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Summary 
1. Plants compete with their neighbours for a finite set of limiting resources, and this decreases individual 

plant performance, growth and survival. However, neighbouring plants also affect each other in positive 
ways. 

2. Positive facilitative effects can occur when neighbouring plants ameliorate harsh abiotic conditions 
(temperature, wind and high irradiation). Thus, when environmental conditions are severe, the 
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importance of facilitation may increase. The co‐occurrence and masking effects of competition and 
facilitation among neighbouring plants have made it difficult to tease them apart in the past. 

3. We planted bur oak acorns (Quercus macrocarpa) into an experimental diversity gradient in a central 
MN grassland that provided a gradient in plant biomass. We predicted that greater biomass of 
neighbours would increase both competition and facilitation as measured by impacts on the minimum 
leaf water potential reached on any given day. Under moderate conditions, competition should 
predominate, but under hot/dry conditions, facilitation should become more important. We measured 
temperature, humidity and soil moisture in these plots for two growing seasons, as well as oak seedling 
leaf water potential across a range of daily conditions. 

4. On cool/humid days, plant interactions were dominated by competition for soil water: leaf water 
potentials of juvenile oaks were lower in plots with greater herbaceous biomass (and higher diversity). 
Conversely, on hot/dry days, facilitation of the microclimate determined the net effect of plants on their 
neighbours: leaf water potentials of juvenile oaks were higher in plots with higher herbaceous diversity 
and biomass. 

5. Synthesis. In terms of plant water status, plant interactions among neighbours can flip from net negative 
(competition) to net positive (facilitation) depending on daily abiotic conditions. The relative importance 
of both positive and negative interactions for plant water status may affect the overall performance of 
plants over time. 

Introduction 
Plants compete for limiting resources and the outcome of competitive plant interactions can help explain 
community composition, global plant distributions and species coexistence (Hardin 1960; Tilman 1977; Bond, 
Woodward & Midgley 2005). At the individual plant level, competition for shared resources can decrease growth 
(Ehleringer 1984; Gordon, Menke & Rice 1989) and increase mortality (Davis et al. 1999) of neighbouring plants. 
A key limiting resource in many ecosystems is soil water. In the short term, when plants are water limited due to 
competition for soil water, they may close their stomates to reduce water loss at the leaf surface, thus leading 
to decreased photosynthetic rates, plant growth and survival (Gordon, Menke & Rice 1989). However, upon 
longer‐term exposure to water stress, plants may make other morphological (leaf orientation) or physiological 
(osmotic potential) adjustments to retain higher carbon assimilation rates (Brown, Jordan & Thomas 1976). 

Plants may also facilitate each other via amelioration of the local microclimate (Brooker et al. 2008). In fact, 
facilitation may be a component of many plant interactions, but it may be commonly obscured by competition 
(Stachowicz 2001; Bruno, Stachowicz & Bertness 2003). Plants can modify their local microclimate via shading 
and evaporative cooling. This environmental amelioration may be particularly important when environmental 
conditions are harsh and would otherwise cause plant physiological stress (the stress‐gradient hypothesis, 
Bertness & Callaway 1994). For example, in hot arid ecosystems, environmental facilitation by neighbouring 
plants often results in increased germination, growth and survival of plants growing near neighbours, leading to 
clumped spatial distributions (Cuesta et al. 2010; Jia et al. 2010; Landero & Valiente‐Banuet 2010; Armas, 
Rodríguez‐Echeverría & Pugnaire 2011). In arid systems, physiological constraints related to microclimate may 
be more important than competition for resources. Plants may be negatively affected by high rates of water loss 
at the leaf surface, due to high vapour pressure deficit in the microclimate (Wright, Schnitzer & Reich 2014), or 
directly, due to photoinhibition at high light levels (Valladares & Pearcy 1997). Facilitation may be dominant in 
these stressful abiotic conditions, but weaken and become subordinate to competition as environmental stress 
lessens (Callaway et al. 2002). 

In the past decade, theoretical and experimental work has suggested that both competition and facilitation may 
be ubiquitous in many plant communities, not solely the most arid ones (Bruno, Stachowicz & Bertness 2003; 

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12397#jec12397-bib-0021
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12397#jec12397-bib-0032
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12397#jec12397-bib-0007
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12397#jec12397-bib-0017
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12397#jec12397-bib-0019
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12397#jec12397-bib-0016
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12397#jec12397-bib-0019
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12397#jec12397-bib-0009
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12397#jec12397-bib-0008
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12397#jec12397-bib-0030
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12397#jec12397-bib-0010
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12397#jec12397-bib-0006
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12397#jec12397-bib-0014
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12397#jec12397-bib-0023
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12397#jec12397-bib-0024
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12397#jec12397-bib-0003
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12397#jec12397-bib-0035
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12397#jec12397-bib-0034
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12397#jec12397-bib-0012
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12397#jec12397-bib-0010


Montgomery, Reich & Palik 2010; Wright, Schnitzer & Reich 2014). We posit that, in terms of plant water status, 
the temporal dynamics of facilitation relative to competition may be a function of daily differences in abiotic 
conditions and therefore may change on a day‐to‐day basis. On cool humid days, plant water potential may be 
less negative overall, and the effects of facilitation due to microclimate amelioration from neighbours may be 
weak. In these cases, competition for soil water resources may dominate: plants growing in dense communities 
may experience more water stress due to more competition for water below‐ground. Conversely, on hot/dry 
days, evaporative demand in the microclimate may be high, overall plant water status may be more negative, 
and the positive effects of facilitation due to microclimate amelioration from neighbours may dominate. 
Consequently, both processes may vary in relative strength over time and the total of competitive and 
facilitative interactions may affect longer‐term performance (growth and survival). 

We planted bur oak acorns (Q. macrocarpa) into 85 2 × 2 m experimental plant communities that varied in 
species richness from 1 to 16 species (Reich et al. 2012). Plant biomass increases strongly with species richness 
in this experiment; hence, the species richness gradient also serves as a gradient in neighbour density and 
biomass (Reich et al. 2012). We measured leaf water potential of oaks across a range of daily conditions at this 
site. We explored the relative importance of daily competition and facilitation in terms of plant water status, 
and how the balance of these two processes changes over the course of a growing season. We tested the 
specific hypothesis that both competition and facilitation are stronger in higher richness/higher biomass plant 
communities, but that these processes trade‐off over short time periods depending on the relative severity of 
daily conditions. We predicted that: 

1. On cool humid days, competition for soil water would be the dominant process driving plant water 
status, and thus, plant water status of juvenile oaks in higher diversity/higher biomass communities 
would be more negative than plant water status in lower diversity/lower biomass communities. 

2. On hot/dry days, facilitation due to amelioration of the microclimate would be the dominant process 
driving plant water status, and thus, oak plant water status in higher diversity/higher biomass 
communities would be less negative than plant water status in lower diversity/lower biomass 
communities. 

Materials and methods 
Site Description 
We conducted this study from May 2010 to October 2012 in the ambient treatment plots of the BioCON plant 
diversity experiment at the Cedar Creek Ecosystem Science Reserve (CCESR) in central Minnesota, USA. Cedar 
Creek has a continental climate, with cold winters and warm summers and an average of 660 mm of rainfall per 
year (Reich et al. 2001b). Annual temperatures in 2012 were the warmest on record in the United States 
(NCDC 2012), and the CCESR field site was also drier than usual. Annual precipitation for 2012 (January–
December) was 495 mm, which was 25% below the long‐term average of 660 mm yr−1 (Reich et al. 2001b; 
Fig. 1). Mean annual air temperature (January–December) at Cedar Creek, however, was 8.1 ± 1.3 °C 
(mean ± 95% confidence intervals), which was statistically consistent with the 24‐year average (6.9 ± 1.2 °C, 
Cedar Creek Ecosystem Science Reserve hourly climate data), though July 2012 was the warmest month on 
record in the 24‐year temperature data set (23.9 °C, Fig. 1). 
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Figure 1 We measured soil moisture in each plot on each day of measurement (a). We also measured relative 
humidity and air temperature in each plot, which we used to calculate vapour pressure deficit (b). We measured 
air temperate (solid line) and daily precipitation (dotted line) at the weather station at the site (c). 
 

Soils at this site are nutrient‐poor glacial outwash sand plain with low water‐holding capacity. The BioCON plots 
were established in 1997 by tilling and fumigating existing vegetation in six experimental blocks in an old field 
grassland at the site. Plots were then established as 2 × 2 m areas that were seeded with randomly assigned 
herbaceous species (all native or naturalized) from a pool of 16 total species from 4 functional groups – 4 
C3grasses, 4 C4 grasses, 4 legumes and 4 non‐nitrogen fixing herbaceous plants (Achillea millefolium, Agropyron 
repens, Amorpha canescens, Andropogon gerardi, Anemone cylindrica, Asclepias tuberosa, Bouteloua gracilis, 
Bromus inermis, Koeleria cristata, Lespedeza capitata, Lupinus perennis, Petalostemum villosum, Poa pratensis, 
Schizachyrium scoparium, Solidago rigida and Sorghastrum nutans,). There were 32 plots with 1 species (with 
every monoculture represented twice), 32 plots with 4 species, 9 plots with 9 species and 12 plots with 16 
species. Since 1997, species mixes have been maintained by hand weeding to remove any species that migrated 
into the plot that were not planted in the original seed mix. 

We conducted this experiment along a species richness gradient, which also provided a gradient in biomass 
production (Reich et al. 2001a, 2012), and both biomass and diversity may alter the relative strength of 
competition and facilitation intensity (Wright et al. 2013; Wright, Schnitzer & Reich 2014). Increased biomass 
production with greater plant diversity leads to reduced resource availability and increased intensity of 
competition for colonizing plants (Tilman, Wedin & Knops 1996; Fargione & Tilman 2005). Increased biomass 
production may also be associated with increased protection from environmental conditions. Consequently, 
increased biomass and diversity may drive increased facilitation between plants due to amelioration of 
environmental extremes (Wright et al. 2013). In August 2012, we measured above‐ground biomass of 
herbaceous species in all 85 plots. Above‐ground biomass was clipped in 10 × 100 cm strips at the soil surface at 
least 15 cm from plot boundaries (to avoid edge effects). 

We planted six bur oak (Quercus macrocarpa) acorns in all 85 plots in May 2010 and again in May 2012 to 
increase total seedlings available for the study. We planted acorns spaced at least 10 cm from any oak acorn 
neighbours. We measured leaf number, seedling height and seedling diameter of all seedlings at the beginning 
of the growing season (28 May 2012) and at the end of the growing season (27 August 2012) to assess relative 
growth rate (RGR) for each seedling. We also censused seedling emergence at the beginning of the first growing 
season (1 July 2010) and at the beginning of the 2012 growing season (28 May 2012). We recorded the survival 
of all seedlings that had emerged by 27 August 2012. 
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In May 2010, we planted a total of 37 bur oak acorns in a nearby harvest garden and harvested them 
periodically between July 2010 and July 2012, to derive allometric equations for biomass. We used these 
measurements to derive equations for both above‐ground biomass (AGB = 0.76 × diameter − 0.02 × height + 
0.11 × leaves, r2 = 0.80) and below‐ground biomass (BGB = 6.5 × diameter − 0.12 × height + 
0.14 × leaves, r2 = 0.35), though due to low r2 values for BGB, we used AGB values to calculate RGR. We 
calculated above‐ground RGR by taking ln(final AGB) – ln(initial AGB)/duration of study. 

We measured pre‐dawn and midday leaf water potential of a total of 151 randomly selected oak seedlings 
(stratified across the diversity gradient depending on seedling availability; see below), on five different sampling 
dates in 2012 (June 22, July 11, August 1, August 14 and August 24). For each sampling date, we also excluded 
seedlings that were at the largest (> 15 cm tall) or at the smallest (< 5 cm tall) ends of the seeding size spectrum. 
In other words, we restricted our sampling to seedlings that were relatively similar in size across the herbaceous 
biomass gradient. We chose sampling dates based on forecast data of maximum daily temperatures at the site, 
and we attempted to sample evenly across a range of temperatures (20–30 °C). Oak leaves began to senesce the 
week of September 10, nearly 3 weeks after our final leaf water potential measurements (24 August 2012). The 
height of the herbaceous canopy varied depending on herbaceous biomass and species composition. Thus, oak 
leaves were more heavily shaded in the higher biomass plots. We sampled the youngest fully expanded leaf for 
all leaf water potential measurements. We measured leaf water potential using a Scholander pressure chamber 
(Soil Moisture Equipment Corp, Santa Barbara, CA, USA). Pre‐dawn water potential (ψpd) was taken 2 h before 
dawn each day (0330–0530), and midday leaf water potential (ψmd) was taken at solar noon (1200–1400). All 
measurements were taken by wrapping leaves in Ziploc bags, excising leaves using a razor blade and 
immediately transferring to the pressure chamber. 

Plants were chosen for water potential measurements based on sampling at least five oak seedlings per age 
group per species richness level on each day, each oak having at least 3 leaves fully expanded at the time of 
sampling and not sampling from the same plant two sampling dates in a row. We sampled equally from the 2010 
and 2012 age cohorts on each day of sampling. When more than one plot, or more than one plant within plot, 
met the above requirements, the plant was chosen randomly from the subset of available plants. Midday 
measurements were taken on the same plants as pre‐dawn measurements to assess daily changes in plant 
water stress at the individual plant level. We used a comparison between pre‐dawn (ψpd) and midday (ψmd) leaf 
water potential (ψmd−ψpd) to detect the daily change in plant water status at the individual plant level. A total of 
27–37 plants were sampled on each sampling date depending on the constraints described above. 

From May 2011 to October 2011 and May 2012 to October 2012, we measured plot‐level air temperature and 
relative humidity (RH) on the north‐western quadrant of the plot (> 50 cm from the plot edge) continuously 
using Maxim iButton dataloggers logging every 5 minutes (Maxim Integrated, San Jose, CA, USA). We then 
calculated vapour pressure deficit of the microclimate 

 ,  

VPD =  �0.6108 × e
17.27×Temp
Temp+237.3� − �

RH
100

× 0.6108 × e
17.27×Temp
Temp+237.3�, 

(Anderson 1936). Dataloggers were installed on wooden tent stakes at approximately 20 cm above the ground 
surface and covered with plastic Dixie cups. This ensured that the dataloggers were recording microclimate 
conditions 5–15 cm above the height of the oak seedlings (a conservative measure of average microclimate 
conditions under the herbaceous canopy). The covers were painted white to reflect direct sunlight and guard 
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from direct saturation by rainwater. These dataloggers were installed in all plots where leaf water potential 
measurements were collected. We also measured shallow soil moisture (~6 cm depth) in these plots at 11:00 
a.m. on the same day as leaf water potential measurements using an HH2 soil moisture meter with theta probe 
(Delta‐T Devices Ltd, Cambridge, UK). Additional dataloggers were installed in a randomly assigned subset of 
plots throughout the rest of the experimental plots and moved every 2 weeks. We collected site‐level 
temperature, humidity and vapour pressure deficit measurements from the Cedar Creek Ecosystem Science 
Reserve weather station. 

Analysis – Microclimate 
We analysed the effects of herbaceous plant biomass on microclimate (air temperature and vapour pressure 
deficit) and whether the magnitude of these effects changed depending on site conditions. We calculated plot‐
level averages for microclimate temperature and VPD for each day 24‐h period during the study (‘plot level’). 
We also calculated daily averages for air temperature and vapour pressure deficit data collected from the Cedar 
Creek weather station (‘site level’). We conducted separate mixed‐effects ANCOVA to assess the effects of daily 
conditions (temperature and vapour pressure deficit), and the amelioration of these conditions by the plant 
community, on microclimate. To account for spatial autocorrelation associated with the blocked ring design and 
temporal autocorrelation associated with taking multiple measurements on the same plots over time, we 
included plot nested within block as a random effect. These two ANCOVAs assessed the following: (i) the fixed 
effects of daily average temperature at the site (taken from Cedar Creek weather station data), herbaceous 
biomass and their first‐order interaction effects on microclimate temperatures and (ii) the fixed effects of daily 
average VPD at the site, herbaceous biomass and their first‐order interaction effects on microclimate VPD. 

Analysis – Soil Moisture 
To assess the effects of daily changes in weather, seasonal trends in soil moisture at the site (the sandy soil 
rapidly becomes dry between major rain events and over the course of the season, Adair et al. 2011) and 
herbaceous biomass, on soil moisture, we conducted a mixed‐effects ANCOVA with site‐level VPD, herbaceous 
biomass and day of year as fixed effects. To account for spatial autocorrelation associated with the blocked ring 
design and temporal autocorrelation associated with taking multiple measurements on the same plots over 
time, we included plot nested within block as a random effect. Since we measured soil moisture in a 30‐plot 
subset of the total plots used for this study, based on where leaf water potential measurements were taken on 
any given day, statistical power was too low across the gradient in herbaceous biomass on any single day to 
include random effects for ring and plot in this soil moisture statistical model. 

Analysis – Leaf Water Potential 
We conducted a mixed‐effects ANCOVA to assess the effects of herbaceous biomass, site‐level climatic conditions 
(VPD) and their interaction, on all measures of oak leaf water potential (ψpd, ψmd, ψmd‐ ψpd,). For both pre‐dawn 
and midday leaf water potential, we assessed the effects of site‐level VPD for the 6‐hr period prior to water 
potential measurements. For the daily changes in leaf water potential (ψmd−ψpd). we assessed the effects of site‐
level VPD integrated over this entire period (00:00–14:00). To account for spatial autocorrelation associated 
with the blocked ring design and temporal autocorrelation associated with taking multiple measurements on the 
same plots over time, we included plot nested within block as a random effect. To account for differences in the 
age of seedlings (the cohort from 2010 or 2012 described above), we included a random effect for seedling age 
in the statistical model as well. 

We conducted a separate analysis to explore the plot‐level mechanisms for competition and facilitation on all 
three measures of oak leaf water status (ψpd, ψmd, ψmd−ψpd,). We directly assessed the effects of soil water and 
microclimate VPD on pre‐dawn, midday and daily differences in oak water potential using a mixed‐
effects ANCOVA (microclimate VPD comparisons were made using the same time intervals as described above for 

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12397#jec12397-bib-0037


site‐level comparisons). To account for spatial autocorrelation of measurements taken within the same block 
and temporal autocorrelation associated with taking measurements on the same plot over time, we included 
plot nested within block as a random effect. We also included a random effect for seedling age to account for 
any differences between the two seedling ages in the statistical model. 

Analysis – Growth and Survival 
We analysed the effects of herbaceous biomass on above‐ground oak seedling RGR and proportion survival 
(arcsine transformed) using a mixed‐effects ANCOVA with plot nested in block and seedling age (cohort) included 
as random effects. 

We also repeated all of the above analyses by replacing herbaceous biomass above with species richness. These 
results were qualitatively very similar and are included in Appendix S1 in Supporting Information. 

Results 
Over the course of our five leaf water potential measurement campaigns, daily temperature was the highest on 
July 11 and August 24 and lowest on June 22 and August 14. Relative humidity was highest in June and lowest in 
early July. This resulted in VPD being highest on July 11 and lowest on June 22 (Fig. 1a). There was no correlation 
between sampling date and temperature in the plots (Pearson product moment correlation 
coefficient, r = 0.06, N = 168) and no correlation between sampling date and relative humidity in the plots 
(r = 0.16, N = 168) – in other words, we did not sample all cool/humid days in the early summer and all hot/dry 
days in the late summer (Fig. 1a). There was a weak negative correlation between soil moisture and VPD at the 
site (r = −0.24, N = 168). 

Microclimate and Soil Moisture 
Under the herbaceous canopy layer (~20 cm above the soil surface), plots with higher species richness and more 
above‐ground biomass were cooler, more humid and had lower vapour pressure deficit than plots with less 
biomass and fewer species (Table 1, Fig. 2, Appendix S1). The magnitude of the microclimate amelioration effect 
was stronger as daily weather conditions became hotter and drier (significant interaction terms, Table 1, Fig. 2). 
In contrast, soil moisture was lower in diverse, higher biomass plots over the course of the season (except for 
early in the season) and progressively lower in the highest diversity and highest biomass plots during the 
growing season (Table S1, Fig. S1, Appendix S1). Thus, high‐diversity plots with high biomass had lower residual 
soil water availability, but more mesic temperatures and less atmospheric evaporative demand. 

Table 1. Separate ANOVAs for the effects of daily temperature on microclimate temperature and daily VPD on 
microclimate VPD. We also tested for interactions between these factors and above‐ground biomass (AGB) 

Fixed Effect d.f.† R 2 Plot Temp  Plot VPD   
  F P F P 

Herb AGB 1, 9306 0.96 66.24 < 0.0001* 
  

Site Temp 1, 9525 
 

211 750 < 0.0001* 
  

Herb AGB × Site Temp 1, 9524 
 

77.47 < 0.0001* 
  

Herb AGB 1, 8969 0.88 
  

27.80 < 0.0001* 
Site VPD 1, 9227 

   
50 089 < 0.0001* 

Herb AGB × Site VPD 1, 9230 
   

482.5 < 0.0001* 
†This analysis took into account spatial variation associated with the blocked design (‘block’ in the BioCON 
framework). In the linear mixed‐effects model framework, denominator degrees of freedom ‘float’ based on the 
degree of variation attributed to random effects. Asterisks (*) indicate statistical significance. 
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Figure 2 We measured vapour pressure deficit in the microclimate of 55 randomly selected plots over the course 
of two years. We found that it was cooler in plots with more above‐ground biomass (panels a–c). We also found 
that as average VPD at the site increased (on days when it was hotter and drier), plant biomass had an 
increasingly strong ameliorating effect on microclimate VPD (d). The dotted line below (d) represents the 
significant interaction between site‐level VPD and community herbaceous biomass (F1,9230 = 482.5, P < 0.0001*). 
 

Water Stress, Growth and Survival 
All oaks grew ~2× less in the highest diversity (F1,57 = 13.6, P = 0.0005) and ~4× less in the highest biomass 
(F1,60 = 30.2, P < 0.0001) plots. Oak emergence was ~1.5× higher in the highest diversity compared with one‐
species plots (F1,80 = 16.5, P = 0.0001) and almost 3× higher in the highest biomass plots (F1,80 = 19.4, P < 0.0001). 
Survival of emerged seedlings was equal across the diversity gradient (F1,80 = 2.15, P = 0.15) but almost 3× higher 
in the highest biomass plots (F1,80 = 5.33, P = 0.02). 

Pre‐dawn leaf water potential values were unaffected by daily changes in site‐level VPD or community biomass 
(Fig. S2, Table 2). The majority of the variation in pre‐dawn leaf water potential values was due to soil moisture, 
where higher soil moisture led to less negative pre‐dawn leaf water potential and soil moisture declined over 
the course of the season (Fig. S3, Table S2). 

Table 2. The relationship between site conditions (vapour pressure deficit) and herbaceous biomass on oak leaf 
water potential. We conducted separate analyses for pre‐dawn, midday and daily changes (diff). For pre‐dawn 
leaf water potential, we compared with the 24‐hr period prior to the pre‐dawn measurement. For midday leaf 
water potential, we compared with the period between pre‐dawn and midday. For the daily difference in leaf 
water potential, we compared with the 24‐hour period prior to the midday measurement (to integrate over the 
whole day) 

Fixed effect Pre‐dawn   Midday   Diff    
d.f.† F P d.f. F P d.f. F P 

Herb biomass 1, 25.2 1.50 0.23 1, 29.1 1.16 0.19 1, 29.7 0.73 0.40 
Site VPD 1, 163 2.25 0.14 1, 162 30.9 <0.0001* 1, 160 16.5 <0.0001* 
Herb biomass × Site VPD 1, 163 1.16 0.28 1, 162 0.01 0.94 1, 159 8.5 0.004* 

†These analyses took into account spatial variation associated with the blocked design (‘block’ in the BioCON 
framework) and measurements taken on individuals in the same plots over time. In the linear mixed‐effects 
model framework, denominator degrees of freedom ‘float’ based on the degree of variation attributed to block 
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differences; this is why denominator degrees of freedom are different depending on the metric described in this 
table. Asterisks (*) indicate statistical significance. 

Midday leaf water potential values were more negative on hot/dry days with a high VPD, but they did not vary 
overall with herbaceous biomass or species richness (Table 2, Appendix S1 – Table 3, Fig. S2). Midday leaf water 
potential was more negative when soil moisture was low and when plot VPD was high (Table S2, Fig. S3b,e). 

The difference between pre‐dawn leaf water potential (ψpd) and midday leaf water potential (ψmd) reflects the 
change in water status of oak seedlings on a given day. By subtracting the pre‐dawn leaf water potential from 
the leaf water potential during the time with the highest evaporative demand (midday), we can to some extent 
standardize (i.e. account for) differences in baseline (pre‐dawn) water status and focus on daily responses. There 
was no main effect of herbaceous biomass or species richness on the daily change in leaf water potential 
(Table 2, Appendix S1 – Table 3). There was an overall negative effect of VPD on daily change in leaf water 
potential, and a significant interaction between herbaceous biomass and daily VPD (Table 2, Appendix S1 – Table 
3). This effect was not significantly driven by differences in oak seedling size (Fig. S4). Oak seedlings growing in 
higher diversity and higher biomass plots experienced net competitive effects on cool/humid days (more 
negative values of ψmd−ψpd in higher biomass plots). In contrast, plants growing in the same plots, experienced 
net facilitation from neighbours on hot/dry days (less negative values of ψmd−ψpd in higher biomass plots, 
Table 2, Fig. 3). The daily change in plant water status was driven by plot‐level (microclimate) differences in 
vapour pressure deficit (Table S2, Fig. S3f). 

 
Figure 3 We measured pre‐dawn leaf water potential (ψpd) and midday leaf water potential (ψmd) on five days 
that varied in VPD at the site. We then calculated the daily difference in leaf water potential (ψmd−ψpd) on each 
of those days. We found that leaf water potential reflected net competition with higher biomass communities 
on cool humid days (a), but net facilitation with higher biomass communities on hot/dry days (c). The degree of 
this effect seemed to change nonlinearly with 24‐h VPD (d). The dotted line below (d) indicates the two‐way 
interaction between herbaceous biomass and 12‐h site VPD (F1,159 = 8.5, P = 0.004). 
 

Discussion 
Measures of resource availability and juvenile oak seedling water status across days of differing evaporative 
demand showed differing strengths of facilitation and competition in this grassland experiment. Pre‐dawn leaf 
water potential of bur oaks ranged from 0 to −1.0 MPa and was tightly linked with soil moisture. Similar to 
previous studies, midday leaf water potential ranged from −1.0 to −3.0 and was more tightly linked to vapour 
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pressure deficit in the microclimate (Abrams & Knapp 1986). Increasing herbaceous biomass and species 
richness (in the seedlings neighbourhood) resulted in both greater resource limitation and in greater 
amelioration of environmental stress for the juvenile oaks. We found that the degree of amelioration of the 
microclimate became progressively stronger on hotter/drier days and this translated to the increasing 
importance of facilitation for plant water status. In particular, increasing herbaceous plant biomass reduced 
average VPD by 50% on the hottest/driest days (microclimate amelioration), compared to low biomass, low‐
diversity plots. Increasing plant herbaceous biomass reduced available soil moisture by as much as 50%, 
particularly late in the season (resource limitation). While reduced soil moisture in higher biomass, higher 
diversity plots likely drove increased competition for water when soil water was limiting (increasingly over the 
course of the season), in terms of oak seedling water status, this was outweighed by a facilitative advantage 
conferred in high‐diversity and high‐biomass plots when daily conditions (VPD) were arid. 

Oak growth rates in our study were lowest in higher biomass higher diversity plots. We note that due to these 
differences in oak seedling size and structure, we selected oak seedlings for leaf water potential measurements 
that fell within a narrow size range across the biomass density gradient (a subset of the overall variation in oak 
sizes). We did this to reduce variation in leaf water potential measurements that were directly associated with 
differences in seedling size (Cavender‐Bares & Bazzaz 2000). We also explored the direct effects of seedling size, 
leaf area and total number of leaves on daily leaf water potential measurements and found no evidence that 
oak size differences explained the trends in leaf water potential that we reported here (Fig. S4). 

While oak growth was lowest in higher biomass and higher diversity plots in our study, we predict that the 
combined contribution of both competition and facilitation may underlie this trend. Decreasing oak growth with 
increasing community biomass does not necessarily mean that competition for resources was the only type of 
interaction happening between neighbours; it could mean there were just more competitive days than there 
were facilitative days. Specifically, competition for soil water between oak seedlings and the herbaceous plant 
community was strong below 12‐h VPD values of ~1.75 kPa. Above 1.75 kPa, however, competition for soil water 
was outweighed by the facilitative effects of microclimate amelioration (VPD). Importantly, 2012 was one of the 
hottest and driest years on record. During the 2012 growing season (May 15–September 31), there were 23 days 
with average daily VPD values greater than 1.75 kPa. While our current data set is necessarily limited in scope 
(due to the small number of days sampled), this implies that in terms of water status, oaks may have 
experienced predominant facilitative effects of the herbaceous community for ~15% of the growing season, 
whereas competition may have dominated for the remaining ~85% of the time. Though to be clear, this rough 
estimate does not account for competition for other limiting resources, such as nitrogen or light, which may 
further tip the competition/facilitation balance towards net competition. 

Future work should explore these questions in terms of changes in stomatal conductance, osmotic adjustment, 
leaf positioning, carbon assimilation, water‐use efficiency and the specific implications of these temporal 
variations in VPD for longer‐term plant performance. Reduced VPD in the microclimate has the capacity to 
decrease water loss at the leaf surface (Ocheltree et al. 2013). While stomatal conductance was not measured in 
the current study, this change in VPD may help maintain higher levels of stomatal conductance and have a 
positive effect on overall photosynthetic rates (Ocheltree et al. 2013) in high‐biomass plots on the hottest days. 
This pattern is consistent with the results we present here and would mean that an increased number of days 
with average VPD values greater than 1.75 kPa could potentially shift the plant–plant interaction balance in the 
future (He, Bertness & Altieri 2013; Stocker et al. 2013). It should be noted that differences in light levels 
between experimental plots in this system (Clark et al. 2012) may also affect stomatal conductance, but relative 
differences in light patterns among plots should not shift significantly over time and would not explain these 
day‐to‐day changes in plant interactions. Depending on local wind conditions, relative differences in 
CO2 enrichment between experimental plots may also affect water‐use efficiency and longer‐tem performance 
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of seedlings, though CO2 levels were not measured at the plot‐level in this study. As a first estimation, these 
results suggest that plant performance over the course of a growing season may be influenced by 
simultaneously acting competition and facilitation for water and the potential for each process to mask the 
presence of the other (e.g. Montgomery, Reich & Palik 2010). 

Microclimate Amelioration and the Plant Community 
Our results also demonstrate the potential for a novel positive‐feedback loop for microclimate amelioration. We 
found that plant communities with less biomass were up to 6 °C hotter and had more than 2 times higher plot‐
level VPD on particularly hot and dry days. Conversely, on cool humid days, temperature and humidity varied 
little as a function of herbaceous biomass (Fig. 2). The gradient in herbaceous biomass from low‐ to high‐
diversity differed minimally across sampling dates in these comparisons, yet the effect that it had on the 
microclimate changed. When it is hotter and drier at the site, more herbaceous biomass may shade and 
intercept irradiation that would otherwise heat the microclimate. Increased irradiation should also reduce 
relative humidity, driving the overall effect that we observed on vapour pressure deficit and plant performance. 
The greater the degree of environmental warming and drying, the greater the impact of the boundary layer 
provided by the herbaceous community. Furthermore, in higher biomass communities, there is more plot‐level 
photosynthesis (indicated by greater overall productivity) in higher diversity plots (Reich et al. 2001a) and 
increased rates of plot‐level transpiration; this may lead to increased evaporative cooling of the microclimate 
(due to a higher density of individuals and higher diversity of strategies for dealing with daily conditions). On 
cooler days (if cool because of cloud cover), there may be less irradiance overall, and the shading/evaporative 
cooling effect may not be happening. The stress‐gradient hypothesis predicts that facilitation is more important 
for plants in environmentally severe conditions (Bertness & Callaway 1994). When environmental severity is 
strong, plants experience increased physiological stress, and this translates to stronger benefits of growing near 
neighbours. The stress‐gradient hypothesis also predicts that when environmental conditions are mild, there 
may still be microclimate amelioration, but it may not translate to strong facilitation. We show that in terms of 
plant water status, as the stress‐gradient hypothesis predicts, environmental amelioration may be 
most important for seedlings on hot and dry days (Fig. 3). We also show that the magnitude of the actual 
microclimate amelioration that is occurring is greater (Fig. 2). 

Summary 
The majority of the past work on facilitation in plant communities has focused on documenting case studies 
where facilitation is dominant (deserts, tundra and salt marshes) with less focus on determining the relative 
roles (and masking effects) of both types of interactions among neighbouring plants. There is a large body of 
evidence documenting the shifting importance of competition and facilitation across systems depending on 
environmental severity. Specifically, the relative importance of facilitation tends to increase with increasing 
environmental severity at higher elevations (Callaway et al. 2002), in deserts (Holzapfel & Mahall 1999) and 
marine systems (Peterson & Heck 2001). Fewer studies have examined temporal variation in the drivers of such 
changes (but see Callaway 1992; Greenlee & Callaway 1996; Baumeister & Callaway 2006; 
Semchenko et al. 2011). Though predicted by theory (Bruno, Stachowicz & Bertness 2003), we know of no 
previous studies that have documented the shifting balance of competition and facilitation from 1 day to the 
next. Here, we demonstrate threshold environmental conditions (community biomass and diversity, soil 
moisture and vapour pressure deficit) that tip the balance temporally between competition and facilitation for 
plant water status and therefore demonstrate the underlying presence of both. Because both competition and 
facilitation are likely ubiquitous in many if not most plant communities, tests of competition may be missing 
underlying facilitation (e.g. 15% of days in our experiment) due to stronger overall competitive effects (e.g. 85% 
of days). Conversely, in more severe environments, the role of competition may be overshadowed by 
facilitation, possibly leading to the flawed conclusion that competition is not important in severe environments 
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(Bruno, Stachowicz & Bertness 2003). If taken to the next level, the mechanisms behind these day‐to‐day results 
may even scale from days to seasons to interannual variations. Only through careful examination of both the 
competitive and facilitative interactions between plants, can we understand plant community dynamics and 
make accurate predictions about how plant communities may change in the future. 
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