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Abstract: 
Human operators play a key role in the reliable operation of critical infrastructures. However, human 
operators may take actions that are far from optimum. This can be due to various factors affecting the 
operators' performance in time-sensitive and critical situations such as reacting to contingencies with 
significant monetary and social impacts. In this paper, an analytic framework is proposed based on 
Markov chains for modeling the dynamics of cascading failures in power grids. The model captures the 
effects of operators' behavior quantified by the probability of human error under various 
circumstances. In particular, the observations from historical data and information obtained from 
interviews with power-system operators are utilized to develop the model as well as identify its 
parameters. In light of the proposed model, the noncritical regions of power-system's operating 
characteristics with human-factor considerations are characterized under which the probability of large 
cascading failures is minimized. 

SECTION I. Introduction 
Critical infrastructures, such as power grids, are being increasingly equipped with advanced 
technologies and mechanisms including monitoring, automated control, intelligence and 
computational resources to enhance their reliability. However, human operators remain to be a key 
element in the reliable operation of such systems with often critical decisions to make and actions to 
take. In particular, the historical data of various infrastructure contingencies, such as the 2003 
Northeast [1] and the 2011 Southwest [2] blackouts, show a clear track of operators’ decisions and 
actions that significantly contributed, both positively and negatively, in the events. Specifically, critical 
and stressful situations, such as reacting to contingencies with significant monetary and social impacts, 
can affect human performance and increase the likelihood of human errors in decisions and actions. As 
discussed in [3], [4], it is not easy to model the human component in vulnerability analysis of critical 
infrastructures; however, efforts with various focuses on different infrastructures and contingency 
scenarios have emerged to address the critical need for understanding the role of human factors in the 
reliability of power-grid operations [5] –[9]. 

It is well known that large-scale blackouts in power grids are typically caused by cascading failures. The 
risk and high impact of cascading failures have attracted the attention of many researchers in the past 
and they have exerted considerable efforts in understanding and characterizing this 
phenomenon [10]– [18]. Nonetheless, the role of human factors in cascading failures has not been 
modeled and investigated analytically in the existing studies to the best of our knowledge. 

Several factors can shape the performance of human operators in making critical decisions with 
potentially detrimental or beneficial effects on the physical system. Examples of such factors include 
the psychological state of the operators at the time of the event, level of stress, fatigue, level of 



experience, the amount of time to respond to a situation, knowledge and awareness about the 
situation, etc. Many of these factors are tied to the state of the physical system, and as the physical 
system evolves in time so do these factors and consequently the performance of human operators. At 
the same time, the human operators’ performance can directly affect the state of the physical system 
through decisions and actions. As such, there is a coupling between the dynamics of the physical 
system and the human factors, which makes the analysis of cascading failures particularly challenging. 

In this paper, we capture the coupling between the human factors and the power grid in an analytic 
framework. In particular, the proposed framework consists of two key components: (i) a Markov-chain 
model for the dynamics of cascading failures in the power grid, and (ii) a human reliability assessment 
model to characterize the probability of human error (by utilizing the Standardized Plant Analysis Risk-
Human (SPAR-H) Reliability Analysis Method [19]) to investigate the effects of human factors on the 
progression of cascading failures in the power grid. These components are integrated together through 
various model parameters and state variables to capture the coupling between cascading dynamics 
and the human factors. 

The proposed framework enables us to investigate the effects of human behavior on cascading 
phenomenon in power grids. We specifically characterize the probabilities of progression of cascading 
failures with various sizes of blackouts under various disturbance scenarios. We further provide the 
non-critical region of power-system operating characteristics (including loading level, load-shedding 
constraints and line-tripping threshold), which makes the power grid behave less vulnerable to 
cascading failures (i.e., the blackout size is distributed exponentially rather than one with a power-law 
tail), while considering the effects of human behavior. 

SECTION II. Related Work 
In this section we review three categories of work related to this paper. The first category is the work 
on the analysis of human reliability and performance. The second category of related work is on 
modeling the impact of human factors on critical infrastructures. The third and last category is on the 
modeling of cascading failures in power grids. 

Human error can affect the system's performance just like any other technical flaw [20]. Human 
reliability analysis (HRA) is a technique designed to determine the critical aspects and the errors that 
can affect human decision making. HRA encapsulates the following steps: description of tasks in a 
chain of events, dependence among tasks, procedures and processes, situation awareness and 
cognitive conditions of the decision maker [5]. The SPAR-H is a simplified approach to human-error 
quantification that accounts for individual perception processing and response to events in complex 
environments [21]. The method relies on the multiplicative effect of performance shaping factors 
(PSFs), which are variables that describe the situation or the psychological condition of the human 
operators. Each factor contains levels of severity. The outcome of the SPAR-H methodology is the 
calculation of a total Human Error Probability (HEP) for every diagnosis or action in the event tree [22]. 
Abreu et al. [7] modeled the HEP in various failure scenarios by interviewing power-system operators 
with different levels of expertise. In [8], Panteli and Kirschen investigated how insufficient operators’ 
situation awareness affect cascading failures in power systems; then a generic procedure was 
presented for achieving sufficient situation awareness. 



As for the second category of the related work, we review the existing models that investigated the 
impact of human factors in critical infrastructures. In [13], Anghel et al. presented a stochastic model 
to provide a comprehensive representation of the complex behavior of both the grid dynamics under 
random perturbations and the operator's response to the contingency events. This model described 
the utility response to various disturbances in an attempt to include a description of the human 
response to contingency events. Numerical results were presented to cast the optimization of 
operators’ response into the choice of the optimal strategy for mitigating the impact of random 
component failure events and, possibly, for controlling blackouts. In [6], Lawton and Gauthier 
developed an approach to integrate human performance modeling into a large scale system-of-
systems (SoS) simulation toolset. The SoS-scale analysis on human performance was presented and the 
utility of the toolset was illustrated by an example problem. In [9], Bessani et al. introduced a 
stochastic model to enable the incorporation of human operators’ performance in a sequential Monte-
Carlo simulation that integrates the response time in reliability of power systems. Their results showed 
that the response time of the operators affects the reliability that are related to the durations of the 
failure, indicating that a fast decision directly contributes to the system performance. In [23], 
Moura et al. introduced the multi-attribute technological accidents dataset (MATA-D) containing 
detailed investigation reports from the past major accidents and used it to address the manifestation 
of human errors. 

As for the third category of related work, we shall discuss the probabilistic models and statistical 
analysis of cascading failures in power grids. In [24], Carreras et al. asserted that the frequency 
distribution of the blackout sizes does not decrease exponentially with the size of the blackout, but 
rather has a power-law tail. Such important observation was obtained from the analysis of a 15-year 
time series of blackouts in the North American electric power transmission system. A simplified power-
transmission-system model was then presented to examine the criticality of cascading failures in the 
transmission system. The model considered the DC power flow approximation and standard linear 
programming optimization of the generation dispatch. In [25], Kirschen et al. proposed a technique to 
calculate a probabilistic indicator of the stress (i.e., criticality) in a power system. This technique was 
based on the establishment of a calibrated scale of reference cases and on the use of correlated 
sampling in a Monte-Carlo simulation. In [12], Dobson et al. proposed an analytically tractable model, 
termed CASCADE, to study the load-dependent cascading failures. The results obtained from the 
CASCADE model showed that the saturating quasibinomial distribution of the number of failed 
components had a power-law region at a critical loading and a significant probability of total failure at 
higher loading. As an aggregation of the above works, Nedic et al. [26] further verified and examined 
the criticality in a 1000-bus network with an AC power flow model that represents many of the 
interactions that occur in cascading failures. It was found that at the critical loading there was a sharp 
rise in the mean blackout size. A power-law probability distribution of blackout size was also observed, 
which indicates a significant risk of large blackouts. In [27], Rahnamay-Naeini and Hayat conducted 
sensitivity analysis of power grids to cascading failures and showed the critical dependence of 
cascading failures (i.e., blackout-size distributions with power-law tails) on the operating 
characteristics, including the loading level, load-shedding constraints and the line-tripping threshold. 



SECTION III. Impact of Human Factors on Cascading Failures 
Generally, large-scale blackouts result from the cascading effect of component failures triggered by 
initial disturbances such as hurricanes, earthquakes, operational faults, sabotage occurrences, and 
physical attacks such as weapons of mass destruction. The term cascading failures refers to the 
successive inter-dependent outages of the components of an electric-power system in a short duration 
of time due to a combination of initial failures and lack of timely corrective actions. It has been known 
that the number of successive failures when cascading failures occur increases exponentially in 
time [28], which may prevent the implementation of corrective actions in a timely fashion. 

For a better illustration of how human factors (e.g., operators’ response to events, power-system 
control/monitor software, etc.) can impact cascading failures, we provide two narratives extracted 
from historical data as the evidence. The first narrative is the 2003 Northeast blackout, which is 
summarized from the blackout reports [1]. Our second narrative is about the 2011 Southwest blackout, 
which is caused by a network operator's error in the power-distribution layer. The 2003 Northeast 
Blackout: The Northeast blackout of 2003 was a widespread power outage that occurred throughout 
parts of the Northeastern and Midwestern United States and the Canadian province of Ontario on 
Thursday, August 14, 2003. The outage affected more than 50 million people. 

The event started from the mistake by a control room operator, who forgot to restart the inoperative 
power flow monitoring tool at 12:15 pm after he corrected the telemetry problem of the state 
estimator. At 1:31 pm, the Eastlake generating plant, owned by FirstEnergy (FE), shut down. At 2:02 
pm, the first of several 345-kV overhead transmission lines in northeast Ohio failed due to contact with 
a tree. In the meantime, an alarm system failed at FE's control room and was not repaired. As a result, 
control room operators were not able to recognize or understand the deteriorating condition of the 
power grid in time. To make matters worse, the lack of alarms affected control room operators’ 
judgment and misled them. For example, the control room operators took no action later to the 
voltage dips in the grid, failed to inform system controllers, and even dismissed a call from American 
Electric Power about the tripping of a 345-kV shared transmission line in northeast Ohio. Due to the 
various human-related errors described above, there was no correct response to the initial few 
contingencies that occurred in the power grid. As a result, a large cascading failure occurred after 3 pm 
and progressed rapidly. By 4 pm, five 345-kV transmission lines and sixteen 138-kV transmission lines 
were tripped offline due to overload (e.g., under voltage and over current). 

After 4:05 pm, the cascading failure accelerated and spread to the whole northeastern grid within five 
minutes, in which more transmission lines were tripped. At this time, operators in different areas 
realized the blackout and executed grid separations to divide the whole northeastern grid into isolated 
sub-grids for protection. Finally at 4:13 pm, the outage ended with 256 power plants off-line, where 
85% of the power plants went offline after the grid separations occurred, most due to the action of 
automatic protective controls. The 2003 Northeast blackout clearly indicated that human error can be 
the cause of severe cascading failures. 

The 2011 Arizona–Southern-California Outages: On the afternoon of September 8, 2011, an 11-minute 
system disturbance occurred in the Pacific Southwest, leading to cascading outages and leaving 
approximately 7 million people without power. 



A single 500-kV transmission line initiated the event, but it was not the sole cause; the system was 
designed to operate in an N-1 state. In this situation, the redistribution of this line's power created 
voltage deviations and overloads, which had a ripple effect as transformers, transmission lines, and 
generating units tripped offline. During the 11 minutes of the event, the Western Electricity 
Coordinating Council (WECC) reliability coordinator issued no directives and only limited mitigating 
actions were taken by the transmission operators of the affected areas. As a result of the cascading 
outages stemming from this event, customers in the SDG&E, IID, APS, western area power 
administration-lower Colorado, and CFE territories lost power, some for multiple hours extending into 
the next day. It took almost 12 hours for all the affected entities to restore power. Analysis of this 
blackout showed that the system was not being operated in a secure N-1 state. This failure stemmed 
primarily from weaknesses in two broad areas: operations planning and real-time situational 
awareness. If these were done properly it would have allowed system operators to proactively operate 
the system in a secure N-1 state during normal system conditions and to restore the system to a secure 
N-1 state as soon as possible, but no longer than 30 minutes. Without adequate planning and 
situational awareness, entities responsible for operating and overseeing the transmission system could 
not ensure reliable operations within system operating limits or prevent cascading outages in the event 
of a single contingency. 

It is clear from the two narratives that human factors can highly influence the cascading failure in 
power grids. Next, we proceed to utilize the SPAR-H methodology to estimate the HEP for the human 
failure events in probabilistic risk assessment. HEP is the conditional probability of human error given 
the performance context. The context is represented by a set of variables, the PSFs, which is shown in 
Table I. Each variable plays a role in the way that the operators respond to an unpredictable event. The 
final probability of error can be calculated by the following formulas [7]: 

a) for number of PSFs < 3 

HEP = NHEP ⋅� PSF𝑖𝑖

2

𝑖𝑖=1

, 

(1) 

b) and for number of PSFs ≥ 3 

HEP =
NHEP ⋅ ∏ PSF𝑖𝑖8

𝑖𝑖=1

NHEP ⋅ ∏ PSF𝑖𝑖 + 18
𝑖𝑖=1

. 

(2) 

 

The term NHEP is short for nominal human error probability, which is dependent on whether the 
current scenario is diagnosis (0.01) or action (0.001). It is worth noting that there could be more than 
one power-system operator handling the failure events occurred during cascading failures. For 
simplicity, the associated multiplier of the PSFs in Table I are assumed to represent the aggregate 
effect of multiple operators when calculating the HEP. 



  



TABLE I Performance-Shaping Factors and Their Multipliers (Table Is Adopted From [19] 
 

SPAR-H PSFs SPAR-H PSF levels Multiplier 
NHEP: Diagnosis / Action  0.01 / 0.001 

Available time Inadequate time Pf= 1 
 Minimum required time 10 
 Nominal time 1 
 Extra time 0.1 
 Expansive time 0.01 
Stress/Stressors Extreme 5 
 High 2 
 Nominal 1 
Complexity Highly complex 5 
 Moderately complex 2 
 Nominal 1 
 Obvious diagnosis 0.1 
Experience/training Low 10 
 Nominal 1 
 High 0.5 
Procedures Not available 50 
 Incomplete 20 
 Available, but poor 5 
 Nominal 1 
 Diagnostic 0.5 
Ergonomics/HMI Missing / misleading 50 
 Poor 10 
 Nominal 1 
 Good 0.5 
Fitness for duty Unfit Pf=1 
 Degraded fitness 5 
 Nominal 1 
Work processes Poor 2 
 Nominal 1 
 Good 0.8 

The term “Pf” stands for probability of failure.) 

To this end, the probability of human error in any scenario (e.g., during cascading failures) can be 
quantified. This will, in turn, be utilized in developing our analytic probabilistic cascading-failure model 
proposed in the next section. 

SECTION IV. Analytic Framework 
A. Three Phases of Cascading Failures 
Observed from historical blackout data (e.g., the two narratives given in Section III), a cascading failure 
can be typically divided into three phases: the precursor phase (phase-1), the escalation phase (phase-
2) and the fade-away phase (phase-3). In the beginning of a cascading failure, there is a small number 
of initial and subsequent events such as transmission-line failures in the power grid. This stage is 
termed the precursor phase. As the cascading failure spreads in the power grid, the number of 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/59/8496918/8334623/wang.t1-2825348-large.gif
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transmission-line failures increases rapidly, which gives rise to the escalation phase. When a large 
number of transmission lines have failed, the power grid is divided into islands and the cascading 
failure starts to phase out. This stage is termed the fade-away phase. 

For ease of understanding, we show the time evolution of the cascading failure in the 2003 Northeast 
US blackout as well as the associated three cascading phases in Fig. 1. 

 

 
Fig. 1. Time evolution and the associated three phases of the cascading failure in 2003 Northeast US blackout. 
(Figure is adopted from [28].) 
 

B. hSASE Cascading-Failure Model 
rDeveloping an analytic model for cascading failures in the power grid is highly challenging. This is due 
to the fact that there is a large number of physical attributes of the power grid such as power 
generation, substation loads, power-flow distribution through transmission lines, functionality of 
components, voltage and phase of transmission lines and buses, etc., which collectively contribute to a 
cascading failure. Therefore, keeping track of all the details in the analytic model will result in severe 
scalability issues. 

To address such scalability challenge, we have previously developed a methodology [15], termed 
abstract state space. To describe it briefly, the space of all detailed power-grid states is partitioned into 
a collection of equivalence classes. The detailed power-grid states in the same class are represented by 
the Cartesian product of a few aggregate state-variables with the same values. Such coarse partitioning 
of the state space of the power grid implies that detailed power-grid states in the same class will be 
indistinguishable as far as the reduced abstraction is concerned. To this end, each class of the power-
grid states is termed an abstract state. 

In this paper, we further extend the abstract state space and use three state variables to represent an 
abstract state of the power grid with the consideration of operator's response (OR). More precisely, a 
3-tuple (𝐹𝐹𝑖𝑖,𝐻𝐻𝑖𝑖 , 𝐼𝐼𝑖𝑖) is used to represent an abstract state (or in short a state) 𝑆𝑆𝑖𝑖 of the power grid during 
a cascading failure (i.e., 𝑆𝑆𝑖𝑖 = (𝐹𝐹𝑖𝑖,𝐻𝐻𝑖𝑖 , 𝐼𝐼𝑖𝑖)): the state variable 𝐹𝐹𝑖𝑖  denotes the failed number of 
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transmission lines, and the state variable 𝐻𝐻𝑖𝑖, termed the level of OR, specifies the status of human 
operators facing power-system situation at state 𝑆𝑆𝑖𝑖. 

As in [15], we term the state 𝑆𝑆𝑖𝑖 with 𝐼𝐼𝑖𝑖 = 0 and 𝐼𝐼𝑖𝑖 = 1 as transitory and absorbing states, respectively. 
If the power grid is in a transitory state, then the cascading failure will keep proceeding. On the other 
hand, the cascading failure terminates if the power grid is currently in an absorbing state. Furthermore, 
we assume that the transition probability from a state 𝑆𝑆𝑖𝑖 to other states is fully determined by 𝑆𝑆𝑖𝑖 (or 
specifically 𝐹𝐹𝑖𝑖, 𝐻𝐻𝑖𝑖 and 𝐼𝐼𝑖𝑖). Hence, a cascading-failure process in a power grid can be modeled as a 
Markov chain. The analytic model presented in this paper is then termed the human-factor-coupled 
stochastic abstract-state evolution (hSASE) model, which is a generalization to the SASE model 
developed in [15]. 

TABLE II Four Operators’ Response Levels and The Associated Two PSFs During A Cascading Failure In 
IEEE 118-Bus System 
 

Operators' 
Response 

Definition Available time (respond to 
contingencies) 

Stress (of 
operators) 

Level 1 F≤5 and 𝐶𝐶max ≤80MW Extra time Nominal 
Level 2 5 < F≤10 or 80MW < 𝐶𝐶max < 500MW Nominal time High 
Level 3 10 < F≤50 or 𝐶𝐶max 2'. 500MW Minimum required time Extreme 
Level 4 F > 50 Inadequate time NIA 

 

Similarly to most of the existing cascading-failure models, transmission-line restoration is not 
considered in the hSASE model. This is due to the fact that power-system operators typically would not 
restore the failed (or tripped) transmission lines during cascading-failure events. Furthermore, as 
in [15], we assume that time is divided into small time slots such that only one failure can occur in each 
time slot. To this end, two types of state transitions, which are triggered by transmission-line failures, 
will be considered. The first type is called cascade-stop transition, where a transitory 
state 𝑆𝑆𝑖𝑖 transitions to an absorbing state 𝑆𝑆𝑗𝑗 such that 𝐹𝐹𝑗𝑗 = 𝐹𝐹𝑖𝑖 and 𝐻𝐻𝑗𝑗 = 𝐻𝐻𝑖𝑖. Note that there will be no 
more transitions if the system enters an absorbing state. The cascade-stop transition leads to an end of 
a cascading-failure process. The second type of transitions is a cascade-continue transition, where a 
transitory state 𝑆𝑆𝑖𝑖 transitions to another transitory state 𝑆𝑆𝑗𝑗 with the proviso that 𝐹𝐹𝑗𝑗 = 𝐹𝐹𝑖𝑖 + 1 and 𝐻𝐻𝑗𝑗 ≥
𝐻𝐻𝑖𝑖. Now the new transitory state 𝑆𝑆𝑗𝑗 may transition to an absorbing state or to another transitory state, 
and so on. Note that the cascade-continue transitions are assumed to be caused by single failures; 
hence, 𝑆𝑆𝑗𝑗 always has one more failure than the preceding transitory state 𝑆𝑆𝑖𝑖, i.e., 𝐹𝐹𝑗𝑗 = 𝐹𝐹𝑖𝑖 + 1. It is also 
natural to assume that a state 𝑆𝑆𝑖𝑖 with 𝐹𝐹𝑖𝑖 = 𝐿𝐿, where 𝐿𝐿 is the total number of transmission lines in the 
power grid, is an absorbing state. The cascade-stop and cascade-continue transitions considered in the 
hSASE model are similar to those in the SASE model [15]; however, the impacts of human error on 
cascading failures are not considered in the SASE model, i.e., operators are assumed to respond 
perfectly to any contingency occurred in the power grid. 

As the cascade progresses and failures accumulate in the power grid, the level of OR also changes. The 
coupling between the level of OR and state of the power grid can be explained as follows. Initially 
when cascading failures start in the power grid, the level of OR reflects less stress and more time for 
the operators to react to the situation. However, as the failures accumulate (especially the failures of 
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critical transmission lines with large power-flow capacities), the state of the power grid will impose a 
higher stress and less time to react. Finally, when the cascade starts to phase out the level of OR will 
reflect less stress (as the event has already happened) and more time to react. As discussed above, the 
state of the power grid specifies the level of OR. On the other hand, the level of OR specifies the 
performance of human operators, which will affect the state of the power grid. Specifically in the first 
two cascading phases the impact of the operators’ performance on cascading failure will be more 
significant compared to the third (namely the last) cascading phase. 

In the remainder of this subsection, we use the IEEE 118-bus system as an example to illustrate the 
connection between the levels of OR and the three phases of cascading failures. In the IEEE 118-bus 
system, there are 186 transmission lines in total. We further assume that there are five possible 
power-flow capacities (e.g., 20 MW, 80 MW, 200 MW, 500 MW and 800 MW representing the 
quantized power flow capacities based on line properties) associated with the 186 transmission lines. It 
is noted that these specific capacity values are estimated, since the necessary information for 
determining the capacities of transmission lines, such as physical properties of the line (e.g., length) 
and thermal characteristics, are not available publicly. To choose the five capacity values, we have 
calculated the power flow through the lines using the default setting under normal operating condition 
given by MATPOWER [29]. After identifying the power flows under the default setting, we quantized 
them into five capacity classes to ensure the tractability of the analytic framework while keeping the 
size of the state space to a minimum. 

Now let 𝐻𝐻 be the set containing all the levels of OR in the hSASE model. We assume four levels of OR 
to capture the state of human operators’ performance factors during cascading failures in the IEEE 
118-bus system. In brief, a higher level of OR implies a higher risk for any of the PSFs (e.g., the available 
time for power-system operators to respond to contingencies becomes inadequate and stress of 
operators increases as the level of OR goes up). For simplicity, in this preliminary study we only 
consider two important PSFs listed in Table I: the available time for operators to respond to 
contingencies and the stress of operators. 

For the ease of understanding, the four levels of OR are further described next in more detail. We 
use 𝐹𝐹 and 𝐶𝐶max to represent the number of failed transmission lines and the maximum (power-flow) 
capacity of the failed lines in the corresponding levels. 

Level 1: When 𝐹𝐹 ≤ 5 and 𝐶𝐶max ≤ 80 MW, we say that the OR is at level 1. In this stage, the power grid 
is in the precursor phase and there are a few initial failures. The operators have more than adequate 
time to respond to the contingencies (e.g., between 1 and 2 times the nominal time) and operators’ 
stress is nominal. Accordingly, the PSFs ‘Available time’ and ‘Stress’ are with levels ‘Extra/Expansive 
time’ and ‘Nominal,’ respectively, as shown in Table I. 

Level 2: When 5 < 𝐹𝐹 ≤ 10 or 80 MW < 𝐶𝐶max < 500 MW, we say that the OR is at level 2. In this stage, 
the power grid is in the advanced precursor cascading phase and additional failures have occurred, 
either due to the propagation of the initial failures or due to a large initial impact from physical attacks 
such as deliberate attacks or natural disasters. The operator knows that there is a risk for a cascading 
failure due to the disaster caused by large initial failures; however, there is still sufficient time to 
respond to the contingencies yet the stress at this stage is higher than that for Level 1. Accordingly, the 



PSFs ‘Available time’ and ‘Stress’ are with levels ‘Nominal time’ and ‘Nominal,’ respectively, as shown 
in Table I. 

Level 3: When 10 < 𝐹𝐹 ≤ 50 or 𝐶𝐶max ≥ 500 MW, we say that the OR is at level 3. At this stage, 
cascading failures are progressing rapidly in the power grid. The available time for operators to 
respond to contingencies is the minimum required time; thus, the operators’ stress is extremely high. 
Accordingly, the PSFs ‘Available time’ and ‘Stress’ are with levels ‘Minimum required time’ and 
‘Extreme,’ respectively, as shown in Table I. 

Level 4: We declare this level when 𝐹𝐹 > 50 in the IEEE 118-bus system. At this stage, cascading failures 
phase out in the power grid and operators’ performance cannot alter the state of failures since a large 
blackouts has already occurred. Hence, the PSF ‘Available time’ is at the level of ‘Inadequate time’ as 
shown in Table I and there is no need to take the operators’ stress into account. 

For convenience, we have listed the definitions of the four OR levels in Table II. It is worth noting that 
the level of OR associated to a state 𝑆𝑆𝑖𝑖 (namely 𝐻𝐻𝑖𝑖) is determined by 𝐹𝐹𝑖𝑖  and 𝐶𝐶𝑖𝑖max, where 𝐶𝐶𝑖𝑖max is the 
maximum capacity of failed transmission lines at 𝑆𝑆𝑖𝑖. This implies that a state 𝑆𝑆𝑖𝑖 in the hSASE model is 
implicitly determined by 𝐹𝐹𝑖𝑖, 𝐼𝐼𝑖𝑖 and 𝐶𝐶𝑖𝑖max. Hence, the transition of states is achieved by tracking the 
accumulation of the failed transmission lines as well as the increment of the maximum capacity of the 
failed transmission lines in the power grid. The detailed modeling of transition probabilities is provided 
in the next subsection. 

C. Transition Probabilities in the Markov Chain 
In this section, we model the transition probabilities from a state 𝑆𝑆𝑖𝑖 to other states 𝑆𝑆𝑗𝑗. It is trivial that 
if 𝑆𝑆𝑖𝑖 is an absorbing state, then 

𝑃𝑃(𝑆𝑆𝑗𝑗|𝑆𝑆𝑖𝑖) = �1 if 𝑖𝑖 = 𝑗𝑗,
0 if 𝑖𝑖 ≠ 𝑗𝑗. 

(3) 

For a transitory state 𝑆𝑆𝑖𝑖, the transition probabilities 𝑃𝑃(𝑆𝑆𝑗𝑗|𝑆𝑆𝑖𝑖) are summarized as follows. 

For 𝐹𝐹𝑖𝑖 ≤ 10, 𝑆𝑆𝑖𝑖 ≠ (5,1,0) and 𝑆𝑆𝑖𝑖 ≠ (10,2,0), 

𝑃𝑃(𝑆𝑆𝑗𝑗|𝑆𝑆𝑖𝑖) =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

(𝑖𝑖)𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐹𝐹𝑖𝑖)𝑔𝑔(𝐻𝐻𝑖𝑖) if 𝐼𝐼𝑗𝑗 = 1,
(𝑖𝑖𝑖𝑖)0 if 𝐼𝐼𝑗𝑗 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝐻𝐻𝑗𝑗 < 𝐻𝐻𝑖𝑖,

(𝑖𝑖𝑖𝑖𝑖𝑖)(1− 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐹𝐹𝑖𝑖)𝑔𝑔(𝐻𝐻𝑖𝑖))
� 𝐿𝐿𝐶𝐶𝑖𝑖 − 𝐹𝐹𝑖𝑖

𝐻𝐻𝑖𝑖

𝐶𝐶𝑖𝑖=1

𝐿𝐿 − 𝐹𝐹𝑖𝑖
if 𝐼𝐼𝑗𝑗 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 
𝐻𝐻𝑗𝑗 = 𝐻𝐻𝑖𝑖 ,

(𝑖𝑖𝑖𝑖)(1 − 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐹𝐹𝑖𝑖)𝑔𝑔(𝐻𝐻𝑖𝑖))
𝐿𝐿𝐶𝐶𝑗𝑗
𝐿𝐿 − 𝐹𝐹𝑖𝑖

if 𝐼𝐼𝑗𝑗 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 

𝐻𝐻𝑖𝑖 < 𝐻𝐻𝑗𝑗 ≤ 3.

 

(4) 



When 𝑆𝑆𝑖𝑖 = (5,1,0), 

𝑃𝑃(𝑆𝑆𝑗𝑗|𝑆𝑆𝑖𝑖) =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

(𝑖𝑖)𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐹𝐹𝑖𝑖)𝑔𝑔(𝐻𝐻𝑖𝑖) if 𝐼𝐼𝑗𝑗 = 1,
(𝑖𝑖𝑖𝑖)0 if 𝐼𝐼𝑗𝑗 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝐻𝐻𝑗𝑗 ≤ 𝐻𝐻𝑖𝑖 = 1,

(𝑣𝑣)(1 − 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐹𝐹𝑖𝑖)𝑔𝑔(𝐻𝐻𝑖𝑖))
� 𝐿𝐿𝐶𝐶𝑖𝑖 − 𝐹𝐹𝑖𝑖

𝐻𝐻𝑗𝑗

𝐶𝐶𝑖𝑖=1

𝐿𝐿 − 𝐹𝐹𝑖𝑖
if 𝐼𝐼𝑗𝑗 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 
𝐻𝐻𝑗𝑗 = 𝐻𝐻𝑖𝑖 + 1 = 2,

(𝑖𝑖𝑖𝑖)(1 − 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐹𝐹𝑖𝑖)𝑔𝑔(𝐻𝐻𝑖𝑖))
𝐿𝐿𝐶𝐶𝑗𝑗
𝐿𝐿 − 𝐹𝐹𝑖𝑖

if 𝐼𝐼𝑗𝑗 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 

𝐻𝐻𝑖𝑖 + 1 < 𝐻𝐻𝑗𝑗 ≤ 3.

 

(5) 

When 𝑆𝑆𝑖𝑖 = (10,2,0), 

𝑃𝑃(𝑆𝑆𝑗𝑗|𝑆𝑆𝑖𝑖) = {

⎩
⎪
⎪
⎨

⎪
⎪
⎧

(𝑖𝑖)𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐹𝐹𝑖𝑖)𝑔𝑔(𝐻𝐻𝑖𝑖) if 𝐼𝐼𝑗𝑗 = 1,
(𝑖𝑖𝑖𝑖)0 if 𝐼𝐼𝑗𝑗 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝐻𝐻𝑗𝑗 ≤ 𝐻𝐻𝑖𝑖 = 2,

(𝑣𝑣)(1− 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐹𝐹𝑖𝑖)𝑔𝑔(𝐻𝐻𝑖𝑖))
� 𝐿𝐿𝐶𝐶𝑖𝑖 − 𝐹𝐹𝑖𝑖

𝐻𝐻𝑗𝑗

𝐶𝐶𝑖𝑖=1

𝐿𝐿 − 𝐹𝐹𝑖𝑖
if 𝐼𝐼𝑗𝑗 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 
𝐻𝐻𝑗𝑗 = 𝐻𝐻𝑖𝑖 + 1 = 3.

 

(6) 

and when 𝐹𝐹𝑖𝑖 > 10, 

𝑃𝑃(𝑆𝑆𝑗𝑗|𝑆𝑆𝑖𝑖) = �
(𝑖𝑖)𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝(𝐹𝐹𝑖𝑖)𝑔𝑔(𝐻𝐻𝑖𝑖) if 𝐼𝐼𝑗𝑗 = 1,

(𝑣𝑣𝑣𝑣)1 − 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐹𝐹𝑖𝑖)𝑔𝑔(𝐻𝐻𝑖𝑖) if 𝐼𝐼𝑗𝑗 = 0. 

(7) 

We have considered four scenarios (or groups of states) in the power grid represented by (4)-(7). All 
the possible state transitions are further categorized into six cases (labeled by cases (i), (ii), (iii), (iv), (v) 
and (vi), respectively), where the expression of the transition probability for each case is the same for 
all the scenarios. Note that (5), (6) and (7) represent the transition probabilities for a specific 𝑆𝑆𝑖𝑖, while 
(4) is the general expression used for the rest of the 𝑆𝑆𝑖𝑖. Detailed explanation of the six cases of 
transitions are given below. 

• Case (i) represents a transition from a transitory state 𝑆𝑆𝑖𝑖 to an absorbing state 𝑆𝑆𝑗𝑗. The 
term 𝑃𝑃stop(𝐹𝐹𝑖𝑖) is the cascade-stop probability obtained based on the power-system simulations. 
We emphasize here that such cascade-stop probability is obtained without the consideration of 
human error in the simulator. More specifically, we assume that the operators are always 
performing the correct response to the contingencies. The function g captures the impact of 
operators’ performance, namely human error, on the cascading failure. The range of the 



function g is [0,1]. Since we utilize two PSFs in the model, the HEP of a state 𝑆𝑆𝑖𝑖 is then 
calculated by (1) as discussed in Section III. It is noted that as HEP increases, the 
function g reduces the probability of transiting to an absorbing state. The detailed definition 
and characterization of function g is presented in Section IV-D. 

• Case (ii) represents the transition from a transitory state 𝑆𝑆𝑖𝑖 to a transitory state 𝑆𝑆𝑗𝑗 with 𝐻𝐻𝑗𝑗 less 
than 𝐻𝐻𝑖𝑖. The transition probability equals zero for cases (ii), because these transitions cannot 
occur. More specifically, the maximum capacity of failed transmission lines cannot decrease 
during a cascading failure. 

• Cases (iii) and (iv) represent the general cascade-continue transitions from a transitory 
state 𝑆𝑆𝑖𝑖 to another transitory state 𝑆𝑆𝑗𝑗. Here 𝐿𝐿𝐶𝐶𝑖𝑖  is the number of transmission lines whose 
capacity are specified by the ith level of OR. For example in the IEEE 118-bus system, 𝐿𝐿𝐶𝐶1 is the 
number of transmission lines that have capacity less than or equal to 80 MW (namely OR = 
1); 𝐿𝐿𝐶𝐶2 is the number of transmission lines that have capacity larger than 80 MW but less than 
500 MW (namely OR = 2); and 𝐿𝐿𝐶𝐶3 is the number of transmission lines that have capacity larger 

than or equal to 500 MW (namely OR = 3). Note that 𝐿𝐿 = � 𝐿𝐿𝐶𝐶𝑖𝑖
3

𝐶𝐶𝑖𝑖=1
= 186 is total number of 

transmission lines in the power grid. The two transition probabilities for cases (iii) and (iv) are 
formulated based on an assumption that the next transmission line to be failed during the 
cascading failure is randomly selected from the rest of the functional transmission lines in the 
power grid. It is worth noting that 𝐻𝐻𝑖𝑖 and 𝐻𝐻𝑗𝑗 are less than or equal to three in cases (iii) and (iv) 
for the example studied here. 

• Case (v) represents the same transition as case (iii); however, there is one more transmission-
line failure whose capacity is less than or equal to the values specified by the ith level of OR. 
According to the definitions of the OR levels regarding 𝐹𝐹, however, when 𝑆𝑆𝑖𝑖 = (5,1,0) and 𝑆𝑆𝑖𝑖 =
(10,2,0) such a transition will cause a rise in the level of OR (i.e., 𝐻𝐻𝑖𝑖 + 1) while 𝐻𝐻𝑗𝑗 = 𝐻𝐻𝑖𝑖  in case 
(iii). Note that the difference between the expressions in (iii) and (v) is the upper limit of the 
summation, i.e., 𝐻𝐻𝑖𝑖 in case (iii) and 𝐻𝐻𝑗𝑗 in case (v). 

• Case (vi) represents the cascade-continue transitions for states 𝑆𝑆𝑖𝑖 with 𝐹𝐹𝑖𝑖 > 10. From Table II, it 
is noted that the level of OR of the state 𝑆𝑆𝑖𝑖 with 𝐹𝐹𝑖𝑖 > 10 is either at 3 or 4. In this case, the rise 
of the level of OR from 3 to 4 only depends on the number of failures (i.e., from 𝐹𝐹𝑖𝑖 > 50 to 𝐹𝐹𝑗𝑗 =
51), and the level of OR stays at 4 (namely the highest level) for states 𝑆𝑆𝑖𝑖 with 𝐹𝐹𝑖𝑖 > 50. Hence, 
the probability of transition from 𝑆𝑆𝑖𝑖 with 𝐹𝐹𝑖𝑖 > 10 to 𝑆𝑆𝑗𝑗 with one more failure is always equals to 
one minus the probability that the cascading failure terminates at 𝑆𝑆𝑖𝑖, i.e., 𝑃𝑃stop(𝐹𝐹𝑖𝑖)𝑔𝑔(𝐻𝐻𝑖𝑖). 

D. Impact of Human Error on the Progression of Cascading Failures 
In this section, we characterize the function 𝑔𝑔 introduced in the transition probabilities in the previous 
subsection. The function 𝑔𝑔 allows us to capture the impact of operators’ response on the progression 
of cascading failures. This step will allow us to close the loop between the human factors and the 
dynamics of cascading failures in the power grid. 

https://ieeexplore.ieee.org/document/#deqn1


Naturally, as the HEP increases the probability of further failures in the system also increases because 
of erroneous decisions and actions. This implies that the probability of termination of the cascading 
failure decreases as the likelihood of human error increases. To capture these effects, we define 

𝑔𝑔(𝐻𝐻𝑖𝑖) = 1 − 𝑏𝑏HEP(𝐻𝐻𝑖𝑖) 

(8) 

to multiplicatively adjust 𝑃𝑃stop(𝐹𝐹𝑖𝑖) based on the HEP. In this formulation, 𝑏𝑏 is the free parameter for 
adjusting the strength of the human-error impacts. In particular, 𝑔𝑔(𝐻𝐻𝑖𝑖) will be multiplied by 𝑃𝑃stop(𝐹𝐹𝑖𝑖) to 
determine the probability that the cascading failure terminates at state 𝑆𝑆𝑖𝑖 (i.e., the 
term 𝑃𝑃stop(𝐹𝐹𝑖𝑖)𝑔𝑔(𝐻𝐻𝑖𝑖) in (4)–(7)). Since 𝑔𝑔(𝐻𝐻𝑖𝑖) has a value in [0,1], it will reduce 𝑃𝑃stop(𝐹𝐹𝑖𝑖). 

In (8), if 𝑏𝑏 is a constant (independent of 𝐻𝐻𝑖𝑖) then it is implied that the strength of the human-error 
impacts on failures does not directly depend on the phases of the cascading failure. However, the 
human error and decisions can have various degrees of impacts on the progression of failures 
depending on the state of the power system. For instance, the impact of erroneous decisions and 
actions by the operators are particularly severe on the likelihood of further failures during the 
precursor phase. As such, we consider larger values of 𝑏𝑏 for this phase. On the other hand, we consider 
smaller values for 𝑏𝑏 when cascading failures have already occurred and blackouts have affected large 
areas. This is because the role of human errors on further possible failures are less significant. In the 
final stage of cascading failures, we consider 𝑏𝑏 = 0 (i.e., 𝑔𝑔(𝐻𝐻𝑖𝑖) = 1) since operators’ performance 
cannot alter the state of cascading failures in this stage as discussed earlier. In general, in this 
formulation the larger values of 𝑏𝑏 represent more severe impacts of human errors on cascading 
failures. Specifically, based on these assumptions we consider 𝑏𝑏 values as 10, 2.5, 1.5 and 0 for the four 
levels of OR, respectively. 

E. Modeling 𝑃𝑃stop Using Three Operating Characteristics 
As discussed in the previous sections, 𝑃𝑃stop(𝐹𝐹𝑖𝑖) is one of the key elements of the transition probabilities 
in the hSASE model, which also needs to be characterized. In our earlier work [15], we have conducted 
extensive power-system cascading-failure simulations based on MATPOWER for investigating the 
behavior of 𝑃𝑃stop(𝐹𝐹𝑖𝑖). In particular, we have observed from cascading-failure simulation results 
that 𝑃𝑃stop(𝐹𝐹𝑖𝑖) is strongly affected by the following three intrinsic power-grid operating characteristics. 

1. Power-grid loading level: We denote the power-grid loading level by 𝑟𝑟, defined as the ratio of 
the total demand to the generation-capacity of the power grid. The parameter 𝑟𝑟 represents the 
level of stress over the grid in terms of the loading level of its components. 

2. Line tripping threshold: We consider a threshold, 𝛼𝛼𝑘𝑘, for the power flow through the kth line 
above which the protection relay trips the line. Various factors and mechanisms in the power 
grid may affect the threshold 𝛼𝛼𝑘𝑘 for transmission lines. These include, for example, the 
environmental conditions, failures in adjacent lines, and smaller measured impedance than 
relay settings due to overload [30]. We represent the difference between the nominal capacity 
of a line 𝐶𝐶𝑘𝑘

opt and 𝛼𝛼𝑘𝑘 by a parameter 𝑒𝑒 as 𝐶𝐶𝑘𝑘
opt − 𝛼𝛼𝑘𝑘 = 𝑒𝑒𝐶𝐶𝑘𝑘

opt. The parameter 𝑒𝑒 captures the 
effects of various factors and mechanisms that may lead to failure of transmission lines when 
their power flow is within a certain range of the maximum (nominal) capacity. 



3. Load-shedding constraint level: Constraints in implementing load shedding are generally 
governed by control and marketing policies, regulations, physical constraints and 
communication limitations. The ratio of the uncontrollable loads (loads that do not participate 
in load shedding) to the total load in the power grid is termed the load-shedding constraint, 
denoted by 𝜃𝜃. In extreme cases, 𝜃𝜃 = 1 means load shedding cannot be implemented, and 𝜃𝜃 =
0 means there is no constraint in implementing the load shedding. 

The theoretical ranges of all the three operating characteristics can be from zero to one, i.e., 𝑟𝑟, 𝑒𝑒, 𝜃𝜃 ∈
[0,1]. As the value of any of the three operating characteristics increases, the power grid becomes 
more vulnerable to cascading failures. Fig. 2 shows the simulation results of 𝑃𝑃stop(𝐹𝐹𝑖𝑖) for the IEEE 118-
bus system, which depicts the dependency of cascade-stop probability on 𝐹𝐹𝑖𝑖  and the load-shedding 
constraint level of the power grid, 𝜃𝜃. Following our earlier work [27], the formula of 𝑃𝑃stop(𝐹𝐹𝑖𝑖) is given 
by 

𝑃𝑃stop(𝐹𝐹𝑖𝑖) =

⎩
⎨

⎧𝑎𝑎1(
𝑎𝑎2𝐿𝐿 − 𝐹𝐹𝑖𝑖
𝑎𝑎2𝐿𝐿

)4 + 𝜖𝜖 1 ≤ 𝐹𝐹𝑖𝑖 ≤ 𝑎𝑎2𝐿𝐿

𝜖𝜖 𝑎𝑎2𝐿𝐿 < 𝐹𝐹𝑖𝑖 ≤ 0.6𝐿𝐿
𝑄𝑄(𝐹𝐹𝑖𝑖) 0.6𝐿𝐿 < 𝐹𝐹𝑖𝑖 ≤ 𝐿𝐿,

 

(9) 

where 𝑄𝑄(𝐹𝐹𝑖𝑖) is a fixed quadratic function approximating the tail of the family of bowl-shape functions 
as shown in Fig.  2. We also use the obvious terminal condition 𝑃𝑃stop(𝐿𝐿) = 1. 

 

 
Fig. 2. The cascade-stop probability 𝑃𝑃stop(𝐹𝐹𝑖𝑖) as estimated from simulation results. (Figure is adopted from [15] .) 
 

In this paper, we further approximate the values of 𝑎𝑎1, 𝑎𝑎2 and 𝜖𝜖 as functions of 𝑟𝑟, 𝑒𝑒 and 𝜃𝜃. Based on 
the simulation results (part of the results have been shown in [15] and [27]), a good approximation 
of 𝑎𝑎1, 𝑎𝑎2 and 𝜖𝜖 can be 

𝑎𝑎1 = 0.4 − 0.25⌊𝑟𝑟⌋0.5 − [𝑒𝑒]0.1
0.5(0.2 − [𝑒𝑒]0.1

0.5) − 0.25⌈𝜃𝜃⌉0.4,
𝑎𝑎2 = 0.1 − 0.05⌊𝑟𝑟⌋0.5 − 0.1[𝑒𝑒]0.1

0.5(0.2 − [𝑒𝑒]0.1
0.5) − 0.07⌈𝜃𝜃⌉0.4,

𝜖𝜖 = 0.6 − 0.4⌊𝑟𝑟⌋0.5 − 0.5[𝑒𝑒]0.1
0.5 − 0.3⌈𝜃𝜃⌉0.4.
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(10)(11)(12) 

It is noted that the values of 𝑟𝑟, 𝑒𝑒 and 𝜃𝜃 are truncated in (10), (11) and (12). The reasons are twofold. On 
one hand, the impact of an operating characteristic on cascading failures (namely 𝑃𝑃stop(𝐹𝐹𝑖𝑖)) behaves 
similarly beyond certain threshold, e.g., 𝑟𝑟 < 0.5 and 𝑒𝑒 < 0.1, based on power-system simulation 
results. On the other hand, it is practical to assume that e should be less than 0.3 and θ should be less 
than 0.4. For convenience, we also show the analytic characterizations of 𝑎𝑎1 and 𝑎𝑎2 as a function 
of 𝑟𝑟, 𝑒𝑒 and 𝜃𝜃 in Fig. 3. With the parametric modeling of 𝑃𝑃stop(𝐹𝐹𝑖𝑖) at hand, the description of transition 
probabilities in the hSASE model becomes complete. 

 
Fig. 3. Analytic characterizations of (a) 𝑎𝑎1 and (b) 𝑎𝑎2 as a function of 𝑟𝑟, 𝑒𝑒, and 𝜃𝜃. Upper surfaces: 𝑟𝑟 = 0.5; lower 
surfaces: 𝑟𝑟 = 0.9. 

SECTION V. Blackout-Size Probability Distribution 
A. Criticality Analysis Using the hSASE Model 
An important consequence of the hSASE model is that it allows us to evaluate the probability mass 
function (PMF) of the blackout size of a cascading-failure caused by any disturbance event. Such PMF is 
a widely adopted metric for assessing the risk of cascading failures in the power grid. 
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Let 𝑆𝑆 denote the state space of the Markov chain in the hSASE model. The total number of states 
in 𝑆𝑆 is 2𝐿𝐿|𝐻𝐻| due to the definition of a state 𝑆𝑆𝑖𝑖 ∈ 𝒮𝒮 given in Section IV-B. Here 𝐿𝐿 is the number of 
transmission lines in the power grid and |𝐻𝐻| is the cardinality of 𝐻𝐻 (recall that 𝐻𝐻 is the set containing all 
the levels of OR). Note that |𝐻𝐻| is a fixed number in the hSASE model, e.g., |𝐻𝐻| = 4 for the IEEE 118-
bus system studied in this paper. Hence, the size of the state space of the Markov chain scales linearly 
as a function of the number of transmission lines in the power system. 

For convenience, the indices of all the states in the Markov chain are arranged by following three 
simple rules. 

For any two distinct states 𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑗𝑗, 

i) 𝑖𝑖 < 𝑗𝑗 if 𝐹𝐹𝑖𝑖 < 𝐹𝐹𝑗𝑗; 

ii) 𝑖𝑖 < 𝑗𝑗 if 𝐹𝐹𝑖𝑖 < 𝐹𝐹𝑗𝑗 but 𝐻𝐻𝑖𝑖 < 𝐻𝐻𝑗𝑗; 

iii) 𝑗𝑗 = 𝑖𝑖 + 1 if 𝐹𝐹𝑖𝑖 < 𝐹𝐹𝑗𝑗 and 𝐻𝐻𝑖𝑖 = 𝐻𝐻𝑗𝑗, but 𝐼𝐼𝑖𝑖 = 0 and 𝐼𝐼𝑗𝑗 = 1. 

To this end, the index of a state 𝑆𝑆𝑖𝑖 = (𝐹𝐹𝑖𝑖,𝐻𝐻𝑖𝑖 , 𝐼𝐼𝑖𝑖) is 

(𝐹𝐹𝑖𝑖 − 1)|𝐻𝐻| + 2(𝐻𝐻𝑖𝑖 − 1) + 𝐼𝐼𝑖𝑖 + 1. 

(13) 

From (13), it is clear that the indices of transitory states and absorbing states are odd and even, 
respectively. Furthermore, if a transition from 𝑆𝑆𝑖𝑖 to 𝑆𝑆𝑗𝑗 has a positive probability, then the index of 𝑆𝑆𝑗𝑗 is 
always larger than the index of 𝑆𝑆𝑖𝑖. 

Now let 𝑸𝑸 be the transition matrix of the Markov chain, and qij represent the ijth element of 𝑸𝑸, 
i.e., 𝑞𝑞𝑖𝑖𝑖𝑖 = 𝑃𝑃(𝑆𝑆𝑗𝑗|𝑆𝑆𝑖𝑖). It is clear that 𝑸𝑸 is a 2𝐿𝐿|𝐻𝐻| × 2𝐿𝐿|𝐻𝐻| square matrix. Furthermore, two important 
properties of 𝑸𝑸 are given by the following two propositions and a lemma. 

Proposition 1: 

𝑸𝑸 is an upper diagonal matrix. 

Proof: 

This is due to the fact that the number of failed transmission lines accumulate during cascading failures 
and there is no transmission-line restoration during cascading failures in the hSASE model. 

Proposition 2: 

The elements on the main diagonal of 𝑸𝑸 are given by 

𝑞𝑞𝑖𝑖𝑖𝑖 = �0 if 𝑖𝑖 is odd,
1 if 𝑖𝑖 is even. 

Proof: 

This is due to the definitions of a transitory state and an absorbing state given in Section IV-B. More 
specifically, the cascading failure proceeds when it is in a transitory state 𝑆𝑆𝑖𝑖 (when 𝑖𝑖 is odd), which 



implies that 𝑞𝑞𝑖𝑖𝑖𝑖 = 0. While the cascading failure terminates when it is in an absorbing 
state 𝑆𝑆𝑖𝑖 (when 𝑖𝑖 is even), which implies that 𝑞𝑞𝑖𝑖𝑖𝑖 = 1 and 𝑞𝑞𝑖𝑖𝑖𝑖 = 0 for 𝑖𝑖 ≠ 𝑗𝑗. 

Lemma 1: 

𝑸𝑸 is a stochastic matrix. 

Proof: 

We must show that � 𝑞𝑞𝑖𝑖𝑖𝑖 = 1
𝑗𝑗∈𝑆𝑆

, for all 𝑖𝑖 ∈ 𝑆𝑆. When 𝑖𝑖 is even, it is clear from Proposition 2 that 𝑞𝑞𝑖𝑖𝑖𝑖 =

1 and 𝑞𝑞𝑖𝑖𝑖𝑖 = 0 for 𝑖𝑖 ≠ 𝑗𝑗, which implies � 𝑞𝑞𝑖𝑖𝑖𝑖 = 1
𝑗𝑗∈𝑆𝑆

. When 𝑖𝑖 is odd, a state 𝑆𝑆𝑖𝑖 = (𝐹𝐹𝑖𝑖,𝐻𝐻𝑖𝑖, 0) is a 

transitory state. According to the definition of transition probabilities given in (4), the cascade-stop 
transition from 𝑆𝑆𝑖𝑖 to 𝑆𝑆𝑗𝑗 is unique, where 𝑗𝑗 = 𝑖𝑖 + 1, with 𝑞𝑞𝑖𝑖𝑖𝑖 = 𝑃𝑃stop(𝐹𝐹𝑖𝑖)𝑔𝑔(𝐻𝐻𝑖𝑖). On the other hand, there 
may be multiple cascade-continue transitions from 𝑆𝑆𝑖𝑖 to 𝑆𝑆𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽, where 𝐽𝐽 is the set containing odd 

numbers in the range [𝑖𝑖 + 2|𝐻𝐻|,2(𝐹𝐹𝑖𝑖 + 1)|𝐻𝐻| − 1]. Furthermore, � 𝑞𝑞𝑖𝑖𝑖𝑖 = 1
𝑗𝑗∈𝐽𝐽

−

𝑃𝑃stop(𝐹𝐹𝑖𝑖)𝑔𝑔(𝐻𝐻𝑖𝑖) and 𝑞𝑞𝑖𝑖𝑖𝑖 = 0 for all 𝑗𝑗 ∉ 𝐽𝐽 and 𝑗𝑗 ∈ 𝑆𝑆. Hence, � 𝑞𝑞𝑖𝑖𝑖𝑖 = 1 
𝑗𝑗∈𝑆𝑆

when i is odd. 

Theorem 1: 

Starting from any initial state 𝑆𝑆0, the state always reaches an absorbing state in the Markov chain given 
the transition matrix 𝑸𝑸. 

Proof: 

It is noted that a state 𝑆𝑆𝑖𝑖 is either transitory or absorbing. For a transitory state 𝑆𝑆𝑖𝑖, it can only transition 
to 𝑆𝑆𝑗𝑗 with 𝐹𝐹𝑗𝑗 = 𝐹𝐹𝑖𝑖 + 1. Furthermore, if a transitory state 𝑆𝑆𝑖𝑖 with 𝐹𝐹𝑖𝑖 = 𝐿𝐿 − 1 transition to the next 
state 𝑆𝑆𝑗𝑗 then 𝑆𝑆𝑗𝑗 has 𝐹𝐹𝑗𝑗 = 𝐿𝐿. As the terminal condition, 𝑆𝑆𝑗𝑗 is always an absorbing state. Theorem 1 is 
then established since only finite number of states will be considered in the hSASE model. 

In light of Theorem 1, we can claim that the Markov chain has a limiting distribution of states given an 
initial state 𝑆𝑆0. Let the vector 𝝅𝝅𝟎𝟎 = (0, . . . ,0,1,0, . . .0) denote the initial state 𝑆𝑆0, where the position of 
the element that equals to “1” in 𝝅𝝅𝟎𝟎 is the index of 𝑆𝑆0 in the Markov chain. Next, let the vector 𝝅𝝅 =
(𝜋𝜋𝑖𝑖, 𝑖𝑖 = 1, … ,2𝐿𝐿|𝐻𝐻|) represent the limiting distribution given 𝝅𝝅𝟎𝟎, where πi is the steady-state 
probability of 𝑆𝑆𝑖𝑖. Then 

𝝅𝝅 ≜ 𝝅𝝅𝟎𝟎 𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘→∞
𝑸𝑸𝑘𝑘. 

(14) 

Now let 𝐵𝐵(𝑛𝑛|𝑆𝑆0) represent the summation of the steady-state probabilities of a set of 
states 𝑆𝑆𝑖𝑖 with 𝐹𝐹𝑖𝑖 = 𝑛𝑛. We can write 

𝐵𝐵(𝑛𝑛|𝑆𝑆0) = �𝜋𝜋2(𝑛𝑛−1)|𝐻𝐻|+2𝑖𝑖 ,for 𝑛𝑛 = 1, … , 𝐿𝐿
|𝐻𝐻|

𝑖𝑖=1

. 



(15) 

It is important to note that 𝐵𝐵(𝑛𝑛|𝑆𝑆0) represents the probability of a blackout with 𝑛𝑛 transmission-line 
failures given an initial disturbance 𝑆𝑆0 in the physical sense. 

It is noted that the Markov chain studied in the hSASE model is not irreducible because there exist both 
transient states and recurrent states in the Markov chain. This further implies that the unique 
stationary distribution of the Markov chain does not exist (it is not difficult to see this point since the 
stationary distribution is dependent on the initial state). To obtain the PMF of the blackout size 
(i.e., 𝐵𝐵(𝑛𝑛|𝑆𝑆0) for 𝑛𝑛 = 1, … , 𝐿𝐿), we can conduct Monte-Carlo simulations of the Markov chain given the 
initial state 𝑆𝑆0. In this case, the computational complexity of the hSASE model scales linearly in terms 
of 𝐿𝐿. Alternatively, we can further obtain the analytic expression for 𝐵𝐵(𝑛𝑛|𝑆𝑆0) by evaluating 𝑙𝑙𝑙𝑙𝑙𝑙

𝑘𝑘→∞
𝑸𝑸𝑘𝑘. 

This can be done by performing matrix diagonalization as well as using the Cayley-Hamilton theorem. 
For further discussion on the details of this analysis, we refer interested readers to [15]. 

B. Critical Operating Characteristics of the Power Grid 
From the analysis of historical blackout data of the North American electric power transmission 
system [10], [24], [31] as well as power-system simulation results [15], [26], [27], researchers have 
agreed that today's power grids may be operated close to a critical setting. A widely accepted indicator 
of such critical setting is that the PMF of the blackout sizes does not decrease exponentially with the 
size of the blackout, but rather a power-law tail [32]. Hence, in this paper we define a power grid to be 
operating in a critical setting if the PMF of the blackout size has a power-law tail. 

Given the operating characteristics of the power grid as well as the initial disturbance event 𝑆𝑆0, we are 
able to obtain the PMF of blackout size of a cascading failure (namely 𝐵𝐵(𝑛𝑛|𝑆𝑆0)) by applying the limit 
approach as discussed in Section V-A. The PMF of blackout size can be used to further characterize the 
critical operating characteristics of the power grid. In this section, we start by investigating various 
cascading-failure scenarios and calculate the associated PMFs of blackout size to find out how the 
human behavior and the three power-grid operating characteristics influence the cascading-failure 
behavior in the IEEE 118-bus system. Then we proceed to identify the critical operating characteristics 
of the power grid, which should be avoided to reduce the risk of large cascading failures. The initial 
disturbance event considered here is two transmission-line failures with 𝐶𝐶max = 80 MW. 

In Fig. 4 we show the PMFs of blackout size for three different scenarios when 𝑒𝑒 =  0.3 and 𝜃𝜃 =  0.3. 
First, it is interesting to compare the results for the two scenarios when 𝑟𝑟 =  0.75. It is clear that the 
PMF of blackout size changes from an exponential behavior, when the human error is not considered, 
to a power-law tail when the human error is considered. It is also worth noting that the coupling of 
human behavior is not the exclusive factor that determines the criticality of the cascading failure. For 
example in the case when 𝑟𝑟 = 0.9 and the human coupling is not taken into account, the PMF of 
blackout size also exhibits a power-law tail. 

 



 
Fig. 4. The PMF of blackout size for three different scenarios: 𝑒𝑒 =  0.3 and 𝜃𝜃 =  0.3. 
 

To further investigate how the cascading failure is influenced by the power-grid operating setting and 
the human behavior, we show another set of PMFs of blackout size in Fig. 5 for cases when 𝑒𝑒 =
 0.1, 𝜃𝜃 =  0.01 and the impact of human behavior has been considered. Under such a setting 
of 𝑒𝑒 and 𝜃𝜃, the power grid is less vulnerable to cascading failures. Hence, we observe from Fig. 5 that, 
as expected, all the PMFs of the blackout size approximate the exponential behavior no matter what 
the load ratio 𝑟𝑟 is. 

 
Fig. 5. The PMF of blackout size for three different loading level 𝑟𝑟 when human error is considered for all 
scenarios: 𝑒𝑒 =  0.1, 𝜃𝜃 =  0.01. 
 

The results in Figs. 4 and 5 confirm that there exist certain critical settings (i.e., combinations of values 
of 𝑟𝑟, 𝑒𝑒 and 𝜃𝜃) that determine the criticality of cascading failure in the power grid. In other words, these 
critical points make the system sensitive to large cascading failures with the blackout probability 
following a power-law distribution. 

In light of the proposed analytic model, we can further identify the non-critical settings for cascading 
failures in the power grid without running the power-system simulator, which is time consuming. In 
Fig.  6, two non-critical regions are shown for cases when the impact of human behavior is not 
considered and considered, respectively. In particular, each point inside the regions represents a 
specific operating setting (a combination of 𝑟𝑟, 𝑒𝑒 and 𝜃𝜃). The PMF of the blackout size under any non-
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critical operating setting tends to have the exponential-tail behavior rather than the power-law tail. By 
comparing Fig.  6(a) and (b), it is clear that the non-critical regions shrink due to the consideration of 
human error. One more important fact learned from Fig.  6 is that the impact of human error can also 
be illustrated as the drop of 𝜃𝜃 in the non-critical region when 𝑟𝑟 and 𝑒𝑒 are fixed. The observation 
directly implies that the power grid can enhance its tolerance to cascading failures when more load-
shedding is allowed. 

 
Fig. 6. Non-critical region for power-grid operating characteristics when (a) the impact of human behavior is not 
considered, and (b) the impact of human behavior is considered. 
 

SECTION VI. Conclusions and Extensions 
Human operators play a key role in the reliable operation of power grids. However, human operators 
may behave far from optimum. The reasons may include stressful situations and other factors that 
affect the reliability of power grids. Historical blackout data as well as interviews of power-system 
operators illustrate that human behavior can highly impact cascading failures in power grids. To 
quantify the human error during cascading failures, the SPAR-H methodology is used to estimate the 
HEP for the human failure events in terms of probabilistic risk assessment. 

With the assessment of HEP at hand, we have developed a scalable analytic model, based upon 
reduced state-space Markov chains, to investigate the cascading failures in power grids when human 
behavior is considered. With the help of power-system simulations, we have further formulated the 
state-dependent transition probabilities in the Markov chain in terms of the HEP as well as three key 
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power-system operating characteristics including the power-grid loading level, line tripping threshold, 
and load-shedding constraint level. In light of the proposed analytic model, the criticality of key power-
system operating characteristics can be identified. In particular, non-critical regions of the three 
operating-characteristic settings have been suggested, under which the power grid may become less 
vulnerable to severe cascading failures (the PMF of blackout size due to cascading failures decreases 
exponentially rather than having a power-law tail). The results can provide invaluable design and 
management for power-system robustness as a contribution to operate smart grids as well as a model 
to analyze the impact of human factors on cascading failures. 

As a starting point of this work, we have only focused on the number of transmission-line failures and 
the loss of transmission capacity. However, the proposed analytic framework is capable of tracking 
other types of failures and investigating the impact of other physical attributes in the power system, 
such as generators, on cascading failures. For example, we can extend the definition of the state space 
(e.g., by introducing a state variable Gi representing the number of generator failures) of the Markov 
chain to track other variables in the system. Introducing new state variables (e.g., number of generator 
failures) also mandates generating supporting simulations to be able to estimate and relate the 
transition probabilities of the Markov chain to all the state variables. 
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