	195
	183
	1930
	971
	1648
	Nref [I > 2σ(I)]
	0.0431
	0.0322
	0.0438
	0.0459
	0.0201
	0.0169
	0.0414
	0.0261
	0.0365
	R1
	0.0959
	0.0652
	0.0945
	0.0747
	0.0527
	0.0427
	0.0922
	0.0642
	0.0825
	wR2
	n/a
	n/a
	0.01(1)
	n/a
	n/a
	n/a
	0.15(2)
	0.5a
	0.10(2)
	Flack parameter
	a  Regular twin, Friedel equivalents were averaged.
	Electrochemical Measurements. Cyclic voltammetry (CV) was performed on a BAS 100A Electrochemical Analyzer. The measurements were carried out in a 4 mM alkylammonium halide solution in dry dichloromethane with 0.1 M supporting electrolyte (NBu4+PF6-) under argon atmosphere. All cyclic voltammograms were measured at the same sweep rate of 100 mV s-1 with iR compensation. The working electrode consisted of an adjustable platinum disk with a surface area of ca. 1 mm2. The counterelectrode consisted of a platinum gauze that was separated from the working electrode by ca. 3 mm. The saturated calomel electrode (SCE) and its salt bridge were separated from the working electrode by a sintered glass frit. Because of the high reactivities of the halogen radicals, the reversible oxidation potentials of halide ions are not accessible. Instead, we have used irreversible anodic oxidation potentials, Epa, readily obtained from the cyclic voltammograms (Epa = 0.42, 0.96, and 1.37 V vs SCE for I-, Br-, and Cl-, respectively).58Although these Epa values contain contributions from kinetic terms (E° = βEpa + const.), they provide the reliable relative values of oxidation potentials in a series of chemically similar donors (such as halide ions),59 which can be used in various correlations.
	Mulliken−Hush Calculations of the Electronic Coupling Element HAB. The electronic coupling element, HDA, representing the electronic (coupling) interaction between the donor and acceptor in the charge-transfer complex, was evaluated experimentally from the spectral data using the Mulliken−Hush methodology expressed in eq 3.37,40 The values of νCT and ΔνCT for the HDAcalculation were obtained by Gaussian deconvolution of the corresponding charge-transfer bands using Microcal Origin 6.0 program. The shortest distances between halide ions and bromine atoms in CBr4 determined from X-ray crystallographic data were used as the separation parameter RDA.
	X-ray Crystallography. The single crystals of the complexes were readily obtained by slow evaporation of the corresponding saturated equimolar acetone solutions in the air. The intensity data for all of the compounds were collected with the aid of a Siemens/Bruker SMART diffractometer equipped with a 1K CCD detector using Mo Kα radiation (λ = 0.71073 Å), at −150 °C. In all cases, the semiempirical absorption correction was applied.60 The structures were solved by direct methods61 and refined by a full matrix least-squares procedure62 with IBM Pentium and SGI O2 computers (see Table 2). [The X-ray structure details of various compounds are on deposit and can be obtained from the Cambridge Crystallographic Data Center, U.K.]
	Second Harmonic Measurements. The Kurtz technique63 was applied to measure the nonlinear optical response for the powder samples of the crystallographically noncentrosymmetric [Et4N+Cl-,CBr4], [Et4N+Br-,CBr4], and [Bu4N+Br-,CBr4, C3H6O]. Green second harmonic signals (λSH = 532 nm) were induced by a 1 Hz Q-switched Nd:YAG laser (λ0 = 1064 nm, power output 10 mJ in 7 ns pulse). The elliptic mirror was set up, with the sample in the primary focus and the detector (Hamamatsu HC-120 photomultiplier assembly) in the secondary focus. The SH signals were averaged by a digital storage scope to suppress noise. The samples of [Et4N+Br-,CBr4]64were tested through a series of powders with particle sizes ranging from 20 to 90 μm and loaded in glass ampules with 1 mm diameter. The P(2ω)/P2(ω) second harmonic square dependence was obtained for the complexes and compared to that of the reference compound (quartz). The results characterize crystalline [Et4N+Br-,CBr4] as a phase-matchable material. Anal. Calcd for C9H20Br5N:  C, 19.95; H, 3.72; N, 2.59. Found:  C, 20.51; H, 3.83; N, 2.64 (Atlantic Microlab, Inc., Norcross, GA).
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