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ABSTRACT
ENOTS WOLLEY VARIATIONS AND RELATED SEQUENCES

Nathan M. Nichols, B.A.

Marquette University, 2023

The Enots Wolley sequence is a lexicographically earliest sequence (LES)
that is closely related to the Yellowstone sequence. It is an open conjecture by N. J.
Sloane that every number with at least two distinct prime factors appears as a term
of the Enots Wolley sequence. In this thesis, this conjecture is proved for a variation
of the Enots Wolley sequence that operates on the binary representation of a
positive integer rather than the prime factorization. The methods used are then
applied to prove some new properties of the prime factorization Enots Wolley
sequence.
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CHAPTER 1

INTRODUCTION

1.1 Lexicographically earliest sequences

There are many integer sequences naturally arising in mathematics and on

the Online Encyclopedia of Integer Sequences (OEIS) that are defined as

lexicographically earliest sequences (LESs) [6]. The concept of a LES has no rigorous

definition for reasons that will be made clear, but instead informally refers to an

approach to constructing an integer sequence that possesses some set of prescribed

properties. Often, LESs are interesting in their own right as they may possess

non-trivial emergent properties.

The Stanley sequence S(1) (OEIS number A005836) is one of the most

well-known and earliest examples of a sequence of this type [5]. Its definition is as

follows:

Definition 1. For k ∈ Z>0, a k-arithmetic progression (k-AP) is a set of k natural

numbers of the form {c+ di | 0 ≤ i ≤ k − 1} for some constants c, d ∈ Z≥0.

Definition 2 (A. M. Odlyzko and R. P. Stanley [5]). S(1) is defined as the

lexicographically earliest increasing sequence starting 0, 1, . . . that contains no

3-arithmetic progressions.

For context, Roth’s theorem on arithmetic progressions states that any that

set of natural numbers with positive upper density contains a 3-AP. 1 Stanley and

Odlyzko studied the sequence S(1) as they were interested in the least possible rate

of growth of a sequence which avoids 3-APs. Although it turns out that S(1) grows

faster than other known sequences avoiding 3-APs, they realized that this sequence

has its own fascinating properties. Namely, the following theorem:

1Readers interested in a more complete treatment of this subject, see [2]

http://oeis.org/A005836
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Theorem 3 (A. M. Odlyzko and R. P. Stanley [5]). A number k ∈ Z≥0 appears as

a term of the sequence S(1) if and only if the base 3 representation of k does not

contain the digit 2.

Sequences such as the Stanley sequence S(1) that are defined as the LES

satisfying some easily-stated property P belong to the informal class of sequences

often referred to as LESs. LESs should be understood as a way of thinking about

all integer sequences rather than a distinct type of integer sequence. Indeed, it will

soon be shown that all sequences of positive integers qualify as LESs under the

natural definition the term. Despite being a vague concept, there is a useful shared

terminology surrounding LESs as well as a few basic results that transfer between

specific types of LESs.

To understand why it is better to avoid rigorously defining the concept of a

LES, consider the following näıve definition:

Definition 4. A sequence of positive integers (ai)i≥0 is a LES if it is the

lexicographically earliest sequence satisfying some property P .

As the following theorem demonstrates, this definition is näıve because it

includes every sequences of positive integers:

Theorem 5. Let (ai)i≥0 be any sequence of positive integers. Then, ai is a LES.

Proof. It suffices to produce a property P0 of integer sequences such that ai is the

lexicographically earliest sequence satisfying property P0. For this, say that an

integer sequence (ci)i≥0 has property P0 if ci = ai for all integers i. Then, ai is

trivially the lexicographically earliest sequence satisfying property P0 as it is the

only sequence satisfying property P0.



3

Thus, any integer sequence can be studied in terms of being the LES

satisfying some property P . In practice, however, the term LES is usually used to

refer to sequences whose “most natural” definition is as a LES among some infinite

set of sequences. Often, these types of sequence have no known closed form or

alternative definition, although this is not a requirement.

In the proof of Theorem 5, the property P0 is maximally restrictive in the

sense that it is only satisfied by a single sequence. Naturally, more interesting LESs

arise from creative choices of the property P . Considering the LES satisfying P is a

technique to isolate a single extremal sequence out of a large class of sequences.

Another reason that Definition 4 is näıve is because of complications arising

from the fact that the lexicographical order is not a well-ordering of the set of

infinite sequences of positive integers. In particular, even in cases where there are

sequences that satisfy the defining property P , it may be the case that there is no

LES satisfied by P . This is best illustrated via the following example.

Example 6. Say that a sequence of positive integers (ai)i≥1 satisfies P if (ai)i≥1

consists of a block of finitely many 1s following by infinity 2s. Then, set of

sequences satisfying P , in descending lexicographical order, begins

2, 2, 2, 2, . . .

1, 2, 2, 2, . . .

1, 1, 2, 2, . . .

1, 1, 1, 2, . . .

...

(1.1)

Observe that there is no LES satisfying the property P .



4

The remainder of this section is devoted to introducing concepts shared

among all sequences studied as LESs. In particular, there is a close relationship

between LESs and greedy algorithms.

Definition 7. Suppose (ai)i≥0 is the LES satisfying property P . Let k ∈ Z≥0 be a

natural number. If there is a sequence (ci)i≥0 satisfying property P such that

ci = ai for all i < n

cn = k

(1.2)

say that k is a candidate for the nth term of ai.

If (ai)i≥0 is the LES satisfying property P , an algorithm to decide whether or

not k is a candidate for the nth term yields an algorithm to compute arbitrary

terms of the sequence.

Algorithm 1 Compute the nth term of a LES
Input n ≥ 0
Output an, the nth term of the sequence

i← 0
while True do

if i is a candidate for a(n) then
return i

end if
i← i+ 1

end while

Theorem 8. If (ai)i≥1 is the LES (ai)i≥1 satisfying property P , then Algorithm 1

computes the terms of (ai)i≥1.

Proof. By Definition 7, a(n) itself is always the least candidate for the nth term of

ai. Because there are no candidates for the nth term smaller than a(n), the while
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loop of Algorithm 1 executes exactly a(n) times and then returns a(n).

Because Algorithm 1 computes the nth term by returning the least

candidate, it can be thought of as a greedy algorithm (despite the concept of a

“greedy algorithm” being ill-defined.) For this reason, LESs are sometimes referred

to as “greedy sequences” or arise in the study of some greedy algorithm.

To use Algorithm 1, one must only implement a function

CAND((a1, . . . , an−1), i) to decide whether i ∈ Z≥0 is a candidate for the nth term

given a partial sequence a1, . . . , an−1. Depending on the sequence, the resulting

algorithm may be slow or it might be possible to devise a faster algorithm. Still,

this is often enough to compute the first few terms of the sequence with minimal

effort. In practice, it is often clear that the LES satisfying P exists.

As previously stated, LESs should be thought of as a set of shared concepts

or techniques rather than a specific subset of integer sequences. An important

implication of Algorithm 1 is a technique for experimentally discovering new LESs.

Namely, it is often easy to come up with choices of CAND that produce interesting

sequences with complex emergent behavior. For many sequences discovered in this

way, Algorithm 1 is the only known method for computing the terms.

For particular classes of LESs, it may be possible to make improvements to

Algorithm 1. Of particular interest is the case of injective LESs, which will be

discussed in Section 1.3.

1.2 The EKG family of injective LESs

To summarize, the high-level idea of a LES is to start with some defining

property P and then study the LES that satisfies P . For the types of LESs that will

be discussed in this thesis, it will be the case that the defining property P is “local”

in the sense that it is a property that must hold for all length k blocks of
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consecutive terms. For such sequences, it is natural to study non-trivial global

properties that emerge. Often, the foremost such global property is the set of

numbers appearing in the sequence. Theorem 3 is an example of this type of result,

although the definition of S(1) is not “local” in this sense. An important example of

a LES of this type is the EKG sequence, which is defined as follows.

Definition 9. A sequence (a(n))i≥1 of positive integers is injective if and only if it

does not have any repeated terms.

Definition 10 (A064413, Jonathan Ayres). The EKG sequence (a(n))i≥1 is defined

as the lexicographically earliest injective sequence starting with a(1) = 1, a(2) = 2

such that for all n > 2, gcd(a(n− 1), a(n)) ̸= 1.

The EKG sequence is primarily interesting because it exhibits surprising

emergent phenomena. Namely, the plot exhibits consistent spikes reminiscent of an

electrocardiogram. Proving this easily observable property requires some ingenuity.

Lagarias, Rains and Sloane [4] proved that every positive integer appears in the

sequence. Further results concerning the EKG sequence such as upper and lower

bounds were later proved by Hofman and Pilipczuk [3].

The EKG sequence is also significant because it inspired a family injective

LESs including the Yellowstone sequence (A098550,) the Enots Wolley sequence

(A336957) and the as-yet unnamed sequence A350359 among others. What these

injective LESs have in common is that their defining properties involve restrictions

on the common divisors of consecutive terms. Definitions of these sequences will be

provided, but first it is necessary to introduce a concept shared among this family of

sequences.

Definition 11. Let k be a positive integer. Let supp(k), the support of k, denote

the set of primes in the prime factorization of k with multiplicity discarded.

http://oeis.org/A064413
http://oeis.org/A098550
http://oeis.org/A336957
http://oeis.org/A350359


7

For example, supp(15) = {3, 5}, supp(1) = ∅ and supp(12) = {2, 3}. It is

now possible to define the three sequences previously mentioned.

Definition 12 (Yellowstone permutation, A098550, Reinhard Zumkeller). The

Yellowstone sequence is defined as the injective LES starting with a(1) = 1, a(2) = 2

such that for all n > 2, supp(a(n)) ∩ supp(a(n− 1)) = ∅ and

supp(a(n)) ∩ supp(a(n− 2)) ̸= ∅.

For reference, the first few terms of the Yellowstone sequence are

1, 2, 3, 4, 9, 8, 15, 14, 5, 6. The Yellowstone sequence can be described as the EKG

sequence with the additional requirement that supp(a(n)) must be disjoint with

supp(a(n− 2)). One notable aspect of the Yellowstone sequence is that results

similar to Theorem 3 exist for the Yellowstone sequence. In particular, it has been

proved that all positive integers appear as a term [1]. The name “Yellowstone”

comes from the observation that the plot of the sequence has predictable peaks and

valleys at regular intervals, which are reminiscent of the periodic eruptions of the

Old Faithful geyser in Yellowstone National Park.

By reversing the order of the two defining constraints of the Yellowstone

sequence, one obtains the Enots Wolley sequence (“Enots Wolley” is “Yellow

Stone” spelled backward.)

Definition 13 (Enots Wolley sequence, A336957, Scott R. Shannon and N. J.

Sloane). The Enots Wolley sequence is defined as the injective LES starting with

a(1) = 1, a(2) = 2 such that for all n > 2, supp(a(n)) ∩ supp(a(n− 2)) = ∅ and

supp(a(n)) ∩ supp(a(n− 1)) ̸= ∅.

An implication of this definition is that only positive integers k with

|supp(k)| ≥ 2 can appear as terms of the Enots Wolley sequence. Whether or not all

http://oeis.org/A098550
http://oeis.org/A336957
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positive integers k with supp(k) ≥ 2 actually do appear as terms of the Enots

Wolley sequence is still the subject of an open conjecture.

Conjecture 14 (N. J. Sloane). Every positive integer that is not a prime power

appears as a term of the Enots Wolley sequence.

The Yellowstone and Enots Wolley sequences may be considered direct

descendants of the EKG sequence. The EKG sequence has many more distant

relatives. Here is just one of many examples:

Definition 15 (A350359, David James Sycamore). The injective LES starting with

a(1) = 1, a(2) = 2 such that for any four consecutive terms t1, t2, t3, t4, supp(t4) is

disjoint with supp(t1) and supp(t3) but not supp(t2).

From here on, the phrase number-theoretic EKG family will be used to refer

to any injective LESs defined by some divisibility constraint on blocks of

consecutive terms. The meaning of “divisibility constraint” is intentionally vague as

to not rule out LESs whose definitions involve different types of constraints on the

supports of blocks of terms. It is not apparent how a formal definition would be

useful as it is not clear that the number-theoretic EKG family has any common

properties or results that transfer between distinct members.

A notable characteristic of the number-theoretic EKG family is that each

member has several variations obtained by modifying the definition of the function

supp (as defined in Definition 11.) For example, the function “supp” could

alternatively be defined as follows:

Definition 16. Let k be a positive integer. Let supp2(k), the binary support of k,

denote the set of positions of 1s in the binary expansion of k.

For example, because 13 = 23 + 22 + 20 is the binary expansion of 13,

supp2(13) = {0, 2, 3}. Because 1 = 20 is the binary expansion of 1, supp2(1) = {0}.

http://oeis.org/A350359
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By replacing “supp” with “supp2” in Definition 12, Definition 13 or

Definition 15 (plus adjusting the initial conditions to make this work), one obtains a

derived sequence called the binary analog. The set of all binary analogs forms a

family of sequences that will be referred to as the binary EKG family. As a

motivating example, here is the definition of the binary analog of the Enots Wolley

sequence:

Definition 17 (Binary Enots Wolley sequence, A338833, Nathan Nichols). The

binary Enots Wolley Sequence is defined as the injective LES starting with

a(1) = 1, a(2) = 3 such that for all n > 2, supp2(a(n)) ∩ supp2(a(n− 2)) = ∅ and

supp2(a(n)) ∩ supp2(a(n− 1)) ̸= ∅.

This binary analog of the Enots Wolley sequence is the primary subject of

this thesis. A more complete explanation of this sequence is included in Chapter 2,

as well as several proofs. Here, the goal is to provide a brief overview of its

significance.

The binary Enots Wolley sequence was defined by this author after several

attempts at proving Conjecture 14 failed to produce results. The primary

motivation for studying the binary Enots Wolley sequence was the hope that doing

so would indirectly lead to progress towards Conjecture 14. The binary analog of

Conjecture 14 turned out to be less difficult, and efforts to prove it were successful.

These proofs are included in Chapter 2. In Chapter 3, new results for the original

Enots Wolley sequence are derived by adapting the techniques used for the binary

case. Thus, although Conjecture 14 remains open, studying the binary analog

turned out to be a useful method for understanding the original.

This general strategy of studying the binary analog to understand the

number-theoretic version is likely applicable to many other sequences of the

number-theoretic EKG family. Another example of this technique is recent progress

http://oeis.org/A338833
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2 3 5 7 11 13 17 19 23 =

1 1

2 1 2

3 1 1 6

4 1 1 15

5 1 1 35

6 1 1 14

7 2 1 12

8 1 1 33

9 1 1 55

10 1 1 10

11 1 2 18

12 1 1 21

13 1 1 77

14 1 1 22

15 2 1 20

16 2 1 45

17 1 1 39

18 1 1 26

19 2 1 28

20 2 1 63

21 1 1 51

22 1 1 34

23 1 1 38

24 1 1 57

25 1 1 69

26 1 1 46

27 3 1 40

28 1 1 65

29 1 1 91

30 1 1 1 42

31 1 1 1 30

32 1 1 85

33 1 1 119

34 3 1 56
Enots Wolley

1 2 4 8 16 32 64 =

1 1 1

2 1 1 3

3 1 1 6

4 1 1 12

5 1 1 9

6 1 1 17

7 1 1 18

8 1 1 10

9 1 1 1 13

10 1 1 20

11 1 1 48

12 1 1 33

13 1 1 5

14 1 1 1 14

15 1 1 24

16 1 1 1 49

17 1 1 1 7

18 1 1 66

19 1 1 72

20 1 1 1 25

21 1 1 1 19

22 1 1 34

23 1 1 36

24 1 1 1 21

25 1 1 1 11

26 1 1 40

27 1 1 1 52

28 1 1 1 22

29 1 1 1 67

30 1 1 1 41

31 1 1 1 28

32 1 1 68

33 1 1 65

34 1 1 1 1 27
Binary Enots Wolley

Figure 1.1: The prime factorizations of the first 34 terms of the Enots Wolley
sequence and the binary expansions of the first 34 terms of the binary Enots Wolley
sequence. A blank square indicates a multiplicity of zero or a coefficient of zero
(respectively)
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made on the binary analog of the Two-Up sequence [7]. Although conjectures

concerning the number-theoretic Two-Up sequence (A090252) have long remained

open, their counterparts for the binary analog (A354169) were proved along with

other deep properties.

Although the number-theoretic versions of EKG-like sequences have

traditionally received the most attention, the binary analogs are arguably just as

interesting. In many cases, it is perhaps preferable to study the binary analog

before trying to tackle the number-theoretic version because the binary analog is

often more tractable.

In addition to the binary and number-theoretic EKG families, there are also

entire families of EKG-like LESs that are as yet virtually unknown. Recall that the

only difference between the number-theoretic and binary EKG families is the

definition of the function supp(k) that is used. There are many other possible ways

to define the function supp(k), and each possibility induces analogs of sequences

such as the EKG sequence, the Yellowstone sequence, the Enots Wolley sequence

and the Two-Up sequence among many others.

Intuitively, the function supp(k) can be thought of as a generalized

formulation of the concept of digits in some numeral system. The term EKG-like

sequence will be used to refer to any injective LES whose defining condition

operates only on the digits of a number with respect to some numeral system, and

the phrase analog EKG family will be used to mean the set of variations of

EKG-like sequences induced by a particular choice of numeral system. The

number-theoretic EKG family and binary EKG family are examples of analog EKG

families introduced previously.

For example, here is one possible definition of a support function

corresponding to the usual base-10 numeral system.

http://oeis.org/A090252
http://oeis.org/A354169
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Definition 18. Let k be a positive integer. Let supp10(k), the decimal support of k,

denote the set of terms in the decimal expansion of k.

For example, because 246 = 200 + 40 + 6, supp10(246) = {200, 40, 6}.

Using this definition, it would be straightforward to define a decimal analog

of any EKG-like sequence. The prime factorization of a natural number can also be

thought of as a sort of number system that corresponds to the following support

function.

Definition 19. Let k be a positive integer. Let suppp(k), the full number-theoretic

support of k, denote the set of prime powers in the prime factorization of k.

For example, because 12 = 3 ∗ 22, suppp(12) = {3, 22}.

These two examples of alternative support functions are relatively tame.

There are a myriad of more exotic support functions that one could consider, and

each defines an entire analog EKG family. From this perspective, the

number-theoretic EKG family is only the tip of a great iceberg and it makes sense

to study the lesser-known variations.

The advantage of thinking about numeral systems in terms of support

functions is that the support function is independent of the actual meaning of the

digits. To define an analog of some EKG-like sequence, it does not matter (for

example) that the binary expansion is additive while the prime factorization is

multiplicative. The only thing that the defining property of the sequence “sees” are

the outputs of the support function. This setup is capable of handling more than

just “numeral systems” in the traditional sense. For example, there is no

requirement for the digit expansion to be unique (i.e., supp(k) is not required to be

injective.) Such is the case for supp(k) as defined in Definition 11 since multiplicity

is discarded.
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A reoccurring theme among all analog EKG families is that it makes sense to

think about such sequences in the format of Figure 1.1. In this figure as well as

elsewhere in this thesis, the convention of placing the least significant digit first is

adopted.

It is now necessary to state a few definitions that will be useful throughout

the rest of this thesis. Here, a(i) is some EKG-like sequence and the definition of

the function supp(k) should be understood to be the same as what is used in the

definition of a(i).

Definition 20. For a positive integer k, the characteristic function

chark(i) : N→ {0, 1} is

chark(i) :=


1 supp(k) ∩ supp(a(i)) ̸= ∅,

0 otherwise.

(1.3)

Definition 21. The truth table of chark(i) is the sequence (chark(i))i>0.

Definition 21 can be intuitively understood in terms of Figure 1.1. In the

binary case, the truth table of char2k(i) is the sequence of values in the kth column

of the table read from top to bottom.

Definition 22. For a non-negative integer k, let ω(k) := |supp(k)| denote the

weight of k.

For the function supp2(k) of Definition 16, ω(k) is the Hamming weight

(A000120.) For the function supp(k) of Definition 11, the function ω(k) is A001221.

1.3 Results on injective LESs

As previously discussed, there is not much general theory of LESs, injective

LESs, or the EKG family. However, there are a couple minor results about injective

http://oeis.org/A000120
http://oeis.org/A001221
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LESs that are worth mentioning for the purposes of this thesis. In particular, there

is one important theorem that applies to all injective LESs, including all members

of any analog EKG family. This theorem will be the basis for many of the proofs

that will appear in later chapters.

Theorem 23. Suppose (ai)0≤i is the LES satisfying property P and that ai is

injective. Suppose that Sk ⊆ Z≥0 is a set of natural numbers such that for all i ∈ Sk,

k is a candidate for a(i). Then, if |Sk| ≥ k, k must appear in the sequence.

Proof. If k is a candidate for the ith term but a(i) ̸= k, it must be that a(i) = k′

where k′ is another candidate for the ith term that is less than k. Because there are

only k − 1 positive integers k′ less than k and each can only appear in the sequence

once, this situation can only occur for at most k − 1 choices of i ∈ Sk before k must

be the least candidate that has not already occurred in the sequence.

As previously stated, it is often the case that we wish to understand the set

of numbers appearing in a LES. Theorem 23 is thus significant as it provides a

method for proving that a given number appears in an injective LES. Namely, it

suffices to prove that k is a candidate for at least k distinct terms.

For LESs that arise in the course of research, typically the only known

algorithm to compute terms is Algorithm 1. It is thus useful to note that Algorithm

1 can be improved in the special case of an injective LES. Namely, when computing

the nth term of the sequence, it is justified to skip checking whether i is a candidate

for the nth term if a(m) = i for some m < n.
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Algorithm 2 Compute the nth term of an injective LES
Input n ≥ 0
Output an, the nth term of the sequence

i← 0
for Each i ≥ 0 not appearing in the sequence before the ith term do

if i is a candidate for a(n) then
return i

end if
i← i+ 1

end for

The only aspect of Algorithm 2 that is dependent on the defining property P

is the function to check whether i is a candidate for the nth term given a partial

sequence a1, a2, . . . , an−1. For any specific LES, it may be possible to use specific

properties to improve this algorithm in other ways. Still, this simple algorithm is

often sufficient for research purposes.
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CHAPTER 2

THE BINARY ENOTS WOLLEY SEQUENCE

2.1 Basic properties

This section is concerned with the binary analog of the Enots Wolley

sequence. The goal is to prove that every number with a binary weight of at least

two appears in the sequence, which is the binary analog of Conjecture 14.

Throughout this chapter, a(n) shall always denote the binary Enots Wolley

sequence of Definition 17 (A338833.)

The following theorem serves as a more verbose form of Definition 17. This

is included primarily because it will be useful to refer to the properties (i), (ii) and

(iii) directly. The proof also serves to establish a higher degree of familiarity with

the definition of the binary Enots Wolley sequence.

Theorem 24. For n > 2, a(n) is the smallest number m not yet in the sequence

such that:

i) supp2(m) ∩ supp2(a(n− 1)) is nonempty,

ii) supp2(m) ∩ supp2(a(n− 2)) is empty, and

iii) supp2(m) ̸⊆ supp2(a(n− 1)).

Proof. The binary Enots Wolley sequence is defined in Definition 17 as the LES

satisfying some property P . It is immediate that the binary Enots Wolley sequence

exists because 1 produces a partial sequence (ai)1≤i≤n that satisfies P for all n. This

proves that the binary Enots Wolley sequence is well-defined.

What remains to be shown is that the sequence a(n) satisfies properties (i),

(ii) and (iii). Conditions (i) and (ii) are already part of Definition 17. Condition

(iii) is a consequence of (i) and (ii) because if (iii) fails for some term a(n), there is

http://oeis.org/A338833
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no way for property (ii) to hold for the term a(n+ 1). This proves all candidates for

any term a(n) must satisfy (i)-(iii).

Finally, it is necessary to prove that all numbers satisfying properties (i)-(iii)

for the term a(n) are candidates. In other words, it must be shown there is no need

for any additional rules to guarantee that Algorithm 2 does not lead to any dead

ends. For this, observe that there will always be some way to continue the sequence

given that the previous two terms satisfy (i)-(iii). In particular, property (iii)

guarantees that it will always be possible to choose the next term.

One of the implications of Theorem 24 is that only numbers with a binary

weight of at least 2 can appear in the sequence. As the following theorem

demonstrates, this lower bound is met when a digit appears in a term of the

sequence for the first time:

Theorem 25. If n is the least positive integer such that v ∈ supp2(a(n)), the term

a(n) has a binary weight of 2.

Proof. Suppose n is the least positive integer such that v ∈ supp2(a(n)) and let S

be the set of all candidates for the nth term. By Theorem 24, the term a(n) is the

least element of S which does not appear in the first n− 1 terms of the sequence.

Define T to be the set of elements of supp2(a(n− 1)) that are not also

contained in supp2(a(n− 2)). By Theorem 24, for every m ∈ S there is at least one

element of T contained in supp2(m). The least element of S involving 2v is 2v + 2w

where w is the least element of T . Because the power of two 2v is not used in the

first n− 1 terms of the sequence, the number 2v + 2w does not appear in the

sequence prior to the nth term. Thus, a(n) = 2v + 2w.

Theorem 25 justifies the following definition.
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20 2a 2b

W = 2m V

U

· · · [N − 1 powers of two] · · ·· · · [Fixed gap w.r.t. N ] · · ·

Figure 2.1: Visualization of the variables used in the proof of Theorem 27. Curly
braces indicate the possible range of the corresponding power of two.

Definition 26. If a(n) = 2v + 2w is the first term of the sequence such that

v ∈ supp2(a(n)), say that 2v is introduced by 2w.

2.2 Surjectivity of the Binary Enots Wolley sequence

The goal of this section is to prove that all positive integers m with

Hamming weight at least 2 appear as a term in the binary Enots Wolley sequence.

It is not feasible to directly find i such that a(i) = m because there is a complicated

dependence of the sequence on previous terms. Instead, the overall strategy will be

to show that m must be a candidate for an infinite number of terms, thus appears

in the sequence eventually by Theorem 23.

Theorem 27. For all non-negative integers m, the truth table of char2m (i.e., the

mth column of Figure 1.1) has infinitely many occurrences of 01.

Proof. Since the truth table of a power of two cannot have any occurrences of 111

due to property (ii), it must only be shown that there is no i′ such that i > i′

implies char2m(i) = 0. Assume that such an i′ does exist. The goal is to prove that

this assumption leads to a contradiction; namely, that there are further occurrences

of 1 in the truth table of 2m after the i′-th term.

Let 2a be the largest power of two that has occurred in the sequence before

the (i′)th term. Let 2b be a sufficiently large power of two so that b− a > N where

N = N(2m) is some number depending on 2m. It will be shown that for any 2m, it is
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possible to choose N sufficiently large so that 2m occurs in the sequence at some

point after the i′th term, contradicting the assumption that char2m(i) = 0 for all

i > i′.

Let n be the least positive integer such that b ∈ supp2(a(n)). It is now

necessary to make the following three definitions:

- U := The power of two that introduces 2b in the nth term.

- V := A power of two distinct from U such that 2a < V < 2b.

- W := 2m.

It will be shown that unless all of the N − 1 choices of V are present in a(n− 2),

the number U + V +W is a smaller unused candidate for a(n) than U + 2b.

First, consider the case where there is some possible choice of V that does

not violate property (ii). It must be shown that U + V +W < 2b + U . By

subtracting U from both sides, this becomes V +W < 2b. To prove this this

inequality, observe that since V and W are distinct powers of two less than 2b, there

is no “carry” in the binary representation of the sum V +W .

Now, it has been established that it is possible to choose N such that

U + V +W < 2b + U . It remains to be shown that U + V +W does not appear in

the sequence before the nth term, and that U + V +W satisfies the properties of

Theorem 24 to be a candidate for the term a(n). These requirements follow from

the following properties of the three powers of two U , V and W :

- U : Ensures property (i) for U + V +W to be a candidate for the nth term holds.

- V : Because W has never occurred together with V , this ensures U + V +W has

not appeared in the first n− 1 terms of the sequence.

- W : Ensures that if a(n) = U + V +W , then char2m(n) = 1 (contradicting the

assumption that char2m(n) = 0,) and that property (iii) holds for U + V +W

to be a candidate for a(n).
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This proves that as long as V isn’t barred from appearing in the term a(n)

by property (ii), the number U + V +W is a smaller candidate for a(n) that does

not appear in the first n− 1 terms of the sequence. In the case that all possible

choices of V are present in a(n− 2), it is now claimed that it is possible to construct

an alternative value of a(n− 2) that produces a lexicographically earlier sequence

(which is a contradiction.) This construction is as follows:

Because b− a > N , there are N − 1 possible choices for V . Hence, if all

possible choices of V are present in a(n− 2), then a(n− 2) must have a Hamming

weight of at least N − 1. Since none of the powers of two that are possible choices

for V have yet appeared in the sequence in a term together with 2m, it is possible to

erase one of the powers of two that are possible choices for V and replace it with 2m

in a(n− 2) to obtain a smaller unused candidate for the (n− 2)nd term.

Theorem 28. Let k be a positive integer with ω(k) ≥ 2. If there are an infinite

number of occurrences of 01 in the truth table of chark(i), then k must appear in the

sequence.

Proof. Let S be an infinite set of positive integers such that chark(j) = 0 and

chark(j + 1) = 1 for all j ∈ S. For each j ∈ S, properties (i) and (ii) of Theorem 24

always hold for k to be a candidate for the (j + 2)nd term. If property (iii) for k to

be a candidate for the (j + 2)nd term also happens to hold for an infinite number of

positions j ∈ S, then k is a candidate an infinite number of times and therefore must

appear in the sequence by Theorem 23. In this case, there is nothing more to prove.

If property (iii) for k to be a candidate for the (j + 2)nd term holds only for

a finite number of j ∈ S, it must be that supp2(k) is a subset of supp2(a(j + 1)) an

infinite number of times. Thus, all but finitely many of the j ∈ S correspond to

instances of the following pattern, where each of the m0,m1,m2,m3 have supports
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disjoint with supp2(k) and d is some positive integer such that supp2(d) is a

(possibly empty) subset of supp2(k):

(A) (B) (C) (D)

· · · → m0 → m1 + k → m2 + d → m3 → · · ·
(2.1)

This means that almost every time there is a 1 after a run of 0s in the truth table of

chark(i), all digits of k must be present in the term corresponding to the leading 1

(i.e., in position (B).) Note that the term in position (D) must have support

disjoint with supp2(k). This implies that there can be almost no occurrences of 111

in truth table of chark(i).

Let p, q be two distinct elements of supp2(k). Let Pi and Qi denote the set of

distinct positive integers appearing in the first i terms of the sequence that contain

p (but not q) and q (but not p) in their supports (respectively.) Define P (i) := |Pi|

and Q(i) := |Qi| to be the sizes of these sets. Likewise, let PQ(i) := |PQi| denote

the number of distinct positive integers appearing in the first i terms of the

sequence which contain both p and q in their supports.

The pattern (2.1) implies that after a finite number of terms, at least half of

the new 1s in the truth table of chark contribute to PQi (namely, all of the 1s that

occur in position (B)) and the rest of the new 1s (which occur in position (C))

contribute to Pi or Qi. Because every power of two must appear infinitely many

times by Theorem 27, it must be that there exists i′ such that i > i′ implies

PQ(i) > P (i) or PQ(i) > Q(i). In other words, the function PQ(i) grows faster

than at least one of P (i) or Q(i).

On the other hand, every time pattern 2.1 occurs, both m1 + 2p and m1 + 2q

are smaller candidates than m1 + k for the term in position (B). If the smallest

unused candidate for position (B) happens to be m1 + k, then it must be the case
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that both m1 + 2p and m1 + 2q have already occurred in the sequence. This implies

there exists i′ such that i > i′ implies Q(i) ≥ PQ(i) and P (i) ≥ PQ(i), which is a

contradiction of the other lower bound for PQ(i) from the previous paragraph.

Hence, our original assumption that property (iii) for k to be a candidate for the

(j + 2)nd term holds only a finite number of times after an occurrence of 01 in the

truth table of chark is false. By Theorem 23, this implies that k must occur in the

sequence.

Theorem 29. Let k = 2p + 2q be a positive integer with ω2(k) = 2. Then, there is

no positive integer i′ such that i > i′ implies chark(i) = 1.

Proof. Suppose that there exists i′ such that i > i′ implies chark(i) = 1. Using

Iverson bracket notation, define a function f : N>i′ → {0, 1} × {0, 1} as

f(m) := (

[
p ∈ supp2 a(m)

]
,

[
q ∈ supp2 a(m)

]
) (2.2)

In the sequence (f(i))i≥i′ , there cannot be any occurrence of (0, 0) because

f(j) = (0, 0) implies chark(j) = 0. There also cannot be any occurrences of (1, 1)

because f(j) = (1, 1) implies f(j + 2) = (0, 0). The patterns (1, 0), (0, 1), (1, 0) and

(0, 1), (1, 0), (0, 1) also cannot occur in the sequence (f(i))i≥i′ because they violate

property (ii) of Theorem 24. So, the only possibility is that (f(i))j≥i′ follows the

pattern (1, 0), (1, 0), (0, 1), (0, 1) modulo 4 (after some suitable offset.)

Recall that whenever a new power of two 2a appears in the sequence for the

first time, it must occur in a number of the form 2a + 2b. If a new power of two were

introduced in position 0 or position 2 of the pattern (1, 0), (1, 0), (0, 1), (0, 1), it

would be impossible for the support of the term where the new power of two is

introduced to intersect with the support of the preceding term. Thus, new powers of
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two can only be introduced in positions 1 or 3. Here is a diagram illustrating what

happens when a new power of two B is introduced in position 1 (a blank indicates

that power of two is not specified, a 1 indicates that column’s power of two is

present in the support, a 0 indicates it is absent:)

pq · · · B

0 :10

1 :10000· · · 00001

2 :01 1

3 :01

Let m be any positive integer not appearing in the first i′ terms of the

sequence such that ω2(m) ≥ 2 and supp2(m) ∩ supp2(k) = ∅. Out of the infinitely

many terms where a new power of two 2B is introduced, it is almost always the case

that B /∈ supp2(m). This implies that there are an infinite number of 0s in the truth

table of charm. By Theorem 27, the number of 1s occurring in the truth table of

charm is also infinite. Thus, there are an infinite number of occurrences of 01 in the

truth table of charm. By Theorem 28, this implies that m appears in the sequence

at some point after the i′th term. Since supp2(m) is disjoint from supp2(k), this is a

contradiction of the assumption that chark(i) = 1 for all i > i′.

Theorem 30. Every positive integer n with ω2(n) ≥ 2 appears in the sequence.

Proof. Let k be a positive integer with ω2(k) = 2. An implication of Theorem 27 is

that there is no positive integer i′ such that i > i′ implies chark(i) = 0. An

implication of Theorem 29 is that there is no i′ such that i > i′ implies chark(i) = 1.

This proves that there are infinite occurrences of 01 in the truth table of chark. By

Theorem 28, the term k must appear in the sequence.
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By the previous paragraph, for any positive integer n with ω2(n) ≥ 2 there

are infinitely many positive integers x with ω2(x) = 2 and supp2(x) ∩ supp2(n) ̸= ∅

appearing in the sequence. There are also infinitely many positive integers y with

ω2(y) = 2 and supp2(y) ∩ supp2(n) = ∅ appearing in the sequence. This implies that

there are infinitely many occurrences of 01 in the truth table of charn(i). By

Theorem 28, n must appear in the sequence.
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CHAPTER 3

APPLICATIONS TO THE ENOTS WOLLEY SEQUENCE

In Chapter 2, the analog of Conjecture 14 for the binary Enots Wolley

sequence was proved. The purpose of this chapter is to present the result of efforts

to apply the techniques of Chapter 2 to the number-theoretic Enots Wolley

sequence. Namely, the climax of this chapter is Theorem 34 which is the

number-theoretic analog of Theorem 27.

Throughout this chapter, a(n) shall always denote the number-theoretic

Enots Wolley sequence of Definition 13 and pn will denote the nth prime number.

3.1 Basic properties

Before it is possible to prove Theorem 34, it is necessary to establish that the

basic results of Section 2.1 also hold for the number-theoretic analog. The following

is the number-theoretic analog of Theorem 24, and the proof is virtually the same

as in the binary case:

Theorem 31. For n > 2, a(n) is the smallest number m not yet in the sequence

such that:

i) supp(m) ∩ supp(a(n− 1)) is nonempty,

ii) supp(m) ∩ supp(a(n− 2)) is empty, and

iii) the set supp(m) \ supp(a(n− 1)) is nonempty.

Proof. The number-theoretic Enots Wolley sequence is defined in Definition 13 as

the LES satisfying some property P . It is immediate that the number-theoretic

Enots Wolley sequence exists because 1 produces a partial sequence (ai)1≤i≤n that

satisfies P for all n. This proves that the number-theoretic Enots Wolley sequence is

well-defined.
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It remains to be shown that it satisfies properties (i), (ii) and (iii).

Conditions (i) and (ii) are already part of Definition 13. Condition (iii) is a

consequence of (i) and (ii) because if (iii) fails for some term a(n), there is no way

for property (ii) to hold for the term a(n+ 1). This proves all candidates for any

term a(n) must satisfy (i)-(iii).

Finally, it is necessary to prove that all numbers satisfying properties (i)-(iii)

for the term a(n) are candidates. In other words, it must be shown there is no need

for any additional rules to guarantee that Algorithm 2 does not lead to any dead

ends. For this, observe that there will always be some way to continue the sequence

given that the previous two terms satisfy (i)-(iii).

Analogous to the binary Enots Wolley sequence, an implication of

Theorem 31 is that only numbers n with ω(n) ≥ 2 can appear in the sequence. As

the following theorem demonstrates, this lower bound is met when a digit appears

in a term of the sequence for the first time:

Theorem 32. If n is the least positive integer such that v ∈ supp(a(n)), the term

a(n) satisfies ω(a(n)) = 2.

Proof. The proof is virtually the same as the proof of Theorem 25.

Theorem 32 justifies the following definition:

Definition 33. For distinct primes p, q, if a(n) = pq is the first term of the

sequence such that p ∈ supp(a(n)), say that p is introduced by q.

3.2 New results

The only theorem appearing in this section is the number theoretic analog of

Theorem 27. Unlike the previous results on the number-theoretic Enots Wolley

sequence, the proof of Theorem 34 is non-trivially different from its binary analog.
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p1 pa pb

W = pm V

U

· · · [ln(N) primes] · · ·· · · [Fixed gap w.r.t. N ] · · ·

Figure 3.1: Visualization of the variables used in the proof of Theorem 34. Curly
braces indicate the possible range of the corresponding prime.

Here is a brief explanation of the difficulty in adapting Theorem 27 to the

number-theoretic analog. While it is easy to determine the larger of two numbers by

comparing their binary representations, it is more difficult to order two numbers by

looking at their prime factorizations. To overcome the problems arising from this, it

will be necessary to invoke the prime number theorem and do some elementary

analysis.

Theorem 34. For all primes pm, the truth table of charpm has infinitely many

occurrences of 01.

Proof. Since the truth table of a single prime cannot have any occurrences of 111, it

must only be shown that there is no i′ such that i > i′ implies charpm(i) = 0.

Assume that such an i′ does exist. The goal is to prove that this assumption leads

to a contradiction; namely, that there are further occurrences of 1 in the truth table

of pm after the i′-th position.

Let pa be the largest prime that has occurred in the sequence before the

(i′)th term. Let pb be a sufficiently large prime so that b− a > N where N = N(pm)

is some number depending on pm. It will be shown that for any pm, it is possible to

choose N(pm) sufficiently large so that pm occurs in the sequence at some point

after the i′th term, contradicting the assumption that charpm(i) = 0 for all i > i′.

Let n be the least positive integer such that pb ∈ supp(a(n)). It is now

necessary to make the following three definitions:
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- U := The prime that introduces pb in the nth term.

- V := A prime distinct from U such that pa < V ≤ pa+⌊ln(N)⌋.

- W := pm.

It will be shown that unless all of the ⌊ln(N)⌋ choices of V are present in a(n− 2),

the number UVW is a smaller unused candidate for a(n) than Upb.

First, consider the case where there is some possible choice of V that does

not violate property (ii). It must be shown that UVW < pbU . By dividing both

sides of this inequality by U , observe that this is equivalent to proving VW < pb.

Since pm is a prime smaller than the prime pa, it suffices to prove that V pa < pb.

Furthermore, because the largest possible value of V is pa+⌊ln(N)⌋, it suffices to prove

pa+⌊ln(N)⌋pa < pb (3.1)

Equivalently,

pa+⌊ln(N)⌋pa < pN+a (3.2)

where a is a constant that does not depend on N . For this, recall that the prime

number theorem states that pn ∼ n ln(n), which means

lim
n→∞

pn
n ln(n)

= 1 (3.3)

Applying the prime number theorem to each side of Equation 3.2, one obtains

pa+⌊ln(N)⌋pa ∼
(
a+ ⌊ln(N)⌋

)
ln

(
a+ ⌊ln(N)⌋

)(
a ln(a)

)
pN+a ∼ (N + a) ln(N + a)

(3.4)
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By elementary analysis, it is clear that the left hand side of Equation 3.2 is

dominated by the right hand side. Thus, it is possible to choose N sufficiently large

so that Equation 3.2 holds.

Now, it has been established that it is possible to choose N such that

UVW < pbU . It must also be shown that UVW does not appear in the sequence

before the nth term, and that UVW satisfies the properties of Theorem 31 to be a

candidate for the term a(n). These parts of this claim follow from the following

properties of the three factors U , V and W :

- U : Ensures property (i) for UVW to be a candidate for the nth term holds.

- V : Because W has never occurred together with V , this ensures UVW has not

appeared in the first n− 1 terms of the sequence.

- W : Ensures that if a(n) = UVW , then charp(n) = 1 (contradicting the

assumption that charp(n) = 0), and that property (iii) holds for UVW to be a

candidate for a(n).

This proves that as long as V isn’t barred from appearing in the term a(n)

by property (ii), the number UVW is a smaller candidate for a(n) that does not

appear in the first n− 1 terms of the sequence. In the case that all possible choices

of V are present in a(n− 2), it is possible to construct an alternative value of

a(n− 2) that produces a lexicographically earlier sequence as follows:

The number of primes that can serve as a valid choice of V is ⌊ln(N)⌋.

Hence, if all possible choices of V are present in a(n− 2), then it must be true that

ω(a(n− 2)) ≥ ⌊ln(N)⌋. Because the quantity ⌊ln(N)⌋ is arbitrarily large, so must

be the term a(n− 2). Since none of the factors that are possible choices for V have

yet appeared in the sequence in a term together with pm, it is possible to erase one

of the factors that are possible choices for V and replace it with pm in a(n− 2) to

obtain a smaller unused candidate for the (n− 2)nd term.



30

It is possible that other theorems from Chapter 2 can be adapted to the

number-theoretic Enots Wolley sequence as well, but the details are far from

obvious. Several attempts at this by this author have failed. It seems that proving

Conjecture 14 would require a substantial portion of additional ingenuity beyond

anything that has been tried so far.

It is likely that there are many Conjectures like 14 that as yet still unknown

to mathematics. For example, there are entire analog EKG families that have not

yet even been written down. Study of these more obscure EKG-like sequences could

perhaps indirectly lead to progress towards Conjecture 14 and conjectures like it.
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