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Abstract 
Linear minimum variance unbiased state estimation is considered for systems with uncertain 
parameters in their state space models and sensor failures. The existing results are generalized to the 
case where each sensor may fail at any sample time independently of the others. For robust 
performance, stochastic parameter perturbations are included in the system matrix. Also, stochastic 
perturbations are allowed in the estimator gain to guarantee resilient operation. An illustrative example 
is included to demonstrate performance improvement over the Kalman filter which does not include 
sensor failures in its measurement model. 
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Introduction 
This work is on the robust optimal design of linear state estimators in case of sensor failures. In the past, 
models for sensor measurement have included the effect of possible uncertain observations in the 
measurement (Nahi, 1969, NaNacara and Yaz, 1997, Yaz et al., 1998). These uncertain observations in 
sensor measurement often result, in addition to noise from various sources such as sensor noise or 
environment noise, from sensor failures where the measurement may not contain the signal component 
with a nonzero probability. The problem of failing sensors has received particular attention in harsh 
industrial environments where sensors are liable to fail more frequently. The solutions that have been 
proposed (Matveev and Savkin, 2003, Nahi, 1969, NaNacara and Yaz, 1997, Savkin et al., 1999, Sinopoli 
et al., 2004, Smith and Seiler, 2003, Yaz et al., 1998) introduce the use of stochastic parameters into the 
measurement model to represent probable sensor failures. Some of the proposed solutions to the 
sensor failure problem add robustness to the estimator by assuming deterministic parameter 
perturbations in the system matrix. 

Because of the importance of robust performance in practice where models are only approximate, much 
effort has been devoted to robust filter design (Petersen and Savkin, 1999, Savkin and Petersen, 1997, 
Savkin et al., 1999, Theodor and Shaked, 1996; Wang, Ho, & Liu, 2003; Wang, Yang, Ho, & Liu, 2005; 
Wang, Zhu, & Unbehauen, 1999). Another important issue in estimator design is resilience, which is 
robustness against perturbations in the estimator gain. This may be due to computational (round off) 
errors or changes (drifts) in the gains during operation for hardware realizations (Yaz, Jeong, Yaz, & 
Bahakeem, 2005). Resilience for deterministic and stochastic perturbations in estimator gain matrices is 
discussed in Yaz et al. (2005) and Yaz, Jeong, and Yaz (2006), respectively, among others. 

In previous works on estimation with sensor failures, it has always been assumed that all sensors have 
identical failure characteristics. However, real systems usually involve multiple sensors with different 
characteristics. With today's rapid development of these sensor network systems, we cannot bypass 
these considerations anymore. One major contribution of the present research is to finally address this 
critical issue by including multiple sensors with different failure rates in the system model and the 
estimator design. In the present work, it is assumed that each sensor may fail at any sample time 
independently of the others and the probability of the occurrence of the failure is assumed to be known 
from the reliability data. So, the present work represents an improvement and generalization of Nahi 
(1969), Yaz et al. (1998), Theodor and Shaked (1996), Savkin and Petersen (1997), Petersen and Savkin 
(1999), Wang et al., 2003, Wang et al., 2005, Wang et al., 1999. 

Another major contribution is stochastic robustness. As in Theodor and Shaked (1996), Savkin and 
Petersen (1997), Petersen and Savkin (1999), Wang et al., 2003, Wang et al., 2005, Wang et al., 1999, we 
also robustify the state estimator. However, in our case, stochastic parameter perturbations are 
included in the system matrix rather than deterministic parameter perturbations. This is more in line 
with the stochastic model used for missing measurements and is known to give less conservative results 
than the deterministic perturbation model (Yaz et al., 2006). 

A further contribution is made in the present work by generalizing the state estimator to include a 
stochastic resilience feature (Yaz et al., 2006). This results in a much improved estimator that can 
account for computational errors and other perturbations in the estimator gain. 



In addition, this novel estimator contributes to the general area of state estimator design for systems 
with stochastic parameters (DeKoning, 1984, Rajasekaran et al., 1971, Tugnait, 1981, Wu et al., 1997, 
Yaz, 1987, Yaz, 1988, Yaz, 1992) and may be useful in associated applications. 

In Section 2, the problem statement is provided. In Section 3, our state space model is given which also 
includes a measurement equation for multiple sensors featuring probable failures. Then in Section 4, we 
present our main results on the derivation of the robust and resilient minimum variance unbiased state 
estimator. The details of the derivation are provided in the two appendices. In Section 5, a simulation 
example is presented. Section 6 is the conclusion section. 

Section snippets 
Problem statement 
Existing models for sensor failure only model sensors with the same failure rate. Also, additional 
performance features such as robustness against system modeling errors and resilience against 
estimator gain perturbations are very desirable. Therefore the problem we consider in this paper is: 

Problem 
Find the linear minimum variance unbiased state estimator which is robust against stochastic 
perturbations in the system matrix and resilient against stochastic perturbations in the estimator gain 
for a 

Modeling for stochastic robustness and multiple sensors featuring probable 
failure 
This section is devoted to the modeling part of the solution to the problem posed in Section 2. 

Consider the dynamical system and the measurement model 
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Main results 
Theorem 1 
The linear robust and resilient minimum variance unbiased state estimator of the form(3)for the system 
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A simulation example 
We have applied the new estimator to the following system and measurement model where the sensor 
has nonzero failure probability:  
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, where 𝑥𝑥𝑘𝑘 ∈ 𝑅𝑅2, with 𝑥𝑥0 having 𝐸𝐸{𝑥𝑥0} = [21]T and 

covariance 𝑃𝑃0 = �.10
0
.1�, 𝑣𝑣𝑘𝑘 is zero mean white Gaussian noise with variance 𝑉𝑉 = 0.3, 𝑤𝑤𝑘𝑘1 and 𝑤𝑤𝑘𝑘2 are zero 

mean Gaussian noise with covariance 𝜎𝜎𝑤𝑤1
2 = 𝜎𝜎𝑤𝑤2

2 = 0.3. 𝛼𝛼𝑘𝑘 is zero mean Gaussian noise with 

variance 𝜎𝜎𝛼𝛼2 = 0.1. 𝛴𝛴𝑘𝑘
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−.1� where 𝛽𝛽𝑘𝑘  is zero mean Gaussian noise  

Conclusions 
Models in estimation theory usually assume that measurement always contains the signal to be 
estimated. However, for failing sensors, this is no longer valid. Several solutions have been proposed to 
deal with this problem. However, none of the proposed solution takes into account the realistic nature 
of a true sensor network in which different sensors might have different failure rates. The current paper 
has developed a solution to that particular challenge by incorporating multiple sensors 
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