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Abstract: 
We study the swing equation in the case of a multilayer network in which generators and motors are 
modeled differently; namely, the model for each generator is given by second order dynamics and the 
model for each motor is given by first order dynamics. We also remove the commonly used assumption 
of equal damping coefficients in the second order dynamics. Under these general conditions, we are 
able to obtain a decomposition of the linear swing equation into independent modes describing the 
propagation of small perturbations. In the process, we identify symmetries affecting the structure and 
dynamics of the multilayer network and derive an essential model based on a ‘quotient network.’ We 
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then compare the dynamics of the full network and that of the quotient network and obtain a modal 
decomposition of the error dynamics. We also provide a method to quantify the steady-state error and 
the maximum overshoot error. Two case studies are presented to illustrate application of our method. 

 

Left: Full network representation of IEEE145 test grid. Right: Quotient network representation of 
IEEE145 test grid. 

SECTION I. Introduction 
Modeling and analysis of power grid dynamics have been the subject of many 
papers [1], [9], [12], [13], [15], [16], [20], [21], [26], [29], [34], [35], [38], [39], [41], [48]. A fundamental 
tool to describe the dynamics of power grids is the swing equation. In the presence of small 
disturbances, this equation can be approximated by the linear swing equation, which can be 
decomposed into independent modes [2], [5], [19], [24], [37], [46]. However, most papers in the 
literature introduce two unrealistic assumptions in order to derive a modal decomposition: 1- the same 
model is used for both generators and motors, while they are intrinsically different and 2- all the 
individual systems are characterized by the same effective damping. An exception to 2 is provided by 
Tyloo et al. [46] who relax the constant inertia to damping ratio assumption and show that their 
derivation is still valid with heterogeneous dynamical parameters. Here we remove both assumptions 1 
and 2. We introduce intrinsically different mathematical models for generators and motors, where 
motors have typically negligible inertia compared to generators and we allow for the damping terms to 
be arbitrarily chosen. After removing both assumptions 1 and 2 we show that a modal decomposition of 
the linear swing equation can still be obtained. 

While performing this analysis we also look for the effects of symmetries in the network topology. 
Symmetries play a significant role in the study of networked systems. 
References [3], [6], [11], [14], [17], [31], [33], [36], [43]–[45], [49] have proposed tools based on graph 
theory and group theory to analyze the dynamics of complex networks with symmetries. A recent 
paper [10] has proposed indices for the characterization of symmetries in complex networks. 
Reference [7] has discussed how the analysis of symmetries may be used to explore associations in 
image features to infer similarities/dissimilarities among features. 

The presence of symmetries in power grid networks has been documented in [14], [45]. 
Reference [22] has analyzed how network symmetries may affect the synchronization modes of power 
grid networks, while [18] has studied structure and dynamics preserving reduction methods for power 
grids using a graph theoretical approach. Reference [5] has analyzed the effect of symmetries in 
networks using the linear swing equation and developed techniques for easy calculation of maximum 
flow and error using a modal decomposition. Reference [27] has found that certain heterogeneous 
parameters enhance the stability of power grid networks, which provides a motivation for us to remove 
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the assumption of homogeneous parameters. Many real systems do not possess exact symmetries but 
approximate symmetries. Recent work has investigated the presence of such approximate symmetries 
in both natural and engineering systems and found that approximate symmetries are widespread in 
these systems, see e.g., [28], [30]. Reference [42] has shown a connection between the stability of 
symmetric states and approximately symmetric states. 

Different from large part of the literature, in this paper we model powergrids as multilayer networks, 
where one layer is entirely made up of generator nodes and the other layer of motor nodes (‘loads’). We 
first obtain a simplified description of the multilayer network dynamics in terms of its quotient network. 
This description is useful as it provides an essential model for the dynamics in which redundancies due 
to symmetry are ‘removed’ [44], under the assumption that symmetric nodes produce/absorb the same 
amount of power. In what follows, we withdraw this assumption and quantify the error/deviation 
dynamics between the quotient network model and the full network model. Further, we develop a 
method to compute the maximum overshoot of the aforementioned error dynamics. 

The are several novel contributions of this paper, which we briefly review next. They are: (i) a study of 
the linear swing equation applied to a multilayer network in which loads and generators are modeled 
differently, (ii) a dynamical reduction of the dynamics in the case of heterogeneous damping coefficient 
based on the solution of the quadratic eigenvalue problem, (iii) an expansion of the solution in terms of 
first order supermodes and second-order supermodes, and (iv) a characterization of the error dynamics 
of the quotient network when compared to the full-network in terms of supermodes. 

The rest of the paper is organized as follows. Section II covers the modeling of a powergrid as a 
multilayer network using the linear swing equation and block diagonalization of the network equation 
into its quotient block and transverse block using the IRR transformation. Section III describes the block-
diagonalization of the error dynamics. Section IV deals with the maximum error computation using the 
concept of a ‘supermode’ and Section V provides validation using one example network and one real-life 
power grid network. Finally, conclusions are given in Section VI. 

SECTION II. Network Model 
Several alternative models of the swing equation have been proposed [25], [32]. For this paper, we 
specialized Bergen and Hill’s Structure Preserving Model [4], [32] to multilayer networks. The power grid 
is formed of a collection of rotating machines (‘nodes’) connected by transmission lines (‘edges’). Nodes 
can be of either one of two types: generator nodes which produce power, and motor nodes (or loads) 
which consume power and have typically a lower inertia than generator nodes. 

We thus consider a multilayer network with two layers: the generator layer denoted 𝒢𝒢 with 𝑛𝑛𝐺𝐺  nodes 
and the load layer denoted ℒ with 𝑛𝑛𝐿𝐿 nodes. The nodes in 𝒢𝒢  are modeled as second order oscillators, 
with dynamics described by the following equation, 



𝜃𝜃𝑖𝑖
¨

+ 𝛾𝛾𝑖𝑖𝜃𝜃𝑖𝑖
˙

= 𝑞𝑞𝑖𝑖𝐺𝐺 − � 𝐴𝐴
~
𝑖𝑖𝑖𝑖
𝐺𝐺

𝑛𝑛𝐺𝐺

𝑖𝑖=1,𝑖𝑖≠𝑖𝑖

sin (𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑖𝑖)

−�𝐴𝐴
~
𝑖𝑖𝑖𝑖
𝐺𝐺𝐿𝐿

𝑛𝑛𝐿𝐿

𝑖𝑖=1

sin (𝜃𝜃𝑖𝑖 − 𝜙𝜙𝑖𝑖), 𝑖𝑖 = 1,2, …𝑛𝑛𝐺𝐺

 

(1) 

where 𝜃𝜃𝑖𝑖(𝑡𝑡) is the nodal displacement of generator node 𝑖𝑖, 𝛾𝛾𝑖𝑖 > 0 is the damping coefficient of 
generator 𝑖𝑖 and 𝑞𝑞𝑖𝑖𝐺𝐺 > 0 is the power produced at generator node 𝑖𝑖. The nodes in ℒ are modeled as first 
order oscillators which obey the following equation, 

𝜙𝜙
˙
𝑖𝑖 = 𝑞𝑞𝑖𝑖𝐿𝐿 − � 𝐴𝐴

~
𝑖𝑖𝑖𝑖
𝐿𝐿

𝑛𝑛𝐿𝐿

𝑖𝑖=1,𝑖𝑖≠𝑖𝑖

sin (𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑖𝑖) −�𝐴𝐴
~
𝑖𝑖𝑖𝑖
𝐿𝐿𝐺𝐺

𝑛𝑛𝐺𝐺

𝑖𝑖=1

sin (𝜙𝜙𝑖𝑖 − 𝜃𝜃𝑖𝑖),

𝑗𝑗 = 1,2, …𝑛𝑛𝐿𝐿,

 

(2) 

where 𝜙𝜙𝑖𝑖(𝑡𝑡) is the nodal displacement of motor node 𝑗𝑗, and 𝑞𝑞𝑖𝑖𝐿𝐿 < 0 is the power consumed at load 𝑗𝑗. 

Definition 1: 
The network is said to be balanced if � 𝑞𝑞𝑖𝑖𝐺𝐺

𝑛𝑛𝐺𝐺
𝑖𝑖=1 + � 𝑞𝑞𝑖𝑖𝐿𝐿 = 0

𝑛𝑛𝐿𝐿

𝑖𝑖=1
. 

We assume the network is balanced throughout the paper unless specified otherwise. The multilayer 
network can be represented using the ‘Supra-Adjacency matrix’ which is an 𝑛𝑛 × 𝑛𝑛 matrix, 𝑛𝑛 = 𝑛𝑛𝐺𝐺 + 𝑛𝑛𝐿𝐿, 

𝐴𝐴
~

= �𝐴𝐴
~
𝐺𝐺 𝐴𝐴

~
𝐺𝐺𝐿𝐿

𝐴𝐴
~
𝐿𝐿𝐺𝐺 𝐴𝐴

~
𝐿𝐿
� , 

where the 𝑛𝑛𝐺𝐺 × 𝑛𝑛𝐺𝐺  -dimensional symmetric matrix 𝐴𝐴
~
𝐺𝐺 = {𝐴𝐴

~
𝑖𝑖𝑖𝑖
𝐺𝐺 } (the 𝑛𝑛𝐿𝐿 × 𝑛𝑛𝐿𝐿 -dimensional symmetric 

matrix 𝐴𝐴
~
𝐿𝐿 = �𝐴𝐴

~
𝑖𝑖𝑖𝑖
𝐿𝐿 � ) describes the intra-layer connectivity of layer 𝒢𝒢 (ℒ.) Namely, 𝐴𝐴

~
𝑖𝑖𝑖𝑖
𝐺𝐺 = 𝐴𝐴

~
𝑖𝑖𝑖𝑖
𝐺𝐺 > 0 if 

generator nodes 𝑖𝑖 and 𝑗𝑗 are connected and 𝐴𝐴
~
𝑖𝑖𝑖𝑖
𝐿𝐿 = 𝐴𝐴

~
𝑖𝑖𝑖𝑖
𝐿𝐿 = 0 otherwise. Analogously, 𝐴𝐴

~
𝑖𝑖𝑖𝑖
𝐿𝐿 = 𝐴𝐴

~
𝑖𝑖𝑖𝑖
𝐿𝐿 > 0 if 

motor nodes 𝑖𝑖 and 𝑗𝑗 are connected and 𝐴𝐴
~
𝑖𝑖𝑖𝑖
𝐿𝐿 = 𝐴𝐴

~
𝑖𝑖𝑖𝑖
𝐿𝐿 = 0 otherwise. The interlayer connectivity is given by 

the 𝑛𝑛𝐺𝐺 × 𝑛𝑛𝐿𝐿 -dimensional matrix 𝐴𝐴
~
𝐺𝐺𝐿𝐿 = {𝐴𝐴

~
𝑖𝑖𝑖𝑖
𝐺𝐺𝐿𝐿} and by the the 𝑛𝑛𝐿𝐿 × 𝑛𝑛𝐺𝐺  -dimensional matrix 𝐴𝐴

~
𝐿𝐿𝐺𝐺 =

{𝐴𝐴
~
𝑖𝑖𝑖𝑖
𝐿𝐿𝐺𝐺}, 𝐴𝐴

~
𝐿𝐿𝐺𝐺 = 𝐴𝐴

~
𝐺𝐺𝐿𝐿𝑇𝑇. If generator node 𝑖𝑖 and motor node 𝑗𝑗 are connected (not connected), then 𝐴𝐴

~
𝑖𝑖𝑖𝑖
𝐺𝐺𝐿𝐿 =

𝐴𝐴
~
𝑖𝑖𝑖𝑖
𝐿𝐿𝐺𝐺 > 0 𝐴𝐴

~
𝑖𝑖𝑖𝑖
𝐺𝐺𝐿𝐿 = 𝐴𝐴

~
𝑖𝑖𝑖𝑖
𝐿𝐿𝐺𝐺 = 0 

Like in the case of single-layered networks, multilayer networks may be affected by the presence of 
symmetries [14]. In general, a symmetry is a permutation of the network nodes that results in a network 
that is isomorphic to the original one. The symmetry group 𝒮𝒮 is the set of all symmetries with the 



operation composition. The set of all symmetries in the group will only permute certain subsets of nodes 
(the orbits or clusters) among each other. The nodes in each subset are mapped into each other by 
application of one or more symmetries in 𝒮𝒮; however, there is no symmetry in 𝒮𝒮 that will map into each 
other nodes in different subsets. We refer to such subsets of nodes as ‘clusters’ or ‘orbits’ of the 
symmetry group [5]. 

For the case of multilayer networks, with layers composed of nodes of different types, the above 
definition of symmetry needs to be specialized to account for the fact that symmetries may only move 
nodes (may not move nodes) from the same layer (from different layers.) 

We first introduce the group of symmetries for each layer: 𝑠𝑠𝐺𝐺 ∈ 𝒮𝒮𝐺𝐺  for layer 𝒢𝒢 which satisfies, 

𝑠𝑠𝐺𝐺𝐴𝐴
~
𝐺𝐺 = 𝐴𝐴

~
𝐺𝐺𝑠𝑠𝐺𝐺  

(3) 

and 𝑠𝑠𝐿𝐿 ∈ 𝒮𝒮𝐿𝐿 for layer ℒ, which satisfies, 

𝑠𝑠𝐿𝐿𝐴𝐴
~
𝐿𝐿 = 𝐴𝐴

~
𝐿𝐿𝑠𝑠𝐿𝐿. 

(4) 

Definition 2: 
A symmetry 𝑃𝑃 ∈ 𝒮𝒮 for the set of (1) and (2) is defined as a block diagonal permutation matrix of the 
form, 

𝑃𝑃 = �𝑠𝑠𝐺𝐺 0
0 𝑠𝑠𝐿𝐿

� 

with 𝑠𝑠𝐺𝐺 ∈ 𝒮𝒮𝐺𝐺 , 𝑠𝑠𝐿𝐿 ∈ 𝒮𝒮𝐿𝐿, and such that 𝑃𝑃𝐴𝐴
~

= 𝐴𝐴
~
𝑃𝑃 and 𝑠𝑠𝐺𝐺𝛾𝛾𝛾𝛾 = 𝛾𝛾𝛾𝛾, where the 𝑛𝑛𝐺𝐺  -dimensional vector 𝛾𝛾𝛾𝛾 =

[𝛾𝛾1, 𝛾𝛾2, … , 𝛾𝛾𝑛𝑛𝐺𝐺]. 

In addition to the equalities (3) and (4), the equation 𝑃𝑃𝐴𝐴
~

= 𝐴𝐴
~
𝑃𝑃 also requires satisfaction of the following 

two conjugacy relationships [14], 

𝑠𝑠𝐿𝐿𝐴𝐴
~
𝐿𝐿𝐺𝐺 = 𝐴𝐴

~
𝐺𝐺𝐿𝐿𝑠𝑠𝐺𝐺

𝑠𝑠𝐺𝐺𝐴𝐴
~
𝐺𝐺𝐿𝐿 = 𝐴𝐴

~
𝐿𝐿𝐺𝐺𝑠𝑠𝐿𝐿.

 

(5a)(5b) 

By using (5a) and (5b), we can define the following two subgroups of 𝒮𝒮𝐺𝐺  and 𝒮𝒮𝐿𝐿 [14], 



ℋ𝐺𝐺 = {𝑠𝑠𝐺𝐺 ∈ 𝒮𝒮𝐺𝐺|𝑠𝑠𝐺𝐺𝐴𝐴
~
𝐺𝐺𝐿𝐿 = 𝐴𝐴

~
𝐺𝐺𝐿𝐿𝑠𝑠𝐿𝐿and,

𝑠𝑠𝐿𝐿𝐴𝐴
~
𝐿𝐿𝐺𝐺 = 𝐴𝐴

~
𝐿𝐿𝐺𝐺𝑠𝑠𝐺𝐺for 𝑠𝑠𝐿𝐿 ∈ 𝒮𝒮𝐿𝐿}

ℋ𝐿𝐿 = {𝑠𝑠𝐿𝐿 ∈ 𝒮𝒮𝐿𝐿|𝑠𝑠𝐿𝐿𝐴𝐴
~
𝐿𝐿𝐺𝐺 = 𝐴𝐴

~
𝐿𝐿𝐺𝐺𝑠𝑠𝐺𝐺and, 

𝑠𝑠𝐺𝐺𝐴𝐴
~
𝐺𝐺𝐿𝐿 = 𝐴𝐴

~
𝐺𝐺𝐿𝐿𝑠𝑠𝐿𝐿for 𝑠𝑠𝐺𝐺 ∈ 𝒮𝒮𝐺𝐺}

 

Following [14] we can prove that the two sets ℋ𝐺𝐺  and ℋ𝐿𝐿 are subgroups of 𝒮𝒮𝐺𝐺  and 𝒮𝒮𝐿𝐿, respectively. 

The symmetry group 𝒮𝒮 partitions the set of nodes of the generator layer into a set 
of 𝑙𝑙𝐺𝐺  clusters, 𝐶𝐶𝑘𝑘𝐺𝐺 , 𝑘𝑘 = 1, … , 𝑙𝑙𝐺𝐺  and the set of nodes of the load layer into a set of lL clusters, 𝐶𝐶𝑘𝑘𝐿𝐿, 𝑘𝑘 =
1, … , 𝑙𝑙𝐿𝐿. For each layer, each cluster is formed of nodes that are mapped into each other by application 
of all the symmetries in 𝒮𝒮; however there is no symmetry in 𝒮𝒮 that maps into each other nodes in 
different clusters. We call 𝑙𝑙 = 𝑙𝑙𝐺𝐺 + 𝑙𝑙𝐿𝐿 the total number of clusters. In what follows we call 𝑖𝑖 ∗ the cluster 
to which generator 𝑖𝑖 belongs, and 𝑗𝑗 ∗ the cluster to which motor 𝑗𝑗 belongs. 

Lemma 1: 
A flow invariant synchronous solution 𝜃𝜃𝑖𝑖(𝑡𝑡) = 𝜃𝜃𝑖𝑖∗(𝑡𝑡), 𝜙𝜙𝑖𝑖(𝑡𝑡) = 𝜙𝜙𝑖𝑖∗(𝑡𝑡) is induced by the automorphism 
group 𝒮𝒮. 

Proof: 

Assume 𝜃𝜃𝑖𝑖(0) = 𝜃𝜃𝑖𝑖∗(0) and 𝜃𝜃
˙
𝑖𝑖(0) = 𝜃𝜃

˙
𝑖𝑖∗(0) for all 𝑖𝑖 ’s in cluster 𝑖𝑖 ∗ and for all clusters 𝑖𝑖 ∗=

1, … , 𝑙𝑙𝐺𝐺  and 𝜙𝜙𝑖𝑖(0) = 𝜙𝜙𝑖𝑖∗(0) for all 𝑗𝑗 ’s in cluster 𝑗𝑗 ∗ and for all clusters 𝑗𝑗 ∗= 1, … , 𝑙𝑙𝐿𝐿. It follows 

that 𝜃𝜃
¨
𝑖𝑖(0) is the same for all 𝑖𝑖 ’s in cluster 𝑖𝑖 ∗ and 𝜙𝜙

˙
𝑖𝑖(0) is the same for all 𝑗𝑗 ’s in cluster 𝑗𝑗 ∗. 

Next we assume convergence of the flow invariant solution on the fixed points, 𝜃𝜃𝑖𝑖∗𝑠𝑠𝑠𝑠 for all 𝑖𝑖 ’s in 
cluster 𝑖𝑖 ∗, and 𝜙𝜙𝑖𝑖∗𝑠𝑠𝑠𝑠 for all 𝑗𝑗 ’s in cluster 𝑗𝑗 ∗. The linearized swing equation, which models the propagation 
of small disturbances (e.g., affecting the initial condition or affecting the power supplied/demanded at 
different nodes) [46], is obtained by linearizing (1) and (2) about the stable fixed point 𝜃𝜃𝑖𝑖∗𝑠𝑠𝑠𝑠, 𝑖𝑖 =
1, … ,𝑛𝑛𝐺𝐺 , 𝜙𝜙𝑖𝑖∗𝑠𝑠𝑠𝑠 𝑗𝑗 = 1, … ,𝑛𝑛𝐿𝐿, 

𝜗𝜗𝑖𝑖
¨

+ 𝛾𝛾𝑖𝑖𝜗𝜗𝑖𝑖
˙

= 𝑝𝑝𝑖𝑖𝐺𝐺 + �𝐿𝐿𝑖𝑖𝑖𝑖𝐺𝐺
𝑛𝑛𝐺𝐺

𝑖𝑖=1

𝜗𝜗𝑖𝑖 + �𝐴𝐴
^
𝑖𝑖𝑖𝑖
𝐺𝐺𝐿𝐿

𝑛𝑛𝐿𝐿

𝑖𝑖=1

𝜑𝜑𝑖𝑖 − 𝑑𝑑𝑖𝑖𝐺𝐺𝐿𝐿𝜗𝜗𝑖𝑖 ,

𝑖𝑖 = 1,2, …𝑛𝑛𝐺𝐺

𝜑𝜑𝑖𝑖
˙

= 𝑝𝑝𝑖𝑖𝐿𝐿 + �𝐿𝐿𝑖𝑖𝑖𝑖𝐿𝐿
𝑛𝑛𝐿𝐿

𝑖𝑖=1

𝜑𝜑𝑖𝑖 + �𝐴𝐴
^
𝑖𝑖𝑖𝑖
𝐿𝐿𝐺𝐺

𝑛𝑛𝐺𝐺

𝑖𝑖=1

𝜗𝜗𝑖𝑖 − 𝑑𝑑𝑖𝑖𝐿𝐿𝐺𝐺𝜑𝜑𝑖𝑖 ,

𝑗𝑗 = 1,2, …𝑛𝑛𝐿𝐿

 

(6)(7) 



where 𝐴𝐴
^
𝑖𝑖𝑖𝑖
𝐺𝐺 = 𝐴𝐴

~
𝑖𝑖𝑖𝑖
𝐺𝐺 cos (𝜃𝜃𝑖𝑖∗𝑠𝑠𝑠𝑠 − 𝜃𝜃𝑖𝑖∗𝑠𝑠𝑠𝑠), 𝐴𝐴

^
𝑖𝑖𝑖𝑖
𝐺𝐺𝐿𝐿 = 𝐴𝐴

~
𝑖𝑖𝑖𝑖
𝐺𝐺𝐿𝐿cos (𝜃𝜃𝑖𝑖∗𝑠𝑠𝑠𝑠 − 𝜙𝜙𝑖𝑖∗𝑠𝑠𝑠𝑠), 𝐴𝐴

^
𝑖𝑖𝑖𝑖
𝐿𝐿 = 𝐴𝐴

~
𝑖𝑖𝑖𝑖
𝐿𝐿 cos (𝜙𝜙𝑖𝑖∗𝑠𝑠𝑠𝑠 − 𝜙𝜙𝑖𝑖∗𝑠𝑠𝑠𝑠), 𝐴𝐴

^
𝑖𝑖𝑖𝑖
𝐿𝐿𝐺𝐺 =

𝐴𝐴
~
𝑖𝑖𝑖𝑖
𝐿𝐿𝐺𝐺cos (𝜃𝜃𝑖𝑖∗𝑠𝑠𝑠𝑠 − 𝜙𝜙𝑖𝑖∗𝑠𝑠𝑠𝑠). The Laplacian matrices 𝐿𝐿𝐺𝐺 = {𝐿𝐿𝑖𝑖𝑖𝑖𝐺𝐺 } with entries 𝐿𝐿𝑖𝑖𝑖𝑖𝐺𝐺 = 𝐴𝐴

^
𝑖𝑖𝑖𝑖
𝐺𝐺 − 𝛿𝛿𝑖𝑖𝑖𝑖� 𝐴𝐴

^
𝑖𝑖𝑖𝑖
𝐺𝐺

𝑖𝑖

 and 𝐿𝐿𝐿𝐿 =

{𝐿𝐿𝑖𝑖𝑖𝑖𝐿𝐿 } with entries 𝐿𝐿𝑖𝑖𝑖𝑖𝐿𝐿 = 𝐴𝐴
^
𝑖𝑖𝑖𝑖
𝐿𝐿 − 𝛿𝛿𝑖𝑖𝑖𝑖� 𝐴𝐴

^
𝑖𝑖𝑖𝑖
𝐺𝐺

𝑖𝑖

, where 𝛿𝛿𝑖𝑖𝑖𝑖  is the Kronecker delta. Also, 𝑑𝑑𝑖𝑖𝐺𝐺𝐿𝐿 =

� 𝐴𝐴
^
𝑖𝑖𝑖𝑖
𝐺𝐺𝐿𝐿

𝑛𝑛𝐿𝐿

𝑖𝑖=1

 represents the total connectivity between generator 𝑖𝑖 and the ℒ layer and 𝑑𝑑𝑖𝑖𝐿𝐿𝐺𝐺 =

� 𝐴𝐴
^
𝑖𝑖𝑖𝑖
𝐿𝐿𝐺𝐺

𝑛𝑛𝐺𝐺

𝑖𝑖=1

 represents the total connectivity between load 𝑗𝑗 and the 𝒢𝒢 layer. Each term 𝑝𝑝𝑖𝑖𝐺𝐺  and 𝑝𝑝𝑖𝑖𝐿𝐿 on 

the right hand side of (6) and (7) represents a small power deviation. 

Definition 3: 
A symmetry for the set of (6) and (7) is defined as a block diagonal permutation matrix of the form, 

𝑃𝑃 = �𝑠𝑠𝐺𝐺 0
0 𝑠𝑠𝐿𝐿

� , 

with 𝑠𝑠𝐺𝐺 ∈ ℋ𝐺𝐺 , 𝑠𝑠𝐿𝐿 ∈ ℋ𝐿𝐿, and such that 𝑃𝑃𝐴𝐴
^

= 𝐴𝐴
^
𝑃𝑃, where the matrix, 

𝐴𝐴
^

= � 𝐴𝐴
^
𝐺𝐺 𝐴𝐴

^
𝐺𝐺𝐿𝐿

𝐴𝐴
^
𝐿𝐿𝐺𝐺 𝐴𝐴

^
𝐿𝐿
� , 

and 𝑠𝑠𝐺𝐺𝛾𝛾𝛾𝛾 = 𝛾𝛾𝛾𝛾. 

Lemma 2: 
The set of Eqs. (1) and (2) have the same set of symmetries as Eqs. (6) and (7). 

Proof: 

We need to prove that (a) a matrix 𝑃𝑃 ∈ 𝒮𝒮 that commutes with 𝐴𝐴
~

, commutes also with 𝐴𝐴
^

 and (b) 
viceversa. We first prove (a). The matrix 𝑃𝑃 permutes with one another nodes in layer 𝒢𝒢 and permutes 

with one another nodes in layer ℒ. For all 𝑣𝑣,𝑤𝑤 = 1, … ,𝑛𝑛, 𝐴𝐴
~
𝑣𝑣𝑣𝑣 = 𝐴𝐴

~
𝑣𝑣′𝑣𝑣′, where 𝑣𝑣′(𝑤𝑤′) is the node 

that 𝑣𝑣(𝑤𝑤) is mapped to by 𝑃𝑃. Now as 𝑣𝑣 is mapped to 𝑣𝑣′, then 𝑣𝑣 ∗= 𝑣𝑣′ ∗; and as 𝑤𝑤 is mapped to 𝑤𝑤′, 
then 𝑤𝑤 ∗= 𝑤𝑤′ ∗. From this it trivially follows that: (i) if 𝑣𝑣,𝑤𝑤 ∈ 𝒢𝒢, then cos (𝜃𝜃𝑣𝑣∗𝑠𝑠𝑠𝑠 − 𝜃𝜃𝑣𝑣∗𝑠𝑠𝑠𝑠 ) = cos (𝜃𝜃𝑣𝑣′∗

𝑠𝑠𝑠𝑠 −
𝜃𝜃𝑣𝑣′∗
𝑠𝑠𝑠𝑠 ), (ii) if 𝑣𝑣,𝑤𝑤 ∈ ℒ, then cos (𝜙𝜙𝑣𝑣∗𝑠𝑠𝑠𝑠 − 𝜙𝜙𝑣𝑣∗𝑠𝑠𝑠𝑠 ) = cos (𝜙𝜙𝑣𝑣′∗

𝑠𝑠𝑠𝑠 − 𝜙𝜙𝑣𝑣′∗
𝑠𝑠𝑠𝑠 ) and (iii) if 𝑣𝑣 ∈ ℒ and 𝑤𝑤 ∈ 𝒢𝒢, 

then cos (𝜃𝜃𝑣𝑣∗𝑠𝑠𝑠𝑠 − 𝜙𝜙𝑣𝑣∗𝑠𝑠𝑠𝑠 ) = cos (𝜃𝜃𝑣𝑣′∗
𝑠𝑠𝑠𝑠 − 𝜙𝜙𝑣𝑣′∗

𝑠𝑠𝑠𝑠 ). Thus for all 𝑣𝑣,𝑤𝑤 = 1, … ,𝑛𝑛, 𝐴𝐴
^
𝑣𝑣𝑣𝑣 = 𝐴𝐴

^
𝑣𝑣′𝑣𝑣′, where 𝑣𝑣′(𝑤𝑤′) is the 

node that 𝑣𝑣(𝑤𝑤) is mapped to by 𝑃𝑃. The proof for (b) is analogous. We start from the observation 

that 𝐴𝐴
^
𝑣𝑣𝑣𝑣 = 𝐴𝐴

^
𝑣𝑣′𝑣𝑣′  where 𝑣𝑣′(𝑤𝑤′) is the node v(w) is mapped to by 𝑃𝑃, and then by using properties (i), (ii), 

and (iii) we can prove that for all 𝑣𝑣 and 𝑤𝑤, 𝐴𝐴
~
𝑣𝑣𝑣𝑣 = 𝐴𝐴

~
𝑣𝑣′𝑣𝑣′. 



We now consider the vectors 𝜗𝜗𝜗𝜗 = [𝜗𝜗1,𝜗𝜗2, …𝜗𝜗𝑛𝑛𝐺𝐺], 𝜑𝜑𝜑𝜑 = [𝜑𝜑1,𝜑𝜑2, …𝜑𝜑𝑛𝑛𝐿𝐿], 𝐩𝐩𝐆𝐆 = [𝑝𝑝1𝐺𝐺 ,𝑝𝑝2𝐺𝐺 , … ,𝑝𝑝𝑛𝑛𝐺𝐺
𝐺𝐺 ], 𝐩𝐩𝐋𝐋 =

[𝑝𝑝1𝐿𝐿 ,𝑝𝑝2𝐿𝐿 , … ,𝑝𝑝𝑛𝑛𝐿𝐿
𝐿𝐿 ] to rewrite (6) and (7) as, 

𝜗𝜗𝜗𝜗
¨

+ Γ𝜗𝜗𝜗𝜗
˙

= 𝐩𝐩𝐺𝐺 + 𝐿𝐿𝐺𝐺𝜗𝜗𝜗𝜗 + 𝐴𝐴
^
𝐺𝐺𝐿𝐿𝜑𝜑𝜑𝜑 − 𝐷𝐷𝐺𝐺𝐿𝐿𝜗𝜗𝜗𝜗,

𝜑𝜑𝜑𝜑
˙

= 𝐩𝐩𝐿𝐿 + 𝐿𝐿𝐿𝐿𝜑𝜑𝜑𝜑 + 𝐴𝐴
^
𝐿𝐿𝐺𝐺𝜗𝜗𝜗𝜗 − 𝐷𝐷𝐿𝐿𝐺𝐺𝜑𝜑𝜑𝜑,

 

(8)(9) 

where the diagonal matrix Γ = {Γ𝑖𝑖𝑖𝑖} with diagonal entries Γ𝑖𝑖𝑖𝑖 = 𝛾𝛾𝑖𝑖  is the damping matrix for the 
generators, 𝐷𝐷𝐺𝐺𝐿𝐿 is the degree matrix of the generators with respect to the loads and 𝐷𝐷𝐿𝐿𝐺𝐺  is the degree 
matrix of the loads with respect to the generators. 𝐷𝐷𝐺𝐺𝐿𝐿 is defined as the 𝑛𝑛𝐺𝐺 × 𝑛𝑛𝐺𝐺  diagonal matrix 

where 𝐷𝐷𝑖𝑖𝑖𝑖𝐺𝐺𝐿𝐿 = � 𝐴𝐴
^
𝑖𝑖𝑘𝑘
𝐺𝐺𝐿𝐿

𝑛𝑛𝐿𝐿

𝑘𝑘=1

, if i=j and 0 otherwise. 𝐷𝐷𝐿𝐿𝐺𝐺  is defined similarly. 

We introduce the vector 𝐗𝐗𝑇𝑇 = [𝜗𝜗𝜗𝜗𝑇𝑇 ,𝜑𝜑𝜑𝜑𝑇𝑇 and rewrite (8) and (9) in the compact form, 

𝑀𝑀𝑋𝑋
¨
𝑋𝑋
¨

+ 𝐶𝐶𝑋𝑋
˙
𝑋𝑋
˙

+ 𝐾𝐾𝑋𝑋𝑋𝑋 = 𝐟𝐟 

(10) 

where 𝐾𝐾 = �𝐿𝐿
𝐺𝐺 − 𝐷𝐷𝐺𝐺𝐿𝐿 𝐴𝐴

^
𝐺𝐺𝐿𝐿

𝐴𝐴
^
𝐿𝐿𝐺𝐺 𝐿𝐿𝐿𝐿 − 𝐷𝐷𝐿𝐿𝐺𝐺

�, 𝑀𝑀 = �
𝐼𝐼𝑛𝑛𝐺𝐺×𝑛𝑛𝐺𝐺 0𝑛𝑛𝐺𝐺×𝑛𝑛𝐿𝐿
0𝑛𝑛𝐿𝐿×𝑛𝑛𝐺𝐺 0𝑛𝑛𝐿𝐿×𝑛𝑛𝐿𝐿

�, and 𝐶𝐶 = �
Γ 0𝑛𝑛𝐺𝐺×𝑛𝑛𝐿𝐿

0𝑛𝑛𝐿𝐿×𝑛𝑛𝐺𝐺 𝐼𝐼𝑛𝑛𝐿𝐿×𝑛𝑛𝐿𝐿
�. 

From knowledge of the group of symmetries 𝒮𝒮, we can compute the irreducible representations (IRRs) 
of the symmetry group of the network. This defines a transformation 𝑇𝑇 into the so-called IRR coordinate 
system (see Ref. [36]). The transformation matrix 𝑇𝑇 is orthogonal. Each one of the rows of the 
matrix 𝑇𝑇 is associated with a specific layer. If a row of the matrix T is associated with layer 𝑘𝑘, all 
the 𝑖𝑖 entries of that row are zero for 𝑖𝑖 not in layer 𝑆𝑆𝑘𝑘. 

Therefore, the matrix 𝑇𝑇 can be cast in the following block diagonal form, 

𝑇𝑇 = ⊕
𝑘𝑘=1,2,…

 𝑇𝑇𝑘𝑘 , 

(11) 

where each block 𝑇𝑇𝑘𝑘 is an 𝑛𝑛𝑘𝑘 -dimensional square matrix associated with layer 𝑘𝑘 and the 
symbol ⊕ indicates direct sum of matrices. We will represent these blocks as 𝑇𝑇𝐺𝐺  for the generator layer 
and 𝑇𝑇𝐿𝐿 for the load layer giving a matrix 𝑇𝑇 of the form: 

T= Premultiplying (8) and (9) by 𝑇𝑇, we obtain, 

𝜉𝜉𝜉𝜉
¨
(𝑡𝑡) = −Γ𝜉𝜉𝜉𝜉

˙
(𝑡𝑡) + 𝑉𝑉𝐺𝐺𝜉𝜉𝜉𝜉(𝑡𝑡) + 𝐴𝐴

∗
𝐺𝐺𝐿𝐿𝜅𝜅𝜅𝜅(𝑡𝑡) − 𝐷𝐷𝐺𝐺𝐿𝐿𝜉𝜉𝜉𝜉(𝑡𝑡) + 𝐫𝐫𝐆𝐆, 

(12) 

and 



𝜅𝜅𝜅𝜅
˙
(𝑡𝑡) = 𝑉𝑉𝐿𝐿𝜅𝜅𝜅𝜅(𝑡𝑡) + 𝐴𝐴

∗
𝐿𝐿𝐺𝐺𝜉𝜉𝜉𝜉(𝑡𝑡) − 𝐷𝐷𝐿𝐿𝐺𝐺𝜅𝜅𝜅𝜅(𝑡𝑡) + 𝐫𝐫𝐋𝐋. 

(13) 

where 𝜉𝜉𝜉𝜉 = 𝑇𝑇𝐺𝐺𝜃𝜃𝜃𝜃, 𝜅𝜅𝜅𝜅 = 𝑇𝑇𝐿𝐿𝜙𝜙𝜙𝜙, 𝐫𝐫𝐺𝐺 = 𝑇𝑇𝐺𝐺𝐩𝐩𝐆𝐆, 𝐫𝐫𝐿𝐿 = 𝑇𝑇𝐿𝐿𝐩𝐩𝐋𝐋, 𝑉𝑉𝐺𝐺 = 𝑇𝑇𝐺𝐺𝐿𝐿𝐺𝐺(𝑇𝑇𝐺𝐺)𝑇𝑇, 𝑉𝑉𝐺𝐺 = 𝑇𝑇𝐺𝐺𝐿𝐿𝐺𝐺(𝑇𝑇𝐺𝐺)𝑇𝑇, 𝐴𝐴
∗
𝐺𝐺𝐿𝐿 =

𝑇𝑇𝐺𝐺𝐴𝐴
^
𝐺𝐺𝐿𝐿(𝑇𝑇𝐿𝐿)𝑇𝑇, 𝐴𝐴

∗
𝐿𝐿𝐺𝐺 = 𝑇𝑇𝐿𝐿𝐴𝐴

^
𝐿𝐿𝐺𝐺(𝑇𝑇𝐺𝐺)𝑇𝑇. Due to the specific diagonal structure of the 

matrices 𝐷𝐷𝐿𝐿𝐺𝐺 , 𝐷𝐷𝐺𝐺𝐿𝐿 and Γ, they remain unchanged after the transformation. 

Remark 1: 
Both matrices 𝑇𝑇𝐺𝐺  and 𝑇𝑇𝐿𝐿 can in turn be written as block-diagonal matrices with the number of blocks 
equal to the number of clusters in either layer. For our case, 𝑇𝑇𝐺𝐺  is a matrix with 𝑙𝑙𝐺𝐺  blocks and 𝑇𝑇𝐿𝐿 is a 
matrix with 𝑙𝑙𝐿𝐿 blocks such that 𝑇𝑇 can be viewed as a block-diagonal matrix with a total of 𝑙𝑙 blocks. 

If we define the vector ΩΩ𝑇𝑇 = [𝜉𝜉𝜉𝜉𝑇𝑇 , 𝜅𝜅𝜅𝜅𝑇𝑇], (12) and (13) can be recast as, 

�
𝐼𝐼𝑛𝑛𝐺𝐺×𝑛𝑛𝐺𝐺 0𝑛𝑛𝐺𝐺×𝑛𝑛𝐿𝐿
0𝑛𝑛𝐿𝐿×𝑛𝑛𝐺𝐺 0𝑛𝑛𝐿𝐿×𝑛𝑛𝐿𝐿

� Ω
¨
Ω
¨

+ �
Γ 0𝑛𝑛𝐺𝐺×𝑛𝑛𝐿𝐿

0𝑛𝑛𝐿𝐿×𝑛𝑛𝐺𝐺 𝐼𝐼𝑛𝑛𝐿𝐿×𝑛𝑛𝐿𝐿
� Ω
˙
Ω
˙

− �𝑉𝑉
𝐺𝐺 − 𝐷𝐷𝐺𝐺𝐿𝐿 𝐴𝐴

∗
𝐺𝐺𝐿𝐿

𝐴𝐴
∗
𝐿𝐿𝐺𝐺 𝑉𝑉𝐿𝐿 − 𝐷𝐷𝐿𝐿𝐺𝐺

� ΩΩ = �𝐫𝐫
𝐺𝐺

𝐫𝐫𝐿𝐿
� ,

 

(14) 

which is in the familiar form, 

𝑀𝑀
~
Ω
¨
Ω
¨

+ 𝐶𝐶
~
Ω
˙
Ω
˙

+ 𝐾𝐾
~
ΩΩ = 𝐟𝐟

~
. 

(15) 

It is to be noted that the 𝑛𝑛 × 𝑛𝑛 matrix 𝐾𝐾
~

, is block diagonal and is equal to the direct sum ⊕𝑢𝑢=1
𝑈𝑈 𝐾𝐾𝑢𝑢, 

where 𝐾𝐾𝑢𝑢 is a (generally complex) 𝑝𝑝𝑢𝑢 × 𝑝𝑝𝑢𝑢 matrix with 𝑝𝑝𝑢𝑢 the multiplicity of the uth IRR in the 
permutation representation, 𝑈𝑈 the number of IRRs present and du the dimension of the 𝑢𝑢th IRR, so 
that ∑ 𝑑𝑑𝑢𝑢𝑝𝑝𝑢𝑢 = 𝑛𝑛𝑢𝑢 . The matrix 𝑇𝑇 contains information on which perturbations affecting different clusters 

get mapped to different IRRs [40]. Due to the block-diagonal structure of the matrix 𝐾𝐾
~

, (14) can be 
decoupled into a number of lower-dimensional equations, where each equation corresponds to a block 

of the matrix 𝐾𝐾
~

. There is one representation (labeled 𝑢𝑢 = 1 ) which we call trivial and the associated 

block of the matrix 𝐾𝐾
~

 corresponds to the dynamics of the quotient network. 

Definition 4 (Indicator Matrix): 
The 𝑛𝑛 × 𝑙𝑙 indicator matrix 𝐸𝐸 has entries 𝐸𝐸(𝑖𝑖, 𝑗𝑗) = 1 if node 𝑖𝑖 belongs to the cluster 𝑗𝑗 and 𝑜𝑜 otherwise, 

Definition 5 (Quotient Network): 
A Quotient Network is a reduced network where redundancies due to symmetries are removed. The 
dynamics of the quotient network is obtained by pre-multiplying (10) by ((𝐸𝐸𝑇𝑇𝐸𝐸)−1𝐸𝐸𝑇𝑇), yielding, 



𝑀𝑀𝑞𝑞𝑋𝑋
^
¨

𝑋𝑋
^
¨

+ 𝐶𝐶𝑞𝑞𝑋𝑋
^
˙

𝑋𝑋
^
˙

+ 𝐾𝐾𝑞𝑞𝑋𝑋
^
𝑋𝑋
^

= 𝐟𝐟𝐪𝐪
 

(16) 

where the 𝑛𝑛 × 1 vectors 𝐗𝐗
^

(𝑡𝑡) = ((𝐸𝐸𝑇𝑇𝐸𝐸)−1𝐸𝐸𝑇𝑇)𝐗𝐗(𝑡𝑡)𝐟𝐟𝐪𝐪 = ((𝐸𝐸𝑇𝑇𝐸𝐸)−1𝐸𝐸𝑇𝑇)𝐟𝐟, and the matrices 

𝑀𝑀𝑞𝑞 = ((𝐸𝐸𝑇𝑇𝐸𝐸)−1𝐸𝐸𝑇𝑇)𝑀𝑀𝐸𝐸,
𝐶𝐶𝑞𝑞 = ((𝐸𝐸𝑇𝑇𝐸𝐸)−1𝐸𝐸𝑇𝑇)𝐶𝐶𝐸𝐸,
𝐾𝐾𝑞𝑞 = ((𝐸𝐸𝑇𝑇𝐸𝐸)−1𝐸𝐸𝑇𝑇)𝐾𝐾𝐸𝐸.

 

Hence, the trivial representation is associated with all the clusters. However, it is possible that other IRR 
representations are only associated with some of the clusters (not all of them.) Each one of these other 
representations 𝑢𝑢 > 1 describes the deviation/error dynamics of either an isolated cluster or a group of 
intertwined clusters [36]. A simple interpretation of isolated vs. intertwined clusters is the following. If a 
cluster is isolated, a perturbation affecting the power of any one of its nodes will not affect the deviation 
dynamics of other clusters. On the contrary, when a set of two or more clusters are intertwined, a 
perturbation affecting the power of any of the nodes in a cluster will affect the deviation dynamics of 
the remaining clusters in the set. 

SECTION III. Diagonalization 
The quotient network provides a minimal representation of the full network. Our goal here is to describe 
the error dynamics between the full network dynamics and the quotient network dynamics. 

𝑒𝑒(𝑡𝑡) = 𝑋𝑋
^
𝑖𝑖(𝑡𝑡) − 𝑋𝑋𝑖𝑖(𝑡𝑡) 

(17) 

where 𝑋𝑋𝑖𝑖 is the dynamics of node 𝑖𝑖 which belongs to cluster 𝑗𝑗 of the entire network and 𝑋𝑋
^
𝑖𝑖 is the 

dynamics of node 𝑗𝑗 of the quotient network, which corresponds to an average of the dynamics of all 
nodes in cluster 𝑗𝑗. 

To quantify this error, we present an approach to diagonalize the blocks of the matrix 𝐾𝐾
~

 with 𝑢𝑢 > 1 and 
size 𝑚𝑚 > 1. We consider an m -dimensional transverse block from (15), with dynamics, 

𝑀𝑀
^
𝜂𝜂
¨
𝜂𝜂
¨

+ 𝐶𝐶
^
𝜂𝜂
˙
𝜂𝜂
˙

+ 𝐾𝐾
^
𝜂𝜂𝜂𝜂 = 𝐟𝐟

^
 

(18) 

where 𝑀𝑀
^

 is an 𝑚𝑚 × 𝑚𝑚 diagonal block of the 𝑀𝑀
~

 matrix, 𝐶𝐶
^

 is the corresponding 𝑚𝑚 × 𝑚𝑚 block of 

the 𝐶𝐶
~

 matrix and 𝐾𝐾
^

 is the corresponding 𝑚𝑚 × 𝑚𝑚 block of the 𝐾𝐾
~

 matrix. 𝜼𝜼 and 𝐟𝐟
^
 are the 

corresponding 𝑚𝑚 × 1 vectors from the 𝛀𝛀𝛀𝛀 and 𝐟𝐟
~

 vectors, respectively. In what follows, we will distinguish 
between three possible cases: 1) The block represents the error dynamics of intertwined clusters within 



the generator layer. This means that the 𝑀𝑀
^

 matrix will be a diagonal matrix with all non-zero elements in 

the main diagonal and the matrix 𝐶𝐶
^

 can either be homogeneous, i.e, it is a multiple of the identity 
matrix, or non-homogeneous. This is equivalent to a single layer network with either same or different 
damping coefficients which has already been studied in [5]. 2) The block represents the error dynamics 

of intertwined clusters within the load layer. This means that the 𝑀𝑀
^

 matrix is a zero matrix and 

the 𝐶𝐶
^

 matrix is the identity matrix. This is a simple case that allows a trivial decomposition. In this paper, 
we also consider a third, more complex case; 3) The block represents the error dynamics of intertwined 

clusters in different layers. This means that the 𝑀𝑀
^

 matrix is a diagonal matrix with both zero and non-
zero elements along the main diagonal, i.e., it is a singular matrix different from the zero matrix. The 

matrix 𝐶𝐶
^

 can be non-homogeneous. To diagonalize such a system, we use the method described in [23]. 
The advantage of this method is that it is a direct generalization of the modal decoupling for the case 

that the 𝑀𝑀
^

 matrix is invertible, i.e, case 1. Should the system have an invertible mass matrix and be 

classically damped, i.e, satisfies the commutativity relationship, 𝐶𝐶
^
𝑀𝑀
^
−1𝐾𝐾

^
= 𝐾𝐾

^
𝑀𝑀
^
−1𝐶𝐶

^
 [8], [23], this 

method reduces to classical modal analysis. The method is summarized below. We consider the 
associated quadratic eigenvalue problem (QEP): 

(𝑀𝑀
^
𝜆𝜆2 + 𝐶𝐶

^
𝜆𝜆 + 𝐾𝐾

^
)𝐯𝐯 = 0 

(19) 

The solution of this QEP yields a total of 2𝑚𝑚 eigenvalues, of which 𝜎𝜎 = 𝑚𝑚 + 𝑟𝑟 are finite and 𝜖𝜖 = 𝑚𝑚 −

𝑟𝑟 are infinite, where 𝑟𝑟 is the rank of the matrix 𝑀𝑀
^

 and m is its size. We randomly assign 2𝑟𝑟 finite 

eigenvalues to conjugate pairs: 𝜆𝜆𝑖𝑖 and 𝜆𝜆
^
𝑖𝑖 where 𝑖𝑖 = 1,2,3, … , 𝑟𝑟, and we denote the remaining 𝜖𝜖 unpaired 

eigenvalues, called the “lone eigenvalues” by 𝜇𝜇 [23]. We now construct the matrices Λ and Λ
^

 which are 
diagonal matrices of dimension 𝑟𝑟 × 𝑟𝑟 and the matrix Ξ which is of dimension 𝜖𝜖 × 𝜖𝜖. We also construct 

the matrices 𝑉𝑉, 𝑉𝑉�  and W whose columns are the eigenvectors of the matrices Λ, Λ
^

, and Ξ, 

respectively: 𝐯𝐯𝑖𝑖, 𝐯𝐯
^
𝑖𝑖, 𝑖𝑖 = 1,2,3, … , 𝑟𝑟 and 𝐰𝐰𝑖𝑖, 𝑖𝑖 = 1,2,3, … , 𝜖𝜖. 

Λ = ⊕
𝑖𝑖

𝑟𝑟
 𝜆𝜆𝑖𝑖Λ

^
=⊕

𝑖𝑖

𝑟𝑟
 𝜆𝜆𝑖𝑖

^
Ξ =⊕

𝑖𝑖

𝜖𝜖
 𝜇𝜇𝑖𝑖

𝑉𝑉 = [𝐯𝐯1|⋯ |𝐯𝐯𝑟𝑟]𝑉𝑉
^

= [𝐯𝐯
^
1|⋯ |𝐯𝐯

^
𝑟𝑟]𝑊𝑊 = [𝐰𝐰1|⋯ |𝐰𝐰𝜖𝜖],

 

where here and in what follows, 𝐶𝐶 = [𝐴𝐴|𝐵𝐵] symbolizes concatenation of two vectors/matrices with the 
same number of rows. We can now construct the diagonalized matrices: 

𝐴𝐴2 = 𝐼𝐼𝑟𝑟 ⊕ 0𝜖𝜖 ,𝐴𝐴1 = (Λ + Λ
^

) ⊕−Ξ,𝐴𝐴0 = ΛΛ
^
⊕Ξ2, 

In order to find consistent initial conditions, we also need to define, 



𝐽𝐽𝑥𝑥𝑥𝑥 = 𝐽𝐽𝑝𝑝𝑥𝑥 = Λ⊕ Λ
^
⊕Ξ,𝑉𝑉𝑥𝑥𝑥𝑥 = [𝑉𝑉|𝑉𝑉

^
|𝑊𝑊],

𝑉𝑉𝑝𝑝𝑥𝑥 = [𝐼𝐼𝑟𝑟|𝐼𝐼𝑟𝑟] ⊕ 𝐼𝐼𝜖𝜖 .
 

Multiplying (19) by 𝛽𝛽2 = 1/𝜆𝜆2 yields: 

(𝑀𝑀
^

+ 𝐶𝐶
^
𝛽𝛽 + 𝐾𝐾

^
𝛽𝛽2)𝐯𝐯 = 0. 

(20) 

The 𝜖𝜖 infinite eigenvalues from (19) correspond to ϵ zero eigenvalues in (20), β=0. These ϵ zero 
eigenvalues and their corresponding eigenvectors must satisfy: 

𝑀𝑀
^
𝑉𝑉𝑥𝑥,∞ + 𝐶𝐶

^
𝑉𝑉𝑥𝑥,∞𝐽𝐽𝑥𝑥,∞ + 𝐾𝐾

^
𝑉𝑉𝑥𝑥,∞𝐽𝐽𝑥𝑥,∞

2 = 0𝑛𝑛×𝜖𝜖  

(21) 

where 𝐽𝐽𝑥𝑥,∞ is an order ϵ Jordan matrix of eigenvalues 𝛽𝛽 = 0, and 𝑉𝑉𝑥𝑥,∞ is is a 𝑛𝑛 × 𝜖𝜖 matrix of the 

associated eigenvectors. Since (18) is nondefective, 𝐽𝐽𝑥𝑥,∞ = 0𝜖𝜖, which implies 𝑀𝑀
^
𝑉𝑉𝑥𝑥,∞ = 0𝑛𝑛×𝜖𝜖. 

Therefore, 𝑉𝑉𝑥𝑥,∞ is the matrix of eigenvectors in the null space of 𝑀𝑀
^

. Now, the transformation 
matrix 𝑆𝑆 can be defined as, 

𝑆𝑆 = �
𝑉𝑉𝑥𝑥𝑥𝑥 0𝑛𝑛×𝜖𝜖
𝑉𝑉𝑥𝑥𝑥𝑥𝐽𝐽𝑥𝑥𝑥𝑥 𝑉𝑉𝑥𝑥,∞

� �
𝑉𝑉𝑝𝑝𝑥𝑥 0𝑛𝑛×𝜖𝜖

𝑉𝑉𝑝𝑝𝑥𝑥𝐽𝐽𝑝𝑝𝑥𝑥 𝑉𝑉𝑝𝑝,∞
�
−1

 

(22) 

where 𝑆𝑆 is a 2𝑚𝑚 -dimensional real orthogonal matrix, and 𝑉𝑉𝑝𝑝,∞ is the matrix of eigenvectors in the null 

space of 𝐴𝐴2 (analogous to the case of 𝑀𝑀
^

 and 𝑉𝑉𝑥𝑥,∞). If system (18) is written in the symmetric state space 
realization, 

�𝐶𝐶
^

𝑀𝑀
^

𝑀𝑀
^

0
� �𝜂𝜂

˙
𝜂𝜂
˙

𝜂𝜂
¨
𝜂𝜂
¨ � + �𝐾𝐾

^
0
^

0 −𝑀𝑀
^ � �

𝜂𝜂𝜂𝜂

𝜂𝜂
˙
𝜂𝜂
˙ � = �𝑓𝑓

^

0
� , 

(23) 

the transformation 𝑆𝑆 will produce the diagonal matrices 𝐴𝐴0,𝐴𝐴1, and 𝐴𝐴2, 

𝑆𝑆𝑇𝑇 �𝐶𝐶
^

𝑀𝑀
^

𝑀𝑀
^

0
� 𝑆𝑆 = �𝐴𝐴1 𝐴𝐴2

𝐴𝐴2 0 � ,

𝑆𝑆𝑇𝑇 �𝐾𝐾
^

0
^

0 −𝑀𝑀
^ � 𝑆𝑆 = �𝐴𝐴0 0

0 −𝐴𝐴2
� .

 



(24) 

We now derive the two transformation matrices: 

𝑇𝑇1 = �(𝑉𝑉Λ
^
− 𝑉𝑉

^
Λ)(Λ

^
− Λ)−1|𝑊𝑊�

𝑇𝑇2 = �(𝑉𝑉
^
− 𝑉𝑉Λ)(Λ

^
− Λ)−1|0𝑛𝑛×𝜖𝜖� .

 

(25) 

Using 𝑇𝑇1 and 𝑇𝑇2, we can calculate the transformed forcing function, 

𝐠𝐠 = 𝑇𝑇1𝑇𝑇𝐟𝐟
^

+ 𝑇𝑇2𝑇𝑇𝐟𝐟
^
˙

.
 

(26) 

The diagonalized equation in 𝜒𝜒𝜒𝜒 coordinates can be found using the 𝐴𝐴0, 𝐴𝐴1, 𝐴𝐴2 and 𝐠𝐠 we have already 
calculated: 

𝐴𝐴2𝜒𝜒
¨
𝜒𝜒
¨

+ 𝐴𝐴1𝜒𝜒
˙
𝜒𝜒
˙

+ 𝐴𝐴0𝜒𝜒𝜒𝜒 = 𝐠𝐠. 

(27) 

The initial conditions in the 𝜒𝜒𝜒𝜒 coordinates also need to be calculated from consistent initial conditions in 
the 𝜼𝜼 coordinates, 

�
𝜒𝜒𝜒𝜒(0)

𝜒𝜒
˙
𝜒𝜒
˙
(0)

� = 𝑆𝑆𝑇𝑇 �
𝜂𝜂𝜂𝜂(0)

𝜂𝜂
˙
𝜂𝜂
˙
(0) − 𝑉𝑉𝑥𝑥𝑥𝑥𝑍𝑍𝑥𝑥𝑥𝑥𝐟𝐟(0)

�

+ �
𝟎𝟎

𝑉𝑉𝑝𝑝𝑥𝑥𝑍𝑍𝑝𝑝𝑥𝑥𝐠𝐠(0) + 𝑇𝑇2𝑇𝑇𝐟𝐟(0)� ,
 

(28) 

where the 𝜎𝜎 × 𝑚𝑚 matrices 𝑍𝑍𝑥𝑥𝑥𝑥 ,𝑍𝑍𝑝𝑝𝑥𝑥 are constructed as described in [23]. In what follows, without loss of 
generality we focus on the forced response and set the initial conditions in the 𝑿𝑿 -coordinates to zero. 
Hence, we have zero initial conditions in the 𝜼𝜼 -coordinates as well. 

Lemma 3: 

Consider zero initial conditions in X-coordinates. For unit step forcing 𝑓𝑓
^
𝑖𝑖, only the initial velocity for the 

second order modes are non-zero; all other initial conditions are zero, that is, if 𝐗𝐗(0) = 0, 𝐗𝐗
˙
(0) = 0, 

and 𝐟𝐟
^
(𝑡𝑡) ∈ 𝒰𝒰, where 𝒰𝒰 is the vector space for all unit step functions, then, 



�

𝜒𝜒𝑖𝑖(0) = 0 for 𝑖𝑖 = 1,2,3 …𝑛𝑛

𝜒𝜒
˙
𝑖𝑖(0) ≠ 0 for 𝑖𝑖 = 1,2,3, … ,𝑛𝑛𝐺𝐺
𝜒𝜒
˙
𝑖𝑖(0) = 0 for 𝑖𝑖 = 𝑛𝑛𝐺𝐺 + 1,𝑛𝑛𝐺𝐺 + 2, … ,𝑛𝑛.

 

Proof: 

We know that if 𝑓𝑓
^
𝑖𝑖 ∈ 𝒰𝒰, 𝑓𝑓(0) = 0 and 𝑓𝑓

^
𝑖𝑖(0) ≠ 0. Also, we have 0 initial conditions in 

the 𝑿𝑿 and 𝜂𝜂 coordinates. So, we can calculate our modal initial conditions as: 

�
𝜒𝜒𝜒𝜒(0)

𝜒𝜒
˙
𝜒𝜒
˙
(0)

� = �
00

𝑉𝑉𝑝𝑝𝑥𝑥𝑍𝑍𝑝𝑝𝑥𝑥𝐠𝐠(0)� . 

(29) 

It is now obvious that 𝜒𝜒𝑖𝑖(0) = 0∀𝑖𝑖. Since the non zero term of (29) 

𝜒𝜒
˙
𝜒𝜒
˙
(0) = 𝑉𝑉𝑝𝑝𝑥𝑥𝑍𝑍𝑝𝑝𝑥𝑥𝐠𝐠(0), 

it follows that 𝐠𝐠 = 𝑇𝑇2𝑇𝑇𝐟𝐟
^
˙

 when 𝐟𝐟
^

= 0 (from (26)). From (25), we can see that the last ϵ columns of 𝑇𝑇2 are 
zeros which means that the last ϵ rows of 𝑇𝑇2𝑇𝑇 are zeros. Therefore, 

𝑇𝑇2𝑇𝑇𝐟𝐟
^
˙

(0) = [𝜒𝜒1,𝜒𝜒2, … ,𝜒𝜒𝑛𝑛𝐺𝐺 , 0,0, … 0]𝑇𝑇  

After pre-multiplying the expression by 𝑉𝑉𝑝𝑝𝑥𝑥𝑍𝑍𝑝𝑝𝑥𝑥, we get the modal initial velocities of the system. This 

results in the last ϵ elements of 𝝌𝝌
˙
(0) to be zero which corresponds to the first order modes, thereby 

completing the proof. 

Note that we can use the transformation matrices to recover the displacements in η coordinates, 

𝜂𝜂𝜂𝜂 = 𝑇𝑇1𝜒𝜒𝜒𝜒 + 𝑇𝑇2𝜒𝜒
˙
𝜒𝜒
˙
− 𝑇𝑇3𝐟𝐟

^
,where 𝑇𝑇3 = 𝑇𝑇2𝑇𝑇2𝑇𝑇 . 

(30) 

We see that (27) can be broken into m independent equations, the solutions of which are called the 
‘modes’ of the system. 

(𝐴𝐴2)𝑖𝑖𝑖𝑖𝜒𝜒𝑖𝑖
¨

+ (𝐴𝐴1)𝑖𝑖𝑖𝑖𝜒𝜒𝑖𝑖
˙

+ (𝐴𝐴0)𝑖𝑖𝑖𝑖𝜒𝜒𝑖𝑖 = 𝑔𝑔𝑖𝑖 . 

(31) 

𝑖𝑖 = 1, … ,𝑚𝑚. The linear combination of all of the modes, their derivatives, and the forcing function 
provides the solution for the error as shown in (30). 



After diagonalization, the first r modes we obtain are second order modes, (𝐴𝐴2)𝑖𝑖𝑖𝑖 ≠ 0, 𝑖𝑖 = 1, … , 𝑟𝑟, and 
the remaining 𝑚𝑚 − 𝑟𝑟 modes are first order modes, (𝐴𝐴2)𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖 = 𝑟𝑟 + 1, … , 𝑟𝑟 + 𝑛𝑛. In realistic systems 
with constant damping and inertia, it has been found that all modes are underdamped and propagate 
through the whole system with 𝐷𝐷

𝜆𝜆𝑖𝑖
< 𝛾𝛾−1,∀𝑖𝑖 > 1 [46], [47]. Reference [5] has shown that this 

assumption holds true even after the assumption of constant damping is removed. We can then 
characterize the modal responses in terms of well-known first order time responses and underdamped 
second order time responses to unit step forcing. 

Each second order mode can be represented as, 

𝜒𝜒𝑖𝑖
¨

(𝑡𝑡) + 2𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝜒𝜒𝑖𝑖
˙

(𝑡𝑡) + 𝜔𝜔𝑖𝑖
2𝜒𝜒𝑖𝑖(𝑡𝑡) = 𝑔𝑔𝑖𝑖 , 𝑖𝑖 = 1,2, … , 𝑟𝑟, 

(32) 

where 𝜔𝜔𝑖𝑖
2 = 𝐴𝐴0𝑖𝑖𝑖𝑖 and 𝜁𝜁𝑖𝑖 = (𝐴𝐴1)𝑖𝑖𝑖𝑖/(2𝜔𝜔𝑖𝑖). The solution to (32) can be written as, 

𝜒𝜒𝑖𝑖(𝑡𝑡) = 𝜒𝜒𝑖𝑖(𝑡𝑡) + 𝜒𝜒𝑖𝑖(𝑡𝑡), 

(33) 

where 𝜒𝜒𝑖𝑖(𝑡𝑡) is the free evolution and 𝜒𝜒𝑖𝑖(𝑡𝑡) is the forced evolution. 𝜒𝜒𝑖𝑖(𝑡𝑡) is given by: 

𝜒𝜒𝑖𝑖(𝑡𝑡) = 𝑒𝑒−𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝑡𝑡(𝑋𝑋𝑚𝑚)𝑖𝑖cos (𝜔𝜔𝑖𝑖�1 − 𝜁𝜁𝑖𝑖2𝑡𝑡 − 𝜓𝜓𝑖𝑖) 

(34) 

where, (𝑋𝑋𝑚𝑚)𝑖𝑖 = �(𝐵𝐵1)𝑖𝑖2 + (𝐵𝐵2)𝑖𝑖2 and 𝜓𝜓𝑖𝑖 = tan−1 �(𝐵𝐵2)𝑖𝑖
(𝐵𝐵1)𝑖𝑖

�. (𝐵𝐵1)𝑖𝑖 and (𝐵𝐵2)𝑖𝑖 are constants that depend on 

the initial condition of the modes and can be calculated as follows: 

(𝐵𝐵1)𝑖𝑖 = 𝜒𝜒𝑖𝑖(0)(𝐵𝐵2)𝑖𝑖 =
𝜒𝜒
˙
𝑖𝑖(0) + 𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝜒𝜒𝑖𝑖(0)

𝜔𝜔𝑖𝑖�1 − 𝜁𝜁𝑖𝑖2
 

We know from Lemma 3 that only 𝜒𝜒
˙
𝑖𝑖(0) are nonzero for second order modes. Therefore we have, 

(𝐵𝐵1)𝑖𝑖 = 0(𝐵𝐵2)𝑖𝑖 =
𝜒𝜒
˙
𝑖𝑖(0)

𝜔𝜔𝑖𝑖�1 − 𝜁𝜁2
 

We can use this into (34) and obtain, 

𝜒𝜒𝑖𝑖(𝑡𝑡) =
𝜒𝜒𝑖𝑖
˙

(0)𝑒𝑒−𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝑡𝑡

𝜔𝜔𝑖𝑖�1 − 𝜁𝜁2
sin (𝜔𝜔𝑖𝑖�1 − 𝜁𝜁𝑖𝑖2𝑡𝑡) 



(35) 

The underdamped forced solution is given by, 

𝜒𝜒𝑖𝑖(𝑡𝑡) =
𝑔𝑔𝑖𝑖
𝜔𝜔𝑖𝑖
2

⎣
⎢
⎢
⎡
1 −

𝑒𝑒−𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝑡𝑡

�1 − 𝜁𝜁𝑖𝑖2
sin�𝜔𝜔𝑖𝑖�1 − 𝜁𝜁𝑖𝑖2𝑡𝑡 + cos−1 𝜁𝜁𝑖𝑖�

⎦
⎥
⎥
⎤

, 

(36) 

𝑖𝑖 = 1,2, … , 𝑟𝑟. The full response is the sum of (36) and (35). 

On the other hand, each first order mode can be represented as, 

𝜒𝜒𝑖𝑖
˙

(𝑡𝑡) +
𝜒𝜒𝑖𝑖(𝑡𝑡)
𝜏𝜏𝑖𝑖

= 𝑔𝑔𝑖𝑖
^

(𝑡𝑡)𝑖𝑖 = 𝑟𝑟 + 1, 𝑟𝑟 + 2, … ,𝑚𝑚, 

(37) 

where, 𝑔𝑔
^
𝑖𝑖(𝑡𝑡) = 𝑔𝑔𝑖𝑖(𝑡𝑡)

(𝐴𝐴1)𝑖𝑖𝑖𝑖
 and 𝜏𝜏𝑖𝑖 = (𝐴𝐴1)𝑖𝑖𝑖𝑖

(𝐴𝐴0)𝑖𝑖𝑖𝑖
. The solution is equal to, 

𝜒𝜒𝑖𝑖(𝑡𝑡) = 𝜏𝜏𝑖𝑖𝑔𝑔𝑖𝑖
^

(𝑡𝑡)(1 − 𝑒𝑒−𝑡𝑡/𝜏𝜏𝑖𝑖)𝑖𝑖 = 𝑟𝑟 + 1, 𝑟𝑟 + 2, … ,𝑚𝑚. 

(38) 

SECTION IV. Linear Combination of Modes for Maximum Error 
Quantification 
As stated in the previous section, for a unit step forcing, f^, the linear combination of the modes, their 
derivatives, and the forcing function can be used to calculate the deviations using (30), Here to ease this 
calculation, we introduce the concept of a ‘supermode.’ 

Definition 6: 
A supermode is a linear combination of modal displacement and velocity. Supermodes can be of two 
types: First order supermode and second order supermode. 

Each supermode can be expressed by the equation, 

𝜒𝜒
^
𝑖𝑖𝑖𝑖 = 𝜒𝜒𝑖𝑖 + 𝜅𝜅𝑖𝑖𝑖𝑖𝜒𝜒𝑖𝑖

˙
, 𝑖𝑖, 𝑗𝑗 = 1,2,⋯ ,𝑚𝑚, 

(39) 

where 𝜅𝜅𝑖𝑖𝑖𝑖  is a real constant. We note that 𝜂𝜂𝜂𝜂 from (30) can be obtained as a linear combination of 

the 𝜒𝜒
^
𝑖𝑖𝑖𝑖, 𝑖𝑖, 𝑗𝑗 = 1,2,⋯ ,𝑚𝑚, from (39). Our definition of supermode in (39) is general, as 𝜅𝜅𝑖𝑖𝑖𝑖  can be seen as 

a variable parameter that determines each supermode. In what follows we will see how first order 
supermodes and second order supermodes can be parameterized in a minimal number of parameters. 



A. First Order Supermodes 
First order supermodes, 𝑖𝑖 = 𝑟𝑟 + 1, 𝑟𝑟 + 2, … ,𝑚𝑚, are obtained by plugging (38) in (39), yielding, 

𝜒𝜒
^
𝑖𝑖𝑖𝑖 = 𝜏𝜏𝑖𝑖𝑔𝑔𝑖𝑖

^
+ 𝑔𝑔

^
𝑖𝑖𝑒𝑒
− 𝑡𝑡𝜏𝜏𝑖𝑖(𝜅𝜅𝑖𝑖𝑖𝑖 − 𝜏𝜏𝑖𝑖), 

(40) 

which converges to the steady state, 

𝜒𝜒
^
𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆 = 𝜏𝜏𝑖𝑖𝑔𝑔

^
𝑖𝑖 . 

(41) 

It can be seen from (40) that a first order supermode is completely parameterized by the constant (𝜅𝜅𝑖𝑖𝑖𝑖  ), 

modal forcing (𝑔𝑔
^
𝑖𝑖) and time constant (𝜏𝜏𝑖𝑖 ). 

B. Second-Order Supermodes 
Second order supermodes, 𝑖𝑖 = 1,2,3 … , 𝑟𝑟, are obtained by plugging (36) in (39). We take the first 
derivative of the solution to get, 

𝜒𝜒
˙
𝑖𝑖 =

𝑒𝑒−𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝑡𝑡

𝜚𝜚𝑖𝑖
�𝑔𝑔𝑖𝑖 sin𝜔𝜔𝑖𝑖𝜚𝜚𝑖𝑖𝑡𝑡 + 𝜒𝜒𝑖𝑖

˙
(0)(𝜚𝜚𝑖𝑖 cos 𝜚𝜚𝑖𝑖𝑡𝑡 − 𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖 sin 𝜚𝜚𝑖𝑖𝑡𝑡)� 

where 𝜚𝜚𝑖𝑖 = 𝜔𝜔𝑖𝑖�1 − 𝜁𝜁𝑖𝑖2. So, we can simplify (39) as follows, 

𝜒𝜒
^
𝑖𝑖𝑖𝑖 =

𝑒𝑒−𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝑡𝑡

𝜚𝜚𝑖𝑖
[𝑄𝑄𝑖𝑖𝑖𝑖

[1]sin 𝜚𝜚𝑖𝑖𝑡𝑡 + 𝑄𝑄𝑖𝑖𝑖𝑖
[2]cos 𝜚𝜚𝑖𝑖𝑡𝑡] +

𝑔𝑔𝑖𝑖
𝜔𝜔𝑖𝑖
2 , 

(42) 

where, 

𝑄𝑄𝑖𝑖𝑖𝑖
[1] = �𝜅𝜅𝑖𝑖𝑖𝑖 −

𝜁𝜁𝑖𝑖
𝜔𝜔𝑖𝑖
� 𝑔𝑔𝑖𝑖 + �1 − 𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝜅𝜅𝑖𝑖𝑖𝑖�𝜒𝜒𝑖𝑖

˙
(0),

𝑄𝑄𝑖𝑖𝑖𝑖
[2] = �𝜅𝜅𝑖𝑖𝑖𝑖𝜒𝜒𝑖𝑖

˙
(0) −

𝑔𝑔𝑖𝑖
𝜔𝜔𝑖𝑖
2� 𝜚𝜚𝑖𝑖

 

This converges to a steady state 

𝜒𝜒
^
𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆 =

𝑔𝑔𝑖𝑖
𝜔𝜔𝑖𝑖
2 . 

(43) 



The peak time can be calculated by setting 𝜒𝜒𝑖𝑖
^
˙

(𝑡𝑡) = 0, 

𝜒𝜒
^
˙

𝑖𝑖𝑖𝑖(𝑡𝑡) =
−𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝑒𝑒−𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝑡𝑡

𝜌𝜌𝑖𝑖
�𝑄𝑄𝑖𝑖𝑖𝑖

[1]sin 𝜌𝜌𝑖𝑖𝑡𝑡 + 𝑄𝑄𝑖𝑖𝑖𝑖
[2]cos 𝜌𝜌𝑖𝑖𝑡𝑡�

+
𝑒𝑒−𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝑡𝑡

𝜌𝜌𝑖𝑖
�𝜌𝜌𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖

[1]cos 𝜌𝜌𝑖𝑖𝑡𝑡 − 𝜌𝜌𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖
[2]sin 𝜌𝜌𝑖𝑖𝑡𝑡� ,

 

(44) 

therefore, all the local extrema of the supermode are at, 

𝑡𝑡𝑖𝑖𝑖𝑖
p = �tan−1 �

𝑄𝑄𝑖𝑖𝑖𝑖
[1]𝜚𝜚𝑖𝑖 − 𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖

[2]

𝑄𝑄𝑖𝑖𝑖𝑖
[2]𝜚𝜚𝑖𝑖 + 𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖

[1]� + 𝑘𝑘𝑘𝑘�
1
𝜚𝜚𝑖𝑖

, 𝑘𝑘 = 0,1,⋯ 

(45) 

which can be plugged into (42) to find the associated supermode peak value, 𝜒𝜒
^
𝑖𝑖𝑖𝑖
p . Since there is damping 

in the system, one may expect the first peak to always be the global maximum. However, it is also 
possible that this local maximum point is preceded by a local minimum point. So it becomes necessary 
to check (45) for 𝑘𝑘 = 0,1, to determine the supermodal peak. 

By calculating 𝜒𝜒
^
˙

𝑖𝑖𝑖𝑖(0), 

𝜒𝜒
^
˙

𝑖𝑖𝑖𝑖(0) = 𝜌𝜌𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖
[1] − 𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖

[2], 

(46) 

an analytical condition can be found to determine the supermodal peak. If 𝜒𝜒
^
˙

𝑖𝑖𝑖𝑖(0) is positive (negative), 

then the first (second) peak is the supermodal peak. If instead 𝜒𝜒
^
˙

𝑖𝑖𝑖𝑖(0) = 0, the curvature of the 
supermode at 𝑡𝑡 = 0 should be assessed, 

𝜒𝜒
^
¨

𝑖𝑖𝑖𝑖(𝑡𝑡) =
𝜁𝜁𝑖𝑖2𝜔𝜔𝑖𝑖

2𝑒𝑒−𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝑡𝑡

𝜌𝜌𝑖𝑖
�𝑄𝑄𝑖𝑖𝑖𝑖

[1]sin 𝜌𝜌𝑖𝑖𝑡𝑡 + 𝑄𝑄𝑖𝑖𝑖𝑖
[2]cos 𝜌𝜌𝑖𝑖𝑡𝑡�

+
−2𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝑒𝑒−𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝑡𝑡

𝜌𝜌𝑖𝑖
�𝜌𝜌𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖

[1]cos 𝜌𝜌𝑖𝑖𝑡𝑡 − 𝜌𝜌𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖
[2]sin 𝜌𝜌𝑖𝑖𝑡𝑡�

+
𝑒𝑒−𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝑡𝑡

𝜌𝜌𝑖𝑖
�−𝜌𝜌𝑖𝑖2𝑄𝑄𝑖𝑖𝑖𝑖

[1]sin 𝜌𝜌𝑖𝑖𝑡𝑡 − 𝜌𝜌𝑖𝑖2𝑄𝑄𝑖𝑖𝑖𝑖
[2]cos 𝜌𝜌𝑖𝑖𝑡𝑡� .

 

(47) 



Since 𝜒𝜒
^
˙

𝑖𝑖𝑖𝑖(0) = 𝑄𝑄𝑖𝑖𝑖𝑖
[1]𝜌𝜌𝑖𝑖 − 𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖

[2] = 0, 

𝜒𝜒
^
¨

𝑖𝑖𝑖𝑖(0) = −(𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖
[1] + 𝜌𝜌𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖

[2]). 

(48) 

Therefore, if the supermode is convex at 𝑡𝑡 = 0 𝜒𝜒
^
¨

𝑖𝑖𝑖𝑖(0) > 0, the next peak corresponding to 𝑘𝑘 = 1 is the 

global peak. If the supermode is concave at 𝑡𝑡 = 0 𝜒𝜒
^
¨

𝑖𝑖𝑖𝑖(0) < 0, the peak corresponding to 𝑘𝑘 = 2 is the 
global peak. In summary, the global peak is found at, 

𝑘𝑘 =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧0, if𝜒𝜒

^
˙

𝑖𝑖𝑖𝑖(0) > 0,

1, if

⎩
⎨

⎧𝜒𝜒
^
˙

𝑖𝑖𝑖𝑖(0) < 0, OR

𝜒𝜒
^
˙

𝑖𝑖𝑖𝑖(0) = 0, 𝜒𝜒
^
¨

𝑖𝑖𝑖𝑖(0) > 0,

2, if𝜒𝜒
^
˙

𝑖𝑖𝑖𝑖(0) = 0,𝜒𝜒
^
¨

𝑖𝑖𝑖𝑖(0) < 0,

 

(49) 

where 𝜒𝜒
^
˙

𝑖𝑖𝑖𝑖(0) and 𝜒𝜒
^
¨

𝑖𝑖𝑖𝑖(0) are defined in (46) and (48), respectively. 

Equation (42) shows that a second order supermode can be completely parameterized by its constant 
(𝜅𝜅𝑖𝑖𝑖𝑖  ), natural frequency (𝜔𝜔𝑖𝑖 ), damped frequency (𝜁𝜁 ), modal forcing (𝑔𝑔𝑖𝑖 ), and initial condition 𝜒𝜒𝑖𝑖(0)). 

C. Linear Combination of Supermodes 

Each 𝜂𝜂𝑖𝑖 can be written as a linear combination of supermodes and of the forcing function, 𝑓𝑓𝑖𝑖
^

, 

𝜂𝜂𝑖𝑖 = ��𝐶𝐶𝑖𝑖𝑖𝑖
[1]𝜒𝜒

^
𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑖𝑖𝑖𝑖

[2]𝑓𝑓
^
𝑖𝑖�

𝑚𝑚

𝑖𝑖=1

 

(50) 

in the coefficients 𝐶𝐶𝑖𝑖𝑖𝑖
[1] and 𝐶𝐶𝑖𝑖𝑖𝑖

[2] which denote how much a certain supermode affects the error 

dynamics. We note that 𝜅𝜅𝑖𝑖𝑖𝑖  from (39) and 𝐶𝐶𝑖𝑖𝑖𝑖
[1], and 𝐶𝐶𝑖𝑖𝑖𝑖

[2] from (50) are variable constants that can be 
arbitrarily assigned. These constants can be chosen based on the specific purpose of the analysis. For 



example, one can pick 𝜅𝜅𝑖𝑖𝑖𝑖 = 𝑇𝑇2(𝑖𝑖, 𝑗𝑗)/𝑇𝑇1(𝑖𝑖, 𝑗𝑗), 𝐶𝐶𝑖𝑖𝑖𝑖
[1] = 𝑇𝑇1(𝑖𝑖, 𝑗𝑗), and 𝐶𝐶𝑖𝑖𝑖𝑖

[2] = 𝑇𝑇3(𝑖𝑖, 𝑗𝑗), where 𝑖𝑖, 𝑗𝑗 = 1,⋯ ,𝑚𝑚, to 
obtain 𝜂𝜂𝜂𝜂 from (30). 

Since the expressions for steady state values of the supermodes have been derived, we can calculate the 
steady state error as, 

𝜂𝜂𝑖𝑖𝑆𝑆𝑆𝑆 = ��𝐶𝐶𝑖𝑖𝑖𝑖
[1]𝜒𝜒

^
𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆 − 𝐶𝐶𝑖𝑖𝑖𝑖

[2]𝑓𝑓
^
𝑖𝑖�

𝑚𝑚

𝑖𝑖=1

 

(51) 

For peak times, we use a slightly modified version of the technique described in [5]. First we take the 
sum of the supermodal peak values and non-transformed forcing functions for all supermodes. We call 
this 𝜂𝜂L, 

𝜂𝜂L = 𝜒𝜒
^
𝑖𝑖𝑖𝑖
p − 𝐶𝐶𝑖𝑖𝑖𝑖

[2]𝑓𝑓
^
𝑖𝑖 , 

(52) 

For first order supermodes, the peak is given by 𝜒𝜒
^
𝑖𝑖𝑖𝑖
p = 𝜒𝜒

^
𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆, 𝑖𝑖 = 𝑟𝑟 + 1, … ,𝑚𝑚, and the peak time can be 

approximated with the settling time equal to 𝑡𝑡𝑖𝑖𝑖𝑖
p = 4𝜏𝜏𝑖𝑖. The 𝜂𝜂Ls calculated from (???) are then 

cumulatively added in ascending order of peak time and the peak time corresponding to the largest of 
these cumulatively added values is then used as the initial guess in the equation: 

�𝜒𝜒
^
˙

𝑖𝑖𝑖𝑖 = 0

𝑚𝑚

𝑖𝑖=1

 

which can be expanded into: 

�
𝑒𝑒−𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝑡𝑡

𝜚𝜚𝑖𝑖
�𝑄𝑄

^

𝑖𝑖𝑖𝑖
[2]cos 𝜚𝜚𝑖𝑖𝑡𝑡 − 𝑄𝑄

^

𝑖𝑖𝑖𝑖
[1]sin 𝜚𝜚𝑖𝑖𝑡𝑡�

𝑟𝑟

𝑖𝑖=1

+�
𝜏𝜏𝑖𝑖 − 𝜅𝜅𝑖𝑖𝑖𝑖
𝜏𝜏𝑖𝑖

𝑔𝑔
^
𝑖𝑖𝑒𝑒
− 𝑡𝑡𝜏𝜏𝑖𝑖 = 0

𝑚𝑚

𝑖𝑖=𝑟𝑟+1

 

(53) 

where, 



𝑄𝑄
^

𝑖𝑖𝑖𝑖
[1] = 𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖

[1] + 𝜚𝜚𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖
[2]and 𝑄𝑄

^

𝑖𝑖𝑖𝑖
[2] = 𝜚𝜚𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖

[1] − 𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖
[2]. 

Solving (53) numerically using our calculated initial time provides the time for the peak error 𝑡𝑡𝑖𝑖
peak. It is 

also important to note that the closer the peak times are, the more accurate this initial guess is and the 
farther apart they are, the more iterations will be required to converge to the actual solution. Once the 
peak time is known, it can be plug back into (50) to find the peak error. 

𝜂𝜂𝑖𝑖
peak = ��𝜒𝜒

^
𝑖𝑖𝑖𝑖�𝑡𝑡𝑖𝑖

peak� − 𝐶𝐶𝑖𝑖𝑖𝑖
[2]𝑓𝑓

^
𝑖𝑖�

𝑚𝑚

𝑖𝑖=1

. 

(54) 

Finally, the maximum error could either be the peak error (if the second order supermode dominates) or 
the steady state error (if the first order supermode dominates). Thus, we take the largest value 
between 𝜂𝜂𝑖𝑖𝑆𝑆𝑆𝑆 and 𝜂𝜂𝑖𝑖

peak as the maximum error 𝜂𝜂𝑖𝑖max, 

𝜂𝜂𝑖𝑖max = max�𝜂𝜂𝑖𝑖𝑆𝑆𝑆𝑆, 𝜂𝜂𝑖𝑖
peak� 

(55) 

SECTION V. Case Studies 
In this section we provide 2 examples to demonstrate our method: Example 1 shows how our method 
can be utilized to find the maximum deviation error for a small network and example 2 demonstrates 
application of the method to the case of the IEEE 145-bus test grid. 

A. Example 1 
Our first example is the network in Figure 1 with 𝑛𝑛𝐺𝐺 = 4 nodes in the generator layer and 𝑛𝑛𝐿𝐿 = 2 nodes 
in the load layer, with 𝐩𝐩𝐺𝐺 = [0.1 0.1 0.1 0.2]𝑇𝑇 and 𝐩𝐩𝐿𝐿 = [−0.2 −0.3]𝑇𝑇. 

 
FIGURE 1. (a): Full network, (b): Quotient network. Generators are represented by green squares and 
loads are represented as red circles. 
 

The network dynamics is given by the following equation: 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6287639/9668973/9815059/sorre1ab-3188392-large.gif


⎣
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

𝐗𝐗
¨

+

⎣
⎢
⎢
⎢
⎢
⎡
0.9 0 0 0 0 0
0 0.9 0 0 0 0
0 0 0.9 0 0 0
0 0 0 0.9 0 0
0 0 0 0 1 0
0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

𝐗𝐗
˙

−

⎣
⎢
⎢
⎢
⎢
⎡
−3 1 0 1 1 0
1 −3 1 0 0 1
0 1 −3 1 0 1
1 0 1 −3 1 0
1 0 0 1 −3 1
0 1 1 0 1 −3⎦

⎥
⎥
⎥
⎥
⎤

𝐗𝐗 =

⎣
⎢
⎢
⎢
⎢
⎡

0.1
0.1
0.1
0.2
−0.2
−0.3⎦

⎥
⎥
⎥
⎥
⎤

.

 

(56) 

Using the IRR transformation matrix 𝑇𝑇, 

𝑇𝑇 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0.5 0.5 0.5 0.5 0 0

0 0 0 0
1
√2

1
√2

0 0 0 0
1
√2

−
1
√2

0.5 −0.5 −0.5 0.5 0 0
0.5 0.5 −0.5 −0.5 0 0
0.5 −0.5 0.5 −0.5 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

(56) is transformed into, 

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

𝜂𝜂
¨
𝜂𝜂
¨

+

⎣
⎢
⎢
⎢
⎢
⎡
0.9 0 0 0 0 0
0 1.0 0 0 0 0
0 0 1.0 0 0 0
0 0 0 0.9 0 0
0 0 0 0 0.9 0
0 0 0 0 0 0.9⎦

⎥
⎥
⎥
⎥
⎤

𝜂𝜂
˙
𝜂𝜂
˙

−

⎣
⎢
⎢
⎢
⎢
⎢
⎡−1 √2 0 0 0 0
√2 −2 0 0 0 0
0 0 −4 √2 0 0
0 0 √2 −3 0 0
0 0 0 0 −3 0
0 0 0 0 0 −5⎦

⎥
⎥
⎥
⎥
⎥
⎤

𝜂𝜂𝜂𝜂 =

⎣
⎢
⎢
⎢
⎢
⎡

0.2500
−0.3536
0.0707
0.0500
−0.0500
−0.0500⎦

⎥
⎥
⎥
⎥
⎤

 

(57) 



The 2 × 2 diagonal block on the top left of the 𝐾𝐾
^

 matrix of (57) corresponds to the quotient network 
dynamics. The quotient network is depicted in Figure 1(b). The other diagonal blocks represent the error 
dynamics between the full network and the quotient network, which is what we are interested in. The 
rightmost 2 blocks are simple so we diagonalize the second 2 × 2 diagonal block from the left to 
demonstrate our method. The dynamics of this one block is, 

�0 0
0 1� 𝜂𝜂

¨
𝜂𝜂
¨

+ �1 0
0 0.9� 𝜂𝜂

˙
𝜂𝜂
˙

+ � 4 −√2
−√2 3

� 𝜂𝜂𝜂𝜂 = �0.0707
0.0500� 

(58) 

The 3 finite eigenvalues for this 2 × 2 system are, 𝜆𝜆1 = −0.5193 + 1.5232𝑖𝑖, 𝜆𝜆2 = −0.5193 −
1.5232𝑖𝑖 and 𝜆𝜆3 = −3.8615. Pairing 𝜆𝜆1 and 𝜆𝜆2 as conjugates and 𝜆𝜆3 as the lone eigenvalue, we can find 
the normalized eigenvectors, 

𝐯𝐯∞ = �10� 𝐯𝐯𝟏𝟏 = �0.3457 − 0.1544𝑖𝑖
1.0170 − 0.0077𝑖𝑖�

𝐯𝐯𝟐𝟐 = �0.3457 + 0.1544𝑖𝑖
1.0170 + 0.0077𝑖𝑖�𝐰𝐰 = �2.0327

0.1991� .
 

We can now compute the matrices Λ, Λ
^

, 𝑉𝑉, 𝑉𝑉� , Ξ and 𝑊𝑊, 

Λ = [−0.5193 + 1.5232𝑖𝑖]𝑉𝑉 = �0.3457 − 0.1544𝑖𝑖
1.0170 − 0.0077𝑖𝑖� ,

Λ� = [−0.5193 − 1.5232𝑖𝑖]𝑉𝑉� = �0.3457 + 0.1544𝑖𝑖
1.0170 + 0.0077𝑖𝑖� ,

Ξ = [−3.8615],𝑊𝑊 = �2.0327
0.1991� .

 

We then solve for 𝑇𝑇1, 𝑇𝑇2, and 𝑇𝑇3, 

𝑇𝑇1 = �0.2930 2.0327
1.0144 0.1991� 𝑇𝑇2 = �−0.1014 0.0000

−0.0050 0.0000�

𝑇𝑇3 = �0.0103 0.0005
0.0005 0.0000� .

 

We then calculate the decoupled coefficient matrices 𝐴𝐴2, 𝐴𝐴1, 𝐴𝐴0, transformed power 𝒈𝒈, and initial 
condition 𝜒𝜒𝜒𝜒(0), 

𝐴𝐴2 = �1 0
0 0� ,𝐴𝐴1 = �1.0385 0.0000

0.0000 3.8615� , 𝐠𝐠 = �0.0714
0.1537� ,

𝐴𝐴0 = �2.5897 0.0000
0.0000 14.9108� ,𝜒𝜒𝜒𝜒(0) = �

0
0

−0.0074
0

� ,
 

resulting in the following decoupled equation, 



�1 0
0 0� 𝜒𝜒

¨
𝜒𝜒
¨

+ �1.0385 0.0000
0.0000 3.8615� 𝜒𝜒

˙
𝜒𝜒
˙

+ �2.5897 0.0000
0.0000 14.9108� 𝜒𝜒𝜒𝜒 = �0.0714

0.1537�
 

(59) 

Equation (59) describes the dynamics of two supermodes, a second order supermode (𝑖𝑖 = 1 ) and a first 
order supermode (𝑖𝑖 = 2 ). To calcuate the supermodal peak for each, we extract some parameters from 

the diagonalized system: 𝜁𝜁1 = 0.3227,𝜔𝜔1 = 1.6093, 𝜏𝜏2 = 1
3.8615

,𝑔𝑔
^
2 = 0.0398. 

Table 1 provides information on the supermodal peak time and associated peak calculated via our 
method and compares it to the actual peak time and peak obtained by solving the linear ODE. We also 
cumulatively add the peaks to calculate the initial guess. Table 2 provides information on the maximum 
error values for our system calculated using our approach and compares it to the error values obtained 
by directly solving the linear ODE (rightmost column of the Table.) This is also consistent with the plot of 
the error dynamics shown in Fig. 2. 

TABLE 1 Initial Guess Calculation Using a Linear Combination of Supermodes for 𝜂𝜂1. Supermodal Peak 

Time and Peak for 𝜒𝜒
^
𝑖𝑖𝑖𝑖
p − 𝐶𝐶𝑖𝑖𝑖𝑖

[2]𝑓𝑓
^
𝑖𝑖 Found by Solving the Linear ODE are in Columns 2 and 3 from the Left 

and the Ones Calculated Using Our Approach are in Columns 4 and 5. The Table is Arranged in Ascending 
Order of Peak Time and Column 6 is the Cumulative Peak Added in that Order. The Bold Peak Time 
Represents the Initial Guess to Solve (53) 

𝜂𝜂 index ODE Peak 
Time 

ODE 
Peak 

Calculated Peak 
Time 

Calculated 
Peak 

Cumulative 
Peak 

Supermode 
Index 

1 1.0359 
2.4354 

0.0209 
0.0105 

1.0359 
2.4359 

0.0209 
0.0105 

0.0209 
0.0314 

2 
1 

2 1.0359 
2.1654 

0.0021 
0.0377 

1.0359 
2.1651 

0.0020 
0.0377 

0.0020 
0.0397 

2 
1 

 

TABLE 2 Steady-State Error and Peak Error Calculation Using an ODE Solver in Columns 2 and 3 Whereas 
the Same Calculation Using Our Approach is in Columns 4 and 5. The Larger of These Values is the 
Maximum Shown in Column 6 

𝜂𝜂 Index ODE Steady State ODE Peak Calculated Steady State Calculated Peak Maximum Error 
1 
2 

0.0283 
0.0300 

0.0314 
0.0397 

0.0283 
0.0300 

0.0314 
0.0397 

0.0314 
0.0397 

 



 
FIGURE 2. Error vs. time for the network in figure 1. Each curve represents the error dynamics due to the 
power not respecting the symmetries in the two layers of the network. 
 

Using the IRR transformation matrix we find how this error corresponds to the dynamics of the full 

network and the quotient network: 𝜂𝜂1 = √2(𝑋𝑋
^
2 − 𝑋𝑋6) and 𝜂𝜂2 = 2𝑋𝑋

^
1 − (𝑋𝑋2 + 𝑋𝑋3) where 𝑋𝑋

^
1 =

𝑋𝑋1+𝑋𝑋2+𝑋𝑋3+𝑋𝑋4
4

 and 𝑋𝑋
^
2 = 𝑋𝑋5+𝑋𝑋6

2
 are the dynamics of the two nodes of the associated quotient network. 

B. Example 2 
Our second example is an application to the IEEE145 bus network with 𝑛𝑛𝐺𝐺 = 50 generator nodes, 𝑛𝑛𝐿𝐿 =
95 load nodes, and 422 transmission lines [50]. The network is shown in Fig. 3a and the corresponding 
quotient network in Fig. 3b. We assume that the power produced by the generator nodes is equal 
to 𝑞𝑞𝑖𝑖𝐺𝐺 = 0.2 and the power absorbed by the load nodes is equal 𝑞𝑞𝑖𝑖𝐿𝐿 = −0.1053. 

 
 
FIGURE 3. (a) Full network representation of IEEE145 test grid. (b) Quotient network representation of 
IEEE145 test grid. Circles indicate load nodes/clusters and squares indicate generator nodes/clusters. 
Nodes belonging to the same clusters are colored the same in (a) and the same colors are used for the 
clusters shown in (b). Nodes colored black belong to a trivial cluster. 
 

Using the IRR transformation, we obtain twentyfour transverse blocks, of which nineteen are scalar, 
three are 2 × 2, one is 3 × 3 and one is 4 × 4. These blocks represent the deviation dynamics of the 
individual nodes compared to their clusters. To demonstrate our method, we choose the 3 × 3 blocks, 
which corresponds to the error dynamics of three intertwined clusters, with two nodes each. The first 
two clusters are formed of load nodes {121,122} and {76,81}, while the third cluster is formed of 
generator nodes {21,22}. These three clusters can be seen in Figure 3, where their nodes are 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6287639/9668973/9815059/sorre2-3188392-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6287639/9668973/9815059/sorre3ab-3188392-large.gif


represented as red circles, green circles and blue squares on the top right of Fig. 3a, respectively. They 
map to similarly colored and shaped nodes of the quotient network, all shown in the bottom left of Fig. 
3b. 

In order to characterize the error dynamics, we increase the power of node 76 to −0.2 to induce an 
asymmetry in power within that cluster. We also increase the power of node 22 to 0.5053 in order to 
maintain the network balance. Since nodes in the same clusters do not have the same power, it is 
expected that the quotient network dynamics will not represent the full network dynamics, which 
results in the aforementioned error dynamics. As in the previous examples, we are interested in 
characterizing the maximum overshoot of the error dynamics. Our chosen 3×3 block is associated with 
the following system of equations: 

�
0 0 0
0 0 0
0 0 1

� 𝜂𝜂
¨
𝜂𝜂
¨

+ �
1 0 0
0 1 0
0 0 0.9

� 𝜂𝜂
˙
𝜂𝜂
˙

+ �
19 −1 −1
−1 2 0
−1 0 1

� 𝜂𝜂𝜂𝜂

= �
0

0.0670
0.2159

�

 

(60) 

Using our method, we diagonalize this system, 

�
1 0 0
0 0 0
0 0 0

� 𝜂𝜂
¨
𝜂𝜂
¨

+ �
0.9040 0 0

0 1.9402 0
0 0 19.0557

� 𝜂𝜂
˙
𝜂𝜂
˙

+ �
19 −1 −1
−1 2 0
−1 0 1

� 𝜂𝜂𝜂𝜂 = �
0.2171
0.0991
−0.0144

�

 

(61) 

We also obtain the transformation matrices and initial condition: 



𝑇𝑇1 = �
0.0534 0.0832 4.3585
0.0174 1.3912 −0.2555
1.0003 0.0276 0.0126

� ,

𝑇𝑇2 = �
−0.0040 0 0
−0.0196 0 0
−0.0002 0 0

�

𝑇𝑇3 = 10−03 × �
0.0163 0.0791 0.0008
0.0791 0.3833 0.0039
0.0008 0.0039 0.0000

� ,

𝜒𝜒𝜒𝜒(0) =

⎣
⎢
⎢
⎢
⎢
⎡

0
0
0

−0.0014
0
0 ⎦

⎥
⎥
⎥
⎥
⎤

.

 

Using parameters taken from the diagonalized system and applying the same method as in the previous 
example, we can calculate the initial guess for each 𝜂𝜂, which is shown for 𝜂𝜂1 in Table 3. This initial guess 
is then used to compute the maximum errors shown in Table 4. The values in the tables are consistent 
with the error dynamics shown in Fig. 4. 

TABLE 3 Initial Guess Calculation Using a Linear Combination of Supermodes for η1. Supermodal Peak 

Time and Peak for 𝜒𝜒
^
𝑖𝑖𝑖𝑖
p − 𝐶𝐶𝑖𝑖𝑖𝑖

[2]𝑓𝑓
^
𝑖𝑖 found by Solving the Linear ODE are in Columns 1 and 2 from the Left and 

the Ones Calculated Using Our Approach are in Columns 3 and 4. The Table is Arranged in Ascending 
Order of Peak Time and Column 5 is the Cumulative Peak Added in that Order. The Bold Peak Time 
Represents the Initial Guess to Solve (53) 

ODE Peak 
Time 

ODE 
Peak 

Calculated Peak 
Time 

Calculated 
Peak 

Cumulative 
Peak 

Supermode 
Index 

0.2099 0 0.2099 0 0 3 
2.0616 0.0022 2.0616 0.0022 0.0022 2 
3.7260 0.0146 3.7255 0.0146 0.0168 1 

 

TABLE 4 Calculation of Steady-State and Peak for all 3 𝜂𝜂 s. In Columns 2 and 3 we Have the Steady-State 
Error and Peak Error Calculated Using an ODE Solver, Whereas in Columns 4 and 5 we Report Values 
Calculated Using Our Approach. Column 6 Shows the Maximum Value Between the Calculated Steady-
State and Peak Errors 

𝜂𝜂 Index ODE Steady State ODE Peak Calculated Steady State Calculated Peak Maximum Error 
1 0.0142 0.0166 0.0142 0.0166 0.0166 
2 0.0406 0.0416 0.0406 0.0416 0.0416 
3 0.02301 0.2742 0.2301 0.2742 0.2742 

 



  
FIGURE 4. Error vs. time for the network in figure 3. Each curve represents the error dynamics in the 3 
intertwined clusters presented in example 3. 
 

Like in the previous examples, the ηs can be expressed in terms of displacements of nodes of the full 

network and the quotient network. 𝜂𝜂1 = √2(𝑋𝑋
^
95 − 𝑋𝑋211), 𝜂𝜂2 = √2(𝑋𝑋

^
20 − 𝑋𝑋76), 𝜂𝜂3 = √2(𝑋𝑋

^
20 − 𝑋𝑋21), 

where 𝑋𝑋
^
𝑖𝑖 represents the displacement of the ith quotient node (the average of the displacements of the 

individual nodes in that cluster), and 𝑋𝑋𝑖𝑖 is the displacement of node 𝑖𝑖 of the full network. 

SECTION VI. Conclusion 
In this paper, we have specialized the structure-preserving model of the swing equation to a multi-layer 
network with two layers, one formed of generator nodes and one formed of motor nodes. In the 
presence of symmetries, a lower dimensional model for the dynamics is provided by the so-called 
quotient network. However, such representation is often inexact when nodes in the same cluster 
generate or consume different amounts of power, which makes it important to characterize how much 
the actual network dynamics deviates from that of the quotient network. 

A main difference with large part of the literature is that we have relaxed the commonly used 
assumption of homogeneous damping coefficients and considered the general case that these can be 
different from node to node. By using a combination of group representation theory and the solution of 
the quadratic eigenvalue problem, we have reduced the transient analysis of the linear swing equation 
in terms of a set of independent first order and second order supermodes. Each supermode is fully 
defined by a minimal set of parameters. This has led to a characterization of the transient error 
dynamics for the individual nodes of the multilayer network and the development of a method to 
compute the maximum value of the transient error. We have presented application of this method to 
two examples of interest, one of which is the IEEE 145-bus test grid, and demonstrated how it can be 
used to characterize the deviation between the dynamics of the full network and that of the reduced 
quotient network. 
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