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H2−H∞ control of discrete-time nonlinear systems using the state-dependent
Riccati equation approach
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ABSTRACT
A novel H2−H∞ State-dependent Riccati equation control approach is presented for providing a
generalized control framework to discrete-time nonlinear system. By solving a generalized Riccati
equation at each time step, the nonlinear state feedback control solution is found to satisfy mixed
performance criteria guaranteeing quadratic optimality with inherent stability property in combina-
tionwith H∞ type of disturbance attenuation. Two numerical techniques to compute the solution of
the resulting Riccati equation are presented: The first one is based on finding the steady-state solu-
tion of the difference equation at every step and the second one is based on finding the minimum
solution of a linear matrix inequality. The effectiveness of the proposed techniques is demonstrated
by simulations involving the control of an inverted pendulum on a cart, a benchmark mechanical
system.
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Introduction

The Hamilton–Jacobi equation (HJE) is a traditional
approach to characterize the optimal control of non-
linear systems. The solution of the HJEs provides the
necessary and sufficient optimal control conditions for
system modelled by nonlinear dynamics. When the con-
trolled system is linear time-invariant and the perfor-
mance index is linear quadratic regulator (LQR), the HJEs
can be reduced to algebraic Riccati equations (AREs).
As for H∞ nonlinear control problem, the optimal con-
trol solution is equivalent to solving the corresponding
Hamilton–Jacobi inequalities (HJIs). However, HJEs and
HJIs, which are first-order partial differential equations
and inequalities, cannot be solved for more than a few
state variables.

Motivated by the success of linear systemoptimal con-
trol methods, there has been a great deal of research
involves in approximating the solutions of HJEs and HJIs
over the last decade. As powerful alternatives to HJE/HJI
techniques: the state-dependent linear matrix inequality
(SDLMI) and the state-dependent Riccati equation (SDRE)
techniques have provided us very effective algorithms
for synthesizing the nonlinear feedback controls. Both
SDLMI and SDRE utilize state-dependent linear represen-
tations, some of the earliest work can be found in Cloutier

CONTACT Xin Wang xwang@siue.edu Department of Electrical and Computer Engineering, Southern Illinois University, Edwardsville, IL 62026, USA

(1997), Cloutier, D’Souza, and Mracek (1996); Huang and
Lu (1996) and Mohseni, Yaz, and Olejniczak (1998).

The purpose behind SDLMI is to convert a nonlinear
system control design into a convex optimization prob-
lem involving state-dependent linear matrix inequality
solutions. The recent development in numerical algo-
rithms for solving convex optimization provides very effi-
cient means for solving LMI (Boyd, Ghaoui, Feron, & Bal-
akrishnan, 1994). If a solution can be expressed in LMI
form, then there exist efficient algorithmsproviding glob-
ally optimal numerical solutions. Therefore, if the LMIs
are feasible, then SDLMI control technique provides opti-
mal solutions at each step for a given state for nonlin-
ear system control problems. As pointed out in Jeong,
Feng, Yaz, and Yaz (2010), Wang and Yaz (2009), Wang,
Yaz, and Jeong (2010) and Wang, Yaz, and Yaz (2010),
SDLMIprovides us aneffectivemethod to synthesizenon-
linear feedback control in achieving nonlinear quadratic
regulator (NLQR), H∞ and positive realness performance
criteria.

The SDRE control has emerged as general design
method since themid-1990s,whichprovides a systematic
and effective design framework for nonlinear systems.
Motivated by linear quadratic regulator control by alge-
braic Riccati equation (ARE), Cloutier et al. extended the
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result to nonlinear quadratic regulator problem by using
state-dependent coefficient matrices as pointed out in
Cloutier (1997) and Cloutier et al. (1996). A discrete SDRE
method is developed inDutka, Ordys, andGrimble (2005).
Due to the computational advantage and guaranteed
local stability, the SDRE method is of practical impor-
tance and has a wide range of applications, including
robotics, missiles, aircraft, satellite/spacecraft, unmanned
aerial vehicles (UAVs), ship systems, autonomous under-
water vehicles, automotives, process control, chaotic sys-
tems, biomedical systems, guidance and navigation, etc.
A recent survey of the development of SDRE method can
be found in Cimen (2008, 2010).

Traditionally, the SDRE method approaches address
the nonlinear quadratic regulator problem. The contri-
bution of this manuscript is to propose a novel H2−H∞
SDRE control approach with the purpose of providing
a generalized control framework to discrete-time non-
linear systems. By solving the generalized SDRE at each
time step, the optimal control solution is found to sat-
isfy mixed performance criteria guaranteeing quadratic
optimalitywith inherent stabilityproperty in combination
withH∞ type of disturbance reduction (Basar & Bernhard,
1995; Van der Shaft, 1993). Two numerical solution proce-
dures: one involving the steady-state solution of a gener-
alized Riccati difference equation and the other involving
a state-dependent LMI are also given. The effectiveness of
the proposed technique is demonstrated by simulations
involving the control of a benchmarkmechanical system.

The paper is organized as follows: In the second
section, the system model and the performance criteria
are introduced. In the third section, the derivation of the
H2−H∞ SDREcontroller is provided.Optimal control solu-
tion can be obtained by solving the generalized SDRE.
To solve the generalized SDRE, a difference SDRE and
an SDLMI solution are also presented to provide com-
putational alternatives. The fourth section contains an
illustrative example involving the control of the inverted
pendulum on a cart. Finally, the conclusions are summa-
rized in the fifth section. The following notation is used in
this work: x ∈ �n denotes n-dimensional real vector with
norm ‖x‖ = (xTx)1/2 where (·)T indicates transpose. A ≥
0 for a symmetric matrix denotes a positive semi-definite
matrix. l2 is the space of infinite sequences of finite-
dimensional vectorswith finite energy:

∑∞
k=0 ‖xk‖2 < ∞.

Systemmodel and performance index

Consider the input affine discrete-time nonlinear system
given by the following difference equation:

xk+1 = A(xk)xk + B(xk)uk + F(xk)wk

= Akxk + Bkuk + Fkwk ,
(1)

where xk ∈ �n is the state vector, uk ∈ �m the applied
input,wk ∈ �q the l2 typeof disturbance andAk , Bk , Fk the
state-dependent matrices of known structure.

Note that the simplified notation for time-varying
matricesAk , Bk , etc. is used todenote the state-dependent
matrices. The performance output function zk ∈ �p is
generalized as follows:

zk = C(xk)xk + D(xk)uk + G(xk)wk

= Ckxk + Dkuk + Gkwk ,
(2)

where Ck ,Dk ,Gk are state-dependent coefficientmatrices
of known structure.

It is assumed that the state feedback is available. Oth-
erwise, estimated state variable can be obtained from a
nonlinear state estimator. The nonlinear state feedback
control input is given by

uk = K(xk) · xk = Kk · xk . (3)

Consider the quadratic energy function

Vk = xTkPkxk > 0 (4)

for the following difference inequality:

Vk+1 − Vk + xTkQkxk + uTkRkuk + zTkzk − γ 2wT
kwk ≤ 0

(5)
with Qk > 0, Rk > 0 being the function of xk .

Note that upon summation over k, Equation (5) yields

VN +
N−1∑
k=0

[xTkQkxk + uTkRkuk + ‖zk‖2] ≤ V0

+ γ 2
∑N−1

k=0
[‖wk‖2]. (6)

Notice that Qk and Rk are state-dependent counter
parts of the weighting matrices in the traditional linear
quadratic (H2) control approach and γ 2 is the H∞ bound.
By properly specifying the value of theweighingmatrices
Qk , Rk , Ck ,Dk , mixed performance criteria can be used in
nonlinear control design, which yields a mixed NLQR in
combination with H∞ performance index.

Main results

The following theorem summarizes the main results of
the paper:

Theorem 1: Given the system (1), performance output (2),
and control input (3), the mixed performance index (6) can
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be achieved by using the control feedback

Kok = −

⎧⎪⎪⎨
⎪⎪⎩

Rk + BTkPkBk + DT
kDk−(

BTkPkFk

+DT
kGk

)[
FTkPkFk+

GT
kGk − γ 2I

]−1(
BTkPkFk

+DT
kGk

)T

⎫⎪⎪⎬
⎪⎪⎭

−1

×

⎧⎪⎪⎨
⎪⎪⎩

BTkPkAk + DT
kCk−(

BTkPkFk+
DT
kGk

)[
FTkPkFk+

GT
kGk − γ 2I

]−1(
ATkPkFk+
CTkGk

)T

⎫⎪⎪⎬
⎪⎪⎭ ,

(7)

where Pk is obtained from the generalized SDRE:

Pk =
{
ATkPkAk + CTkCk + Qk −

[
ATkPkFk

+CTkGk

]

·
[

FTkPkFk+
GT
kGk − γ 2I

]−1[
ATkPkFk

+CTkGk

]T⎫⎬
⎭

−
{
ATkPkBk + CTkDk − (ATkPkFk + CTkGk)

×
[

FTkPkFk+
GT
kGk − γ 2I

]−1

(BTkPkFk + DT
kGk)

T

⎫⎬
⎭

×
{
Rk + BTkPkBk + DT

kDk −
(
BTkPkFk

+DT
kGk

)

×
[

FTkPkFk+
GT
kGk − γ 2I

]−1(
BTkPkFk

+DT
kGk

)T
⎫⎬
⎭

−1

×
{
ATkPkBk + CTkDk − (ATkPkFk + CTkGk)

×
[

FTkPkFk+
GT
kGk − γ 2I

]−1

(BTkPkFk + DT
kGk)

T

⎫⎬
⎭ .

(8)

Proof: By applying system (1), performance output (2),
control input (3), performance index (5) can be written as

[(Ak + BkKk)xk + Fkwk]
TPk+1[(Ak + BkKk)xk + Fkwk]

− xTkPkxk + xTkQxk + uTkRuk + [Ckxk + Dkuk + Gkwk]
T

× [Ckxk + Dkuk + Gkwk] − γ 2wT
kwk ≤ 0. (9)

Equivalently, we have

[xTk wT
k ]
[
�11 �12

∗ �22

] [
xk
wk

]
≤ 0, (10)

�11 = (Ak + BkKk)
TPk+1(Ak + BkKk) − Pk + Qk

+ KTk RkKk + (Ck + DkKk)
T(Ck + DkKk),

�12 = (Ak + BkKk)
TPk+1Fk + (Ck + DkKk)

TGk ,

�22 = FTkPk+1Fk + GT
kGk − γ 2I. (11)

Therefore, we have[
�11 �12

∗ �22

]
≥ 0, (12)

where

�11 = Pk − [(Ak + BkKk)
TPk+1(Ak + BkKk) + Qk

+ KTk RkKk + (Ck + DkKk)
T(Ck + DkKk)],

�12 = −[(Ak + BkKk)
TPk+1Fk + (Ck + DkKk)

TGk],

�22 = −[FTkPk+1Fk + GT
kGk − γ 2I]. (13)

By applying the Schur complement (Boyd et al., 1994),
we obtain

Pk − [(Ak + BkKk)
TPk+1(Ak + BkKk) + Qk + KTk RkKk

+ (Ck + DkKk)
T(Ck + DkKk)]

+ [(Ak + BkKk)
TPk+1Fk + (Ck + DkKk)

TGk]

× [FTkPk+1Fk + GT
kGk − γ 2I]−1[(Ak + BkKk)

TPk+1Fk

+ (Ck + DkKk)
TGk]

T ≥ 0, (14)

which yields

Pk ≥ [(Ak + BkKk)
TPk+1(Ak + BkKk) + Qk + KTk RkKk

+ (Ck + DkKk)
T(Ck + DkKk)] − [(Ak + BkKk)

TPk+1Fk

+ (Ck + DkKk)
TGk] × [FTkPk+1Fk + GT

kGk − γ 2I]−1

× [(Ak + BkKk)
TPk+1Fk + (Ck + DkKk)

TGk]
T. (15)

The minimum value of Pk is achieved when the
inequality above is satisfied as an equality. Since the iter-
ative solution starts at P∞ and runs backward in time
and for Pk+1 = Pk convergence occurs, the difference
equation becomes an algebraic equation (Dutka et al.,
2005) as follows:

Pk = [(Ak + BkKk)
TPk(Ak + BkKk) + Qk + KTk RkKk

+ (Ck + DkKk)
T(Ck + DkKk)] − [(Ak + BkKk)

TPkFk

+ (Ck + DkKk)
TGk] × [FTkPkFk + GT

kGk − γ 2I]−1

× [(Ak + BkKk)
TPkFk + (Ck + DkKk)

TGk]
T. (16)

By collecting terms, we have

Pk =
{
ATkPkAk + CTkCk + Qk − [ATkPkFk + CTkGk]

·
[

FTkPkFk+
GT
kGk − γ 2I

]−1

[ATkPkFk + CTkGk]
T

⎫⎬
⎭
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+ KTk

{
BTkPkAk + DT

kCk −
(
BTkPkFk+
DT
kGk

)

×
[

FTkPkFk+
GT
kGk − γ 2I

]−1(
ATkPkFk+
CTkGk

)T
⎫⎬
⎭

+
{
ATkPkBk + CTkDk − (ATkPkF + CTkGk)

×
[

FTkPkFk+
GT
kGk − γ 2I

]−1

(BTkPkFk + DT
kGk)

T

⎫⎬
⎭ Kk

+ KTk

{
Rk + BTkPkBk + DT

kDk − (BTkPkFk + DT
kGk)

×
[

FTkPkFk+
GT
kGk − γ 2I

]−1

(BTkPkFk + DT
kGk)

T

⎫⎬
⎭ Kk . (17)

Equivalently, the equation can be simply written as

Pk = ϒk + KTk�
T
k + �kKk + KTk�kKk , (18)

where

ϒk =
{
ATkPkAk + CTkCk + Qk − [ATkPkFk + CTkGk]

·
[

FTkPkFk+
GT
kGk − γ 2I

]−1

[ATkPkFk + CTkGk]
T

⎫⎬
⎭ ,

�k =
{
ATkPkBk + CkDk − (ATkPkF + CTkGk)

×
[

FTkPkFk+
GT
kGk − γ 2I

]−1

(BTkPkFk + DT
kGk)

T

⎫⎬
⎭ ,

�k =
{
Rk + BTkPkBk + DT

kDk − (BTkPkFk + DT
kGk)

×
[

FTkPkFk+
GT
kGk − γ 2I

]−1

(BTkPkFk + DT
kGk)

T

⎫⎬
⎭ . (19)

By completing the square in the controller gain Kk , we
have

Pk = ϒk + (Kk − Kok )T�k(Kk − Kok ) − KoTk �kK
o
k . (20)

For Equation (18) to be equal to Equation (20), wemust
have

− KoTk �kKk = �kKk . (21)

Therefore, the optimal feedback gain

Kok = −�−1
k �T

k

= −

⎧⎪⎪⎨
⎪⎪⎩

Rk + BTkPkBk + DT
kDk−(

BTkPkFk

+DT
kGk

)[
FTkPkFk+

GT
kGk − γ 2I

]−1(
BTkPkFk

+DT
kGk

)T

⎫⎪⎪⎬
⎪⎪⎭

−1

×

⎧⎪⎪⎨
⎪⎪⎩

BTkPkAk + DT
kCk−(

BTkPkFk+
DT
kGk

)[
FTkPkFk+

GT
kGk − γ 2I

]−1(
ATkPkFk+
CTkGk

)T

⎫⎪⎪⎬
⎪⎪⎭ .

(22)

When Kk = Kok , the minimum Pk is defined by the
positive-definite solution of the following generalized
SDRE:

Pk = ϒk − KoTk �kK
o
k ={

ATkPkAk + CTkCk + Qk − [ATkPkFk + CTkGk]

·
[

FTkPkFk+
GT
kGk − γ 2I

]−1

[ATkPkFk + CTkGk]
T

⎫⎬
⎭

−
{
ATkPkBk + CTkDk − (ATkPkFk + CTkGk)

×
[

FTkPkFk+
GT
kGk − γ 2I

]−1

(BTkPkFk + DT
kGk)

T

⎫⎬
⎭

×
{
Rk + BTkPkBk + DT

kDk − (BTkPkFk + DT
kGk)

×
[

FTkPkFk+
GT
kGk − γ 2I

]−1

(BTkPkFk + DT
kGk)

T

⎫⎬
⎭

−1

×
{
BTkPkAk + DT

kCk − (BTkPkFk + DT
kGk)

×
[

FTkPkFk+
GT
kGk − γ 2I

]−1

(ATkPkFk + CTkGk)
T

⎫⎬
⎭ . (23)

Equation (23) is the generalized discrete SDRE
equation. By solving Pk from Equation (23), the H2−H∞
SDRE control can be achieved by Equation (22). �

Remark 1: As a special case, if there is noH∞ component
in the performance index, i.e. the problem is of nonlinear
quadratic regulator control, then the following controller
can be derived as a special case of the above results:
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By neglecting the noise term, the system equation
becomes

xk+1 = Akxk + Bkuk . (24)

The optimal feedback control gain as

Kok = −{Rk + BTkPkBk}−1BTkPkAk , (25)

wherePk is definedby thepositive-definite solutionof the
following generalized SDRE:

Pk = ATkPkAk − {ATkPkBk}{Rk + BTkPkBk}−1{BTkPkAk} + Qk .
(26)

Therefore, the conventional discrete SDRE solution
(Dutka et al., 2005) is derived as a special case of our
results.

Remark 2: The generalized SDRE (23) can be numerically
difficult to solve. To facilitate the computation process,
the following two results provide two alternative numer-
ical solutions to the generalized SDRE in Theorem 1.
Method 1 provides us the solution by solving the differ-
ence SDRE (28) until the steady state is reached, instead
of (23). Method 2 provides us a state-dependent linear
matrix inequality approach.

Numerical method 1 (H2−H∞ difference SDRE
control)

Given the system (1), performance output (2), control
input (3) and performance index (6), optimality can be
achieved by using the control feedback

Kk = −
{
Rk + BTkPkBk + DT

kDk −
(
BTkPkFk

+DT
kGk

)

×
[

FTkPkFk+
GT
kGk − γ 2I

]−1(
BTkPkFk

+DT
kGk

)T
⎫⎬
⎭

−1

×
{
BTkPkAk + DT

kCk − (BTkPkFk + DT
kGk)

×
[

FTkPkFk+
GT
kGk − γ 2I

]−1

(ATkPkFk + CTkGk)
T

⎫⎬
⎭ , (27)

where Pk is obtained as the steady solution to the follow-
ing difference SDRE equation:

Pk,i+1 =
{
ATkPk,iAk + CTkCk + Qk −

[
ATkPk,iFk

+CTkGk

]

·
[

FTkPk,iFk+
GT
kGk − γ 2I

]−1[
ATkPk,iFk

+CTkGk

]T⎫⎬
⎭

−
{
ATkPk,iBk + CTkDk − (ATkPk,iFk + CTkGk)

×
[

FTkPk,iFk+
GT
kGk − γ 2I

]−1

(BTkPk,iFk + DT
kGk)

T

⎫⎬
⎭

×
{
Rk + BTkPk,iBk + DT

kDk − (BTkPk,iFk + DT
kGk)

×
[

FTkPk,iFk+
GT
kGk − γ 2I

]−1

(BTkPk,iFk + DT
kGk)

T

⎫⎬
⎭

−1

×
{
BTkPk,iAk + DT

kCk − (BTkPk,iFk + DT
kGk)

×
[

FTkPk,iFk+
GT
kGk − γ 2I

]−1

(ATkPk,iFk + CTkGk)
T

⎫⎬
⎭ .

(28)

At time step k, the difference equation (28) is iter-
ated starting with an arbitrary initial condition Pk,0 > 0
until Pk,i converges to Pk,i+1, for i = 1, 2, 3, . . .. Hence, the
solution to the generalized SDRE equation (23) can be
found using thismethod. In practical applications, we can
choose

Pk,0 = I (29)

as the starting value for iterations to calculate Pk .

Numerical method 2 (state-dependent LMI control)

Given the system equation (1), performance output (2),
control input (3) and performance index (6), if there exist
matricesMk = P−1

k > 0 and Yk for all k ≥ 0, such that the
following state-dependent LMI holds (Wang, Yaz, & Long,
2014a, 2014b):

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Mk

∗
∗
∗
∗
∗

�12

�22

∗
∗
∗
∗

�13

�23

Mk

∗
∗
∗

�14

0
0
In
∗
∗

�15

0
0
0
Im
∗

�16

0
0
0
0
Ip

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0, (30)

where

�12 = −αMkC
T
kDk + 0.5 · βMkC

T
k ,

�13 = MkAk + YTk B
T
k ,

�14 = MkQ
T/2
k ,

�15 = YTk R
T/2
k ,
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�16 = α1/2MkC
T
k ,

�22 = −γ I − αDT
kDk + 0.5 · β(Dk + DT

k),

�23 = FTk , (31)

and Mk+1 ≥ Mk , where max πk s.t.Mk ≥ πkI, (32)

then inequality (5) is satisfied. The nonlinear feedback
gain of the controller is given by

Kk = Yk · M−1
k . (33)

Proof: Inequality (10) is equivalent to the � ≤ 0 follow-
ing inequality:

⎡
⎢⎣
(

Pk − Qk − KTk RkKk−
(Ck + DkKk)T(Ck + DkKk)

)
−(Ck + DkKk)

TGk

∗ γ 2I − GT
kGk

⎤
⎥⎦

−
[
(Ak + BkKk)

T

FTk

]
Pk+1[(Ak + BkKk) Fk] ≥ 0.

(34)

By adding and subtracting the same term in Equation
(34), the following inequality results:

⎡
⎢⎣
(

Pk − Qk − KTk RkKk−
(Ck + DkKk)T(Ck + DkKk)

)
−(Ck + DkKk)

TGk

∗ γ 2I − GT
kGk

⎤
⎥⎦

−
[
(Ak + BkKk)

T

FTk

]
(Pk+1 − Pk)[Ak + BkKk Fk]

−
[
(Ak + BkKk)

T

FTk

]
Pk[(Ak + BkKk) Fk] ≥ 0, (35)

Therefore, subject to Pk+1 ≤ Pk , Equation (35) can be
rewritten as

⎡
⎢⎣
(

Pk − Qk − KTk RkKk−
(Ck + DkKk)T(Ck + DkKk)

)
−(Ck + DkKk)

TGk

∗ γ 2I − GT
kGk

⎤
⎥⎦

−
[
(Ak + BkKk)

T

FTk

]
Pk[(Ak + BkKk) Fk] ≥ 0. (36)

By applying the Schur complement result, we obtain

⎡
⎢⎣

�11 �12 �13

∗ �22 �23

∗ ∗ �33

⎤
⎥⎦ ≥ 0, (37)

where

�11 = Pk − Qk − KTk RkKk − (Ck + DkKk)
T(Ck + DkKk),

�12 = −(Ck + DkKk)
TGk ,

�13 = (Ak + BkKk)
T,

�22 = γ 2I − GT
kGk ,

�23 = FTk ,

�33 = P−1
k . (38)

By pre-multiplying and post-multiplying the matrix
with block diagonalmatrix diag{Mk , I, I}, whereMk = P−1

k ,
the following inequality as follows:⎡

⎢⎣

11 
12 
13

∗ 
22 
23

∗ ∗ 
33

⎤
⎥⎦ ≥ 0, (39)

where


11 = Mk − Mk(Qk + KTk RkKk

− (Ck + DkKk)
T(Ck + DkKk))Mk ,


12 = −Mk(Ck + DkKk)
TGk = −MkC

T
kGk − YTkD

T
kGk ,


13 = Mk(Ak + BkKk)
T = MkA

T
k + YTk B

T
k ,


22 = γ 2I − GT
kGk ,


23 = FTk ,


33 = Mk . (40)

Finally, by applying the Schur complement again, the
following LMI result is obtained:⎡

⎢⎢⎢⎢⎢⎢⎢⎣

Mk

∗
∗
∗
∗
∗

�12

�22

∗
∗
∗
∗

�13

�23

Mk

∗
∗
∗

�14

0
0
In
∗
∗

�15

0
0
0
Im
∗

�16

0
0
0
0
Ip

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0,

(41)
where

�12 = −MkC
T
kGk − YTkD

T
kGk ,

�13 = MkA
T
k + YTk B

T
k ,

�14 = MkQ
T/2
k ,

�15 = YTk R
T/2
k ,

�16 = Mk(Ck + DkKk)
T = MkC

T
k + YTkD

T
k ,

�22 = γ 2I − GT
kGk ,

�23 = FTk ,

(42)

Hence, if the LMI (41) holds, inequality (5) is satisfied.
�
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Remark 3: Maximizing πk in Equation (32) minimizes a
bound on Pk and therefore forces the solution to be close
to the one given in the SDRE in Theorem 1.

Remark 4: If the generalized SDRE (23) cannot be solved,
thenmethods 1 and 2 provide alternative solutions to the
generalized SDRE.

Remark 5: The solution of the SDLMI in method 2
involves successive LMI solutions and each solution
depends on the measured state.

H2−H∞ SDRE Control of inverted pendulum on
a CART

The inverted pendulum on a cart problem (Wang & Yaz,
2009;Wang, Yaz, & Jeong, 2010;Wang, Yaz, & Jeong, 2010)
is a classical control problem used widely as a bench-
mark for testing control algorithms. It is used here to
demonstrate the effectiveness of the H2−H∞ SDRE con-
trol approach. Traditional nonlinear control techniques
assume that θ is a very small angle, cos (θ) ∼= 1 and
sin (θ) ∼= 0, then cos (θ) ∼= 1, sin (θ) ∼= 0 linearize the
system equation around its equilibrium point and apply
the linear control techniques. However, it can be shown
that the traditional control is not guaranteed to be opti-
mal or stable. In this paper, we will not resort to the lin-
earization approach. A model of the inverted pendulum
problem can be derived using standard techniques:

(M + m)ẍ + bẋ + mLθ̈ cos (θ) − mLθ̇2 sin (θ) = F,

(I + mL2)θ̈ + mgL sin (θ) + mLẍ cos (θ) = 0,
(43)

whereM is themass of the cart,m themass of the pendu-
lum, b the friction coefficient between cart and ground, L
the length to the pendulum centre of mass (length of the
pendulum equals 2L), I = (1/3)m(2L)2 the inertia of the
pendulum and F the external force, input to the system.

Denote the following state variables:

x1,k = x(kT), x2,k = ẋ(kT), x3,k = θ(kT) and

x4,k = θ̇ (kT).

By applying the Euler discretizationmethod with sam-
pling period T, and using the notation

�1 = I + mL2 − m2L2 cos2(x3,k)
M + m

,

�2 = M + m − m2L2 cos2(x3,k)
I + mL2

(44)

the discrete-time system equation can be written as⎡
⎢⎢⎢⎢⎣
x1,k+1

x2,k+1

x3,k+1

x4,k+1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎣
1
0
0
0

T
a22
0
a42

0
a23
1
a43

0
a24
T
a44

⎤
⎥⎥⎦
⎡
⎢⎢⎣
x1,k
x2,k
x3,k
x4,k

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0
b2
0
b4

⎤
⎥⎥⎦ uk ,

(45)
where uk is the kth sampling instant value of the input
force F and

a22 = 1 + T
−b

�2
,

a23 = T
m2L2g cos (x3,k)

�2(I + mL2)

sin (x3,k)

x3,k
,

a24 = T
mL sin (x3,k)

�2
x4,k ,

a42 = T
mLb cos (x3,k)

(M + m)�1
,

a43 = −T
mgL

�1

sin(x3,k)

x3,k
,

a44 = 1 − T
m2L2 cos (x3,k) sin (x3,k)x4,k

(M + m)�1
,

b2 = T

�2
,

b4 = −T
mL cos (x3,k)

(M + m)�1
.

(46)

It should be noted that this state space formulation
does not involve a process of linearization, but a process
of state-dependent modelling. To avoid the division by
zero, the term sin(x3,k)/x3,k is substituted for x3,k = 0 by
the limit lim

x3,k→0
(sin(x3,k)/x3,k) = 1.

The following system parameters are assumed:

M = 0.5 kg, m = 0.5 kg, b = 0.1 N · sec
m

,

L = 0.3m and I = 0.06 kgm2.

The following design parameters are chosen to satisfy
different mixed criteria:

Classical SDRE Design (NLQR only)

C = [1 1 1 1], D = [1], Q = I4 and R = 1.

H2−H∞ Difference SDRE Method (Difference SDRE)

C = [0.01 0.01 0.01 0.01], D = [0.1], G = [0.01],

Q = I4, R = 0.5, γ 2 = 0.01 and P0 = I4.

State-dependentH2−H∞ LMIDesign (PredominantH2)
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C = [0.01 0.01 0.01 0.01], D = [0.01], G = [0.01],

Q = I4, R = 1 and γ 2 = 5.

State-dependent H2−H∞ LMI Design (Predominant
H∞)

C = [1 1 1 1], D = [1], G = [1], Q = 0.01 × I4,

R = 0.01 and γ 2 = 5.

LQR-based on linearization

Q = diag([10, 10, 50, 2]), R = 1.

The following initial conditions are assumed:

x1 = 1, x2 = 0, x3 = π/4 and x4 = 0.

Simulation results for different design parameter val-
ues are compared in Figures 1–5 for performance: the

Figure 1. Position trajectory of the inverted pendulum.

Figure 2. Velocity trajectory of the inverted pendulum.

classical SDRE or NLQR result (Dutka et al., 2005), the
new H2−H∞ controller for a set of design parameter
values computed by using the difference equation tech-
nique, new controller for two different sets of parameter

Figure 3. Angle ‘theta’ trajectory of the inverted pendulum.

Figure 4. Angular velocity trajectory of the inverted pendulum.

Figure 5. Control input.
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values computed by the SDLMI technique and the tra-
ditional LQR control based on linearization. From these
results, one can choose the controller that suits the
designer’s expectation best. Note that Figures 1, 3 and 4
show that the traditional LQR technique loses control of
the state variables. Figure 5 shows that the lowest con-
trol magnitude is needed by the linearization-based LQR
technique at the expense of losing control of the state
trajectory.

Conclusions

A novel H2−H∞ control of discrete-time nonlinear sys-
tems with SDRE approach is presented in this paper.
The optimal control solution can be obtained by solving
generalized state-dependent Riccati equations or state-
dependent LMIs. The inverted pendulumon a cart is used
as an illustrative example. For future work, the mixed
H2−H∞ SDRE control approach will be extended to non-
linear systems with nonaffine structure.
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