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ABSTRACT 

DEEP LEARNING-BASED PREDICTION OF PPB-LEVEL METAL IONS  

IN DRINKING WATER WITH EXPLAINABLE AI 

 

 

Shaokun Yu 

 

Marquette University, 2022 

 

 

In the research on detecting different ppb-level metal ions in drinking water in 

multiple areas. Through the block loop gap resonator (BLGR), this kind of metal ion 

sensor can continuously measure the concentrations of different metal ions in the 

water sample. The BLGR can classify different ions and measure the Cu and Pb ions 

in different ppb-level water in the city. According to the different magnitude and 

phases in continuous frequency in the testing. A better model can be trained by using 

deep learning, the convolution neural network.  

 

A neural network is often regarded as a black-box model because its very 

strength in modeling complex interactions also makes its operation almost impossible 

to explain. However, the neural network is an effective tool to make evaluations and 

predictions, they can perform very well in this kind of area. The neural network can 

play a better model learning ability in the case of processing a large number of data, 

especially in the detecting of the metal composition of water quality in multiple areas, 

more data points can be better evaluated and predicted. 

 

In this project, we are going to improve the explainability of neural networks 

applied in detecting ppb-level water systems. We propose to apply the Layer-wise 

relevance propagation (LRP) algorithm to explain the relevance of different frequency 

features. This algorithm can highlight the features that contribute most to deep 

network learning. We can effectively explain which frequencies are more decisive by 

the high contribution characteristics to the LRP output. We believe that being able to 

explain machine learning-based decisions greatly improves our analytical capabilities 

for ppb-level water detecting in this project. 
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1. INTRODUCTION 

 

 

1.1 Background 

To quantify metal ion concentrations in drinking water, microwave measurements and 

machine learning techniques are provided. As a microwave probe, a new block loop 

gap resonator (BLGR) is built. The BLGR probe makes no physical contact with the 

water sample, allowing for on-site/in situ continuous measurements of ppb-level metal 

ion concentrations. Using a support vector regression approach, the S11 raw data 

(magnitude and phase) from the BLGR is utilized to identify and estimate metal ion 

concentrations [1]. In addition, a deep learning regression algorithm was 

designed. Therefore, it can make better predictions and evaluations compared with 

support vector regression, making the R square value of deep learning reach above 0.97.  

Metal ions in water have a profound effect on biological and environmental 

processes[2], [3]. While metal ions such as sodium (Na), iron (Fe), copper (Cu), and 

zinc (Zn) are required for a variety of biological functions, metal ions such as lead (Pb), 

mercury (Hg), and cadmium (Cd) are very dangerous in even trace levels. The 

concentration of these metal ions in the water influences its hardness. Additional metals, 

on the other hand, may contribute to the hardness of some waters. Calcium and 

magnesium are non-toxic and are often absorbed more rapidly than other metals by 

living organisms. As a consequence, hard water decreases the toxicity of a dangerous 

ingredient at a given concentration. On the other hand, in soft, acidic water, the same 

metal concentrations may be more harmful [4]. 

The article addresses the development of a metal ion sensor using a microwave block 
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loop gap resonator (BLGR). The BLGR analyzes metal ion concentrations in drinking 

water systems continuously. Because liquid samples of interest are contained inside a 

glass tube within the resonator, as seen in Fig. 1(d), the BLGR does not come into 

physical contact with the sample, allowing on-site/in situ monitoring of metal ions in 

water. The studies demonstrate that the BLGR is capable of categorizing several ion 

solutions (Na+, K+, and Mg2+) in deionized (DI) water and of detecting the Pb ion 

concentration in city water with a resolution of 1 ppb.  

  

 

 

Fig. 1.1 Different resonators are shown schematically: (a) split-ring resonator, (b) slotted tube cavity 

resonator, (c) BLGR with dimensions, and (d) integration of a BLGR, coupling loop, and water sample 

for S11 measurement. In the BLGR loop, a 6.3-mm OD glass tube is put. A drop of water is inserted 

into the glass capillary. The BLGR does not come into direct touch with the water sample. The water 

sample in the image has been dyed blue to aid with viewing. 
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One kind of loop gap resonator is an LGR. It's also called a split ring resonator. The 

gadget is an LC lumped circuit with an inductor and a capacitor [5]. A magnetic field 

is generated around the loop when an EM pulse is present [6]. The gap carries charges 

that produce an electric field. The LGR structure is resonant when the magnetic and 

electric stored energy in the loops are equal. Unusable passive LGR with high filling 

factor, middling Q, and virtually uniform magnetic field [7], [8]. It is less sensitive to 

environmental signals than the cavity resonator. The sensor is cheap due to mass 

production. LGRs are widely used to measure solid electrodynamic properties. A 

single-loop multiple-gap LGR for 1–10 GHz electron spin resonance spectroscopy has 

been presented [9], [10]. 

Unwanted radiation from a single-loop LGR is possible. Wood et al. [9] employed a 

multiloop multigap resonator to decrease radiation loss. Each gap adds a series 

capacitor to the equivalent circuit, allowing higher frequency ESR spectroscopy. As 

seen in Fig. 1(a) and (b), the majority of LGR structures are cylindrical, with the loop 

acting as an inductor and the body sliced into parallel slots to provide a capacitor. 

Capacitance in a cylindrical LGR is proportional to the difference between the inner 

and outer radii, while inductance is proportional to the inner radius. Adjust the 

resonance frequency by varying the inner radius (inductance) or by increasing the 

distance between the inner and outer radii (capacitance). In the suggested sensor, the 

outside perimeter is replaced with a rectangular body, as seen in Fig. 1. (c). This is 

referred to as a BLGR sensor. Not only does the block form body offer mechanical 

stability for the LGR, but it also provides a stable mounting location for the coupling 
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loop necessary to link RF signals to the LGR. The resonance frequency of the BLGR 

may be adjusted by altering the loop diameter and gap size (d). 

Additionally, the BLGR collects S11 data from ions in a water sample. The BLGR can 

detect the presence and concentration of certain ions through a change in the 

reflection coefficient. Ions in water cause the resonator's resonance frequencies to 

change. The frequency shift is dependent on the number of charges in the liquid 

sample [10]-[12], its concentration, and its background. Water samples containing a 

variety of ions and concentrations of a single ion (e.g., Pb) display amplitude and 

phase fluctuations similar to those seen in S11 data. Variation is seen throughout the 

whole frequency range but is most evident at the BLGR's resonance frequencies. 

Gramse et al. [13] investigate just two distinct forms of dopant ions that are 

substantially stationary in the sample. However, a water sample may include a large 

number of metal ions. 

Additionally, the mobility of these ions might vary significantly depending on the 

sample's properties. As a result, determining the properties of various ions and 

concentrations of a single metal ion in a water sample requires a considerably more 

complicated analysis of the reflection coefficient. 

As a result, a machine learning method is utilized to extract features, categorize and 

quantify various ions. SVR and deep learning regression are used in this project. The 

comparison between them is shown below: 
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Table 1.1 Comparison between SVR and DLR 

 

More details about deep learning regression will be introduced later. Previously, the 

S11 raw data is processed using a support vector machine (SVM) or support vector 

regression (SVR) method. The SVR model is trained on a range of target ion 

concentrations (e.g., Pb). As a consequence, the algorithm learns how the frequency 

and phase response components of S11 data vary in response to the presence of 

certain target ions in a water sample [1]. To make the data more stable and accurate, 

water quality samples at different times are needed. In this project, 18000 data points 

are used as training set data, among which 9000 are Cu metal and the other 9000 are 

Pb metal. In addition, 2,400 data points were tested to assess whether the model was 

sufficiently accurate. Furthermore, it is necessary to combine data from different dates 

and retrain the model to make it more stable. Large datasets are needed to train deep 

neural networks to prevent overfitting and fine-tune parameters (see Fig. 2). The 

performance of deep neural networks generally improves with increasing amounts of 

data. In conclusion, deep learning works bette r than ordinary machine learning by 

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Cu_Mag Pb_Mag Cu_phase Pb_phase

Comparison between SVR and DLR

SVR Deep learning regression
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learning from large amounts of data. 

 

 

Fig. 1.2 Deep learning and machine learning 

 

The LRP method is used for feature optimization in the deep learning process. 

Features with greater correlation are picked to improve the current neural network 

model, which is achieved via the usage of LRP. Specifically, the objective of LRP is 

to offer an explanation for the output of any neural network in the domain of its input. 

Using a backwards propagation of the prediction in the neural network, layer-wise 

relevance propagation (LRP) was used to score features according to their 

significance to the CNN's predictions, and the results were shown in Table 1. In the 

model prediction, frequencies with a high magnitude mean relevance score are 

significant, while frequencies with a magnitude mean relevance score around 0 are 

less important to the model. This score was used to determine which important 

elements should be included in the training process. 
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1.2  Objectives 

The objectives of this thesis are shown in the followings: 

⚫ Re-adjust the structure of S11 data, and make it adjustable for deep learning. 

⚫ For the testing of detecting the metal ions’ ppb-level in drinking water, generate a 

better model and its prediction using deep learning regression. 

⚫ Optimize the model and use deep learning algorithms to explain the artificially 

intelligent. 

⚫ Find the most significant frequency range through the dataset and optimize the 

result. 

⚫ Retrain the model and provide a better solution to help the experiments save time 

and cost of sensors.  

1.3 Thesis Organization 

⚫ Chapter 2 pre-processing the S11 data split into 2 independent datasets as our input. 

Then introduce the different kinds of deep learning algorithms used in the project. 

In addition, use different algorithms to analyze the model and make an evaluation 

and comparison. Using different parameters in the regression will generate 

different results. Use explainable AI algorithms to analyze the internal 

contributions of the model and make a comparison to different explainable AI 

algorithms in the INNvestigate package.  

⚫ Chapter 3 shows the different metal ions in the magnitude and phase conditions. 

Generate plots to evaluate the model and show experiments results of deep learning. 
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⚫ Chapter 4 discusses the optimization after LRP is used in the model, the relevance 

score will guide the important partial range of the frequency features. For different 

conditions, the result may vary. Also, the new solution may occur after the LRP 

result shows. 

⚫ Chapter 5 concludes the thesis with a summary and some ideas for future works, 

including the application of 2-D CNN, this solution will merge the datasets in 

multiple metal ions and have the opppotunitie to find the relationships between 

ions. 

⚫ Chapter 6 shows the reference of the thesis. 
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2 METHODOLOGY 

 

 

2.1 Data Structure  

2.1.1 Data Extraction and Integration 

Data collecting is a significant bottleneck in machine learning and a hot issue of study 

in several fields. There are primarily two reasons why data gathering has become a 

crucial concern in recent years. To begin, as machine learning becomes more 

extensively employed, we are seeing new applications with insufficient labeled data. 

Second, unlike standard machine learning approaches, deep learning techniques build 

features automatically, which reduces feature engineering costs but may need higher 

volumes of labeled data. Notably, modern data collecting research originates not only 

from the machine learning, natural language processing, and computer vision 

disciplines but also from the data management field, owing to the critical nature of 

managing vast volumes of data. Data collection includes acquiring data, labeling it, and 

improving current data or models. We provide a research landscape for these procedures, 

offer suggestions for when to employ either approach and propose intriguing research 

issues. In this project, the metal concentration data we tested in drinking water may be 

mismatched in in-depth models, which explains the importance of pre-processing 

data. What's more, dimensionality reduction of data dimension is beneficial to studying 

the changes of each metal under different conditions, and it will be more expansible in 

future polymerization studies. The combination of machine learning and data 

management for data collecting is part of a bigger trend of Big data and Artificial 
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Intelligence (AI) integration, which creates several new research possibilities. 

Four steps of data pre-processing [15] are needed: 

 

 

 

 

 

 

 

 

 

  

 

 

Fig. 2.1 Data preprocessing steps 

 

 

 

Several elements influence the effectiveness of Machine Learning (ML) on a particular 

assignment. The first and most important consideration is the representation and quality 

of the instance data. In the presence of a large amount of irrelevant and redundant 

information as well as noisy and inaccurate data, knowledge discovery during the 

training phase is more difficult to achieve. It is commonly known that data preparation 

and filtering stages in machine learning issues consume a significant amount of 

processing time. It is necessary to clean and normalize data before processing it. It is 

also necessary to extract and pick features from data before processing it.  

The data structure in S11 data has three kinds of pieces of information in each datapoint. 

The brief plot of the structure is shown below: 

 

Data quality assessment 

Data transformation Data reduction 

Data cleaning 

Data preprocessing 
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Frequency Magnitude Phase 

Frequency _1 Magnitude _1 Phase _1 

Frequency _2 Magnitude _2 Phase _2 

… … … 

Frequency _20000 Magnitude _20000 Phase _20000 

 

Table 2.1 Data structure 

 

In this project, data quality inspection and quality cleaning are not necessary, because 

the data measured with BLGR are very accurate and the probability of error is reduced 

to a small enough to be ignored. In the first machine learning experiments, the errors in 

the data were negligible and the model performance was very good. Therefore, data 

cleaning can also take no action during data preprocessing.

 

Fig. 2.2 All ML processing R square value 

All ML processing R square

>= 0.95 < 0.95



12 

For data transformation and data reduction [16], the downsampling of data is set to an 

integer value of 8. The sensor may provide both amplitude and phase data for each 

specified frequency value in the full data point if the sensor is capable of doing so. If 

the value of each frequency, as well as its accompanying amplitude and phase, were to 

be used as input to the learning model, it would result in a total of 20,000 frequency 

characteristics being contributed to the process of learning. 

Deep learning research often requires that the quantity of data used by 10 times or more 

than the number of features to produce a better model. There is no question that 20,000 

features is a significant amount of data and is unnecessary for this investigation; thus, 

suitable feature reduction is required. Researchers did downsample behavior on data in 

the previous several other learning processes concerning water quality detection, for 

SVR and SVM to play a greater role in the proper number of features in the appropriate 

number of features. In this experiment, the value of downsampling is set to 8, which 

indicates that out of a total of 20000 rows of data, one row out of eight is selected for 

machine learning. As a result, 20,000 data points will be reduced to 2,500 data points. 

The following are some of the benefits of using this method: 

1. The number of features should not be excessive for the suitable model to be computed 

successfully and fitted as quickly as feasible after being created. 

2. Significantly lower the program's execution time. The more the amount of data you 

have to deal with, the more difficult it will be to evaluate it, even after cleaning and 

changing it. Data reduction not only makes the analysis simpler and more precise but 

also reduces the amount of data that must be stored. 



13 

 

Frequency Magnitude Phase 

Frequency _1 Magnitude _1 Phase _1 

Frequency _8 Magnitude _8 Phase _8 

… … … 

Frequency _20000 Magnitude _20000 Phase _20000 

Table 2.2 Dataset after downsampling 

 

For high-dimensional data, the amount of computation required may be too large if the 

pattern is not preprocessed before being entered into the classifier. In this article, it is 

necessary to divide the data set into two different evaluation factors. Doing so reduces 

the complexity of regression and improves performance. 

In the process of attribute selection, take frequency as the feature and magnitude as the 

value under different features. In this way, a new data set is generated, and the process 

is to reduce the two-dimensional data into two one-dimensional data sets for deep 

learning. Since the objective of the experiment is to discuss the concentration of 

specific metal ions at different frequencies, it is necessary to discuss different metal 

ions separately. At the same time, we can also see the trend of ion concentration of 

different metals at different frequencies. 

The new magnitude dataset is shown below: 
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 Frequency _1 Frequency _8 … Frequency 

_20000 

Datapoint_1 Magnitude _1 Magnitude _8 … Magnitude 

_20000 

Datapoint_2 Magnitude _1’ Magnitude _8’  Magnitude 

_20000’ 

… … … …  

Datapoint_9000 Magnitude _1’’ Magnitude _8’’ … Magnitude 

_20000’’ 

Table 2.3 Magnitude dataset after preprocessing for deep learning 

 

From table 2.2, 9000 data points are included in the dataset. This means, there are 9000 

testing samples are participated in the training. Also, this kind of format can be applied 

to different metal ions, such as Cu or Pb. 

In this way, another phase table after split (dimensionally reduction) is shown below: 
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 Frequency _1 Frequency _8 … Frequency 

_20000 

Datapoint_1 Phase _1 Phase _8 … Phase 

_20000 

Datapoint_2 Phase _1’ Phase _8’  Phase 

_20000’ 

… … … …  

Datapoint_9000 Phase _1’’ Phase _8’’ … Phase 

_20000’’ 

Table 2.4 Phase dataset after preprocessing for deep learning 

2.1.2 Normalization 

Normalization is an essential approach that is often conducted as a pre-processing step 

before many Machine Learning models normalize the range of features in the input data 

set. It is used to normalize the range of features in the input data set [17]. 

They are employed in the data preparation stage, during which the data is prepared for 

further processing by one of the data mining and machine learning methods, such as 

the support vector machine or neural networks, among others [18]. 

When characteristics of an input data set have considerable disparities across their 

ranges, or when they are measured in various measurement units (e.g., pounds, meters, 

miles, and so on), normalization is required to be applied. To illustrate this with an 

example in this article:  
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 0.1GHz_magnitude 0.1GHz_phase 0.1003GHz_magnitude 0.1003GHz_phase 

Datapoint_1 -3.32592515E-02 1.64681048E+02 -3.33737438E-02 1.64623704E+02 

Table 2.5 Data details in “2_1ppb_2000” file 

 

It is necessary to merge the two data sets when considering magnitude and phase 

together (as in a simple extension study). It was discovered that the particular value of 

phase was around 160, and the magnitude was approximate -3 in magnitude. No matter 

what model run on this data set, the phase feature will always take precedence over the 

magnitude feature and will make a greater contribution to the calculation simply 

because it has larger values when compared to the magnitude feature in this data set. 

As a result, normalization is the answer for preventing this issue by translating 

characteristics into equivalent scales via standardization. 

Generally, When it comes to machine learning, feature scaling is one of the most critical 

data preparation steps. If the data is not scaled, algorithms that calculate the distance 

between the features are biased towards numerically greater values. 

The size of the features has little effect on the performance of tree-based algorithms. 

Additionally, feature scaling aids in the training and convergence of machine learning 

algorithms, as well as deep learning algorithms. 

The most often used feature scaling strategies are normalization and standardization, 

which are two of the most widely used procedures. 

Normalization (or Min-Max) is a term used to describe the process of Scaling a 
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technique for transforming features into a comparable scale. The new point is computed 

as follows: 

 

𝑥𝑛𝑒𝑤 =
(𝑥 − 𝑥𝑚𝑖𝑛)

((𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛))
 

                                                          (2.1) 

 

As a result, the range is scaled to [0, 1], or in certain cases [-1, 1]. The n-dimensional 

data is compressed into an n-dimensional unit hypercube when the transformation is 

performed geometrically. As a result, it is only beneficial when there are no outliers, 

as it is incapable of dealing with them. 

2.2 Deep Learning Regression 

2.2.1 Introduction to CNN 

Deep learning approaches such as convolutional neural networks have grown 

prominent in several computer vision tasks, and they are drawing attention across a 

wide range of areas, including radiology, due to their ability to learn from large amounts 

of data. 

Using a backpropagation technique, a convolutional neural network is constructed from 

a variety of building blocks, including convolution layers, pooling layers, and fully 

connected layers. It is meant to automatically and adaptively learn spatial hierarchies 

of data. 
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CNNs are mathematical constructs that are generally constructed of three kinds of 

layers (or building blocks): convolutional, pooling, and fully connected layers. [19] – 

[21] Convolutional neural networks (CNNs) are a form of neural network that is built 

of convolutional neural networks (CNNs). Features are retrieved in the first two layers 

(convolution and pooling), and the third layer (a fully connected layer) translates the 

collected features into final output (such as classification) in the third layer 

(convolution). A convolution layer is critical in CNN, which is made of a stack of 

mathematical operations, such as convolution, which is a specific sort of linear 

operation. A convolution layer is also important in image recognition. Because a feature 

can appear anywhere in an image, CNNs are extremely efficient for image processing. 

As one layer feeds its output into the next layer, the extracted characteristics may grow 

increasingly complicated and hierarchical as they move through the layers. Training is 

the process of optimizing parameters such as kernels. It is carried out in order to reduce 

the difference between outputs and ground truth labels, and it is accomplished via the 

use of optimization algorithms like backpropagation and gradient descent, among other 

techniques. 
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Fig. 2.3 Data processing in machine learning 

 

During this experiment, CNN is employed to assist in the deep learning process. CNN 

can share the convolution kernel and handle large amounts of high-dimensional input 

quickly and efficiently. In addition, feature extraction may be carried out automatically 

in certain instances. When using convolution, features may be extracted from the 

convolution layer, and the convolution kernel in the convolution layer is very important 

in extracting the needed features from the convolution layer. 

To predict the association between the ppb-level of drinking water and the magnitude 

and phase values in various metals at different frequencies, a one-dimensional 

convolutional neural network (CNN) model was developed. When compared to linear 

models, which struggle with high-dimensional data, this model makes use of the non-

linearity of neural networks to better capture the link between the amplitude and phase 

of the signal and the ppb level of the water in question. 

 

BLGR sensor 

Optimized Results 

Data Analysis 

Deep Learning 

(CNN) 

S11 Data 
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Fig. 2.4 Model architecture 

 

The three major layers of the multilayer convolutional neural network employed are as 

follows: a 1D convolutional layer with a rectified linear unit (ReLU) activation function 

and a filter size of 1, followed by a dropout layer with a dropout value of 0.2, and a 

dropout layer with a dropout value of 0. The number of filters in each of the 1D 

convolutional layers is 128 in the first two main layers and 64 in the next main layer in 

the first two main layers of the first main layer. This is followed by a flattening of the 

model into a 64-neuron dense layer with a ReLU activation function, after which it is 

completely linked into a single output. The model was built using a mean squared error 

loss function and an Adam optimizer with a learning rate of 0.001 and a mean squared 

error loss function. It was decided to use 1D convolutional layers rather than dense fully 

connected layers because they provided more consistent convergence; however, 

because the features have no clear spatial or temporal order, a filter size of 3 was used 
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and any type of pooling was used after each layer from the architecture. The architecture 

was designed to be as simple as possible, and the features have no clear spatial or 

temporal order. Even attempts to organize the features according to the number of 

characteristics they include in total and to use a higher filter size failed to generate an 

improvement in the model's performance. When it came to controlling overfitting, the 

dropout layers with a 0.2 dropout value were chosen since they outperformed all other 

strategies in terms of performance. 

2.2.2 Comparison between Different Neural Networks 

For the most part, ANN relies on weights and an activation function to accomplish its 

goals. How artificial neural networks (ANN) operate is best explained by the fact that 

it artificially reconstructs the way a brain's neural network works. When it makes a 

mistake, it goes back and "modifies" the way it thinks, much as a person would [22]. 

When using an ANN, the "layers" are rows of data points that are hosted by neurons 

that are all using the same neural network. When learning, ANN makes use of weights. 

In ANN, the weights of the neurons are modified after each loop across the neuron. 

According to the accuracy measured by a "cost function," ANN travels back in time 

and makes adjustments to the weights. 

CNN, on the other hand, does not include any neurons or weights. CNN, on the other 

hand, applies numerous layers to datasets and filters inputs before analyzing them. The 

arithmetic layer, the corrected linear unit layer, and the fully connected layer are the 

three layers in question. The objective of these layers is to comprehend patterns that the 



22 

network can "see," process data output, and deliver an n-dimensional vector output as 

a result. 

With the help of the n-dimensional output, it is possible to identify different 

characteristics and relate them to the picture input that was supplied. It may then 

provide the user with the categorization outcome. However, despite their differences, 

both approaches rely on measurements of the error to promote learning and both 

methods create epochs to evaluate the performance of the models that have been 

constructed. 

These characteristics are collected from the input when CNN is used. This makes CNN 

an excellent choice when thousands of characteristics need to be retrieved. As opposed 

to needing to measure each and every aspect individually, CNN accumulates these 

features on its own. 

Some picture classification issues become harder to solve when using ANN because 2-

dimensional images must be transformed to 1-dimensional vectors before they can be 

solved. The number of trainable parameters grows exponentially as a result of this. 

Growing the number of trainable parameters requires more storage and processing 

power. 

To put it another way, it would be prohibitively costly. When compared to its 

predecessors, CNN's primary benefit is that it automatically determines the most 

significant characteristics without the need for human intervention. This is why CNN 

would be an excellent answer for challenges involving computer vision and picture 

categorization. 
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After everything is said and done, there are particular occasions in which ANN may be 

favored above CNN and vice versa. They are both distinct in the way they approach 

mathematical issues, which allows them to be more effective at addressing certain 

difficulties. 

In general, CNN is a more powerful and accurate method of handling classification 

issues than traditional methods. The use of artificial neural networks (ANNs) is still 

dominating for issues where datasets are restricted and picture inputs are not required. 

CNN, on the other hand, is the most widely used solution for computer vision and 

image-dependent machine learning issues because of its ability to treat pictures as data. 

 

 

 ANN CNN 

The value of the model’s 

convergence epoch 

20 epochs 7 epochs 

Table 2.6 Comparison between the CNN and ANN on the value of the model’s convergence epoch 
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Fig. 2.5 CNN model convergenced after 7 epochs 

 

 

Fig. 2.6 ANN model convergenced after 20 epochs 

 

In the above comparison diagrams of ANN and CNN, it can be observed that, despite 

the fact that CNN has a long-running period, it can achieve the model convergence state 

with a minimal number of epochs of learning. The use of artificial neural networks 
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(ANNs) to solve data regression issues is quite simple. This also implies that it will go 

through a number of period investigations in order to get experimental data. 

2.2.3 Optimize Neural Networks 

With the help of the stochastic gradient descent optimization technique, deep learning 

neural network models are fitted to training data sets. 

With the help of the backpropagation of error technique, it is possible to make changes 

to the weights of the model. When it comes to fitting neural networks, the combination 

of optimization and weight update algorithm has been carefully selected since it is the 

most efficient method currently available. 

It is, however, feasible to employ other optimization strategies to fit a neural network 

model to a training dataset in order to improve performance. This may be a great 

exercise for learning more about the operation of neural networks and the essential role 

that optimization plays in practical machine learning applications. It may also be 

necessary for neural networks with non-traditional model designs and non-

differentiable transfer functions, among other applications. 

Deep learning, often known as neural networks, is a kind of machine learning that is 

very versatile. 

Models built of nodes and layers that are inspired by the structure and function of the 

brain are used to create these models. For classification or regression predictive 

modeling, a neural network model operates by propagating an input vector through one 

or more layers until it produces a numeric output that may be used to make decisions 
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about the input vector. 

In order to train a model, it must be regularly exposed to instances of both input and 

output, with the weights adjusted to reduce the inaccuracy of the model's output when 

compared to the predicted output. The stochastic gradient descent optimization 

technique is used to do this. The weights of the model are modified in accordance with 

a particular calculus rule that allocates error proportionately to each weight in the 

network, as shown in the figure. The backpropagation algorithm is used to do this. 

When it comes to training neural network models, the stochastic gradient descent 

optimization approach with weight updates done via backpropagation is the most 

effective method. The use of a neural network for training purposes is not the only 

option available. 

When training a neural network model, it is possible to utilize any arbitrary 

optimization technique that is available. 

Thus, a neural network model architecture may be created, and an optimization 

technique can be used to identify the set of weights for the model that results in the 

lowest possible prediction error or the best possible regression assessment for the 

network. 

The Adam optimization approach is a stochastic gradient descent variant that has lately 

gained traction in computer vision and natural language processing. 

Adam is an optimization technique that may be used to iteratively update network 

weights based on training data instead of the traditional stochastic gradient descent 

approach. 
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Adam isn't like traditional stochastic gradient descent. For all weight updates, stochastic 

gradient descent uses a single learning rate (called alpha), which does not fluctuate 

throughout training. Each network weight (parameter) has its own learning rate, which 

is adjusted as learning progresses. 

The technique creates an exponential moving average of the gradient and the squared 

gradient, and the decay rates of these moving averages are controlled by the parameters 

beta1 and beta2. Moment estimations are biased towards zero when the moving 

averages' initial value and beta1 and beta2 values are near 1.0 (preferred). This 

prejudice is eliminated by computing biased estimates first, then bias-corrected 

estimates. 

The alpha factor, also known as the learning rate or step size, is a measure of how 

quickly a person learns something new. The fraction of time in which weights are 

revised (e.g. 0.001 in the experiment). In general, higher starting learning rates (e.g., 

0.3) result in a quicker learning period before the rate is revised. Smaller values (for 

example, 1.0E-5) cause learning to be significantly slowed during training beta1, which 

is the exponential decay rate for the initial moment estimations (e.g. 0.9 in the 

experiment). 

2.3 Explainable AI with using LRP 

2.3.1 Introduction 

In the field of explainable machine learning, Layer-wise Relevance Propagation (LRP) 

is one of the most often used approaches (XML) [23]. Specifically, the objective of LRP 
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is to offer an explanation for the output of any neural network in the domain of its input. 

In a nutshell, what LRP accomplishes is that it makes use of the network weights and 

neural activations generated by the forward-pass to propagate the output back through 

the network all the way up to the input layer, as seen in the diagram below: There, you 

can see which pixels made a significant contribution to the final result. In this case, 

we'll refer to the magnitude of each pixel's or intermediary neuron's contribution as 

"relevance" values [24]. 

When using LRP, the magnitude of each output y is preserved throughout the 

backpropagation process, and it is equal to the sum of the relevance maps R of all the 

input layers. This condition remains true for any successive layers j and k, as well as 

for the input and output layers when transitivity is used. 

Relevance on a layer-by-layer basis Using deep Taylor decomposition as a foundation, 

propagation is a technique of interpretation (DTD). In order to assign the correlation of 

the output backward through a pre-trained network and to assess the contribution of 

nodes to classification, the approach makes use of DTD technology. In order to acquire 

the correlation of each layer, it is necessary to propagate the correlation to the next layer, 

taking into account the activation degree and network weight. Using the same 

dimensions as the input picture, the interpreter generates a pixel-level heat map, which 

allows the user to see the most critical portions of the input image that contribute to the 

chosen category. 
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2.3.2 Theory 

It is the general goal of the pixel-wise decomposition to calculate the contribution of 

each feature or single pixel to the prediction f. This is accomplished in two ways (x). In 

this way, it can determine for each dataset which features or pixels are responsible for 

how much of a positive or negative categorization result is obtained. If you look at this 

picture, the image has been turned into a feature vector, and the classifier will identify 

it and assign it to either the cat or the no-cat category. Furthermore, the output f(x) is a 

summation of the characteristic scores. In this image, the sum of the feature relevance 

demonstrated that the image shown is that of a cat [25] [26]. 

 

 

Fig. 2.15 Classification and Pixel-wise Explanation 

 

 

 

                                                                           (2.3) 

 

Next, we will introduce the LRP. In the general introduction, it can be seen the first 

layer is the input and the last layer is the output which is the real-valued prediction. The 

𝑓(𝑥) ≈ ∑ 𝑅𝑑

𝑣

𝑑=1
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L means the number of layers and the idea is to find the relevant score 𝑅𝑑
(𝑙)

 in each 

dimension, and find closer to the first layer, step by step. For example, the figure shows 

a neuron network with contains the neurons i and weights w, for each neuron we can 

get the output from the activation function. For the right part of the figure, this is the 

processing of the LRP, the  𝑅𝑖
(𝑙)

 is the relevance of neuron i which is to be computed. 

For a better understanding of the figure, we introduce the messages  𝑅𝑖←𝑗
(𝑙,𝑙+1)

 , are 

messages which need to be computed, such that the layer-wise relevance in this 

equation is conserved. For example, the R sub 2 super 1 means the input neuron for 

neurons 4,5,6. It means the R sub 2 super 1 is the sum of the 3 messages from 4,5,6. 

Similarly, Neuron 3 is an input neuron for 5, 6. Neurons 4, 5, and 6 are the input for 

neuron 7. For each neuron i, research would like to compute a relevance Ri. We 

initialize the top layer relevance 𝑅7
(3)

as the function value, thus 𝑅7
(3)

= 𝑓(𝑥). Then we 

have 𝑅7
(3)

= 𝑅4
(2)

+ 𝑅5
(2)

+ 𝑅6
(2)

. Also，𝑅4
(2)

+ 𝑅5
(2)

+ 𝑅6
(2)

=  𝑅1
(1)

+ 𝑅2
(1)

+ 𝑅3
(1)

. 

 

𝑓(𝑥) = ⋯ = ∑ 𝑅𝑑
(𝑙+1)

𝑑∈𝑙+1

= ∑ 𝑅𝑑
(𝑙)

𝑑∈𝑙

= ⋯ = ∑ 𝑅𝑑
(1)

𝑑

 

                                                                  (2.4) 

 

Where 𝑅𝑑
(𝑙)

 is the target relevance score. 
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Fig. 2.16 Layer-wise relevance propagation 

 

Where:  

Messages are 𝑅𝑖←𝑗
(𝑙,𝑙+1)

, e.g. 𝑅7
(3)

= 𝑅4
(2)

+ 𝑅5
(2)

+ 𝑅6
(2)

 

Next, here is the sum of incoming messages: 

 

𝑅𝑖
(𝑙)

= ∑ 𝑅𝑖←𝑘
(𝑙,𝑙+1)

𝑘:𝑖 𝑖𝑠 𝑖𝑛𝑝𝑢𝑡 𝑓𝑜𝑟 𝑛𝑒𝑢𝑟𝑜𝑛 𝑘

 

                                                                  (2.5) 

 

As knows, a concept has been created: the message, which is between the neuron i and 

j which is in a different layer, and the message can be sent along with the network. 

Therefore,  we define the relevance of any neuron except neuron 7 as the sum of 

incoming messages(2.5) 
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Fig. 2.17 Layer-wise relevance propagation concept 

 

For example 𝑅3
(1)

=  𝑅3←5
(1,2)

+  𝑅3←6
(1,2)

, because neuron 7 is the last layer so we define 

𝑅7
(3)

= 𝑓(𝑥) as above.  In this equation, the terms input and source have the meaning 

of being input to another neuron in the direction as defined during classification 

time,  For example in the figure,  neurons 1 and 2 are inputs and sources for neuron 

4, neurons 2 and 3 are inputs and source for neuron 6, the neuron 6 also is the sink for 

neurons 2 and 3. So the LRP also  be satisfied by the following statement, such as, 

𝑅7
(3)

=  𝑅4←7
(2,3)

+  𝑅5←7
(2,3)

+  𝑅6←7
(2,3)

. 

In general, this condition can be expressed as: 

 

𝑅𝑘
(𝑙+1)

= ∑ 𝑅𝑖←𝑘

(𝑙,𝑙+1)

𝑖: 𝑖 𝑖𝑠 𝑖𝑛𝑝𝑢𝑡 𝑓𝑜𝑟 𝑛𝑒𝑢𝑟𝑜𝑛 𝑘

 

                                                             (2.6) 

 

The difference between equation (2.6) and equation (2.5) is that in the condition (2.6) 

the sum runs over the sources at layer l for a fixed neuron k at layer l+1, while in the 

definition (2.5) the sum runs over the sinks at layer l+1 for a fixed neuron i at a layer l. 

When using (2.5) to define the relevance of a neuron from its messages, then (2.6) is a 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130140#pone.0130140.e021


33 

sufficient condition to ensure that equation (2,7) holds. Summing over the left side in 

equation (2.6) yields  

𝑓(𝑥) = ⋯ = ∑ 𝑅𝑑
(𝑙+1)

𝑑∈𝑙+1

= ∑ 𝑅𝑑
(𝑙)

𝑑∈𝑙

= ⋯ = ∑ 𝑅𝑑
(1)

𝑑

 

 

∑ 𝑅𝑘
(𝑙+1)

𝑘

= ∑ ∑ 𝑅𝑖←𝑘
(𝑙,𝑙+1)

𝑘:𝑖 𝑖𝑠 𝑖𝑛𝑝𝑢𝑡 𝑓𝑜𝑟 𝑛𝑒𝑢𝑟𝑜𝑛 𝑘

𝑖

 

= ∑ 𝑅𝑖
(𝑙)

𝑖

 

                                                                  (2.7) 

 

It means the sum of relevance k in the l+1 layer equals the sum of relevance neuron i 

in l layer. 

Now we can conclude an LRP formula by using the messages 𝑅𝑖←𝑘
(𝑙, 𝑙+1)

. The LRP should 

reflect a relevance score to see which feature is important or not. We know a 

neuron i inputs 𝑎𝑖𝑤𝑖𝑘 to neuron k, provided that i have a forward connection to k. Thus, 

we can rewrite it to this format below, which h means all neurons at the L layer.   

 

𝑅𝑖←𝑘
(𝑙, 𝑙+1)

= 𝑅𝑘
(𝑙+1) 𝑎𝑖𝑤𝑖𝑘

𝛴ℎ𝑎ℎ𝑤ℎ𝑘
 

                                                             (2.8) 

 

By using the LRP as the essential theory, we can apply it to use different algorithms, 

like CNN, we can reduce the number of features by using LRP to compute the different 

relevance scores and pick the most important features to improve our performance in 
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the network. 

2.3.3 Application with Using INNvestigate 

Recent years have seen deep neural networks revolutionize a wide range of machine 

learning application fields, and they are now integral to a large number of essential 

decision and prediction processes [27]. 

As a result, it is critical that domain experts be able to comprehend and assess the 

actions and predictions of neural network designs, even those that are very complicated 

in design. The fact is that neural networks are often considered black boxes, 

notwithstanding the reasoning presented. There have been several proposals to address 

this problem, but the absence of reference implementations frequently makes a 

systematic comparison of the techniques time-consuming and inconvenient to do 

effectively. A common interface and out-of-the-box implementation for numerous 

analytic techniques, including the reference implementation for LRP methods, are 

provided by the presented library iNNvestigate, which tackles this problem. 

The presence of a high-dimensional dataset with a small number of samples increases 

the likelihood of the model is overfitted, which is undesirable (often referred to as the 

curse of dimensionality). A number of first efforts at feature reduction revealed that 

deleting low impact frequencies from the dataset might increase CNN performance by 

a significant margin. Using a backward propagation of the prediction in the neural 

network, layer-wise relevance propagation (LRP) was used to score features according 

to their significance to the CNN's predictions, and the results were shown in Table 1. In 
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the model prediction, the frequency with a high relevance score is important, but the 

frequency with a mean relevance score close to zero is less relevant to the model 

prediction. This score was used to determine which important elements should be 

included in the training process. 

The LRP assigns recursively to each neuron an input relevance that is proportional to 

the contribution of the neuron output to the total contribution of the multiple neurons 

output. The investigate LRP method can rate a total of 2500 frequency characteristics, 

which is a significant number. This is done in order to examine the contribution to the 

deep learning network made at various frequencies of operation. A better model may 

be developed, and the amount of time and money spent on research can be decreased 

by retaining the frequency of high segmentation while removing the frequency of low 

scores or zero scores. 

2.4 Application of Cross Validation in SVR 

The supervised learning technique Support Vector Regression is used to predict discrete 

values. SVMs and Support Vector Regression are both based on the same premise. 

SVR's primary concept is to identify the optimum fit line. The best fit line in SVR is 

the hyperplane with the greatest number of points. 

The SVR, unlike other regression models, aims to fit the best line within a threshold 

value, rather than minimizing the error between the actual and projected value. The 

distance between the hyperplane and the boundary line is the threshold value. SVR's fit 

time complexity grows more than quadratically with the amount of samples, making it 
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difficult to scale to datasets with more than a few tens of thousands of samples. 

Grid search refers to a technique used to identify the optimal hyperparameters for a 

model. Unlike parameters, finding hyperparameters in training data is unattainable. As 

such, to find the right hyperparameters, create a model for each combination of 

hyperparameters. 

Grid search is thus considered a very traditional hyperparameter optimization method 

since we are basically “brute-forcing” all possible combinations. The models are then 

evaluated through cross-validation. The model boasting the best accuracy is naturally 

considered to be the best. 

The performance of the models is evaluated using cross-validation. Cross-validation 

assesses how well a model generalizes to a new dataset. To gain a good assessment of 

how well a predictive model works, we employ cross-validation. 

An independent dataset and a training dataset are created using this technique. After 

that, divide a single dataset into two sets. Folds are a kind of partition that is the same 

size as the other partitions. The model in question is trained on all folds except one. 

The model is then tested using the excluded fold. This method is continued until all test 

folds have been utilized. The model's average performance over all folds is then used 

to estimate its performance. 

Then according to the different parameters, use gridsearch to find best parameters series: 
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kernel C gamma # cv 

 

 

rbf 

0.1 1  

 

3 

1 0.1 

10 0.01 

100 0.001 

1000 0.0001 

Table 2.7 Gridsearch parameters 

 

Then the best parameter series will be generated. Fro different conditions, it will 

generate four different best parameter series. Finally, the SVR r square score will be 

computed. 
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3. EXPERIMENTS RESULTS 

 

 

3.1 Evaluation and Comparison 

The support vector regressor was employed in the previous trials, and the results were 

positive. It was decided to employ a deep neural network this time, which resulted in 

improved performance and assessment. A magnitude model and a phase model were 

produced throughout the deep learning processing, which was done according to 

magnitude or phase. Aside from that, the concentration of metal ppb in water was 

predicted by the values of these two variables at various frequencies, and the prediction 

was assessed in relation to the ground truth concentration of ppb. R Square and Mean 

Square Error are two metrics that may be used to assess model accuracy and the 

performance of a regression model. 

It is possible to determine how near a regression line is to a collection of points by 

calculating the mean squared error (MSE). Specifically, it achieves this by squaring all 

of the distances between points and the regression line (these distances are referred to 

as the "errors"). The squaring is required in order to eliminate any negative indications. 

Larger discrepancies are also given greater weight as a result of this. Because you're 

calculating the mean squared error of a collection of mistakes, the term "mean squared 

error" is used. It is predicted that the MSE will be lower in the future. 

It is necessary to calculate MSE using the following formula: 

 

𝑀𝑆𝐸 =  
∑(𝑦𝑖  −  𝑦�̂�)

2

𝑛
 

                                                                           (2.2) 
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 Cu_magnitude Cu_phase Pb_magnitude Pb_phase 

MSE 0.0277 0.1568 0.1826 0.1326 

 

Table 3.1 MSE of different conditions using different metal ions in magnitude and phase. 

 

 

 

Fig. 3.1 Cu magnitude prediction 
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Fig. 3.2 Cu phase prediction 

 

 

 

Fig. 3.3 Pb magnitude prediction 

 

 

 

Fig. 3.4 Pb phase prediction 
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All data points have dependent variables that are just 1,5,10, according to the dependent 

variables in the chart. Because of this, only three PPB grades were evaluated in this 

trial. There are 1200 data points in each figure, which are considered data sets. The red 

line indicates the anticipated value, and the blue line represents the PPB concentration 

that the data should have had if the predictions were correct. The model makes accurate 

predictions according to different ppb levels successfully. On the graph, it can be 

observed that there is very little discrepancy between the anticipated and actual values.  

In particular, it is projected that the concentration of PPB will approach or surpass 2 in 

the Cu phase condition when Cu ions are present in low quantities. However, it has little 

impact on the experimental findings since 2 PPB may be treated as 1 PPB without 

having any effect under the big PPB difference between 1,5 and 10 and so has little 

impact on the results. In a similar vein, as more PPBS are tested, the model produces 

more precise predictions. 

When used in a regression model, the R-squared (R2) statistic reflects the percentage 

of the variation for a dependent variable that can be explained by an independent 

variable or by a combination of independent variables. When compared to correlation, 

which indicates how strong a link between an independent and dependent variable is, 

R-squared tells how much the variance of one variable explains how much the variation 

of the other variable. For example, if the R2 of a model is 0.50, then the inputs to the 

model can explain nearly half of the variance in the observed variation. 

According to the R-Squared statistic, how much variance in a dependent variable can 

be explained by the independent variables in a regression model is shown by the R-
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Squared statistic. 

Here is the formula for R-squared: 

 

𝑅2 = 1 − 
𝑆𝑆𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
 

                                                             (2.3) 

 

Where: 

𝑆𝑆𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 is the sum of squares due to regression (explained sum of squares) 

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 is the total sum of squares 

This statistic reflects how well the regression model describes the data that was used 

for modeling by computing the sum of squares owing to regression. The total sum of 

squares (TSS) is a statistic that quantifies the variation in observed data (data used in 

regression modeling). 

Here are the different R square values of different conditions and the comparison 

between deep learning regression and SVR: 

 

 Cu_magnitude Cu_phase Pb_magnitude Pb_phase 

Deep learning regression 0.998 0.988 0.987 0.990 

SVR 0.979 0.970 0.930 0.977 

 

Table 3.2 Difference R square values of different conditions and the comparison between deep learning 

regression and SVR 

 

It can be observed that the test involves 9000 data points in each example, which is a 
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significant number. It can be observed from the interaction between various metal ions, 

their magnitude, and their phase that there is not much difference between forecast and 

ground truth in the assessment process. Using a deep learning neural network in 

comparison to an SVR model, it can be shown that the R Square of the deep learning 

network is more than 0.98, while the prediction level of the SVR model is greater than 

0.93. This demonstrates that the concentration of metal ions in water can be predicted 

more correctly with the aid of deep learning, resulting in a more stable model as a result. 

Here are the deep learning regression comparison between ground truth and predictions 

in different conditions: 

 

 

Fig. 3.5 Cu magnitude prediction and comparison 
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Fig. 3.6 Cu phase prediction and comparison 

 

 

 

Fig. 3.7 Pb magnitude prediction and comparison 
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Fig. 3.8 Pb phase prediction and comparison 

 

As can be seen in the picture, the value of the dependent variable Y, which is the ppb 

level, is represented by both the X-axis and the Y-axis. The actual value is shown by 

the X-axis, while the anticipated value is represented by the Y-axis.  

The error scale is shown in the top left-hand corner of the illustration. Successive 

predictions are those in which the difference between their anticipated value and their 

actual value is less than or equal to 1.5. As long as the error stays between 1.5 and 2.5, 

the forecast will out to be confusing and not very accurate. Unless the gap between the 

anticipated value and the actual value is more than 2.5, the prediction will be found to 

be incorrect. For example, if the real value is 5ppb and the error is 3, the projected value 

is 2, or 8. This will be regarded as 1ppb or 10ppb, depending on the circumstances. This 

would be a symptom of a mistake, and it would demonstrate that the model is not 

sufficiently precise. 

In these experiments, the fact that all of these predictions are accurate in the presence 
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of metal concentrations may be observed. Most notably, in the prediction of 1ppB for 

Cu metal ions under phase conditions, some predicted values reach 3, implying that the 

results of several data points will be treated as 5ppb and that there will be some 

ambiguities. However, it is a minuscule figure that will not affect the soundness of the 

model. 

3.2 Contribution of Cu to Network in Different Frequencies (Magnitude)  

By using explainable AI algorithms, it can be seen that different attribution in different 

ppbs. In the 1200 testing data, there are 400 1ppbs, 400 5ppbs, and 400 10ppbs. 

According to each different frequency, a relevance score can be generated after going 

through the previous deep learning neural network model. Here are the results of the 

experiments: 

 

 

Fig. 3.9  LRP scatter plot of concentration 1 ppb in Cu_magnitude conditions  

 



47 

 

Fig. 3.10  LRP scatter plot of concentration 5 ppb in Cu_magnitude conditions 

 

 

Fig. 3.11  LRP scatter plot of concentration 10 ppb in Cu_magnitude conditions 

 

From the plots, it is easy to see that there are some high LRP scores at 0.7GHz, 2.3GHz, 

and 4.3GHz. After 6GHz, the data 6GHz didn’t contribute too much.  

3.3 Contribution of Cu to Network in Different Frequencies (Phase) 

Here are the plots in phase for Cu metal ions: 
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Fig. 3.12  LRP scatter plot of concentration 1 ppb in Cu_phase conditions 

 

 

Fig. 3.13  LRP scatter plot of concentration 5 ppb in Cu_phase conditions 
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Fig. 3.14  LRP scatter plot of concentration 10 ppb in Cu_phase conditions 

 

It is clear that there is just one high peak at 1.6GHz, with the maximum score coming 

in at 14, and that the remaining frequencies maintain extremely low scores, indicating 

that they contribute only a few or nothing. 

 

3.4 Contribution of Pb to Network in Different Frequencies (Magnitude) 

Here are the plots in magnitude for Pb metal ions: 
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Fig. 3.15  LRP scatter plot of concentration 1 ppb in Pb_magnitude conditions 

 

 

Fig. 3.16  LRP scatter plot of concentration 5 ppb in Pb_magnitude conditions 
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Fig. 3.17  LRP scatter plot of concentration 10 ppb in Pb_magnitude conditions 

 

Generally, the LRP score distribution of Pb metal ions under the condition of magnitude 

is very ordinary, however, there are several peak values around 0.8GHz and 1.8GHz 

that are noteworthy. Overall, this scatter chart is not regular, and it is difficult to discover 

a vast variety of peaks or valleys in a very short period of time. 

3.5 Contribution of Pb to Network in Different Frequencies (Phase) 

Here are the plots in phase for Pb metal ions: 
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Fig. 3.18  LRP scatter plot of concentration 1 ppb in Pb_phase conditions 

 

 

Fig. 3.19  LRP scatter plot of concentration 5 ppb in Pb_phase conditions 
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Fig. 3.20  LRP scatter plot of concentration 10 ppb in Pb_phase conditions 

 

It can be seen that there are several peaks at around 1.7GHz and 4.0 GHz. 

3.6 Comparison after Optimized Frequency Features 

LRP is an interpretable artificial intelligence algorithm, according to the company. On 

the basis of the scatter diagram above, it can be determined that the majority of the peak 

is located below 6.0GHz. As a result, deep neural networks may be used to study the 

optimized frequency characteristics again, this time from 0.1ghz to 6GHz, in order to 

evaluate their performance. Maintaining a high-frequency range of high correlation 

scores while deleting the unneeded range may make the learning process more bearable 

while increasing the running duration and efficiency at the same time. 

Following the selection of features, a number of advantages have shown themselves. 

Overfitting is reduced since there is less duplicated data, which means there is less 

potential to make conclusions based on noise. 
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Increased Accuracy: Because there is less misleading data, the accuracy of the modeling 

is improved. 

Reduces Training Time: Because there is less data, algorithms may be trained more 

quickly. 

After shortening the frequency feature, the accuracy of the model remains good. The R 

square of each deep learning model is as follows: 

 

Under 6GHz R square Cu_magnitude Cu_phase Pb_magnitude Pb_phase 

Deep learning regression 0.996 0.992 0.516 0.939 

Table 3.3 Optimized neural network R square 

 

Here is the LRP under 6GHz frequency in Cu: 

 

 

Fig. 3.21 Optimized LRP scatter plot for Cu in magnitude 
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Fig. 3.22 Optimized LRP scatter plot for Cu in phase 

 

 

The improved neural network for the Cu concentration learning model in water 

achieves a better increase in running time and accuracy owing to the decrease in the 

number of features while maintaining a high degree of capacity to predict outcomes. 

Here is the LRP under 6GHz frequency in Pb: 
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Fig. 3.23 Optimized LRP scatter plot for Pb in phase 

 

When subjected to the magnitude condition, the improved Pb learning model performs 

poorly. As can be observed in the above table, R Square is just 0.51; this indicates that 

the model does not perform effectively. The following are the primary reasons behind 

the speculative nature of the situation that is there are some little peaks from 6-8 GHz 

in the plot of Pb_magnitude LRP, which indicates these peaks matter and it seems non-

reasonable to cut them off. 
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Fig. 3.24 Abnormal frequency range for Pb_magnitude 

 

The Pb_phase R square under 6 GHz comes to 0.939, which is not so high as others 

because there are also some little peaks after 6GHz, but it does not matter to the model, 

the model still can perform well. 

On the other hand, the Pb_magnitude shows an abnormal frequency range between 6-

8GHz, it is important to train the model through these frequencies. There are some 

nonnegligible peaks during the last part of whole frequencies and that is the main reason 

why could not get a good model at the end.  

3.7 Introduction of Advantages of Feature Selection 

Some traits may be beneficial for a learning assignment while others may not be useful 

depending on the collection of attributes. The characteristic, in this case, is referred to 

as a "feature." A relevant feature is a characteristic that is relevant to the present learning 
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activity at hand. An unimportant attribute is also a significant characteristic. When 

picking appropriate feature subsets from a given feature set, the procedure known as 

"feature selection" is used [28]. 

The following benefits may be gained from the selection of frequency characteristics 

in this experiment: 

1. Simplify the model to make it more understandable. It will be easier to learn new 

things if you remove the elements that aren't important. Furthermore, the explainable 

performance provides greater certainty about the stability of the model effect. 

2. improved performance: reduces the amount of storage and computation overhead 

3. Increase generality while decreasing over-fitting danger: minimize the probability of 

dimension catastrophe. The addition of features will dramatically expand the search 

area available to models, and the number of training samples needed by most models 

will rise significantly as the number of features is added. Although the inclusion of 

features may help to improve the fit of the training data, it can also raise the variance 

of the results. 

For the hardware area, VNAs (vector network analyzers) have long been associated 

with the RF/microwave business, since they are the sole instrument utilized in the high-

frequency industry, and only by those with very large test-and-measurement budgets. 

However, in recent years, more engineers have discovered the utility of VNA 

measurements, and more consumers have discovered VNAs that are both inexpensive 

and perform well [29] [30]. 

Due to the substantial electrical and mechanical engineering necessary to develop and 
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manufacture a dependable instrument with consistent performance, specifying a 

microwave VNA is used to inevitably guarantee a six-figure price tag. A VNA is an all-

in-one measurement system that includes test signal sources, receivers, high-speed 

switches, and low-loss transmission lines, all controlled by a high-end embedded 

computer. To better understand the impacts of a DUT's impedance on the rest of a 

system, signals are switched between the ports of a DUT to measure direct and reflected 

power levels in both forward and reverse directions. 

Even when comparing various benchtop equipment, a reduced price tag does not always 

imply a significant reduction in performance. When lowering VNA costs, the frequency 

range is the most apparent tradeoff. In this experiment, if 0.1 - 8GHz was used will 

almost cost double the price of 0.1 - 6GHz. Most benchtop VNA manufacturers sell 

their instruments as a set, with a single low-frequency limit and an increasing number 

of higher frequency limits as the price goes up. Therefore, reducing the frequency range 

would greatly reduce the cost and improve the efficiency of the experiment. 
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4. CONCLUSION 

 

 

4.1 Summary 

In this experiment, using an interpretable artificial intelligence algorithm, we learn how 

the weight of each feature varies depending on the different features used in the process 

of machine learning, allowing machine learning to produce the desired prediction 

results while also explaining the black box theory. An LRP algorithm is used to 

determine the contribution degree of various metals at different frequencies and in 

different conditions at the same time. This is done in order to accomplish the objective 

of cost reduction and efficiency improvement. It was possible to overcome the obstacles 

of this experiment by using standardization, MSE, R Square, and other data 

pretreatment techniques, as well as knowledge points utilized in model assessment, and 

to meet all of the goals. 

4.2 Future Work 

Since the data structure contains the magnitude and phase, future work can combine the 

magnitude and phase together to conduct a two-dimensional convolutional neural 

network. For each different metal ion, the dimensions of the two-dimensional data set 

will increase to (9000,2500,2). This has the advantage of consolidating data, avoiding 

too much fragmentation, and increasing the stability of the data set. 

In addition, water quality from different dates can be added to merge and retrain the 

model, making the dataset more stable. After certain theoretical progress, we can try to 

sample water in other cities and use the same model to solve the detection and 
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prediction of metal ion concentration in drinking water in different cities. 
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