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Abstract 
Recent studies have demonstrated the increasingly important role of lianas (woody vines) in forest regeneration, 
species diversity and ecosystem-level processes, particularly in the tropics. Mechanisms responsible for the 
maintenance of liana species diversity could yield new insights into the maintenance of overall species diversity. 
Lianas contribute to forest regeneration and competition, not only by competing directly with trees, but also by 
differentially affecting tree species and thus changing how trees compete among themselves. In addition, they 
contribute considerably to ecosystem-level processes, such as whole-forest transpiration and carbon 
sequestration. As the rate of tropical forest disturbance increases, they are likely to increase in relative 
abundance throughout the tropics and the importance of lianas to many aspects of forest dynamics will grow. 
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Lianas (woody vines) are an abundant and diverse group of plants in forests throughout the world, particularly in 
the tropics (Box 1). Historically, the prevalence and presumed importance of lianas in forest dynamics made 
them a focus of interest to biologists and natural historians 1, 2. More recently, lianas were found to play a vital 
role in many aspects of forest dynamics, including suppressing tree regeneration, increasing tree mortality, 
providing a valuable food source for animals and physically linking trees together, thereby providing canopy-to-
canopy access for arboreal animals 3, 4. Our current understanding of the ecology of lianas and their role in 
forest dynamics, however, has lagged well behind that of most other vascular plant groups 4, 5. The relative 
paucity of studies is probably a result of the difficulty in studying a group of plants that exhibit seemingly erratic 
growth patterns and rampant vegetative reproduction [leading to the problem of distinguishing ramets 
(vegetatively produced plants) from genets (sexually produced plants)], and taxonomic uncertainties, including 
difficulty with field identification [6]. Because relatively little is known about lianas and their ecology, many 
researchers might have assumed that lianas play a limited role in forest dynamics and hence most contemporary 
community-level forest studies have excluded them. 

Box 1. The liana strategy 
Lianas are a polyphyletic group of woody plants all sharing a common growth strategy that centers on 
ascending to the canopy using the architecture of other plants. Unlike trees, lianas have relatively little 
structural support, so they can allocate more resources to reproduction, canopy development, and stem 
and root elongation [a, b]. Thus, they typically have a very high canopy:stem ratio, which results in a 
higher proportion of photosynthetic biomass than is present in most woody plants. Lianas differ from 
other structural parasites (epiphytes and hemiepiphytes) in that they remain rooted to the ground 
throughout their lives [c]. 

Lianas have a variety of adaptations for attaching themselves to their host and climb towards the forest 
canopy. These adaptations include stem twining, clasping tendrils arising from stem, leaf and branch 
modifications, thorns and spines that attach the liana to its host, downward-pointing adhesive hairs, and 
adhesive, adventitious roots [d, e]. Although most of these climbing types can be found in any tropical 
forest [f, g], some are better than others at colonizing different successional stages of a forest [e]. For 
example, in an analysis using only small (<1.5 cm diameter) climbing lianas, DeWalt et al. [e] found that 
the relative abundance of tendril climbers decreased and stem twiners increased with forest age (Fig. I). 
Tendril climbers were more abundant in young forests probably because of the availability of suitable-
sized trellises (small host trees), whereas the relative proportion of stem twiners, which do not depend 
on small trellises, increased with forest age. Thus, the relative proportion of lianas with different 
climbing mechanisms might be directly influenced by the successional stage or disturbance regime of 
the forest. 
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Fig. I. Adaptation of liana climbing strategies to the successional stage of forest regeneration. Stem 
twiners (closed circles) increased in relative abundance (P<0.05, r2=0.43, n=10) with forest age, whereas 
tendril-climbers (open circles) show the opposite response (P<0.05, r2=0.40, n=10) [e]. There was no 
significant relationship between branch climbers and forest age (closed triangles). Each point represents 
each climbing type from one forest. Reproduced, with permission, from [e]. 
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In the past few years, with the recognition that lianas are important players in many areas of forest ecology, 
there has been an explosion in liana-related research. Here, we review and synthesize recent advances in our 
understanding of the ecology of lianas and their role in several aspects of forest dynamics. We examine the 
contribution of lianas to the overall abundance and species diversity of plants in tropical forests, the 
maintenance of liana species diversity by both small- and large-scale disturbances, the mechanisms by which 
lianas structure tropical forest diversity and regeneration, and the significant contribution they make to whole-
forest transpiration and carbon sequestration. 

Liana abundance and diversity 
Although lianas are common in many temperate forests (e.g. Vitis, Parthenocissus and Toxicodendron spp.), their 
contribution to forest abundance, diversity and structure is most substantial in tropical forests (Box 2). Lianas 
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typically constitute ∼25% of the woody stem density (abundance) and species diversity (species richness) in 
many tropical forests 7, 8. The mean abundance, diversity and taxonomic composition of lianas in lowland 
tropical moist and wet forests are similar among tropical regions, although liana abundance is higher in Africa 
(Table 1). Liana abundance and diversity, however, can be quite variable among individual sites 7, 8, 9, 10. For 
example, in liana-poor forests, such as in Semengoh, Sarawak, lianas can comprise <10% of the overall woody 
species diversity [8]. Conversely, in forests such as those on the rim of the Amazon basin, liana diversity can be 
as high as 44% of the woody species, averaging 51 liana species ha−1 [10]. 

Box 2. Lianas and the latitudinal gradient 
The abundance of lianas in tropical forests has often been cited as the single largest physiognomic 
difference between temperate and tropical forests [a]. As with most plants and animals, liana species 
diversity increases with decreasing latitude [b], but liana abundance and diversity increase 
proportionally with decreasing latitude at a much faster rate than in other major growth forms (e.g. 
trees, shrubs and herbs; with notable exceptions, such as epiphytic plants). For example, when taken as 
a proportion of the total flora, liana species richness increases fivefold from temperate to lowland 
tropical forests (Table I). In comparison, the proportional increase in tree diversity is less than twofold, 
and shrub diversity increases by only one half (Table I). When examined as the proportion of woody 
species (trees, lianas and shrubs), liana richness increases from 10% of the temperate woody species to 
25% of the tropical woody species [b]. Liana diversity, however, decreases with increasing altitude in the 
tropics [c]. Thus, along latitudinal and altitudinal gradients, liana abundance and diversity appear to 
peak in the relatively warm, lowland tropics. 

Table I. Percentage of woody species of total flora in three habitat typesa 

Region Lianas (%) Trees (%) Shrubs (%) 
Prairie (1 site) 1 5 3 
Temperate forest (7 sites) 2 12 6 
Continental tropics (7 sites) 10 21 9 

a Woody species includes lianas, trees and shrubs but not Herbs, vines, hemiepiphytes and epiphytes. 
Data from [b]and References therein. 

One explanation is that most lianas cannot tolerate the freezing temperatures of high altitudes and 
northern temperate climates. The extremely long and wide vessel elements that enable lianas to 
conduct water and nutrients over very long lengths, coupled with their relatively narrow, uninsulated 
stems, could make them particularly susceptible to freezing, causing irreversible vascular damage [d]. 
Nevertheless, there are some exceptions. One example is wild grape Vitis spp., which survives prolonged 
freezing temperatures by completely draining its vessel elements before the onset of Northern 
Hemisphere winter temperatures [e]. This has allowed Vitis to proliferate throughout many temperate 
forests, particularly those that are highly disturbed [f]. Although lianas can be an important factor in 
temperate forest dynamics [g], they are predominantly a tropical phenomenon. 

The origin of the high diversity of lianas throughout tropical forests is probably a result of the repeated 
independent evolution of the climbing habit. Nearly 60% of all dicotyledenous plant orders have at least 
one representative climber [h]. This repeated but independent evolution could explain why lianas have 
so many different yet homologous adaptations, such as an adaptation for climbing (Box 1). Although 
they have a wide range of pollination syndromes, seed sizes and seed dispersal mechanisms, overall, the 
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relative abundance of these characteristics differs from that of other plant groups. For example, lianas 
tend to have fairly small, wind-dispersed seeds compared with trees or shrubs [i, j]. The animals that 
pollinate them also tend to differ from that of other plant groups, with large bees and beetles 
disproportionately well represented [i]. Although more detailed studies on the pollination biology of 
lianas are needed, the variation in liana taxa, species diversity, climbing strategy, seed size and dispersal 
mechanisms suggests that there are many ways to be a liana and that being one is a prosperous way in 
which to make a living. 
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Table 1. Mean abundance and species richness of lianas in four tropical regionsa 

Continent/Region (number of forests 
sampled) 

Mean abundance (± standard 
deviation) 

Mean species richness (± 
standard deviation) 

Africa (7) 111.0 (± 35.8) 39.1 (± 7.1) 
Asia (11) 66.0 (± 35.1) 36.2 (± 17.0) 
South America (27) 61.6 (± 22.2) 33.7 (± 10.9) 
Central America and Mexico (5) 59.6 (± 11.4) 28.2 (± 5.5) 

a Data based on 0.1-ha area in lowland moist and wet forest sites (<500 m altitude, >1600 mm precipitation y−1) 
in which all lianas >2.5 cm diameter at breast height were included. Data from [7] and [8]. More data are needed 
before we can accurately generalize about such areas; however, see [7] for a comprehensive survey of liana 
density and diversity in forests around the world. 

Liana abundance varies with several key abiotic factors, including total rainfall, seasonality of rainfall, soil fertility 
and disturbance. Gentry [7]reported that, in the neotropics, liana abundance increased with the seasonality of 
rainfall. The mechanism responsible for this pattern, however, is currently unknown. Studies conducted 
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throughout the neotropics and in Asia (Sarawak) suggest that liana abundance tends to increase with soil 
fertility 11, 12, 13, but this relationship is weak. For example, in central Amazon, soil richness significantly 
predicted liana abundance in the forest interior, but not near the forest edge, whereas forest disturbance and 
tree biomass significantly predicted liana abundance throughout the forest [13]. In a Mexican forest, however, 
soil richness did not appear to determine liana abundance [9]. In an analysis of 32 moist, wet and pluvial 
neotropical forests, Gentry [7] reported high variation in liana abundance among forest and soil types, resulting 
in no strong trend in liana abundance with soil fertility. Although highly variable, liana abundance was as much 
as four times higher in some nutrient-rich sites than in some nutrient-poor, sandy ones, causing Gentry [7] to 
conclude ‘there is a very slight tendency for greater liana density on richer soils’. 

Disturbance and the maintenance of liana species diversity 
Determining the mechanisms that maintain the species diversity of disparate plant growth forms (e.g. trees, 
lianas, shrubs, herbs and epiphytes) is essential to our understanding of the maintenance of local species 
diversity 14, 15. For forests, small-scale disturbances, such as treefall gaps, have long been hypothesized to 
maintain species diversity [16]. Although such gaps might be a general mechanism to maintain overall plant 
diversity, in nearly all tests of the gap hypothesis only trees have been examined, whereas the contribution of 
lianas has been largely ignored 14, 15. Interestingly, there is little compelling evidence that tree species diversity 
is maintained by gaps [17] and, based on this lack of evidence, several recent studies have concluded that gaps 
do not maintain overall species diversity in forests [18]. However, new studies demonstrate that liana species 
diversity is maintained by gaps 15, 19 and that lianas can radically alter gap-phase regeneration (Box 3). For 
example, liana species richness was significantly higher in gaps than in nongap sites on Barro Colorado Island, 
Panama [15] (Fig. 1), suggesting that gaps maintain liana species diversity. Because lianas, combined with 
pioneer trees, constitute a large proportion of the woody species diversity in many tropical forests (e.g. 43% in 
an old-growth forest, Barro Colorado Island, Panama [14]), including lianas has provided strong support for the 
hypothesis that treefall gaps do maintain much of the vascular plant species diversity in tropical forests. 

Box 3. The rise and fall of lianas in treefall gaps 
Small-scale disturbances, such as treefall gaps, are key processes in forest dynamics and regeneration 
[a]. Gap-phase regeneration theory suggests that gaps are rapidly colonized by trees and redevelop a 
high closed canopy soon thereafter [b]. A large proportion of gaps (possibly >20%) [c], however, does 
not rapidly redevelop such a canopy in this simple, but commonly accepted way. Instead, these gaps 
follow an alternative successional pathway, whereby they are dominated by lianas and can remain in a 
low-canopy state for over 13 years [c, d]. Lianas can colonize gaps very early, growing rapidly in the 
increased light, and smothering slow-growing shade-tolerant trees as a result. When there are no 
suitable-sized saplings to act as trellises in a gap, the growing lianas can form a tangle of vegetation, 
which further blocks and delays conventional gap-phase regeneration of trees by preempting light, 
imposing mechanical interference and possibly causing intense belowground competition. 

Some forests can become composed primarily of lianas [e, f], especially after logging [g]. In most forests, 
however, trees eventually escape from the liana tangle. As trees, particularly pioneer species [c, h], 
escape from the edge of the tangle, they reduce the light level in the gap, and the lianas might grow less 
vigorously, which can result in more trees breaking through the liana tangle, consequently ending the 
domination of lianas in the gap. The legacy of a liana-dominated gap, an impenetrable tangle of liana 
stems, often persists in the intact forest for many years after the completion of gap-phase regeneration. 
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Fig. 1. Maintenance of local liana species abundance and diversity by treefall gaps. Liana abundance (density) 
and diversity (species richness) were significantly greater in gap sites (green bars) compared with same sized 
nongap sites (open bars) in an old-growth forest on Barro Colorado Island, Panama (Fisher's exact 
test; P=0.01, n=17 and P<0.001, n=17 for liana abundance and species richness, respectively) [15]. Error bars 
represent one standard error. Rarefaction analysis (not shown here) revealed that liana species richness was 
also significantly greater in gaps on a per capita basis (P<0.05); thus, the significant increase in richness was not 
merely an artifact of increased density. Modified, with permission, from [15]. 

The small-scale disturbance of treefall gaps might not be the only type of disturbance that is important for 
maintaining liana diversity. Liana diversity also increases considerably following larger scale forest disturbance 
from natural forces, such as hurricanes, as well as from anthropogenic forces, such as clear cutting and selective 
logging. For example, in a chronosequence of tropical forests in central Panama, liana abundance and diversity 
were significantly greater in young secondary forests (20–40 years old) than in older forests (70+ years old) [20]. 
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In this study, the authors measured diversity using Fisher's α, an index that yields a measure of diversity 
independent of density, demonstrating that, even without the confounding effects of liana density, liana 
diversity increases after stand-clearing disturbance. Forest fragmentation also increases liana diversity. In 
central Amazon, liana abundance and diversity (Fisher's α) were significantly higher within 100 m of forest edges 
than in forest interiors [13]. In a subtropical forest in southern Florida, liana species richness significantly 
increased following large-scale hurricane damage, with nonindigenous invasive species comprising 34% of the 
increased liana diversity [21]. 

How does disturbance maintain liana diversity? 
Disturbance might maintain local liana diversity by at least two different mechanisms, neither of which is 
mutually exclusive. First, lianas with different competitive abilities might partition the abundant and 
heterogeneous resources that result from a disturbance, providing a mechanism that directly maintains liana 
diversity [22]. Although there is no direct experimental evidence for this hypothesis, several studies have found 
that liana diversity is maintained independently of density 13, 15, 20, suggesting that a mechanism such as 
resource partitioning among liana species is possible. A second mechanism might be that lianas require the high 
light levels of a treefall gap or larger scale disturbance for colonization and survival, similar to the regeneration 
requirements of high-light-demanding tree species. Several studies have suggested that lianas could be classified 
as early successional or gap-dependent pioneer species 20, 23, 24. Conversely, other studies have demonstrated 
a wide range of shade tolerance in lianas 12, 25, 26, 27. For example, Putz [27] classified only three of the 65 
liana species that he examined on Barro Colorado Island, Panama, as strictly early successional or gap-phase 
species. 

Although there is contrasting evidence for the regeneration requirements of lianas as a group, there are several 
potential explanations for these disparate results. One fairly speculative explanation is that lianas share 
attributes of both high-light-demanding and shade-tolerant species. Specifically, lianas might require the high 
light levels provided by treefall gaps for establishment, but, once established, they can persist in the forest 
understorey after the canopy is closed. Indeed, this type of regeneration strategy has been documented for 
some tree species [28]. A more plausible explanation is that lianas establish immediately following a disturbance 
and grow rapidly thereafter. The ability to grow rapidly in the high light levels resulting from a disturbance could 
allow even relatively shade-tolerant liana species to grow at a rate similar to that of pioneer species [12]. 

The ability to establish following a disturbance might be particularly important for lianas, because they have four 
ways to colonize, whereas most other vascular plants have only two. Most vascular plants can colonize via both 
seed and advance regeneration (the seedlings and saplings that were present in the understorey before the 
disturbance). Unlike most other vascular plants, however, lianas can also colonize immediately after a 
disturbance as adults. Putz [27] found that ∼90% of the adult lianas that are dragged into a gap with a treefall 
survive the event. Lianas are particularly adept at surviving treefalls because of their anomalous stem anatomy, 
which reduces stem breakage and accelerates the repair of damaged vascular tissue [29]. They can also colonize 
disturbed sites, such as treefall gaps, by growing laterally into, and subsequently rooting in, gaps from areas 
adjacent to the gap [30]. Many tree species can also colonize a gap as adults via resprouting [31]; however, 
lianas can actually increase in relative abundance in a gap by vigorously producing many independently rooting 
stems, thereby greatly increasing their chances of survival. Although the exact regeneration requirements of 
lianas as a group can be as varied as the liana taxa themselves, liana diversity appears to be maintained primarily 
by disturbance, possibly by resource partitioning, but more likely because lianas can arrive in high numbers, 
reproduce vegetatively and grow rapidly for long periods. 
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Untangling the negative effects of lianas on trees 
The interactions between lianas and trees have been of great interest to ecologists and foresters because of the 
detrimental effect that lianas have on their tree hosts 32, 33 (Box 4). Many studies have demonstrated that, 
even in relatively low abundance, lianas decrease the growth, fecundity and even survivorship of trees in intact, 
closed-canopy forest, treefall gaps and managed forests 27, 34, 35, 36. Very few of these studies, however, were 
designed to test explicitly the mechanisms by which lianas affect trees. Recently, several key experiments have 
been undertaken to disentangle these mechanisms by comparing the relative contributions of above- and 
belowground competition between lianas and trees 33, 37, 38, 39, 40, 41. 

Box 4. To cut or not to cut: the question of liana control in managed 
forests 
The detrimental effect of lianas on trees is a widely recognized problem for tree regeneration in 
managed and heavily logged forests [a]. Lianas are particularly abundant in such forests, where they 
reduce tree growth rates, increase the number of trees that are killed and damaged during timber 
harvest, and cause trees to bend, distorting their trunk and thus reducing their value as timber [b, c]. 
Indeed, logged forests can have nearly twice the density of lianas than do primary, nonlogged forests. 
For example, Campbell and Newbery [d] reported that only 30% of the trees (>20 cm in diameter) in a 
post-logging forest were vine free, whereas 59% of the trees (>10 cm in diameter) remained vine free in 
a nonlogged, primary forest. Consequently, many foresters and forest ecologists recommend the active 
management of lianas via periodic and pre-harvest liana cutting [a, c]. Periodic liana cutting can greatly 
reduce the number of lianas in the crowns of trees [e] and preharvest liana cutting can reduce the 
amount of collateral tree damage by up to 50% and reduce postharvest canopy gap sizes. 

The efficiency of preharvest liana cutting, however, is still hotly debated. It is expensive and time 
consuming, and its overall effectiveness is still not fully resolved [b, f]. Recently, several studies have 
quantified the effectiveness of liana cutting for forest management [c, e, f] and some concluded that 
blanket liana cutting was not effective [f]. 

A compromise endorsed by nearly all of these studies is one of selective liana cutting; that is, lianas are 
removed only from the trees that have a high density of lianas in their crown. This solution can reduce 
the expense of liana cutting whilst maintaining a high degree of liana control [c, f]. In addition, many 
studies warn against wholesale liana cutting in managed forests because lianas provide essential food 
and much needed canopy structure to many forest animals [g]. Overall, liana cutting still appears to be 
the most ecologically sound and cost-effective strategy for forest management, but only when done 
selectively, on a tree-by-tree basis. Further research is needed to quantify the approximate level at 
which the density or biomass of lianas in a tree becomes problematic for forest management. 
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Historically, most studies on liana–tree interactions have assumed that aboveground competition is the 
predominant effect of lianas on trees 25, 35. Such competition can be quite apparent, especially in disturbed 
forests (Fig. 2). However, belowground competition plays a much greater role in liana versus tree competition 
than has been previously suspected 37, 38, 39, 40. For example, in a series of controlled experiments in the 
northeastern USA, Dillenburg and collaborators tested the relative strengths of above- and belowground 
competition among the liana species Lonicera japonica and Parthenocissus quinquefolia, and the 
tree Liquidambar styraciflua. They found that belowground competition, particularly for soil nitrogen, rather 
than aboveground competition for light, was responsible for the drastically reduced rates of tree growth. 
Competition for soil water was not a factor in these studies, possibly because water was never a limiting factor 
at the study site. 

 
Fig. 2. An adult tree covered by lianas, mostly Entada monostachia, in a disturbed area in a semi-deciduous 
season forest in western Costa Rica. Lianas can become very abundant in disturbed forests and the trees pay a 
heavy toll. Most studies assume that aboveground competition is the predominant effect that lianas have on 
trees 25, 35; however, recent studies have demonstrated that belowground competition is also 
intense 37, 38, 39, 40. Photograph taken by S. Schnitzer. 
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Competition between lianas and trees for soil water, however, could be intense in forests that experience 
seasonally low rainfall. For example, during the dry season in a lowland Bolivian forest, the pre-dawn water 
potential of the host tree Senna multijuga became significantly less negative within one day after encroaching 
lianas were cut from the tree [40], suggesting strong competition for water between lianas and trees during the 
dry season. Interestingly, the same authors failed to find the same result in a companion study on another focal 
tree species, the mahogany Swietenia macrophylla [41]. 

Do lianas affect tree species differentially? 
The disparate results of Pérez-Salicrup and collaborators suggest that lianas affect tree species differently and 
thus could alter the tree community by changing the relative competitive ability of tree species. Indeed, there is 
evidence to support this assertion 13, 15, 27, 33, 36, 42, 43. Lianas appear to harm slow-growing, shade-tolerant 
tree species, whilst not affecting, or even indirectly promoting pioneer tree species 13, 27, 42 (Fig. 3). 
Putz [43] described several key characteristics, such as a flexible trunk, large leaves and rapid growth rate, which 
allowed trees, such as palms and pioneers, to shed or avoid lianas. For example, in a lowland tropical forest in 
Costa Rica, lianas were found in only one out of 142 adult pioneer trees, whereas the canopy of most of the 
shade-tolerant trees (50–97% of trees >70 cm in diameter) hosted lianas [36]. Schnitzer et al. [42] argued that 
lianas indirectly promote pioneer trees in gaps by reducing the competition from shade-tolerant trees via 
smothering and prolonging the life of a gap and thus extending the opportunity for pioneers to colonize (Box 3). 
Pioneer trees can emerge from liana-suppressed gaps into the open, high-light zone of the gap up to 20 years 
after gap formation 27, 42. Lianas can also indirectly promote pioneer tree abundance by creating more and 
larger gaps through increasing tree mortality and pulling down neighboring trees in a treefall [44]. Because 
lianas affect tree species differentially, the abundance of lianas in any given forest probably plays an integral 
role in tree species competition and colonization, and thus in the overall composition of the tree community. 
Further studies, however, are necessary to quantify the extent of the ability of lianas to structure tree 
communities in tropical forests. 
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Fig. 3. Effect of lianas on surrounding vegetation. Lianas harm shade-tolerant tree species (a) whilst indirectly 
promoting pioneer trees (b) in treefall gaps in an old-growth forest on Barro Colorado Island, Panama [42]. 
Shade-tolerant trees are negatively correlated with liana density (P=0.01, r2=0.28, n=25), whereas pioneer trees 
are positively correlated with liana density (P=0.04, r2=0.18, n=24). These findings suggest that, when abundant, 
lianas alter competition among these species in gaps, possibly by reducing the competitive ability of shade-
tolerant trees. Each point represents one gap. Modified, with permission, from [42]. 

Lianas and ecosystem-level processes 
Lianas have a major impact in tropical forests at the ecosystem level, particularly for processes such as whole-
forest transpiration and carbon sequestration 45, 46, 47. With their high canopy:stem ratio, extremely long and 
wide vessel elements, and very deep root systems, lianas are thought to have high sap flow and transpiration 
rates compared with trees 48, 49. Recently, Andrade et al. challenged this paradigm, showing that the rate of 
sap flow was no greater in lianas than it was in trees of an old-growth Panamanian forest (J.L. Andrade et al., 
unpublished). However, lianas did have a high transpiration rate and they continued to transpire throughout the 
dry season, tapping water deeper in the soil profile as the dry season progressed. Most of the large trees at this 
site, however, extracted available water only from relatively shallow sources throughout the dry season (J.L. 
Andrade et al., unpublished, [46]). In addition, lianas constituted ∼25% of the woody plants in this forest and 
nearly all lianas remained evergreen, whereas many of the trees were deciduous during the dry season [50]. By 
contrast, transpiration in lianas was significantly lower in the dry season than in the wet season in a secondary 
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forest in eastern Amazonia, whereas transpiration in trees remained the same throughout the year [49]. Overall, 
these results suggest that lianas contribute a large proportion to the transpiration of tropical forests, particularly 
during the dry season, but that dry season transpiration might depend on the site and liana species being 
considered. 

Lianas also play a prominent role in forest-wide carbon sequestration. Heavy liana infestations following 
disturbance inhibit tree regeneration 13, 42, 44, which reduces the amount of carbon that is sequestered in 
plant biomass 45, 51. For example, in the many areas of a forest in French Guiana where liana abundance was 
extremely high, mean aboveground dry biomass (AGBM) of trees was ∼33% lower than the mean tree AGBM of 
the entire forest [51]. The loss in tree biomass, however, was not offset by the increase of liana biomass. 
Because of their relatively slender stems and low wood density, lianas sequester far less carbon than do 
trees 45, 52, 53. For example, between ten and 17 years following forest fragmentation in central Amazon, total 
AGBM of trees decreased by 36.1 Mg ha−1 within 100 m of the edge of a fragmented forest, whereas liana AGBM 
increased by only 0.46 Mg ha−1, even though liana abundance greatly increased 13, 45. 

The exact contribution of lianas to the total biomass in tropical forests is currently unresolved. One problem for 
estimating liana biomass is the paucity of the allometry data that are needed to calculate liana biomass from 
stem basal area. Existing data are based on only a few individuals (<20) and species (<17) in unreplicated 
forests 47, 54. Unsurprisingly, the estimates of liana biomass based on these limited allometry data can be 
radically different, even in forests where liana abundance is similar. For example, in a Venezuelan forest, 
Putz [54] estimated that lianas constituted 4.5% (15.7 ton ha−1) of the AGBM. Conversely, in an eastern Brazilian 
forest, Gerwing and Farias [47] developed their own allometric model and estimated that the proportion of liana 
AGBM was more than three times higher than that of Putz [54] (14%, 43 ton ha−1) and that this proportion 
reached up to 30% in low-stature, disturbed areas of the forest. The abundance of lianas in these two forests, 
however, was quite similar, with 35 and 43 lianas 0.1 ha−1 in the Venezuelan and Brazilian forest, respectively. 

Regardless of the exact contribution of lianas to the aboveground biomass of forests, they play a large role in the 
forest carbon budget. Furthermore, the contribution of lianas to forest carbon sequestration is likely to change 
over time as their abundance increases with increasing forest productivity, climate change and natural and 
anthropogenic disturbance 13, 45, 55. Before we can make educated predictions on the future role of lianas in 
the global carbon budget, however, more data are needed on liana allometric relationships, the relative 
abundance of liana and tree biomass in both disturbed and naturally functioning, intact forests, and how these 
relative abundances are changing over time. 

Prospects 
In the tropics, lianas play an integral role in forest regeneration, the maintenance of species diversity and whole-
forest level ecosystem processes. Recent evidence has begun to elucidate how liana diversity is maintained, the 
exact mechanisms by which lianas impact trees, and the growing role of lianas in ecosystem processes. 
However, many important questions remain. Specifically, what are the exact mechanisms by which disturbance 
maintains liana species diversity? What proportion of lianas is truly shade-intolerant, shade-intolerant solely 
during their colonization phase, or shade-tolerant throughout their entire lifetime? What are the exact 
mechanisms by which lianas colonize and subsequently arrest regeneration following disturbance; specifically, 
what proportion of lianas recruit into the disturbed area from the canopy, from the intact forest via advanced 
regeneration, and from seeds? Also, what is the role of belowground competition in arresting canopy 
regeneration? Do lianas have extensive and deep root systems that severely limit water and nutrient uptake in 
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other plants? We now know that lianas play a role in whole-forest transpiration and carbon budget, but their 
specific role is currently unresolved. 

Overall, it is becoming clear that lianas are important players in many aspects of forest dynamics, far more 
important than was realized a decade ago. The fact that forests are becoming increasingly disturbed worldwide 
will increase the relative importance of lianas in many aspects of forest dynamics. We need long-term data from 
both field and greenhouse studies on the ecology, behavior, anatomy and physiology of many liana species to be 
able to answer the questions raised above. 
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