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Abstract: 
Despite the reliability of modern power systems, large blackouts due to cascading failures (CFs) do occur in 
power grids with enormous economic and societal costs. In this article, CFs in power grids are theoretically 
modeled proposing a Markov decision process (MDP) framework with the aim of developing optimal load-
shedding (LS) policies to mitigate CFs. The embedded Markov chain of the MDP, established earlier to capture 
the dynamics of CFs, features a reduced state-space and state-dependent transition probabilities. We introduce 
appropriate actions affecting the dynamics of CFs and associated costs. Optimal LS policies are computed that 
minimize the expected cumulative cost associated with CFs. Numerical simulations on the IEEE 118 and IEEE 300 
bus systems show that the actions derived by the MDP result in minimum total cost of CFs, compared to fixed 
and random policies. Moreover, the optimality of derived policies is validated by a CF simulation based on dc 
power flow for the IEEE 118 bus system. Therefore, such actions developed by the proposed theoretical MDP 
framework can serve as a baseline for devising optimal LS strategies to mitigate CFs in power grids. 

SECTION I. Introduction 
Power systems are notably vulnerable to cascading failures (CFs) in the power-transmission network, which can 
occur due to either natural or intentional events [1]–[5]. CFs in power systems are described as a sequence of 
correlated and uncontrolled failures of network components [e.g., nodes (e.g., generators, transformers, etc.) 
and edges (e.g., transmission-lines)] that successively weakens the power system [6]. In addition, the 
propagation of CFs in power grids is largely accelerated by the interdependencies between power and 
communication neworks [7], [8]. CFs often result in huge monetary losses and have broad societal impacts, as 
observed in the case of the North American blackouts [9] and other blackouts worldwide (see [10, Table 1]). 
Since we have limited control over the contingencies (natural or human-made intentional attacks) that initiate 
CFs in complex power grids, it is utmost important to develop a strategy to control CFs before they spread. Even 
with current sophisticated control mechanisms, CFs occur and cause large power blackouts. Thus, having a 
policy for possible contingencies, which depends on the evolution stages of CFs, is fundamental for mitigating 
CFs in power grids and protecting them from large blackouts. A policy, i.e., a sequence of corrective actions, to 
prevent the spread of CFs in power grids can be automated or human-made. Determination of the policy is 
usually based upon a given objective, such as maximizing the power delivery or minimizing the spread of a CF. 

The main two corrective methods to mitigate CFs in power grids are generation redispatch and load-shedding 
(LS), along with some other measures [11]. The following considerations are the main motivations for our 
decision to focus on LS, which is also broadly investigated as a mechanism to maintain grid reliability (please 
see [12]–[16] and references therein). First, we assumed that a generation dispatch strategy is integrated as a 
part of the operator’s control scheme (due to the dynamics of the economics (e.g., market price) of grid 
operations involved in generation dispatch). However, the economics of generation dispatch considering market 
prices are beyond the scope of this article. Second, since LS is a quick, simple, and reliable remedy to establish 
active power balance [11], [17], it is a commonly adopted strategy by grid operators for emergency control 
exemplified by cases when a CF propagates very fast and escalates on a very short time scale. In contrast, 
generation dispatch is typically used when there is sufficient time for the grid operators to diagnose a situation 
and take preventive actions (e.g., transmission loading relief and redispatch normally took 10–30 
mins [18], [19]). Third and most importantly, LS affects the customers directly (due to power outage) but 
generation dispatch does not necessarily involve power outage. We tied power outage from LS in the MDP cost 
function and minimized customer impact induced by the outage from CF by prescribing optimal actions for LS. 

In this article, we model the time-varying and state-dependent characteristics of LS actions in power grids using 
a Markov decision process (MDP) and develop optimal LS policies for the grid operators to mitigate CFs based on 
contingencies. A Markov chain (MC) was established in [20] to capture the dynamics of CFs in power grids. In 



this article, in addition to capturing the dynamics of CFs, we propose an MDP model for mitigating CFs in power 
grids through dynamic actions. Specifically, the newly introduced actions in the MDP correspond to time-varying 
LS interventions during a CF. Moreover, state- and action-dependent costs corresponding to each action are 
introduced in the MDP and a tradeoff is established between the number of line failures (LFs) and the amount of 
LS. Most importantly, this article addresses the challenge of finding the optimal LS actions at each time step and 
for each state of the MDP in order to mitigate CFs. 

The proposed model offers the following major contributions beyond existing stochastic decision models for 
mitigating CFs. First, it lays a framework, using the MDP, as a tool to dynamically mitigating CFs by considering 
the cost of LF an LS. The MDP model is engineering based, i.e., it can incorporate key physical and operating 
characteristics of the power grids, such as the loading level, the ability to implement LS, and the line capacity 
estimation error. Second, the definition of the discrete action space and the adoption of the reduced state space 
ensure the scalability and analytical tractability of the MDP as the dimension of the power grid topology 
increases. Third, and most importantly, we propose a cost function that balances the tradeoff between the 
amount of LS and the number of LFs. 

SECTION II. Related Works 
CFs occur in a variety of networked systems, such as power transmission grids [21]–[23], other cyber-physical 
systems, including interdependent networks, e.g., power grids and communication systems [7], [24], as well as 
supply networks [25]. Due to the relevance of this article to power systems, we will discuss the mitigation 
strategies that has been proposed for protecting power grids from CFs. A multiobjective optimization framework 
to optimally allocate link capacities for cascade-resilient power transmission network was proposed in [26]. 
Parandehgheibi et al. [27] proposed a two-phase LS policy for mitigating CFs in an interdependent power grid 
and communication network. The authors in [28] modeled power-communication interdependency, and 
proposed an algorithm for identifying the failed lines, and subsequently proposed a mitigation strategy to limit 
the cascade propagation by minimizing generator redispatch and LS. An optimal LS algorithm, based on a linear 
quadratic cost function, allowed computation of optimal LS amounts in both deterministic and stochastic 
settings [29]. Similarly, using convex relaxation of the ac power flow, an LS algorithm was proposed to mitigate 
the deterministic propagation of CFs in [30]. In contrast, in [31], a dc power flow-based hidden failure model for 
CFs in power grids and provided mitigation strategies; the model aimed to keep key grid parameters below a 
critical level. Yao et al. [32] used a Markovian tree search-based risk management scheme to reduce the risk of 
cascading outages. Similarly, a very recent work [33] determined the critical lines of a grid that are most likely 
responsible for instigating CFs using a Markovian influence graph generated from historical data and suggested a 
mitigation strategy by using resources to harden these critical lines. It was argued in [34] that hardening the 
critical lines may cause the remaining lines to become critical. 

The authors in [35] proposed a metric for comparing a dc power flow-based model and a transient stability 
analysis-based model in terms of their performance in modeling CFs. Later, the authors formulated sequential 
attacks on the grid topology, using 𝑄𝑄-learning based on a dc power flow model for CFs, and obtained effective 
attack strategies that maximize the number of LFs with a reduced number of attacks [36]. In addition, an 
interaction model is proposed for capturing the dynamics of cascading power grids that estimates the 
interaction matrix and the interaction network from CF simulations using ac power flow [37]. Similar to [37], we 
estimate the transition probability of the MC using data from CFs simulations, which are based on the optimal dc 
power flow. 

There are also cascade mitigation strategies based on the game theory. For example, in [38], a stochastic zero-
sum game was studied, where an attacker and a defender simultaneously play a game to maximize and 
minimize LS cost, respectively. In addition, authors in [39] proposed a 𝑄𝑄-learning-based algorithm to mitigate 



CFs in power grids and showed the convergence of the game to a Nash equilibrium. Similarly, in [40], the 
authors proposed a game-theoretic approach to provide an optimal criterion to design an industrial control 
system, which is resilient to CFs for a special form of a quadratic cost function. An advantage of the MDP model 
proposed in this article is that since we have estimated the transition probabilities of the MDP, the model can 
compute the policy rather than learning the policy through Q-learning. 

Our group further generalized the MC model developed earlier in [20] to include the impact of followings on 
CFs: communication-network failures [8], human-operator errors [41], cyber threats [42] as well as community 
structures of grid networks [43]. However, although the above-mentioned MC model is shown to be effective in 
analyzing the cascade dynamics, previous work did not study the role of cascade mitigation actions. In addition, 
a recent work has formulated CFs using MDP and developed an online search method using an MDP-based 𝑄𝑄-
learning approach [44]. Another line of works is based on identifying the “risky fault chain” that characterizes a 
CF process [32], [45] and weakening these links to reduce the chance of a cascade occurrence. However, our 
approach is different as it derives the optimal policy offline for all the possible states of the grid by considering a 
cost function that accounts for both the positive and negative implications of LS. Finally, another distinguishing 
feature of our work is that it incorporates real physical operating characteristics of power grids in the model. 

SECTION III. Modeling CFs via MDP 
In this section, we first review germane aspects of the MC model for modeling CFs. We then formulate an MDP 
by incorporating actions and costs to devise optimal LS policies to mitigate CFs. 

A. Stochastic Abstract-State Evolution (SASE) Model 
The MC based model, termed in [20] as SASE, captures the stochastic dynamics of CFs in power grids using a 
finite state MC over a reduced state space defined by three key physical variables from the power grid. In 
particular, the MC is based on three state variables, namely, the number of failed lines, F, maximum capacity of 
the failed lines, 𝐶𝐶max, and the binary state variable, 𝐼𝐼, representing whether a state is absorbing (𝐼𝐼 = 1) or 
nonabsorbing (𝐼𝐼 = 0). Namely, if the power grid is in a nonabsorbing state then the failure cascade will 
continue. Conversely, the CFs terminate if the power grid is in an absorbing state. As such, the state of a power 
grid during a CF is represented as an abstract state variable 𝑆𝑆 = (𝐹𝐹,𝐶𝐶max, 𝐼𝐼) and a CF process is modeled as an 
MC over the state space of the abstract state variables. In addition, the SASE model assumes that the cascade-
continue transition occurs as a result of single-LFs in the system. The single-failure-per-transition approximation 
is based upon the assumption that time is divided into sufficiently small intervals such that each interval can 
allow only a single failure event [20]. A detailed description of how the transition probabilities of the MC are 
computed is provided in Appendix A. 

Note that this reduced state space, as utilized in many of our earlier and recent works [8], [20], [41], [42] as well 
as recent work by other groups [46], can represent a grid at a high level albeit providing significant computation 
efficiency and tractability. At the same time, since the transition probabilities of the high-level state variables 
(i.e., reduced state space) of the MC are learned from the detailed dc power flow applied to detailed simulations 
of CFs with knowledge of specific line outages and the load shed at all buses, they implicitly capture the role of 
the omitted variables that are eliminated in the state-space reduction. It is also important to keep in mind that 
despite the state-space reduction, the MC model is very effective in capturing historical trends of real-world CFs 
(see [20, Figs. 2, 14, and 15]). In what follows, we adopt the MC of the SASE model as the underlying MC of the 
MDP. 

 



 

Fig. 1. Framework for the development of optimal LS policies using the MDP for mitigating CFs in power grids. 
Here, 𝑆𝑆𝑡𝑡 = (𝐹𝐹𝑡𝑡 ,𝐶𝐶𝑡𝑡max, 𝐼𝐼𝑡𝑡) represents the state of the power grid. The probability 𝐏𝐏(𝑆𝑆𝑡𝑡+1|𝑆𝑆𝑡𝑡 ,𝜃𝜃𝑡𝑡) models the state-
transition probability of transitioning form state 𝑆𝑆𝑡𝑡 to state 𝑆𝑆𝑡𝑡+1 due to a chosen action 𝜃𝜃𝑡𝑡. Moreover, the cost 
of taking an action at state 𝑆𝑆𝑡𝑡 is denoted by 𝑐𝑐(𝑆𝑆𝑡𝑡 ,𝜃𝜃𝑡𝑡). An optimal policy minimizes the total accumulated cost 
over a predefined time horizon, 𝑇𝑇. 

 

 

Fig. 2. Optimal MDP policies for different values of 𝜇𝜇. The policy represents the actions 𝜃𝜃 for each state at each 
time epoch. Specifically, the vertical axis represents the index of the states of the MDP, and the horizontal axis 
represents time epochs at which actions are taken. Color represents the value of the optimal action (color 
legend on the right). By fixing a state on the vertical axis the horizontal axis shows all the optimal actions for all 
the time epochs. (a) Optimal MDP policy with 𝜇𝜇 =  0. (b) Optimal MDP policy with 𝜇𝜇 =  0: 5. (c) Optimal MDP 
policy with 𝜇𝜇 =  1. 

 

B. MDP for the Mitigation of CFs 
A finite-state MDP [47] can be defined using a five-tuple vector ⟨𝒮𝒮,𝛩𝛩,𝒫𝒫,ℛ, 𝛾𝛾⟩, where 𝒮𝒮 is the finite state-space 
of the MDP, 𝛩𝛩 is the finite action-space such that a deterministic action at time 𝑡𝑡, 𝜃𝜃𝑡𝑡, is defined as 𝜃𝜃𝑡𝑡:𝒮𝒮 →
𝛩𝛩. 𝒫𝒫 is a set of probability transition matrix of the MDP, namely, P𝑡𝑡(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡 ,𝜃𝜃𝑡𝑡) ∈ 𝒫𝒫 denotes the probability of 
transitioning to state 𝑠𝑠𝑡𝑡+1 at time 𝑡𝑡 + 1 from state 𝑠𝑠𝑡𝑡 at time 𝑡𝑡 upon taking an action at at time 𝑡𝑡, 
and ℛ represents the set of costs. An element of ℛ is 𝑐𝑐𝑡𝑡(𝑠𝑠𝑡𝑡 ,𝜃𝜃𝑡𝑡) ∈ ℝ, which denotes the costs at time 𝑡𝑡 for 
choosing an action 𝜃𝜃𝑡𝑡 while in state st. Finally, 𝛾𝛾 ∈ [0,1] is a discount factor. The purpose of a finite-horizon 
MDP is to find optimal actions at each time instant for each state to minimize a cumulative cost over a time 
horizon, which is termed as a policy. 

In this article, we formulate an MDP for developing optimal LS policy to mitigate CFs in the power grid by 
incorporating LS actions, costs associated with LS actions, and a discount factor with the underlying MC of the 
SASE model. Fig. 1 illustrates the framework of the development of LS policies using the MDP for mitigating CFs. 
We represent the power grid with an abstract state space denoted by 𝑆𝑆𝑡𝑡 = (𝐹𝐹𝑡𝑡 ,𝐶𝐶𝑡𝑡max, 𝐼𝐼𝑡𝑡). LS actions 𝜃𝜃𝑡𝑡 are 
considered in response to a CF that is instigated by an initial trigger. Specifically, the LS actions affect the 
dynamics of CFs, and the grid transitions to a state 𝑆𝑆𝑡𝑡+1 with probability P(𝑆𝑆𝑡𝑡+1|𝑆𝑆𝑡𝑡 ,𝜃𝜃𝑡𝑡). Note that the time for 
the generation of an LS action and the associated delay in implementing the LS actions is shorter than the time 
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interval between two failure events. This is because the LS actions are precomputed (offline) based on each 
possible state of the power grid and the associated implementation delay is assumed to be smaller than the 
time interval between two failure events. In addition, each LS action is associated with a cost. Here, we associate 
costs to predict the number of LFs and the amount of LS. In the following, we describe each element of the MDP. 

1) State Space 𝒮𝒮 
In the MC of the SASE model, 𝒮𝒮 is a finite collection of all (𝐹𝐹,𝐶𝐶max, 𝐼𝐼). Let there be 𝑁𝑁 transmission lines in the 
grid, and let the capacities of these transmission lines be quantized into a finite set of capacity values 𝒞𝒞 =
{𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝐾𝐾}, with |𝒞𝒞| = 𝐾𝐾, where |⋅| denotes the cardinality of a set. Thus, since 𝐼𝐼 is binary, the number of 
states of the MDP is 𝑁𝑁𝑠𝑠 = 2𝐾𝐾𝐾𝐾. Note that tracking the number of LFs instead of the operational status (e.g., 
failed or functional) of each individual line reduces the complexity of the MDP model associated with tracking 
the dynamics of CFs from exponential to linear in N [20]. Even though our model does not track the sequence of 
failed lines, such detailed state information is indirectly captured by our MC model. Specifically, the transition 
probabilities of the MC are identified through learning from extensive physics-based and full-scale (including 
failure sequences) power-flow simulations of CFs on the IEEE 118, 300 grids. 

2) Action Space 𝛩𝛩 
We incorporate time-varying and state-dependent actions in the MDP, denoted by 𝜃𝜃𝑡𝑡(𝑠𝑠) ∈ 𝛩𝛩 for all 𝑠𝑠 ∈ 𝒮𝒮, 
which model interventions for preventing the propagation of CFs. Here, different from our previous work [20], 
we replace the static LS parameter 𝜃𝜃 with a time-varying and state dependent action function 𝜃𝜃𝑡𝑡(𝑠𝑠). In practice, 
these actions represent alteration of some parameters in the power grid, which can be implemented by sending 
control signals through the associated communication network, e.g., SCADA system. LS can be implemented by 
the grid operators to maintain a stable operation of the grid in the presence of an imbalance between power 
generation and demand [6], [12]. Since the grid operators have access to limited resources in practice, it is 
reasonable to assume a finite set of actions. For capturing a finite action space, we quantize 𝜃𝜃 in 𝑁𝑁𝜃𝜃 discrete 
values, denoted by 𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑁𝑁𝜃𝜃. Here, |𝛩𝛩| = 𝑁𝑁𝜃𝜃, and the action set can be expressed as 𝛩𝛩 = {𝜃𝜃1,𝜃𝜃2, … , 𝜃𝜃𝑁𝑁𝜃𝜃}. 
A policy, denoted by 𝜋𝜋, is a sequence of actions for all time instants 𝑡𝑡 = 1,2, … ,𝑇𝑇 − 1, i.e., 𝜋𝜋 =
(𝜃𝜃1,𝜃𝜃2, … , 𝜃𝜃𝑇𝑇−1), where 𝑇𝑇 is the time step when the cascade stops. 

Note that a load-dispatch in a power-system during CFs is best represented by the fixed LS policy. This is because 
at the time of contingencies the operators implement LS following standard procedure to avoid line tripping. In 
the simulations described in the following Sections IV and V, θ is chosen from the set 𝛩𝛩 =
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.9}, which allows consideration of power grids with various LS capabilities. For 
example, the lowest value 𝜃𝜃min = 0.1 indicates that not more than 90% of the loads are shedable. Such an 
assumption is realistic since all grids have some critical loads (such as emergency services like hospitals), for 
which LS is not applicable under any circumstances. On the other hand, the maximum value of 𝜃𝜃 is 𝜃𝜃max = 0.9, 
which indicates 10% of the loads are always shedable, as it is unrealistic to consider a power grid for which LS 
cannot be implemented at all. Note that the amount of LS is a function of 𝜃𝜃 and is done automatically by the 
optimal dc power flow. Specifically, (1 − 𝜃𝜃) is the maximum fraction of the load that can be shed uniformly 
from each load bus. However, the actual amount of load-shed on each bus is determined by the optimal dc 
power flow and is always less than or equal to (1 − 𝜃𝜃) (see Fig. 7 for details). Note that this type of strategy is 
more realistic than manual LS for the following two important reasons: 1) it captures the realistic power flow 
dynamics in power grids, which is important when dealing with a CF and 2) it implements the minimum LS from 
load buses obtained as the solution of the MDP. In practice, 𝜃𝜃 (more precisely, 1 − 𝜃𝜃) can be interpreted by the 
grid operators as a maximum amount of LS, as it informs on how much LS can be implemented at each load bus 
of the grid during a CF. 

 



 
Fig. 3. Interplay between the LF cost 𝑐𝑐(1), and the LS cost, 𝑐𝑐(2), for various values of 𝜃𝜃𝑡𝑡 = 𝜃𝜃. (A.U.=arbitrary 
unit.) The number of transmission LFs increases with the state index. Hence, 𝑐𝑐(1) (𝑐𝑐(2)) increases (decreases) 
with the state index. 

 
Fig. 4. Average cost given by the optimal policy and other policies. Note from Fig. (c) that the total cost is 
significantly reduced by the optimal policy. 

 
Fig. 5. Flowchart of the CF simulation by incorporating LS actions at each time iteration of the dc power flow. 

 
Fig. 6. Validation of the analytical LF and LS costs from CFs simulation using dc power flow. (a) Increase 
(decrease) of LFs (LF) with LS actions, (b) LFs decrease with the LS. 
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Fig. 7. Optimal LS actions and corresponding actual amount of load shed (in percentage) for the three cases of a 
small, intermediate, and large number of initial failures. Here, num. := number, imd. := intermediate, IF := initial 
failures. 
 

3) Transition Probability P 
Following [20], we assume that the transition probability matrix is time invariant, i.e., 𝑝𝑝𝑠𝑠𝑠𝑠′

𝜃𝜃 =
𝖯𝖯{𝑆𝑆𝑡𝑡+1 = 𝑠𝑠′|𝑆𝑆𝑡𝑡 = 𝑠𝑠,𝜃𝜃𝑡𝑡 = 𝜃𝜃}, where 𝜃𝜃 ∈ 𝛩𝛩. Hence, the transition from the current state to the next state 
depends on the current state and on the current action. Accordingly, for different values of 𝜃𝜃, we obtain 
different transition matrices. In order to generate the transition matrix for each choice of 𝜃𝜃, we used 1000 
scenarios of CFs, starting from random initial disturbances with two or three random LFs while simulating the 
CFs using dc OPF [20]. Based on these large, simulated datasets, analytical formulation of the transition matrix of 
the MC was generated for any given 𝜃𝜃 using the technique reported in [20]. In the end, we obtain nine MC 
models, one for each 𝜃𝜃, which are subsequently used for the analytical formulation of the MDP. For example, for 
each state of the MDP, defined by a failure event, we have nine possibilities for the transition matrix, which can 
be chosen from. 

4) Cost Function 𝑐𝑐 
We assign a cost to all actions, 𝜃𝜃𝑡𝑡 ∈ 𝛩𝛩, taken by the grid operators at state 𝑆𝑆𝑡𝑡 ∈ 𝒮𝒮, which is denoted by 𝑐𝑐(𝑆𝑆𝑡𝑡 ,𝜃𝜃𝑡𝑡). 
The total cost associated with a policy 𝝅𝝅 = (𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑇𝑇−1) over a time horizon 𝑇𝑇 is defined as 𝑅𝑅𝑇𝑇𝝅𝝅 =
∑ 𝑐𝑐(𝑆𝑆𝑡𝑡 ,𝜃𝜃𝑡𝑡) + 𝑐𝑐(𝑆𝑆𝑇𝑇)𝑇𝑇−1
𝑡𝑡=1 , where 𝑐𝑐(𝑆𝑆𝑇𝑇) is the terminal cost that only depends on the state of the grid at the last 

time 𝑇𝑇. We assume this latter cost to be equal to the number of failed lines, 𝐹𝐹𝑆𝑆𝑇𝑇, at state 𝑆𝑆𝑇𝑇, i.e., c(ST)=FST, 𝑆𝑆𝑡𝑡 ∈

𝒮𝒮. With a discount factor, 𝛾𝛾, the expected total discounted cost (ETDC), 𝑅𝑅𝑇𝑇,𝛾𝛾
𝝅𝝅

, for a policy 𝜋𝜋, is defined as [47] 

𝑅𝑅𝑇𝑇,𝛾𝛾
𝝅𝝅

= 𝖤𝖤𝝅𝝅 ��𝛾𝛾𝑡𝑡−1𝑐𝑐(𝑆𝑆𝑡𝑡 ,𝜃𝜃𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

�

= 𝖤𝖤𝑆𝑆1 �𝖤𝖤𝝅𝝅[�𝛾𝛾𝑡𝑡−1𝑐𝑐(𝑆𝑆𝑡𝑡 ,𝜃𝜃𝑡𝑡)|𝑆𝑆1]
𝑇𝑇

𝑡𝑡=1

�

= �𝑣𝑣𝑇𝑇,𝛾𝛾
𝝅𝝅 (𝑠𝑠)𝖯𝖯(𝑆𝑆1 = 𝑠𝑠)

𝑠𝑠∈𝑆𝑆

 

where 𝖤𝖤𝝅𝝅 and 𝖤𝖤𝑆𝑆1  are the expectations conditional on a policy 𝜋𝜋 and initial state 𝑆𝑆1, respectively. 

Furthermore, 𝑣𝑣𝑇𝑇,𝛾𝛾
𝝅𝝅 (𝑠𝑠) = 𝖤𝖤𝝅𝝅 �� 𝛾𝛾𝑡𝑡−1𝑐𝑐(𝑆𝑆𝑡𝑡 ,𝜃𝜃𝑡𝑡)|𝑆𝑆1 = 𝑠𝑠𝑇𝑇

𝑡𝑡=1 � is the state-value function of the policy 𝜋𝜋 when there 
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are 𝑇𝑇 states to traverse starting from state 𝑠𝑠. Clearly, for a given 𝑆𝑆1 = 𝑠𝑠, minimizing the ETDC is equivalent to 
minimizing 𝑣𝑣𝑇𝑇,𝛾𝛾

𝝅𝝅 (𝑠𝑠) [47]. For a given initial state 𝑆𝑆1 = 𝑠𝑠 ∈ 𝒮𝒮, the objective is to find an optimal policy 

𝝅𝝅∗(𝑠𝑠) = arg min
𝝅𝝅

𝑣𝑣𝑇𝑇,𝛾𝛾
𝝅𝝅 (𝑠𝑠). 

(1) 

We can express 𝑣𝑣𝑇𝑇,𝛾𝛾
𝝅𝝅 (𝑠𝑠) as follows: 

𝑣𝑣𝑇𝑇,𝛾𝛾
𝝅𝝅 (𝑠𝑠)

= 𝖤𝖤𝝅𝝅[𝑐𝑐(𝑠𝑠,𝜃𝜃)] + 𝛾𝛾𝖤𝖤𝝅𝝅 ��𝛾𝛾𝑡𝑡−2𝑐𝑐(𝑆𝑆𝑡𝑡 ,𝜃𝜃𝑡𝑡)|(𝑆𝑆1 = 𝑠𝑠,𝜃𝜃1 = 𝜃𝜃)
𝑇𝑇

𝑡𝑡=2

�

= 𝖤𝖤𝝅𝝅[𝑐𝑐(𝑠𝑠,𝜃𝜃)] + 𝛾𝛾�𝑣𝑣𝑇𝑇−1,𝛾𝛾
𝝅𝝅 (𝑠𝑠)𝖯𝖯�𝑆𝑆2 = 𝑠𝑠�(𝑆𝑆1 = 𝑠𝑠,𝜃𝜃1 = 𝜃𝜃)�

𝑠𝑠∈𝑆𝑆

 

(2) 

where 𝑣𝑣𝑇𝑇−1,𝛾𝛾
𝝅𝝅 (𝑠𝑠) = 𝖤𝖤𝝅𝝅 �� 𝛾𝛾𝑡𝑡−2𝑐𝑐(𝑆𝑆𝑡𝑡 ,𝜃𝜃𝑡𝑡)|𝑆𝑆2 = 𝑠𝑠𝑇𝑇

𝑡𝑡=2 � is the state-value function of the policy 𝜋𝜋 when there 

are 𝑇𝑇 − 1 states to traverse starting from state 𝑠𝑠. Note that 𝑣𝑣0,𝛾𝛾
𝝅𝝅 (𝑠𝑠) = 𝐹𝐹𝑠𝑠, 𝑠𝑠 ∈ 𝒮𝒮, as defined by the terminal 

cost 𝑐𝑐(𝑆𝑆𝑇𝑇) above. Hence, it can be seen from (2) that the backward induction algorithm [47] can be used to 
solve (1) to find the optimal policy, which yields the optimal action at every time step for any states of the MDP. 

SECTION IV. Cost Function for CFs 
We define the primary objective of an optimal LS policy to be preventing subsequent LFs during a cascade. 
However, implementing LS will generate a cost in terms of shedding loads (e.g., industrial, residential customers) 
from the grid. Accordingly, we propose a cost function c that balances between the cost of transmission-LFs (i.e., 
cost of LFs), 𝑐𝑐(1), and the cost associated with LS, 𝑐𝑐(2). Specifically, we define the cost 
function 𝑐𝑐(𝑆𝑆𝑡𝑡 ,𝜃𝜃𝑡𝑡) corresponding to an action 𝜃𝜃𝑡𝑡 ∈ 𝛩𝛩 at time t while the grid is in state 𝑆𝑆𝑡𝑡 ∈ 𝒮𝒮, as a linear 
combination of 𝑐𝑐(1)(𝑠𝑠𝑡𝑡 ,𝜃𝜃𝑡𝑡)and 𝑐𝑐(2)(𝑠𝑠𝑡𝑡 ,𝜃𝜃𝑡𝑡) 

𝑐𝑐(𝑠𝑠𝑡𝑡 ,𝜃𝜃𝑡𝑡) = 𝑤𝑤𝛼𝛼1𝑐𝑐(1)(𝑠𝑠𝑡𝑡,𝜃𝜃𝑡𝑡) + (1 − 𝑤𝑤)𝛼𝛼2𝑐𝑐(2)(𝑠𝑠𝑡𝑡,𝜃𝜃𝑡𝑡) 

(3) 

where 𝑤𝑤 ∈ [0,1]. The cost function (3) is designed to control the tradeoff between LS and the expected LFs: the 
weight parameter, [0, 1], is responsible for adjusting this tradeoff. Specifically, if we increase the LS then the 
expected number of LF decreases, since shedding loads from the grid reduces overloading of the lines, hence, 
reducing transmission-LFs. Conversely, if we decrease LS then the expected LFs (due to cascade propagation) will 
be higher in the steady state. By tuning 𝑤𝑤, it is possible to assign a larger weight to a term with respect to 
another one based on contingencies. In what follows, we give equal weight to both terms in (3) and assign 𝑤𝑤 =
0.5. In practice, two constants 𝛼𝛼1 and 𝛼𝛼2 convert the two costs (with different units) into one of the same cost 
unit. The values of 𝛼𝛼1 and 𝛼𝛼2 can be estimated from the real costs of transmission-LFs and LS, respectively. 
Denoting 𝛽𝛽1 = 𝑤𝑤𝛼𝛼1 and 𝛽𝛽2 = (1 − 𝑤𝑤)𝛼𝛼2 we rewrite (3) 

𝑐𝑐(𝑠𝑠𝑡𝑡 ,𝜃𝜃𝑡𝑡) = 𝛽𝛽1𝑐𝑐(1)(𝑠𝑠𝑡𝑡 ,𝜃𝜃𝑡𝑡) + 𝛽𝛽2𝑐𝑐(2)(𝑠𝑠𝑡𝑡,𝜃𝜃𝑡𝑡). 

(4) 
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Two special cases of (4) are as follows: 1) 𝑐𝑐(1)(𝑠𝑠𝑡𝑡 ,𝜃𝜃𝑡𝑡) = 𝑝𝑝stop(𝑠𝑠𝑡𝑡 ,𝜃𝜃𝑡𝑡) and 𝑐𝑐(2)(𝑠𝑠𝑡𝑡 ,𝜃𝜃𝑡𝑡) = 0, for which maximizing 
the objective function of the MDP results in a stationary policy 𝜃𝜃𝑡𝑡 = 𝜃𝜃min = 0.1, and 2) 𝑐𝑐(1)(𝑠𝑠𝑡𝑡 ,𝜃𝜃𝑡𝑡) =

𝖤𝖤[𝑅𝑅(𝑠𝑠𝑡𝑡 ,𝜃𝜃𝑡𝑡)] and 𝑐𝑐(2)(𝑠𝑠𝑡𝑡 ,𝜃𝜃𝑡𝑡) = 0, where 𝖤𝖤[𝑅𝑅(𝑠𝑠𝑡𝑡 ,𝜃𝜃𝑡𝑡)] = � 𝑙𝑙𝑙𝑙𝑙𝑙
𝑡𝑡→∞

𝖯𝖯𝑠𝑠𝑠𝑠𝜃𝜃 (𝑡𝑡)�𝐹𝐹𝑗𝑗 − 𝐹𝐹𝑠𝑠� 
𝑁𝑁𝑠𝑠

𝑗𝑗=1
is the expected number of 

additional failed lines in the steady state of the MC starting from the state 𝑠𝑠𝑡𝑡 = 𝑠𝑠 and taking action 𝜃𝜃𝑡𝑡 = 𝜃𝜃. Also 
in this case minimizing the objective function of the MDP results in a stationary policy 𝜃𝜃𝑡𝑡 = 𝜃𝜃min = 0.1, which 
corresponds to aggressive LS. Now we describe some other choices 𝛽𝛽1 and 𝛽𝛽2 to illustrate how they influence 
the LS actions using as example the IEEE 118 bus system. Since 𝛽𝛽1 = 𝑤𝑤𝛼𝛼1 and 𝛽𝛽2 = (1 −𝑤𝑤)𝛼𝛼2, the values 
of 𝛽𝛽1 and 𝛽𝛽2 are automatically determined by the values of 𝑤𝑤, 𝛼𝛼1, and 𝛼𝛼2. In this article, 𝑤𝑤 = 0.5, 
and 𝛼𝛼1, 𝛼𝛼2 indicate the importance of both LFs and LS (on the surviving lines) costs. In practice, the importance 
of these two terms can be different for two grid operational energy management systems. Consequently, the 
choice of these parameters largely depends on the tradeoff between the need for stopping a CF and the cost of 
LS and serving the maximum loads at the risk of having large CFs. Intuitively, for a very large 𝛽𝛽1 the optimal 
policy is dominated by first term and vice versa when 𝛽𝛽2 is very large. Table I shows some choices 
of 𝛽𝛽1 and 𝛽𝛽2 to illustrate how they influence the LS actions (details of the simulation setup are described 
in Section V). This is evaluated by a new metric, which shows the percentage of different LS actions, i.e., 𝜃𝜃𝑡𝑡 =
 0.1, 0.4, 0.6, 0.9, executed by the grid for all time epochs at all states of the IEEE 118 bus system. Notice the 
prevalence of extreme LS action, i.e., 𝜃𝜃𝑡𝑡  =  0.1 when 𝛽𝛽1 is large. In contrast, minimum LS is applied, i.e., θt = 0.9 
when 𝛽𝛽2 is equal to 1. Note also that unlike 𝜃𝜃𝑡𝑡 =  0.1, the percentage of minimum LS action, 𝜃𝜃𝑡𝑡  =  0.9, is never 
zero. This is because for large time epochs, for which the CFs stop due to either no additional LFs or due to the 
absence of surviving lines in the grid, minimal LS is the optimal action as this minimizes the LS cost. 

TABLE I Percentage of Different LS Actions Executed by the Grid for All Time Epochs at All States of the IEEE 118 
Bus System 
 

𝛽𝛽1 𝛽𝛽2 𝜃𝜃𝑡𝑡  =  0.1 𝜃𝜃𝑡𝑡  =  0.4 𝜃𝜃𝑡𝑡  =  0.6 𝜃𝜃𝑡𝑡  =  0.9 
0 1 0% 0% 0% 100% 

0.2 0.8 2.11% 0.32% 1.68 % 95.89 % 
0.5 0.5 39.71% 2.99% 23.22% 34.07 % 
0.8 0.2 75.93% 3.21 % 20.32% 0.54% 
1 0 99.57% 0% 0% 0.43% 

 

The two special cost functions described earlier both set the cost of LS to zero. In practice, implementing LS has 
an associated cost for not serving loads (e.g., customers). However, since no state variables are assigned in the 
MC to track LS, we cannot track the amount of load shed directly. Although it is possible in principle to track 
such quantity, incorporating and tracking such quantity would make the state space of the embedded MC of the 
MDP model very large. As a result, the computational complexity of the MDP model would increase drastically. 
Instead, we propose a novel approach to quantify the cost of LS, which measures the LS cost in terms of the 
fraction of surviving lines at the steady state. This assumption is based on the following rationale: if there are no 
surviving lines in the grid then all the loads will be shed as the grid will not be able to serve loads without lines. 
Most importantly, we validate this rationale in Section V-C using load shed data from CF simulation on the IEEE 
118 and IEEE 300 bus systems. Accordingly, we define the following cost function, which incorporates the 
associated cost of LS, for all 𝑆𝑆𝑡𝑡 ∈ 𝒮𝒮: 
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𝑐𝑐(𝑠𝑠𝑡𝑡 ,𝜃𝜃𝑡𝑡) = 𝛽𝛽1𝖤𝖤 �𝐹𝐹𝑠𝑠𝑡𝑡,end
𝜃𝜃𝑡𝑡 �

+𝛽𝛽2(1 − 𝜃𝜃𝑡𝑡)�1 −
𝖤𝖤 �𝐹𝐹𝑠𝑠𝑡𝑡,end

𝜃𝜃𝑡𝑡 �
𝑁𝑁

� �𝑁𝑁 − 𝐹𝐹𝑠𝑠𝑡𝑡�
 

(5) 

where 𝖤𝖤 �𝐹𝐹𝑠𝑠𝑡𝑡=𝑠𝑠,end
𝜃𝜃𝑡𝑡=𝜃𝜃 � = � lim 𝖯𝖯𝑠𝑠𝑠𝑠𝜃𝜃 (𝑡𝑡)𝐹𝐹𝑗𝑗

𝑡𝑡→∞

𝑁𝑁𝑠𝑠

𝑗𝑗=1

 is the expected number of failed lines in the steady state (denoted 

by end to signify the ending of a cascade) for choosing an action 𝜃𝜃𝑡𝑡 = 𝜃𝜃 at state 𝑠𝑠𝑡𝑡 = 𝑠𝑠 at time 𝑡𝑡 and 𝐹𝐹𝑆𝑆𝑇𝑇  is the 

number of failed lines at state st. This corresponds to setting in (4), 𝑐𝑐(1)(𝑠𝑠𝑡𝑡,𝜃𝜃𝑡𝑡) = 𝖤𝖤 �𝐹𝐹𝑠𝑠𝑡𝑡,end
𝜃𝜃𝑡𝑡 � and  

𝑐𝑐(2)(𝑠𝑠𝑡𝑡 ,𝜃𝜃𝑡𝑡) = (1 − 𝜃𝜃𝑡𝑡)�𝑁𝑁 − 𝐹𝐹𝑠𝑠𝑡𝑡��1 − 𝖤𝖤�𝐹𝐹𝑠𝑠𝑡𝑡,end
𝜃𝜃 � 𝑁𝑁⁄ �. In the following, we provide a detailed description of each 

term appearing on the right-hand side of (5). 

The first term accounts for the LFs cost, 𝑐𝑐(1)(𝑠𝑠𝑡𝑡 ,𝜃𝜃𝑡𝑡), which is the expected number of failed lines in the steady 

state. It is important to note that 𝖤𝖤 �𝐹𝐹𝑠𝑠𝑡𝑡=𝑠𝑠,end
𝜃𝜃𝑡𝑡=𝜃𝜃 � is a function of the state s, which governs the capacity of the failed 

lines. Hence, two states with same number of initial failures but with different capacities will have different 
expected LFs, which captures the role of line capacities in the cost function. The second term represents the LS 

cost, 𝑐𝑐(2)(𝑠𝑠𝑡𝑡,𝜃𝜃𝑡𝑡), where (N−Fst) represents the number of survived lines at state 𝑠𝑠𝑡𝑡 and �1 − 𝖤𝖤 �𝐹𝐹𝑠𝑠𝑡𝑡,end
𝜃𝜃𝑡𝑡 � 𝑁𝑁⁄ � is 

the probability that a line will survive in the steady state due to the chosen action 𝜃𝜃𝑡𝑡 at state 𝑠𝑠𝑡𝑡. Hence, the 

product �1 − 𝖤𝖤 �𝐹𝐹𝑠𝑠𝑡𝑡,end
𝜃𝜃𝑡𝑡 � 𝑁𝑁⁄ � �𝑁𝑁 − 𝐹𝐹𝑠𝑠𝑡𝑡� represents the expected fraction of survived lines in the steady state. The 

term (1 − 𝜃𝜃𝑡𝑡) represents the probability of taking an action corresponding to LS, which captures the cost of LS 

for different 𝜃𝜃𝑡𝑡𝑠𝑠. In addition, since the quantity 𝖤𝖤 �𝐹𝐹𝑠𝑠𝑡𝑡,end
𝜃𝜃𝑡𝑡 � 𝑁𝑁⁄  impacts the LS, the passive cost of LS (i.e., LS not 

determined by the power system operator but caused by the transmission LF) is also captured in (5). Two 
extreme cases are possible by looking at (5) when 𝜃𝜃𝑡𝑡 = 𝜃𝜃 = 0 (i.e., full LS), the cost only accounts for shedding 

loads: �1 − 𝖤𝖤 �𝐹𝐹𝑠𝑠𝑡𝑡,end
𝜃𝜃𝑡𝑡 � 𝑁𝑁⁄ � �𝑁𝑁 − 𝐹𝐹𝑠𝑠𝑡𝑡�; when 𝜃𝜃𝑡𝑡 = 𝜃𝜃 = 1 (i.e., no LS), the associated cost of LS is zero. Clearly, for 

the action space, 𝛩𝛩, defined in Section III, the smallest 𝜃𝜃𝑡𝑡 = 𝜃𝜃min = 0.1 results in minimum LFs cost and 
maximum LS cost; on the other hand, the largest 𝜃𝜃𝑡𝑡 = 𝜃𝜃max = 0.9 results in maximum LF cost and minimum LS 
cost. While 𝑐𝑐2 is directly dependent on 𝑐𝑐1, 𝑐𝑐1 is indirectly dependent on 𝑐𝑐2 through the LS amount 𝜃𝜃𝑡𝑡 as well as 
the number of failed lines at that time 𝐹𝐹𝑠𝑠. 

Hence, by using (5) in (2) and subsequently in (1), we see that the objective of the optimization (1) is to 
“minimize the cumulative expected LFs at the end of cascade with minimum possible cumulative expected LS, 
where cumulation of LFs and LS are taken over each time steps until the cascade stop time (𝑇𝑇).” Moreover, 
since this is a finite horizon MDP, the policy argument, 𝜋𝜋, of (1) is not dependent on the discount factor, i.e., LS 
actions are independent of 𝛾𝛾. Specifically, the objective function without a discount factor can also be used as a 
criterion for deriving the optimal policy for a finite-horizon MDP [47]. However, we have kept 𝛾𝛾 to maintain the 
generality of our analytical formulation. The discount factor will play an important role for the convergence of 
the objective function for infinite-horizon MDP, which we will be considered in future extensions of this work. 

Finally, it is important to note that the LS can be achieved through small and large controllable loads, such as air 
conditioners, electric vehicles, refrigerators, and thermostats. In practice, the coefficient 𝑐𝑐(2) would be 
underestimated without consideration of the adjustment cost. We have, therefore, incorporated a cost, 𝑐𝑐(𝑎𝑎), in 
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addition to the actual LS cost. Hence, the adjusted LS cost is 𝑐𝑐(2) =  𝑐𝑐(𝐿𝐿𝐿𝐿) (the actual LS cost) + 𝑐𝑐(𝑎𝑎) (the 
adjustment cost of shedding different types of loads). We assume the adjustment cost 𝑐𝑐(𝑎𝑎) is a linear function of 
the amount of load-shed, i.e., 𝑐𝑐(𝑎𝑎) =  𝜇𝜇 × (amount of load-shed), where 𝜇𝜇 =  [0, 1] is a constant that 
determines the importance of the adjustment cost. The rationale for this assumption is that a large LS results in 
customers needing to turn down large loads, such as electric vehicles and air conditioners, as opposed to little 
adjustments (such as turning off a thermostat) in case of small LS. Fig. 2 shows optimal MDP policies for 
different values of 𝜇𝜇 for the IEEE 118 bus system (details of the simulation setup are described in Section V). We 
see that increasing 𝜇𝜇 increases the minimum LS region, i.e, the region occupied by the 𝜃𝜃 =  0.9 action (the 
yellow-colored region in Fig. 2), due to an increase in the adjustment cost. In particular, for 𝜇𝜇 =  0, 0.5, and 1 
the number of times that a minimum LS action is chosen, i.e., 𝜃𝜃 =  0.9, relative to the total number of actions in 
the optimal policy (i.e., 𝜃𝜃 =  0.9, 0.6, 0.4, 0.1) are 0.34, 0.46, and 0.58, respectively. 

SECTION V. Numerical Simulation 
We test our cascading mitigation strategy on the IEEE 118 and 300 bus systems, which have 186 lines and 411 
lines, respectively. Note that the IEEE 118 bus system provides a simplified approximation for the American (U.S. 
Midwest) power system. We assume that at each time iteration a single LF occurs. This is consistent with 
choosing each time interval to coincide with a relevant event, e.g., a transmission LF. Since there are 186 (411) 
lines in the IEEE 118 (300) bus system and one line may fail at each time step, we consider a time horizon 𝑇𝑇 =
 186 (411). Furthermore, since the transmission lines have finite power flow capacity, we quantize the 
capacities of the transmission lines into five categories-based upon power flows through the lines when the grid 
is operating at full generation capacity. The five capacities are chosen from the set 𝒞𝒞 =
 {20 𝑀𝑀𝑀𝑀, 80 𝑀𝑀𝑀𝑀, 200 𝑀𝑀𝑀𝑀, 500 𝑀𝑀𝑀𝑀, 800 𝑀𝑀𝑀𝑀} [48]. Hence, the total number of states of the MDP is 2|𝒞𝒞|𝑁𝑁 =
 1860 and 2|𝒞𝒞|𝑁𝑁 =  4110 for IEEE 118 and 300 systems, respectively. To simplify the representation of the 
states of the MC (e.g., 1860 states and 4110 states for IEEE 118 and 300 grids, respectively), we label each state 
of the MC, 𝑆𝑆𝑖𝑖 = (𝐹𝐹𝑖𝑖 ,𝐶𝐶𝑖𝑖 , 𝐼𝐼𝑖𝑖), with an integer index 𝑖𝑖 = 2|𝒞𝒞|(𝐹𝐹𝑖𝑖 − 1) + 2�𝐶𝐶𝑖𝑖index − 1� + 𝐼𝐼𝑖𝑖 + 1, where 𝐶𝐶𝑖𝑖index =
1,2, … ,5, for 𝐶𝐶𝑖𝑖 = 20,80, … ,800, respectively. Note that the indices of the grid-states are in order of increasing 
number of line failures and line-capacities, i.e., if the index is higher, either the number of line failure or the 
maximum capacity of the failed line is higher. Specifically, for two indices 𝑖𝑖 and 𝑗𝑗:  𝑖𝑖 < 𝑗𝑗 if (1) 𝐹𝐹𝑖𝑖 < 𝐹𝐹𝑗𝑗 or (2) 𝐹𝐹𝑖𝑖 =
𝐹𝐹𝑗𝑗 and 𝐶𝐶𝑖𝑖 < 𝐶𝐶𝑗𝑗  or (3) 𝐹𝐹𝑖𝑖 = 𝐹𝐹𝑗𝑗  and 𝐶𝐶𝑖𝑖 = 𝐶𝐶𝑗𝑗  and Ii<Ij. As a result, 1860 states of the IEEE 118 grid are denoted 
by 1,2,…,1860. Moreover, the number of line failures 𝐹𝐹𝑖𝑖 corresponding to a state index 𝑖𝑖 is equal 
to ⌊𝑖𝑖 2|𝒞𝒞|⁄ ⌋ if i is an integer multiple of 2|𝒞𝒞|, or 𝐹𝐹𝑖𝑖 = ⌊𝑖𝑖 2|𝒞𝒞|⁄ ⌋ + 1 otherwise. Here, ⌊𝑥𝑥⌋ is a floor function that 
returns the largest integer lower than or equal to 𝑥𝑥. 

The MC is used to compute (5) for a given state st and action 𝜃𝜃𝑡𝑡, which, in turn, requires the calculation 

of 𝖤𝖤 �𝐹𝐹𝑠𝑠𝑡𝑡=𝑠𝑠,end
𝜃𝜃𝑡𝑡=𝜃𝜃 �. Specifically, this is done by performing a steady-state analysis of the developed MC, which 

enables us to find the limiting probability, 𝑙𝑙𝑙𝑙𝑙𝑙
𝑡𝑡→∞

𝖯𝖯𝑠𝑠𝑠𝑠𝜃𝜃 (𝑡𝑡), of reaching any state 𝑗𝑗 given that we started from an initial 

state 𝑠𝑠 by taking an action 𝜃𝜃. Using the limiting probabilities, we can compute the expected number of failed 

lines at the steady state, i.e., 𝖤𝖤 �𝐹𝐹𝑠𝑠𝑡𝑡=𝑠𝑠,end
𝜃𝜃𝑡𝑡=𝜃𝜃 �. Finally, given all the five-tuples of an MDP (described in Section III), 

the backward induction algorithm can numerically compute the optimal actions at every time step for any states 
of the finite-state MDP. Note also that we use 𝛾𝛾 = 0.7 in the MDP. We have verified that for other values of 𝛾𝛾, 
the results change quantitatively but not qualitatively. 

A. Optimal Policy 
Fig. 3 shows the two costs 𝑐𝑐(1) and 𝑐𝑐(2) with respect to the state of the grid corresponding to three different 
actions. Note that for a given grid state, 𝑐𝑐(1) (𝑐𝑐(2)) decreases (increases) with LS (i.e., as 𝜃𝜃𝑡𝑡 decreases). This 
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indicates that the LFs can be reduced by LS. Besides, as the grid-states are in order of increasing LFs, 𝑐𝑐(1) (𝑐𝑐(2)) 
increases (decreases) with the grid-states. 

The derived optimal policy is state-dependent and time dependent. Specifically, for the states corresponding to 
a lower expected number of failed lines (indices: 1–225), the policy always returns a minimum amount of LS 
(i.e., 𝜃𝜃𝑡𝑡 = 𝜃𝜃max = 0.9). This is because the grid is not at risk of a cascade-escalation when the expected number 
of failed lines in the steady state is small; thus, shedding more load would generate unnecessary LS cost. 
However, for state indices 225–580, which correspond to larger expected numbers of failed lines, the policy 
suggests an incremental increase of LS. When the expected number of failed lines is large, the optimal policy 
consists in aggressive LS, i.e., 𝜃𝜃𝑡𝑡 = 𝜃𝜃min = 0.1. This is because, as the grid loses most of its transmission lines, 
minimizing the cost associated with LFs is more important than minimizing the LS cost. To observe the time 
dependency, we found two regimes of the optimal policy: a first regime for small times corresponding to a 
constant optimal 𝜃𝜃 and a second regime for larger times corresponding to a decaying LS 𝜃𝜃. In fact, we found that 
for large times, for which the CFs stop due to either no additional failed lines or due to the absence of surviving 
lines in the grid, minimal LS is the optimal action, as this minimizes the LS cost. For a larger power system, such 
as IEEE 300 bus systems, we found 𝜃𝜃𝑡𝑡 = 𝜃𝜃 = 0.9,0.6,0.4,0.1 for the state indices 
1– 650, 651– 980, 981– 1240, 1241– 2090, respectively, before it approaches 𝜃𝜃 = 0.9 for large times. Clearly, 
this is slightly scaled version of the optimal policy for the IEEE 118 bus systems, which shows the scalability of 
the MDP proposed formulation. 

In addition, the policy is obtained through an offline implementation of the optimal dc power flow for simulating 
CFs and collecting the data to calculate the transition matrix of the MDP. Hence, given a grid, the optimal 
policies are precalculated offline considering all the states a grid may occupy during a CF. The only variable 
entered for online policy implementation is the observed state (number of failed lines and the maximum 
capacity of the failed lines) during the progression of a cascade. As a result, after observing the state during a CF, 
it is straightforward to implement the actions corresponding to the optimal policy, which was pre-calculated 
offline. The computational complexity of the MDP is as follows. We have implemented the backward induction 
algorithm (see[47, p. 92]) to solve the MDP. Since the MDP is a finite-time horizon (𝑇𝑇 =  186 steps and 411 
steps for the IEEE 118 and IEEE 300 bus systems, respectively) and since the state and action space are finite and 
discrete (2𝑁𝑁𝑁𝑁 states and 𝑁𝑁𝜃𝜃 actions, where 𝑁𝑁 is the number of failed lines and 𝐾𝐾 is the number of capacities), 
the backward induction computation requires (𝑇𝑇 − 1)(2𝑁𝑁𝑁𝑁)2 multiplications to compute each of 
the 𝑁𝑁𝜃𝜃

2𝑁𝑁𝑁𝑁(𝑇𝑇−1) policies [47]. Hence, for each policy, the computational complexity is linear in time and quadratic 
in the number of state variables. As a result, as the state and/or action space becomes larger, the computational 
complexity scales with the cardinality of state-action space as well as with the time-horizon. For example, we 
have computed the policy in 0.0254 min, 1.0589 min, and 11.6705 min for the IEEE 39, IEEE 118, and IEEE 300 
bus systems, respectively, using a simple 4.0 GHz Intel Corei7 CPU (without parallel processing), which can be 
reduced by 8 times (i.e., 0.1323 min only for IEEE 118 grid) if the computation is distributed among 8 cores. In 
addition, we anticipate that the central controller of an actual power system will have large computing machines 
to handle large computations. Nonetheless, we found that the computation time for computing real-time 
actions is reasonably comparable to the historical data for the evolution time of CFs [28], [49]. 

B. Minimization of the Total CF Cost by the Optimal Policy 
In this section, we explore the performance of our optimal policy in minimizing the cost function (5). Fig. 4(a)–(c) 
show the cost of LFs 𝑐𝑐(1), the LS cost 𝑐𝑐(2), and the total cost 𝑐𝑐(1) + 𝑐𝑐(2) associated with a CF, respectively. We 
average the results over 1000 numerical experiments each one of which corresponds to a random number of 
initial failures. We see from Fig. 4(a) that a fixed policy with 𝜃𝜃𝑡𝑡 = 𝜃𝜃 =  0.1 gives minimum LF cost and maximum 
LS cost. On the other hand, we see from Fig. 4(b) that a fixed policy with 𝜃𝜃𝑡𝑡 = 𝜃𝜃 =  0.9 gives minimum LS cost 

https://ieeexplore.ieee.org/abstract/document/#deqn5


but maximum LF cost. Fig. 4(c) shows the total CF cost obtained by adding the LF cost and LS cost. We see that 
the total CF cost is significantly reduced by the optimal LS policy. Hence, the developed optimal LS policy can be 
used to mitigate CFs while using an optimal amount of LS. Similar patterns for all the three costs for all the 
policies were obtained for the IEEE 300 bus system (not shown). Also for this case, we saw that the optimal 
policy resulted in an improved performance with respect to all other policies (e.g., fixed and random policies). 

C. Validation of the Optimal Policy 
In this section, we validate our policy with extensive physics-based simulations of CFs, which incorporate 
physical power flow of realistic electric grids. Following many state-of-the-art stochastic models of 
CFs [4], [22], [24], [31], [32], [50], dc power flow models (see Appendix VI) have been used to simulate CFs due 
to their simplicity yet effectiveness in capturing realistic power flow redistribution during CFs in power grids. 
Note that even if we implement optimal power flow to distribute the power flow, the protection relay (circuit 
breaker or impedance protection relay) may still trip a line when the power flow through the line reaches a 
certain threshold of the actual transmission capacity of the line [20], [22]. This step is done as a safety measure. 
The threshold, which affects the actual capacity of a line, depends on various factors and mechanisms, such as 
smaller measure impedance by relay due to line overloading, ambient temperature, communication/control 
system problems [20]. Hence, even with the execution of optimal power-flow, line tripping may occur, which 
may, in turn, overload other lines and, hence, cause a cascade. In addition, the optimal dc power flow has no 
capability to predict the line failures at the steady state. Hence, it cannot be used to minimize the steady-state 
line failure through LS, which is considered here. 

Note that the use of the ac power flow captures the CF phenomenon better than the dc power flow model. 
However, the ac power-flow model is nonlinear in the power flow optimization, as it includes the reactive 
power, variations of voltage magnitude, power losses, etc. Hence, the nonlinear ac power flow equations need 
to be solved iteratively, which increases the computational complexity compared to the linear and much faster 
dc power flow model OPF [51]. Second, due to their iterative nature, the ac power flow equations face 
divergence problems in their iterations, and they may not have a solution in certain cases in which the dc power-
flow optimization does have a solution [51]. 

The flowchart in Fig. 5 shows the simulation steps for the CF with real power grid test cases. Various grid test 
cases with realistic physical parameters can be found in MATPOWER [52]. Here, time steps of the CF are 
assumed to be discrete, and to be consistent with the assumption of the MDP formulation that one line failure 
occurs at each time step. The simulation starts with an initial event at the first time step that fails some lines, 
which are chosen randomly to capture the stochastic nature of the initial event. After the initial failure, we 
estimate the state of the power grid at the first time step and choose an action. The optimal action, 𝜃𝜃𝑡𝑡, depends 
on the state index at a given time. The value of LS capability, 1 − 𝜃𝜃𝑡𝑡, is implemented in the dc power flow, which 
redistributes power flow through all lines in every possible island of the grid after balancing power generation 
and demand. A line failure occurs if a line is overloaded. Note that the threshold (𝐶𝐶𝑙𝑙) of the actual transmission 
line is not by itself the upper/lower bound of the line capacity in the optimal dc power flow calculation in 
Appendix B. Specifically, the 𝑙𝑙th is defined to be overloaded if the power flow through the lth line, 𝑓𝑓, satisfies 
the following condition: if |𝑓𝑓𝑙𝑙| ≥ (1 − 𝑒𝑒)𝐶𝐶𝑙𝑙, where 𝑒𝑒 measures the line-capacity (𝐶𝐶𝑙𝑙) estimation error by the 
control center (defined in Appendix VI). If there are multiple line failures, we choose a line that carries a 
relatively high-power flow and increase the time step by one. In addition, a small probability (0.01) of failure for 
neighboring lines following a line failure is incorporated in the dc power flow model to capture the probability 
that a protection relay may not work properly. Note that such mis-operations of the protection relays may also 
contribute to the occurrence of major blackouts [20]. Following a line failure, power redistribution occurs based 
on the optimal dc power flow. If there are additional lines overloaded at this time step, then the CF process 
continues and an action is taken at each time step until there are no more line-overloadings. Note that at each 



time step the value of 𝜃𝜃𝑡𝑡 changes based on the state of the power grid (i.e., based on number of line failures and 
maximum capacity of the failed lines), which is determined by the MDP optimal policy devised in Section V-A. 

The flowchart in Fig. 5 can also be used to describe how the derived policy can be used in practice. Specifically, 
the left-side blocks of the flowchart show how an operator can use the derived policy in the event of CFs. For 
example, operators usually know the state of the grid during normal operation, which provides the model 
parameters, 𝑟𝑟 and 𝑒𝑒. Then, given an initial event, an operator would take the derived policy from the analytical 
model for that grid parameters and choose the action for that grid state from the derived policy. However, we 
are aware that the estimation of the transition probabilities can be a challenge to obtain, due to shortage and 
quality of CF data from a grid. Hence, in future extensions of this work, we will be using a 𝑄𝑄-learning algorithm 
to learn the approximate policy instead of deriving the optimal policy. However, the proposed work will serve as 
a baseline to measure the performances of 𝑄𝑄-learning; the latter is beyond the scope of this work. 

1) Validation Results 
Recall that the first term on the right-hand side of (5) represents the cost associated with LFs, which is supposed 
to increase as the LS action value 𝜃𝜃𝑡𝑡 increases. The second term on the right-hand side of (5) represents LS cost 
in terms of survived lines, which is supposed to decrease as 𝜃𝜃𝑡𝑡 increases. We begin by verifying the trend of 
analytical results for the first and second terms in (5) using the data of LFs and load shed from CFs simulation of 
the IEEE 118 grid. Fig. 6(a) shows that as we increase 𝜃𝜃𝑡𝑡 in the optimal dc power flow optimization, the 
percentage of LS decreases and the percentage of line failure increases. This observation provides the rationale 
for increasing 𝜃𝜃𝑡𝑡 in the analytical model to minimize LFs. Most importantly, validation of LS is crucial since in the 
analytical MDP formulation there are no state variables in the MDP to track the amount of load shed during a 
CF. That is the reason why we have used a fraction of the number of surviving lines in the steady state to 
account for the LS costs [i.e., the second term on the right-hand side of (5)]. From simulation, we find the 
amount of load shed, which shows a similar behavior with respect 𝜃𝜃𝑡𝑡 as the LS cost, 𝑐𝑐(2), of the analytical model. 
Moreover, Fig. 6(b) shows the impact of LS on minimizing LFs. Notice that increasing the amount of load shed 
corresponds to reducing LFs. This provides evidence that the two terms of the cost function (5) resemble the 
physical simulation qualitatively. 

Next, we validate the results of the optimal policy that minimizes the total CF cost in terms of LFs and LS. We 
initiate the simulation of CFs by randomly failing some lines of different capacities from the IEEE 118 bus 
system. Table II shows the percentage of LFs and LS for different fixed values of 𝜃𝜃𝑡𝑡, optimal policy (OP) and 
random policy (Rnd). The three subtables are for three different fractions of initial LF, i.e., small = 0.02, 
intermediate = 0.27, and large = 0.54. This makes our presentation of initial failures consistent with other works 
on CFs [7], [24]. Here, for small and large initial failures, the results given by the optimal policy correspond to 
fixed polcies 𝜃𝜃𝑡𝑡 = 𝜃𝜃 = 0.9 and 𝜃𝜃𝑡𝑡 = 𝜃𝜃 = 0.1, respectively. For intermediate numbers of initial failures, the costs 
given by the optimal policy fluctuate between 𝜃𝜃𝑡𝑡 = 𝜃𝜃 = 0.4 and 𝜃𝜃𝑡𝑡 = 𝜃𝜃 = 0.6. These observations are 
consistent with the optimal policy discussed in Section V-A. 

TABLE II Percentage of Failed Line (FL) and Load Shed (LS) at Steady state for Different Policies With Small, 
Intermediate (Imd.), and Large Initial Failures 
 

𝜃𝜃𝑡𝑡 small initial failure  Imd. initial failure  large initial failure  
 FL LS FL LS FL LS 
0.1 2.1% 76% 31 % 77% 58% 80% 
0.4 12% 69% 39% 68% 61% 72% 
0.6 18% 51% 42% 58% 62% 66% 
0.9 19% 36% 44% 61% 61% 72% 
OP 19 % 36% 41 % 60% 58% 80% 
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Rnd 7% 75% 36% 78% 61% 77% 
 OP = optimal policy, Rnd = random. 
 

D. Examples of the Optimal LS Actions 
For the implementation of LS, we apply a uniform LS on all buses as done [12]. In other words, after identifying 
the optimal LS actions, 𝜃𝜃, we rely on the optimal dc power flow for its implementation. We 
set 𝛩𝛩 =  {0.1, 0.3, 0.5, 0.7} in order to show the effectiveness of our model for different values of LS. In addition, 
we choose a large value of the parameter 𝑟𝑟 corresponding to a high level of stress for the grid, i.e., 𝑟𝑟 = 0.9. This 
value corresponds to a situation in which the grid uses 90% of generation power to serve loads. Fig. 7 shows 
three instances of actions and LS corresponding to three different instances of initial failures. Notice that with 5 
initial failures (few initial failures), 𝜃𝜃𝑡𝑡 = 0.7 is the preferred LS action, i.e., the optimal policy corresponds to 
minimum LS. However, when the CF evolves to a larger number of LFs, 𝜃𝜃𝑡𝑡 decreases to 0.5, which corresponds 
to application of a larger LS to stop the cascade. In the case of 50 initial failures, 𝜃𝜃𝑡𝑡  =  0.5 (intermediate LS) is 
the optimal action initially followed by 𝜃𝜃𝑡𝑡 =  0.3. Finally, with 100 initial failures 𝜃𝜃𝑡𝑡 = 0.1 (aggressive LS) is the 
optimal action. Note that the obtained optimal LS policies are in agreement with the proposed MDP model. We 
also see from the horizontal axis that the stopping time of the cascade decreases with increasing amount of LS. 
This implies that aggressive LS actions can stop the cascade sooner at the price of a larger amount LS. 
Furthermore, from Fig. 7, we see that the amount of actual load-shed increases with time, even when the 
optimal LS parameter, 𝜃𝜃𝑡𝑡, is constant for some time epochs. This is because the optimal dc power flow optimizer 
performs LS incrementally to minimize the number of LFs. 

It is important to note that a direct comparison of the results between the proposed work and related 
works [27]–[30] could not be presented in this article for the following reasons: 1) our MDP framework is built 
on the reduced state-space MC (which makes it scalable) and to the best of authors’ knowledge the frameworks 
and formulations proposed in other works [27]–[30] are fundamentally different from our proposed 
formulations; 2) the model parameters are also different (e.g., LS parameters and evaluation metrics). 
Therefore, we took the general approach (see, e.g., [47], [53, Figs. 6 and 7]) of comparing the derived policy 
(based on our MDP approach) with random and fixed policies, and we have shown that the derived MDP policies 
always outperform the two alternatives. In addition, we performed a comparison between our analytical model 
and the dc power-flow model (see Table II and Fig. 7). This comparison is highly revealing because it shows an 
agreement between our analytical model and the CF model based on dc power-flow. In particular, this 
comparison demonstrates the success of our analytical model to predict the behavior seen from physics-based 
simulations of CFs, which gives our abstract model a practical quality. 

SECTION VI. Conclusion 
This article presents a novel theoretic framework based on an MDP to devise optimal LS policies in order to 
mitigate CFs in power grids. Specifically, we have judiciously incorporated state-dependent and time-varying 
actions into the MDP by introducing a realistic cost function that considers both positive and negative 
implications of a chosen action. We computed the optimal policies for the IEEE 118 and IEEE 300 bus systems, 
which was found to be very effective in reducing the size of CF but largely dependent on the LS costs. Numerical 
simulations have shown a significant advantage of our optimal policy compared to other policies in terms of 
minimizing the total CF cost associated with LFs as well as LS. An implementation of the policy on the IEEE 118 
system-based on optimal dc power flow has shown excellent agreement with the MDP predictions. Notably, the 
proposed policy outperforms fixed and random policies in reducing the size of the CFs. This indicates an 
advantage of adopting the MDP derived optimal policy in mitigating CFs while using minimal LS. The developed 
optimal policy can be used as a baseline to support LS decisions by grid operators in order to mitigate the spread 
of CFs in real time. In addition, since the policy can be developed offline, it can also be used in designing a 



cascade-preventive grid, which, upon incorporation, can control the CFs by taking LS decisions based on the 
state of the grid during a CF. 

Appendix A Transition Probabilities of the MC 
Following [20], [41], the transition probabilities of the MC were chosen to be dependent on the following three 
parameters: 

1. 𝑟𝑟 ∈ [0,1], the ratio of power demand to power generation; 
2. 𝑒𝑒 ∈ [0,0.5], the power flow estimation error through a transmission line; 
3. 𝜃𝜃 ∈ [0,1], the LS parameter that determines the capability of implementing LS when needed. 

 

A key component in the transition probability matrix is the state-dependent cascading-stop 
probability, 𝑃𝑃stop(𝑆𝑆𝑖𝑖), i.e., the probability that the binary state variable 𝐼𝐼 = 1 at state 𝑆𝑆𝑖𝑖. 
Mathematically, 𝑃𝑃stop(𝑆𝑆𝑖𝑖) is formulated as (see (7) [20]) 

𝑃𝑃stop(𝑆𝑆𝑖𝑖) = 𝑤𝑤𝑃𝑃stop
(1)(𝐹𝐹𝑖𝑖) + (1 − 𝑤𝑤)𝑃𝑃stop

(2)(𝐶𝐶𝑖𝑖max) 

(6) 

where 𝑃𝑃stop
(1) (𝐹𝐹𝑖𝑖) is the cascade-stop probability given 𝐹𝐹𝑖𝑖, the number of line failures, and 𝑃𝑃stop

(2) (𝐶𝐶𝑖𝑖max) is the 
cascade-stop probability with the maximum capacity of failed lines being Cmaxi and 𝑤𝑤 =  0.5. Note 
that 𝑃𝑃stop

(1)(𝐹𝐹𝑖𝑖) and 𝑃𝑃stop
(2)(𝐶𝐶𝑖𝑖max) are parametrically modeled using the CF simulation data (see Figs. 5 and 6 and (8) 

and (9) for the parametric formulations [20]). By using 𝑃𝑃stop(𝑆𝑆𝑖𝑖), the transition probability of the 
MC, 𝑃𝑃trans�𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑗𝑗�, going from state 𝑆𝑆𝑖𝑖 to 𝑆𝑆𝑗𝑗, is given by (see[20, (6)]) 

𝑃𝑃trans�𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑗𝑗� = 𝛿𝛿𝑆𝑆𝑖𝑖∗,𝑆𝑆𝑗𝑗𝑃𝑃stop(𝑆𝑆𝑖𝑖)

+ �1 − 𝛿𝛿𝑆𝑆𝑖𝑖∗,𝑆𝑆𝑗𝑗� �1 − 𝑃𝑃stop(𝑆𝑆𝑖𝑖)� 𝑃𝑃cont�𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑗𝑗�
 

(7) 

where 𝛿𝛿𝑆𝑆𝑖𝑖∗,𝑆𝑆𝑗𝑗 =  1 when 𝑆𝑆𝑗𝑗 = 𝑆𝑆𝑖𝑖∗ and 𝛿𝛿𝑆𝑆𝑖𝑖∗,𝑆𝑆𝑗𝑗 =  0 otherwise. Moreover, 𝑆𝑆𝑖𝑖∗ denotes a state that indicates the end 

of CFs at the subsequent time step. In addition, 𝑃𝑃cont�𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑗𝑗� is the probability that the cascade continues and 
transitions from state 𝑆𝑆𝑖𝑖 to 𝑆𝑆𝑗𝑗. Similar to 𝑃𝑃stop(𝑆𝑆𝑖𝑖), 𝑃𝑃cont�𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑗𝑗� is also parametrically formulated by using data 
from CF simulations (see [20, (10) and Figs. 7 and 8]). 

Appendix B DC Power Flow-Based CFs 
We consider a generalized power transmission system with a set of generators and nongenerator buses denoted 
by 𝒢𝒢 and ℒ, respectively. The buses are interconnected by 𝑚𝑚 power transmission lines. Furthermore, let 𝑔𝑔𝑖𝑖 ≥
0 be the generated power at generation bus 𝑖𝑖 ∈ 𝒢𝒢 (maximum generation value is 𝐺𝐺𝑖𝑖max), and 𝑙𝑙𝑗𝑗 ≤ 0 be the power 
consumption at the load bus 𝑗𝑗 ∈ ℒ (actual initial demand is 𝐿𝐿𝑗𝑗). The three grid operating characteristic 
parameters are described in Appendix A. A transmission-line in a power grid trips if the estimated power flow 
through the line is larger than its capacity. The dc power flow equations are [48] 

𝐟𝐟 = 𝐴𝐴𝐩𝐩 

(8) 



where 𝐟𝐟 ∈ ℝ𝑚𝑚 is a vector of length m that represents power flow through the m transmission lines, 𝐩𝐩 ∈ ℝ𝑘𝑘  is a 
vector that represents input power to the k buses in the grid (except the reference generator), and 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑘𝑘 is 
a matrix that consists of connectivities of buses through transmission lines and impedances of the lines. Since 
the system of (8) does not have a unique solution, a standard optimization approach is used to solve (8), which 
minimizes the following objective function [54]: 

min
𝑔𝑔𝑖𝑖,𝑙𝑙𝑗𝑗

��𝑤𝑤𝑖𝑖
𝑔𝑔𝑔𝑔𝑖𝑖

𝑖𝑖∈𝒢𝒢

+ �𝑤𝑤𝑗𝑗𝑙𝑙𝑙𝑙𝑗𝑗
𝑗𝑗∈ℒ

� , subject to

(𝑎𝑎) DC power flow equations: 𝐟𝐟 = 𝐴𝐴𝐩𝐩
(𝑏𝑏) Limits on the generator's power: 0 ≤ 𝑔𝑔𝑖𝑖 ≤ 𝐺𝐺𝑖𝑖max, 𝑖𝑖 ∈ 𝒢𝒢
(𝑐𝑐) Limits on the controllable loads: (1 − 𝜃𝜃𝑡𝑡)𝐿𝐿𝑗𝑗 ≤ 𝑏𝑏𝑗𝑗 ≤ 0
where 𝑙𝑙𝑗𝑗 = 𝜃𝜃𝑡𝑡𝐿𝐿𝑗𝑗 + 𝑏𝑏𝑗𝑗 , 𝑗𝑗 ∈ ℒ, 𝑏𝑏𝑗𝑗 is to be determined,
(𝑑𝑑) Limits on the power flow,𝑓𝑓𝑙𝑙 , through lines: 
|𝑓𝑓𝑙𝑙| ≤ 𝐶𝐶𝑙𝑙 ,𝐶𝐶𝑙𝑙 = capacity of lth line, 𝑙𝑙 ∈ {1, … ,𝑚𝑚},
(𝑒𝑒) Power generation and consumption constraints: 

�𝑔𝑔𝑖𝑖
𝑖𝑖∈𝒢𝒢

+ �𝑙𝑙𝑗𝑗 = 0
𝑗𝑗∈ℒ

.

 

(9) 

Here, 𝑤𝑤𝑖𝑖
𝑔𝑔 > 0 and 𝑤𝑤𝑗𝑗𝑙𝑙 > 0 weigh the power generation cost at the 𝑖𝑖th generator bus and the power 

consumption cost at the 𝑗𝑗th load bus, respectively. As in [20], we assume the LS cost is larger than the 
generation cost so that a load can only be curtailed when either the power generated is inadequate or the 
transmission capacity is limited. The solution of (9) provides amount of generation 𝑔𝑔𝑖𝑖, load consumption 𝑙𝑙𝑗𝑗 (thus 
load-shed) and power flow through the 𝑙𝑙th line, 𝑓𝑓𝑙𝑙. Note that balancing of power generation and demand is 
done in our simulation before executing the dc power-flow calculation. 
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