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A Review of Sex Determining Mechanisms in 
Geckos (Gekkota: Squamata) 
 

T. Gamble 
Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 
 

Abstract 
Geckos are a species-rich clade of reptiles possessing diverse sex determining mechanisms. Some species 

possess genetic sex determination, with both male and female heterogamety, while other species have 

temperature-dependent sex determination. I compiled information from the literature on the taxonomic 

distribution of these sex determining mechanisms in geckos. Using phylogenetic data from the literature, I 

reconstructed the minimum number of transitions among these sex determining mechanisms with parsimony-

based ancestral state reconstruction. While only a small number of gecko species have been characterized, 

numerous changes among sex determining mechanisms were inferred. This diversity, coupled with the high 

frequency of transitions, makes geckos excellent candidates as a model clade for the study of vertebrate sex 

determination and evolution. 
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Introduction 
The near universal occurrence of sexual reproduction in animals suggests an ancient origin and predicts the 

presence of conserved sex determining mechanisms. As expected, many of the downstream elements in sex 

determining networks are conserved, with homologous genes performing similar roles in a wide variety of 

animal taxa. The regulatory switch that controls these conserved pathways, though, can exhibit incredible 

variety [Zarkower, 2001; Barske and Capel, 2008]. In vertebrates, the regulatory switch can be either genetic or 

environmental or, in some cases, both [Bull, 1983; Shine et al., 2002]. In species with genetic sex determination 

(GSD), the sex of the developing embryo is determined by genetic factors at fertilization. Within GSD species 

there are 2 primary sex determining systems. In some species, males are heterozygous for the master sex 

determining gene, this is the familiar XY system found in mammals. In other species, females are the 

heterogametic sex, this is the ZW system found in birds and snakes. Both systems can be thought of as a simple 

Mendelian model with 2 different alleles of the master sex determining gene. Homozygosity leads to the 

development of one sex while heterozygosity leads to the other. In species with environmental sex 

determination (ESD), environmental factors during embryonic development determine sex. Temperature is the 

most common environmental cue in tetrapods, a phenomenon known as temperature-dependent sex 

determination (TSD). The conservation of downstream mechanisms in the sex determining pathway makes the 

theoretical transition between GSD and TSD easy through simple changes in the master regulator. This could 

occur through some temperature sensitive mutation in a TSD species or the acquisition of a sex determining 

function of some autosomal gene in a GSD species. Understanding how different master regulators initiate 

gonadogenesis and how transitions occur among different sex determining mechanisms (SDMs) is an exciting, 

emerging field in evolutionary and developmental biology. 

Transitions between different SDMs have occurred repeatedly in vertebrates [Hillis and Green, 1990; Janzen and 

Phillips, 2006; Mank et al., 2006; Organ and Janes, 2008]. Sister taxa at a variety of hierarchical taxonomic levels 

exhibit alternate sex determining modes. Crocodilians, for example, possess TSD while birds have GSD [Lang and 

Andrews, 1994]. The turtle family Carettochelidae possesses TSD while its sister group, the Trionychidae has GSD 

[Janzen and Phillips, 2006]. At the generic level, a master sex determining gene, DMY, has been identified in 

2 Oryzias fish species, O. latipes and O. curvinotus [Matsuda et al., 2002, 2003; Nanda et al., 2002]. This gene is 

absent in 3 other species in the genus, O. luzonensis, O. hubbsi and O. mekongensis [Matsuda, 2005], which 

suggests that a different mechanism is responsible for sex determination in these species. Similarly, in the 

Japanese frog Rana rugosa, ZW sex chromosome systems have evolved from the ancestral XY system twice 

independently [Ogata et al., 2008]. While the exact mechanisms necessary to effect the transition between TSD 

and GSD are not yet well understood, judging from its frequency, the transition is assumed to be easy to 

accomplish [Janzen and Phillips, 2006; Mank et al., 2006]. 

The extreme plasticity of sex determining mechanisms and the ease with which transitions among sex 

determining mechanisms can occur is best exemplified by research conducted on the worm Caenorhabditis 

elegans [Hodgkin, 2002]. Typically, C. elegans possess 2 sexual phenotypes: males and self-fertilizing 

hermaphrodites, and sex is determined by the ratio of sex chromosomes to autosomes [Zarkower, 

2001]. Hodgkin [2002] described mutations in a variety of genes that mimic the various sex determining 

mechanisms found in different animal species. Numerous autosomal loci were turned into master sex 

determining genes, thereby converting each of the 5 C. elegans autosomes into sex chromosomes. Several 

mutations mimicked TSD, one strain produced males at low incubation temperatures and hermaphrodites at 

high incubation temperatures, while a separate mutation produced the opposite pattern. The variety of gene 

types that Hodgkin [2002] recruited into the master sex determining role is also astounding and includes 

transmembrane receptors, transcription factors, a phosphatase, cytoplasmic proteins, a protease and a tRNA! It 
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is readily apparent from this research that in nature almost any molecule could be recruited into becoming a 

master sex determining gene and that transitions among sex determining mechanisms are easy to accomplish. 

Sex chromosomes evolve from autosomes [Muller, 1914; Ohno, 1967]. Evidence that a pair of sex chromosomes 

has a common ancestor comes from the presence of shared genes in the nonrecombining regions of the 

chromosomes, and has been found in the sex chromosomes of birds [Fridolfsson et al., 1998; Graves and Shetty, 

2001], mammals [Graves and Shetty, 2001], snakes [Matsubara et al., 2006], and a gecko [Kawai et al., 2009]. 

Changing a pair of autosomes into sex chromosomes requires 2 provisions: the acquisition of a sex determining 

function and suppression of recombination. Gene loss can lead to a degradation of the nonrecombining, 

heterozygous region and may ultimately lead to the development of morphologically heteromorphic, 

chromosomes [Ohno, 1967; Charlesworth et al., 2005]. One prediction of this model is that sex chromosomes 

early in this process should be morphologically homomorphic, while older, more derived sex chromosomes 

should be morphologically heteromorphic [Ohno, 1967; Charlesworth et al., 2005]. It follows then that while the 

presence of morphologically heteromorphic sex chromosomes is a strong indicator of GSD in a species, the lack 

of heteromorphic sex chromosomes does not rule out the possibility of GSD, especially in species with newly 

evolved sex determining mechanisms [Valenzuela et al., 2003]. 

The tremendous variation in vertebrate sex determination presents an opportunity to understand fundamental 

processes involved in the evolution of sex determining mechanisms. Traditional model organisms, such as mice, 

have contributed considerably to our understanding of how master regulators initiate gonadogenesis in 

vertebrates. Unfortunately, a lack of diversity of sex determining mechanisms makes most mammals poor 

models for understanding the evolution of transitions among sex determining mechanisms. This emerging 

research requires, therefore, the development of new model systems that reflect the variation in sex 

determining mechanisms found in nature. Reptiles in particular have been identified as models to study sex 

determination and the evolution of different sex determining mechanisms (fig. (fig.1)1) [Sarre et al., 

2004; Janzen and Phillips, 2006]. Here, I discuss one of the most species-rich reptilian lineages, geckos, and their 

possible use as a model clade for the study of the evolution of sex determining mechanisms. 
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Fig. 1 Sex determining mechanisms in major tetrapod clades. XY indicates clade contains species with male heterogamety, 
ZW indicates clade contains species with female heterogamety, TSD indicates clade contains species with temperature 
dependent sex determination and GSD indicates clade contains species with genetic sex determination not associated with 
heteromorphic sex chromosomes. Phylogeny compiled from the following sources: tetrapods [Hugall et al., 2007]; turtles 
[Iverson et al., 2007]; squamates [Vidal and Hedges, 2009]. Sex determining mechanisms were taken from multiple sources, 
including recent reviews of vertebrate sex determining mechanisms [Hillis and Green, 1990; Harlow, 2004; Janzen and 
Krenz, 2004; Valenzuela, 2004; Andrews, 2005; Organ and Janes, 2008]. 

 

Geckos are a diverse clade of lizards consisting of over 1,300 described species comprising 14% of all reptile 

species [Uetz, 2009]. Geckos are geologically ancient, with origins in the Jurassic [Conrad and Norell, 2006], and 

are the sister taxon to the remaining lizards and snakes, exclusive of the limbless dibamids [Vidal and Hedges, 

2009]. Geckos are quite amenable to studying questions related to sex determining mechanisms. Most 

importantly, they possess all of the major vertebrate sex determining mechanisms, including GSD with both 

male and female heterogamety, and TSD. The variation in sex chromosomes is itself amazing. Indeed, within the 

gekkota there are no documented genera where all the species are known to possess heteromorphic sex 

chromosomes and no examples of sister species sharing homologous heteromorphic sex chromosomes [Moritz, 

1990]. Such exceptional reproductive diversity makes geckos an ideal group to examine the transitions between 

different reproductive modes. Here, I review current knowledge about gekkotan sex determining mechanisms, 

estimate the minimum number of transitions among sex determining systems in geckos and highlight the 

potential importance of geckos as models in the study of vertebrate sex determination. 

Gekkotan Sex Determining Mechanisms 
Geckos are currently divided into 7 families (fig. (fig.2).2). Here, I summarize published information regarding sex 

determination and sex chromosomes for species in each gekkotan family. 
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Fig. 2 Phylogenetic relationships among gekkotan families [Gamble et al., 2008b] showing the number of described species 
in each family followed by the number of species with known sex determining mechanism. The variety of sex determining 
mechanisms described for species in each family are also shown. 

 

Carphodactylidae 
Nothing is known about the sex determining mechanisms of the Australian Carphodactylidae. Only 6 of 28 

described species have been karyotyped, showing no evidence of heteromorphic sex chromosomes, and only 

one of these species, Underwoodisaurus milii has a published karyotype for both sexes [Matthey, 1933; King, 

1987]. There are no data concerning the effects of incubation temperature on hatchling sex. 

Diplodactylidae 
Diplodactylidae occur throughout Australia, New Zealand and New Caledonia. While a large number of species 

have been karyotyped, there are no examples of heteromorphic sex chromosomes. There are some published 

data concerning hatchling sex ratios. For example, a balanced sex ratio, 8 males to 5 females, was reported 

among hatchling Pseudothecadactylus lindneri at 29–33°C [Sonnemann, 1998]. There is some evidence that 

several of the New Caledonian Rhacodactylus species possess TSD [Seipp and Henkel, 2000; de Vosjoli et al., 

2003]. Three species, R. auriculatus, R. leachianus and R. sarasinorum, have been karyotyped and show no 

heteromorphic sex chromosomes [King, 1987]. Rhacodactylus ciliatus, and R. leachianus produce a higher 

proportion of females at low incubation temperatures and a higher proportion of males at higher incubation 

temperatures [Seipp and Henkel, 2000; de Vosjoli et al., 2003]. There is conflicting information for R. 

auriculatus; Seipp and Henkel [2000] report more males at low incubation temperatures and more females at 

high incubation temperatures, while de Vosjoli et al. [2003] report the opposite pattern. Rhacodactylus 

sarasinorum produces more males at low incubation temperatures and more females at high incubation 

temperatures [Myers, 1997; Seipp and Henkel, 2000]. These incubation data are reported by hobbyists and 

breeders keeping geckos as pets and the number of individuals hatched out at different temperatures is not 

reported. This lack of quantitative data makes even simple statistical comparisons impossible. Large numbers of 

clutches are necessary when performing incubation experiments as most gecko species have a fixed clutch size 

of 2 eggs [Kluge, 1987]. Rhacodactylus are popular in the pet trade so it should not be difficult to perform 

rigorous incubation experiments to better understand the sex determining mechanisms of these geckos. 
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Eublepharidae 
Sex determining mechanisms are well characterized for several species of Eublepharidae, most notably TSD in 

the leopard gecko, Eublepharis macularius. TSD was first described in E. macularius as a pattern with females 

being produced at low incubation temperatures and males at high incubation temperatures [Thorogood and 

Whimster, 1979; Wagner, 1980a, b; Bull, 1987], a pattern known as Type Ib TSD [Ewert and Nelson, 1991]. 

Additional incubation experiments at a wider range of temperatures eventually confirmed that E. 

macularius possessed Type II TSD [Viets et al., 1993], with females produced at both high and low incubation 

temperatures and males produced at intermediate temperatures. 

Incubation temperature influences more than just sex in E. macularius. Several experiments, designed to 

uncouple incubation temperature from sex, often through the application of exogenous hormones to the 

embryo, have provided unique insights into phenotypic traits other than sex that are regulated by incubation 

temperature. Head size, for example, is typically larger in males than in females, although females incubated at 

male-biased temperatures have wider heads than females produced at female-biased temperatures [Crews, 

1998]. Incubation temperature also affects growth rate, blood hormone levels, and breeding behavior [Flores et 

al., 1994; Tousignant and Crews, 1995; Coomber et al., 1997]. The linkage of temperature and phenotype is a 

prerequisite for the hypotheses that TSD persists when incubation temperature differentially affects male and 

female fitness and suggests geckos may be appropriate models to test these hypotheses [Charnov and Bull, 

1977; Rhen and Lang, 1995; Shine, 1999]. 

Eublepharis macularius is the only gecko species with published data on gene expression in the sex determining 

pathway. SOX9, a transcription factor crucial to testis development in a variety of vertebrates [Western and 

Sinclair, 2001; Chaboissier et al., 2004] is expressed in urogenital tissues from both male and female E. 

macularius up to the temperature-sensitive period. After the temperature-sensitive period, SOX9 is expressed 

only in male urogenital tissues [Valleley et al., 2001]. The apparent conservation of SOX9 as a testis-determining 

factor in a gecko provides support for the functional conservation of downstream elements in the sex 

determining pathway [Zarkower, 2001]. 

TSD is known from several other eublepharid genera as well. TSD is well documented in the West 

African Hemitheconyx caudicinctus [Wagner, 1980a; Anderson, 1993; Viets et al., 1994]. Like E. macularius, this 

species exhibits Type II pattern TSD [Viets et al., 1994]. The East African genus Holodactylus is poorly known and 

not frequently bred in captivity. One might suspect, given its phylogenetic proximity to other TSD species, that it 

might also possess TSD. Sex ratio data suggests temperature may influence hatchling sex in 

several Goniurosaurus species [Seufer et al., 2005]. Seufer et al. [2005] report on incubating over 160 eggs from 

6 Goniurosaurus species. Most eggs, 94, were from G. splendens. Eggs were incubated at fluctuating 

temperatures (26–28°C) with a nighttime temperature drop (25–26°C). Over 80% of G. orientalis, G. 

splendens and G. kuroiwae hatchlings were females. An even sex ratio was produced from the remaining 

species, G. araneus and G. luii with 50% females and G. lichtenfelderi with 60% females, which is consistent with 

either TSD or GSD. Equal hatchling sex ratios in G. araneus, G. luii and G. lichtenfelderi could, if these species 

possess TSD, be the result of incubation temperatures near the pivotal temperature. The skewed sex ratios in G. 

orientalis, G. splendens and G. kuroiwae, incubated at the same temperatures, may reflect a shift in pivotal 

temperature between the 2 groups of species. Pivotal temperatures of TSD species are known to change with 

latitude [Bull et al., 1982; Ewert et al., 2005]. Goniurosaurus species occur over a wide latitudinal gradient 

with G. araneus, G. luii and G. lichtenfelderi occurring in Northern Vietnam, Southeast China, and Hainan, 

while G. orientalis, G. splendens and G. kuroiwae occur farther North in the Ryukyu Islands. With a lower pivotal 

temperature, the Northern species would presumably be incubating in female-biased temperatures while 

Southern species remain near their pivotal temperature. Controlled incubation experiments are necessary to 

rigorously test this hypothesis but the data presented by Seufer et al. [2005] are compelling. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B126
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B126
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B146
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B147
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B36
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B143
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B24
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B24
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B39
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B39
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B131
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B23
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B19
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B19
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B109
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B117
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B149
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B149
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B17
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B140
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B152
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B146
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B144
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B144
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B115
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B115
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B13
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B37
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855288/#B115


The New World genus Coleonyx is the sister taxon to the Old World clade containing Eublepharis, Hemitheconyx, 

Holodactylus and Goniurosaurus [Grismer, 1988]. There is no evidence of heteromorphic sex chromosomes in 2 

species that have been karyotyped, C. switaki and C. variegatus [Gorman, 1973; Murphy, 1974]. Four species 

show balanced sex ratios at a variety of incubation temperatures, which suggests a genetic sex determining 

mechanism [Viets et al., 1994; Bragg et al., 2000; Kratochvil et al., 2008]. 

The change in sex determining mechanism between GSD in Coleonyx and TSD in the clade 

containing Goniurosaurus, Eublepharis and Hemitheconyx provides an excellent opportunity to study a transition 

in sex determining system. Many studies have found value in comparing TSD and GSD species [Sarre et al., 

2004; Shine et al., 2007; Valenzuela and Shikano, 2007; Valenzuela, 2008]. Here is an example where the 2 

systems are each other's closest relatives. Indeed, several factors contribute to the exceptional nature of this 

model including: a robust phylogeny for the group [Grismer, 1988; Grismer et al., 2002]; several species are 

amenable to captivity and prolific breeders [Seufer et al., 2005]; and 1 species, E. macularius, is well 

characterized and an emerging model in the study of reptilian TSD [Crews, 1998; Shoemaker and Crews, 2009]. 

Ideally, one could verify the directionality of the shift (e.g. TSD to GSD or GSD to TSD) in sex determining 

mechanism and search for correlates to the change and the subsequent maintenance of the system. A transition 

to GSD in Coleonyx from a TSD ancestor has been implied in some phylogenetic ancestral state reconstruction 

[Pokorna and Kratochvil, 2009] although the ancestral state is equivocal in other analyses [Janzen and Phillips, 

2006; Pokorna and Kratochvil, 2009]. Inclusion of Aeluroscalabotes felinus, the sister species to the remaining 

Eublepharidae [Grismer, 1988], would likely aid in the resolution of that transition. A high priority, therefore, 

should be placed on assessing the sex determining mechanism of A. felinus. TSD has been implied, but there 

were no data provided and hatchlings from just 10 eggs were examined [Lui, 1996]. 

Gekkonidae 
Gekkonidae are the largest gekkotan family with almost 800 described species. Although sex determining 

mechanisms are known for only a fraction of the species there is exceptional diversity in the sex determining 

mechanisms that are known. 

The Australo-Pacific genus Gehyra has been the subject of numerous chromosomal studies. Three forms show 

evidence of a ZW sex determining mechanism. Female heterogamety was observed in some Northern 

populations of Gehyra australis [King, 1983]. Female heterogamety was also observed in a population 

of Gehyra cf. nana from the MacDonnell ranges in central Australia [Moritz, 1986]. Gehyra 

purpurascens possesses a ZW sex determining system with 6 distinct W chromosome patterns distributed within 

and among populations across the eastern portion of G. purpurascens range [Moritz, 1984a]. There is some 

evidence that the sex chromosomes in these 3 species are homologous and derived from the same autosomal 

pair [Moritz, 1990]. 

Several species of Lepidodactylus have been karyotyped, most notably the parthenogenetic Lepidodactylus 

lugubris. The largest chromosomal pair in the L. lugubris karyotype was heteromorphic in both size and banding 

[Volobouev and Pasteur, 1988]. This was assumed to be a case of female heterogamety. The possession of a ZW 

system in L. lugubris offers the best explanation for the occasional male specimens that occur since it is 

conceivable that the ZZ complement could be reconstituted from a ZW individual [Volobouev and Pasteur, 

1988; Röll and von Düring, 2008]. In contrast, if L. lugubris possessed male heterogamety, with XX females, there 

is no way an XY individual could be spontaneously produced. Parthenogenesis in vertebrates is thought to occur 

through apomixis or premeiotic endomitosis [Dawley, 1987] where diploid ova produce viable young without 

the contribution of sperm. Premeiotic endomitosis occurs in parthenogenetic taxa of hybrid origin such as the 

lizard Aspidoscelis uniparens [Cuellar, 1971] and hybrid Medaka fish (genus Oryzias) [Shimizu et al., 1997] and is 

presumed to be the primary means of reproduction in parthenogenetic geckos [Röll and von Düring, 2008]. 
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The genus Gekko is perhaps one of the most interesting gekkotan genera with regard to sex determining 

mechanisms. Many species have been karyotyped and 3 species, G. gecko, G. japonicus and G. 

hokouensis, possess heteromorphic sex chromosomes [Yoshida and Itoh, 1974; Solleder and Schmid, 

1984; Kawai et al., 2009]. Gekko gecko has an XY sex determining mechanism [Solleder and Schmid, 1984] 

although this species had been karyotyped several times before with no observed heteromorphic sex 

chromosomes [Cohen et al., 1967; De Smet, 1981; Wu and Zhao, 1984]. The failure to observe heteromorphic 

sex chromosomes in the previous studies is certainly related to the banding techniques used by Solleder and 

Schmid [1984] but could also be due to the presence of cryptic, undescribed species. While there has yet to be a 

comprehensive review of G. gecko across its range, preliminary evidence suggests several cryptic lineages 

within G. gecko [Qin et al., 2007]. The largely equal amounts of heterochromatin observed on the X and Y 

chromosomes led Solleder and Schmid [1984] to suggest that the sex chromosomes of G. gecko were at an early 

stage of differentiation. This seems very plausible when examined in a phylogenetic context (fig. (fig.3)3) 

although data from additional species of Gekko are clearly needed to confirm this. Interestingly, the Y 

chromosome of G. gecko was larger than the X chromosome, a condition also found in G. japonicus [Yoshida and 

Itoh, 1974]. 

 

 

Fig. 3 Ancestral state reconstructions of gekkotan sex determining mechanisms using parsimony. Phylogeny was 
reconstructed using the supertree method from 7 published phylogenies. Species were assigned to 3 sex determining 
mechanisms: Temperature dependent sex determination (TSD), male heterogamety (XY), and female heterogamety (ZW). 
The ancestral condition of the outgroup was coded as a different character state in each of 3 analyses. Polymorphic states 
are shown as multi-colored circles. Coleonyx and Paroedura are shown in bold. These 2 genera were coded as either ZW or 
XY and their sex determining mechanisms were estimated as part of the analysis. 

 

Individuals of Gekko japonicus have been karyotyped several times [Nakamura, 1932; Yoshida and Itoh, 

1974; Chen et al., 1986]. Yoshida and Itoh [1974] found evidence of heteromorphic sex chromosomes in the 

male G. japonicus karyotyped, where the X was the smallest telocentric chromosome and the Y a larger 

acrocentric chromosome. Chen et al. [1986] found a very different karyotype in G. japonicus from Eastern China, 

with no evidence of heteromorphic sex chromosomes. The differences between the 2 populations could indicate 

the presence of a cryptic species. 

Incubation experiments of G. japonicus indicate it possesses TSD [Tokunaga, 1985]. The co-occurrence of 

heteromorphic sex chromosomes and TSD in G. japonicus is intriguing although the data come from 2 separate 

studies and should be viewed cautiously. Yoshida and Itoh [1974] karyotyped 1 male and 1 female G. 

japonicus from an unknown locality. Tokunaga [1985] collected G. japonicus from Fukuoka City, Kyushu for his 

incubation experiments. One critique is that the geckos used in the 2 studies were different, cryptic species 

[Sarre et al., 2004]. This is possible, as several new species of Gekko have recently been described from the 

islands of southern Japan [Toda et al., 2001, 2009]. Widespread hybridization in southern Japan between G. 
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japonicus and the closely related G. tawaensis [Toda et al., 2006] further complicates matters. Assuming the 

geckos in question were indeed the same species, the co-occurrence of heteromorphic sex chromosomes and 

TSD in G. japonicus would add further evidence to the hypothesis that TSD and GSD are extremes of a 

continuum, not discrete states [Shine et al., 2002; Sarre et al., 2004]. Unfortunately, the lack of voucher 

specimens and a failure to note the collecting locality, in the case of the Yoshida and Itoh [1974] paper, makes 

this problem intractable. Resolution will likely require a repetition of the experiments with geckos from the 

same locality. 

The problems associated with interpreting the disparate results of these 2 G. japonicus studies highlight the 

need for vouchers in sex determination research. Accurate identification of the species being examined is crucial 

for any comparative work. In this case, the inability to verify species identification made interpreting the results 

impossible since the disparities can be dismissed simply as differences between species. Several steps can be 

taken to avoid confusion like this from occurring in the future. First, vouchers of karyotyped individuals should 

be deposited in public museums so other scientists can examine them and verify identification. Second, 

karyotyped animals should be genotyped and have genetic sequences submitted to a public database such as 

GenBank, EMBL or DDBJ. Investigators can simply sequence a fragment of a mitochondrial gene and follow basic 

guidelines like those set up for DNA barcoding [Tautz et al., 2003; Vences et al., 2005]. Implementing one or, 

ideally, both of these practices would go a long way toward reducing the confusion that can result from a lack of 

confidence in species identification. 

Kawai et al. [2009] karyotyped G. hokouensis from Okinawa, Japan. They examined 9 individuals from each sex 

and described heteromorphic sex chromosomes in the females. The sex chromosomes in the Okinawa G. 

hokouensis both possessed the same complement of 6 genes as determined by fluorescent in situ hybridization 

(FISH) suggesting they are in an early stage of differentiation. The absence of heteromorphic sex chromosomes 

in G. hokouensis specimens from eastern China [Chen et al., 1986] supports this hypothesis. FISH results 

supported the homology between the sex chromosomes of G. hokouensis and the sex chromosomes of birds 

[Kawai et al., 2009]. 

Species in the genus Phelsuma occur on Madagascar and other Indian Ocean islands as well as one species on 

the East coast of Africa. Eight species have been karyotyped with no evidence of heteromorphic sex 

chromosomes [Aprea et al., 1996]. Several species show evidence of TSD. Phelsuma grandis and P. dubia both 

produce females at low incubation temperatures and males at high incubation temperatures [Osadnik, 

1987; Viets et al., 1994]. Phelsuma guimbeaui produced no males at a range of incubation temperatures [Tytle, 

1994; Viets et al., 1994] although males are known to occur in this species and are required for reproduction 

[McKeown, 1989]. Several other Phelsuma species, P. pusilla, P. guentheri, P. laticauda, and P. 

madagascariensis, are suspected as having TSD although the data are minimal and far from conclusive [Bloxam 

and Tonge, 1980; Howard, 1980; Viets et al., 1994]. Other species, P. kochi, P. cepediana, P. ornata and P. 

sundbergi, show balanced hatchling sex ratios consistent with either TSD or GSD [Viets et al., 1994]. 

The genus Lygodactylus is closely related to Phelsuma [Austin et al., 2004]. Only 1 species, L. picturatus, has 

been karyotyped [Castiglia, 2004]. Castiglia [2004] reported 2n = 40 in the male karyotype but a variable number 

of chromosomes in the female, 2n = 41 in 18 mitotic spreads, 2n = 40 in 4 spreads, and 2n = 39 in 2 spreads. 

There are several possible reasons for this disparity in diploid number between male and female specimens. It is 

possible that the 6 cells with 2n less than 41 were the result of some technical inaccuracy. It is also possible that 

the additional chromosomes may be supernumerary or B chromosomes. Castiglia [2004] also mentioned the 

possibility of an OW sex determining system, similar to the sex chromosomes of the frog Leiopelma 

hochstetteri [Green, 1988], where females possess a characteristic supernumerary chromosome that behaves as 

a sex chromosome. Additional L. picturatus specimens should be examined to verify the presence of this unique 

sex chromosome mechanism. 
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The Malagasy species Paroedura picta shows balanced sex ratios at a range of incubation temperatures 

[Blumberg et al., 2002; Kratochvil et al., 2008]. This pattern is consistent with GSD. 

Populations of Cyrtodactylus pubisulcus from western Sarawak, Malaysia possessed a ZW sex determining 

system [Ota et al., 1992]. Several other Cyrtodactylus species have been karyotyped with no evidence of 

heteromorphic sex chromosomes [Ota et al., 1992]. 

The triploid, parthenogenetic species Hemidactylus vietnamensis possessed a fixed heteromorphism at 

chromosome 3 [Darevsky et al., 1984]. This is consistent with the female heterogamety reported in other 

parthenogenetic gecko species, e.g. Heteronotia binoei [Moritz, 1984b] and Lepidodactylus lugubris [Volobouev 

and Pasteur, 1988]. Hemidactylus mabouia was reported as having GSD [Pokorna and Kratochvil, 2009] and the 

authors cited McBee et al. [1987] as the source. This is in error, McBee et al. [1987] make no mention of GSD in 

the manuscript and state that H. mabouia possessed no heteromorphic sex chromosomes. 

One population of the Asian leaf-toed gecko, Dixonius siamensis from Northern Thailand, possessed a ZW sex 

determining system [Ota et al., 2001]. Individuals from 3 other populations showed no evidence of 

heteromorphic sex chromosomes. Recent phylogenetic analyses indicate a close relationship among the 

genera Dixonius, Nactus and Heteronotia [Jackman et al., 2008]. There is no evidence of heteromorphic sex 

chromosomes in any of the Nactus species studied to date but, like Heteronotia, there are several 

parthenogenetic lineages [Moritz, 1987; Donnellan and Moritz, 1995]. 

The Australian genus Heteronotia consists of 3 described species, one of which, H. binoei, is a complex of diploid 

sexual lineages and 2 triploid, parthenogenetic lineages [Moritz, 1983, 1990; Strasburg and Kearney, 2005]. 

Several of the different lineages possessed heteromorphic sex chromosomes with female heterogamety [Moritz 

et al., 1990]. Mapping the sex chromosomes onto a phylogeny, Moritz [1990] inferred that heteromorphic sex 

chromosomes evolved multiple times independently from a homomorphic ancestor. Additionally, the different 

sex chromosome variants were easily distinguishable among each other based on C-banding. The multiple 

origins and large number of W chromosome variants make Heteronotia an excellent group to study sex 

chromosome evolution within Gekkota. 

Phyllodactylidae 
Several species of Phyllodactylidae have been karyotyped and one species, Phyllodactylus lanei from Guerrero, 

Mexico, showed evidence of heteromorphic sex chromosomes [King, 1991]. Recently, the identification of King's 

specimens has been called into question [Castiglia et al., 2009]. Castiglia et al. [2009] karyotyped several 

individuals, from both sexes, of P. lanei from Jalisco, Mexico. They found no evidence of heteromorphic sex 

chromosomes in their specimens. The differences between the 2 studies are very likely due to the examination 

of different species. Three other Phyllodactylus species occur in Guerrero in addition to P. lanei, they are: P. 

tuberculosus, P. delcampoi and P. boardi [Dixon, 1964]. It is possible that King [1991] examined one of these 

species. It is also possible that differences between the 2 studies resulted from geographic variation among 

populations of P. lanei, particularly since there are several described subspecies [Dixon, 1964; Castro-Franco and 

Uribe-Pena, 1992]. Regardless of the exact cause of the discrepancy, like the previously mentioned problems 

with Gekko japonicus, the inability to verify specimen identification hampers the comparative value of the 

results. 

The North African genus Tarentola has several species that show evidence of TSD [Nettmann and Rykena, 

1985]. Nettmann and Rykena [1985] hatched 81 juveniles from 6 Tarentola species and all of the hatchlings 

were females. The majority of the eggs were from just 2 species, 33 juvenile T. mauritanica and 23 T. b. 

hierrensis. Eggs were incubated at temperatures between 27–30°C, either at a constant temperature within this 
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range or with daily fluctuations between these 2 temperatures. None of the Tarentola species that have been 

karyotyped show evidence of heteromorphic sex chromosomes [De Smet, 1981; Odierna et al., 1994]. 

Pygopodidae 
Male heterogamety is claimed for most of the snakelike Pygopodidae although much of this data remains 

unpublished [King, 1990]. Delma inornata has an XY system [King, 1990] while Lialis burtonis has an XXY system 

[Gorman and Gress, 1970]. 

Sphaerodactylidae 
Sphaerodactylidae are a species-rich family consisting of 196 species. Almost nothing is known about the sex 

determining mechanisms in this family and just 1 species, Gonatodes ceciliae, shows evidence of heteromorphic 

sex chromosomes. There are no published accounts concerning the effects of incubation temperature on the sex 

of hatchlings from any sphaerodactylid species. 

Six species of Gonatodes have published karyotypes. Only 2 of these species, G. humeralis and G. hasemani have 

karyotypes from both sexes [dos Santos et al., 2003] and, as mentioned above, only 1 species, Gonatodes 

ceciliae, possessed heteromorphic sex chromosomes. Evidence for heteromorphic sex chromosomes comes 

from 2 male G. ceciliae, captured from the same locality in Trinidad [McBee et al., 1987]. Interestingly, both 

individuals had a different number of diploid chromosomes, 2n = 22 and 2n = 26. For now it is difficult to 

determine if this is the result of intraspecific chromosomal variation, cryptic, sympatric species, or error in 

karyotyping. Gonatodes vittatus was reported as having GSD [Pokorna and Kratochvil, 2009] and the authors 

cited McBee et al. [1987] as the source. This is clearly in error, McBee et al. [1987] make no mention of GSD in 

the study and state that G. vittatus possessed no heteromorphic sex chromosomes. 

Several species of Teratoscincus have been karyotyped with no reported heteromorphic sex chromosomes 

[Manilo, 1993; Zeng et al., 1998]. The 2 remaining species in Sphaerodactylidae that have been karyotyped 

involved just single individuals, a female Coleodactylus amazonicus, and a male Pristurus carteri, no 

heteromorphic chromosome pairs were reported for either species [Branch, 1980; dos Santos et al., 2003]. 

Evolution of Gekkotan Sex Determining Mechanisms 
Geckos hold great promise as a model clade for the study of vertebrate sex determination. Geckos are one of 

only 2 tetrapod clades possessing both male and female heterogamety along with TSD (fig. (fig.1).1). Moreover, 

these sex determining mechanisms occur repeatedly across the phylogeny (fig. (fig.2).2). To take full advantage 

of the potential that geckos hold as a model clade and to fully understand the processes involved in how 

transitions between sex determining mechanisms occur, requires knowledge of the pattern and distribution of 

these mechanisms in a phylogenetic context. To do this, I mapped sex determining mechanisms onto the 

gekkotan phylogeny to estimate the potential number of transitions in sex determining mechanism in geckos 

and to identify where transitions occur on the phylogeny. A complete, generic-level phylogeny is not yet 

available for geckos, therefore I used a ‘supertree’ approach to estimate phylogenetic relationships among 

gekkotan lizards. I used 7 published phylogenies as source trees [Grismer, 1988; Donnellan et al., 1999; Han et 

al., 2004; Melville et al., 2004; Gamble et al., 2008a, b; Jackman et al., 2008]. Non-gekkotan outgroups were 

collapsed into a single taxon, ‘outgroup’. Matrix representation with parsimony (MRP) matrices were 

constructed using r8s [Sanderson, 2006] and analyzed using maximum parsimony with the heuristic search 

option in PAUP* 4.0b10 [Swofford, 2002] and Maxtrees set to 1,000. I used a conservative approach in 

summarizing results using a (90%) majority-rule consensus tree of the 1,000 saved, equally parsimonious trees. 

Non-focal taxa were pruned from the consensus tree for subsequent ancestral state reconstructions. 
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Several taxa of interest were not included in the original phylogenies and were added manually, post-hoc. Gekko 

japonicus and Gekko hokouensis are considered closely related to each other [Zhou et al., 1989; Han et al., 2001] 

and, together, were added as the sister group to Gekko gecko. No exemplars of Cyrtodactylus were included in 

the source trees as well. Molecular data suggests a close relationship 

between Cyrtodactylus and Hemidactylus [Bauer et al., 2008], therefore I placed Cyrtodactylus as the sister 

taxon to Hemidactylus. Lygodactylus picturatus was excluded from the analyses given the tentative nature of its 

assignment to a female heterogametic system [Castiglia, 2004]. 

I mapped sex determining mechanisms onto the gekkotan phylogeny using unordered parsimony [Fitch, 1971] in 

the program MacClade [Maddison and Maddison, 1992]. Parsimony was preferred over maximum likelihood and 

Bayesian reconstruction methods because it allows polymorphic character states and does not require branch 

length estimates. Polymorphic characters were especially important when including Coleonyx and Paroedura. 

Species in both genera possess GSD, as shown through incubation experiments, but there is either no evidence 

of heteromorphic sex chromosomes, e.g. Coleonyx, or no published karyotype, e.g. Paroedura. Coding GSD as a 

distinct character state, in addition to TSD, XY and ZW, to account for this lack of data [Janzen and Krenz, 

2004; Pokorna and Kratochvil, 2009] does not necessarily resolve the issue. GSD species, such 

as Coleonyx and Paroedura are assumed to have either male or female heterogamety. These taxa can be coded 

as having either one of these states using the parsimony criterion. Coding these taxa as polymorphic avoids the 

ambiguity of introducing an additional character state and, depending on the character states of related taxa, 

has the added benefit of potentially resolving the sex determining mechanism for that species, providing a 

testable hypothesis for future cytogenetic research. 

Included species were assigned to one or more character states based on data from the literature summarized in 

tables tables11 and and2.2. Taxa were designated as having TSD, male heterogamety (XY) or female 

heterogamety (ZW). As mentioned, Coleonyx and Paroedura were constrained to having either XY or ZW 

mechanism and Gekko japonicus coded as having XY and TSD. 

Table 1.  Known examples of sex chromosomes in gekkotan lizards as determined by cytogenetic analyses 

Species Family Chromosome 
number 

Sex 
chromosomes 

Source 

Christinus m. alexanderi G 36 ZW King and Rofe, 1976 

Christinus m. marmoratus G 34 ZW King and Rofe, 1976 

Christinus m. marmoratus G 32 ZW King and King, 1977 

Cyrtodactylus pubisulcus G 42 ZW Ota et al., 1992 

Dixonius siamensis G 42 ZW Ota et al., 2001 

Gehyra australis G 40 ZW King, 1983 

Gehyra cf. nana G 44 ZW Moritz, 1986 

Gehyra purpurascens G 40 ZW Moritz, 1984a 

Gekko gecko G 38 XY Solleder and Schmid, 
1984 

Gekko hokouensis G 38 ZW Kawai et al., 2009 

Gekko japonicus G 38 XY Yoshida and Itoh, 1974 

Hemidactylus 
vietnamensis ‘triploid’ 

G 60 ZW Darevsky et al., 1984 

Heteronotia binoei G 42 ZW Moritz, 1984b; Moritz et 
al., 1990 

Heteronotia binoei ‘triploid’ G 63 ZW Moritz, 1984b 

Lepidodactylus lugubris G 44 ZW Volobouev and Pasteur, 
1988 
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Lygodactylus picturatus G 39, 40, 41 OW? Castiglia, 2004 

Delma inornata P 36 XY King, 1990 

Lialis burtonis P 33, 34 XXY Gorman and Gress, 1970 

Phyllodactylus cf. lanei Ph 34 ZW King, 1991 

Gonatodes ceciliae S 22, 26 XY McBee et al., 1987 

Family names are abbreviated: G = Gekkonidae, P = Pygopodidae, Ph = Phyllodactylidae; S = Sphaerodac-tylidae. 
Chromosome number is 2n for all species except 2 labeled triploid species that are 3n. Note that only some Gehyra 
australis populations possess heteromorphic sex chromosomes [King, 1983]. 

 

Table 2. Known examples of sex determining mechanisms in gekkotan lizards as determined by incubation 

experiments 

Species Family Sex determining 
mechanism 

Source 

Rhacodactylus auriculatus D TSD Seipp and Henkel, 2000; de Vosjoli et al., 
2003 

Rhacodactylus chahoua D TSD Seipp and Henkel, 2000; de Vosjoli et al., 
2003 

Rhacodactylus ciliatus D TSD Seipp and Henkel, 2000; de Vosjoli et al., 
2003 

Rhacodactylus leachianus D TSD Seipp and Henkel, 2000; de Vosjoli et al., 
2003 

Rhacodactylus sarasinorum D TSD Myers, 1997; Seipp and Henkel, 2000 

Coleonyx brevis E GSD Viets et al., 1994 

Coleonyx elegans E GSD Kratochvil et al., 2008 

Coleonyx mitratus E GSD Bragg et al., 2000 

Coleonyx variegatus E GSD Viets et al., 1994 

Eublepharis macularius E TSD Wagner, 1980b; Viets et al., 1993 

Goniurosaurus kuroiwae E TSD Seufer et al., 2005 

Goniurosaurus orientalis E TSD Seufer et al., 2005 

Goniurosaurus splendens E TSD Seufer et al., 2005 

Hemitheconyx caudicinctus E TSD Viets et al., 1994 

Gekko japonicus G TSD Tokunaga, 1985 

Paroedura picta G GSD Blumberg et al., 2002 

Phelsuma dubia G TSD Osadnik, 1987; Viets et al., 1994 

Phelsuma grandis G TSD Viets et al., 1994 

Phelsuma guentheri G TSD Viets et al., 1994 

Phelsuma guimbeaui G TSD Viets et al., 1994 

Phelsuma laticauda G TSD Viets et al., 1994 

Phelsuma 
madagascariensis 

G TSD Viets et al., 1994 

Phelsuma pusilla G TSD Viets et al., 1994 

Tarentola angustimentalis Ph TSD Nettmann and Rykena, 1985 

Tarentola annularis Ph TSD Nettmann and Rykena, 1985 

Tarentola boettgeri 
hierrensis 

Ph TSD Nettmann and Rykena, 1985 

Tarentola delalandii Ph TSD Nettmann and Rykena, 1985 

Tarentola gomerensis Ph TSD Nettmann and Rykena, 1985 

Tarentola mauritanica Ph TSD Nettmann and Rykena, 1985 
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Family names are abbreviated: D = Diplodactylidae, E= Eublepharidae, G = Gekkonidae, Ph = Phyllodac-tylidae. Sex 
determining mechanisms are labeled as either TSD, temperature dependent sex determination, or GSD, genetic sex 
determination. 

 

Outgroups can have a dramatic impact on ancestral state reconstructions [Maddison et al., 1984; Cunningham et 

al., 1998]. I explored the influence of the outgroup's ancestral character state on reconstructing gekkotan sex 

determining mechanisms by performing the analysis 3 times with the ancestral state of the outgroup coded as 

either TSD, male heterogamety or female heterogamety. All 3 character states, alone or as a polymorphism, 

have been hypothesized as the ancestral sex determining mechanism of Unidentata, the sister clade to Gekkota 

[Janzen and Krenz, 2004; Organ and Janes, 2008; Pokorna and Kratochvil, 2009]. 

Results of the ancestral state reconstruction are shown in figure figure3.3. Phylogenetic character mapping 

suggests a minimum of 8 to 9 transitions among sex determining mechanisms in geckos! Treelength and the 

number of ambiguous ancestral nodes were minimized when the outgroup was coded as male heterogamety. 

Male heterogamety was reconstructed as the ancestral gekkotan sex determining mechanism with TSD evolving 

5 times independently from a GSD ancestor, including the TSD in Gekko japonicus. Coleonyx was unambiguously 

assigned to a male heterogametic sex determining mechanism and Paroedura to a female heterogametic sex 

determining mechanism. An XY sex determining system was reconstructed as the ancestral gekkotan sex 

determining mechanism by Organ and Janes [2008] who also recovered an XY system as the ancestral sex 

determining system of the Unidentata, my hypothetical outgroup. 

When female heterogamety was the ancestral sex determining system of the outgroup, a system that has not on 

its own been recovered as the sole ancestral sex determining system in Unidentata in previous studies, the 

ancestral gekkotan sex determining mechanism was ambiguous, with either ZW or XY as the potential ancestral 

state. Sex determining mechanism of Coleonyx was considered equivocal, possessing either an XY or ZW system, 

while Paroedura was polarized as a ZW system. There were still 5 independent origins of TSD within the sampled 

taxa. 

The analysis that utilized TSD as the outgroup's ancestral sex determining mechanism reconstructed the 

ancestral gekkotan sex determining system as ambiguous, either TSD or XY. TSD has been estimated as the 

ancestral gekkotan sex determining system in previous studies, either alone [Pokorna and Kratochvil, 2009] or in 

a polymorphic condition [Janzen and Krenz, 2004]. The sex determining mechanism of 

both Coleonyx and Paroedura were also considered equivocal, possessing either an XY or ZW system. 

Ancestral states within the genus Gekko were ambiguous in all reconstructions. Male heterogamety in G. 

gecko and G. japonicus could result from retention of ancestral male heterogamety in the genus, which would 

imply the recent evolution of female heterogamety in G. hokouensis. Alternatively, G. hokouensis could retain 

the ancestral female heterogametic condition and male heterogamety evolved twice independently, once in G. 

gecko and again in G. japonicus. Research that investigates the sex determining mechanisms and sex 

chromosomes in additional Gekko species as well as a thorough assessment of the homology among Gekko sex 

chromosomes would go far to resolving this ambiguity. 

The results of the ancestral state reconstructions should be interpreted cautiously. Several important 

methodological assumptions are violated by this and other recent studies. The first assumption is that the 

phylogeny is accurate [Omland, 1999]. The supertree method used here should be reasonably accurate and is 

consistent with the recent phylogenies it was derived from. Several recent publications have used phylogenies 

that are not consistent in this regard. One common error is the placement of Eublepharidae as the sister taxon 

to the remaining Gekkota [Janzen and Krenz, 2004; Pokorna and Kratochvil, 2009] following several 

morphological studies [Kluge, 1967; Kluge, 1987] but contradicted by recent molecular phylogenies [Donnellan 
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et al., 1999; Han et al., 2004; Townsend et al., 2004; Gamble et al., 2008a]. A second error is the placement of 

Pygopodidae as the sister taxon to the remaining Gekkota [Organ and Janes, 2008], a hypothesis supported by 

some research [Underwood, 1957; Estes et al., 1988] but contradicted by both morphological and molecular 

phylogenies [Kluge, 1987; Donnellan et al., 1999; Han et al., 2004; Townsend et al., 2004; Gamble et al., 2008a]. 

The second assumption is that all relevant taxa are included [Omland, 1999]. This is certainly violated by all of 

the studies, including the one presented here. This is due to the paucity of information regarding gekkotan sex 

determining mechanisms, with less than 3% of gecko species being characterized. Analysis of more gecko 

species will likely uncover many new instances of TSD, XY and ZW systems and subsequently increase the 

number of changes among systems on the phylogeny. This in turn increases the accuracy of the ancestral state 

reconstruction. 

The third assumption is that characters are coded correctly [Omland, 1999]. This is violated on several levels. 

One example of this, as mentioned earlier, is the use of ‘GSD’ in the ancestral state reconstruction to represent 

species with either XY or ZW systems [Janzen and Krenz, 2004; Pokorna and Kratochvil, 2009]. Another potential 

error is the attribution of sex chromosomes to parthenogenetic species, e.g. Lepidodactylus 

lugubris and Hemidactylus vietnamensis. Because these species consist entirely of females, chromosomal 

heterozygosity may not be sex chromosomes but fixed heterozygosity in a particular lineage [Moritz, 1990]. A 

more systematic error, occurring in all of the recent publications that reconstruct the ancestral states of sex 

determining systems, including the present study, is the lack of information regarding homology of the sex 

chromosomes and sex determining systems. For example, it is known that the ZW sex chromosomes of birds, 

snakes and softshell turtles are not homologous [Kawai et al., 2007], that is, they have evolved from different 

autosomes. They could more accurately be coded as ZW1, ZW2 and ZW3, respectively. The discovery that G. 

hokouensis sex chromosomes are homologous to the bird ZW [Kawai et al., 2009] would suggest it to be coded 

as ZW1. Representing these independently derived instances of female heterogamety as simple ZW systems, 

therefore, dramatically underestimates the diversity of sex determining mechanisms and the subsequent 

number of changes that have occurred over the phylogeny. One can argue that these reconstructions are just 

heuristics that provide a rough picture of the changes that have occurred in the vertebrate sex determining 

system. While that may be true, a serious effort should be made to incorporate accurate homology assessments 

into ancestral state reconstructions not only in vertebrates but any other sexually reproducing organisms as 

well. 

Conclusions 
I have summarized current knowledge of gekkotan sex determination and have shown that at least 8 to 9 

transitions among sex determining mechanisms have occurred during the last 150 million years of gekkotan 

evolution. The paucity of species that have been characterized, as well as a lack of knowledge concerning the 

homology among these mechanisms, suggests this estimate of transitions is low. It is obvious that there are 

many gaps remaining in our understanding of gekkotan sex determining mechanisms. We currently know the 

sex determining mechanisms for only 46 of the over 1,300 described gecko species and our understanding of 

most of those species is tenuous at best. Currently, there are no species of Carphodactylidae with known sex 

determining mechanism and the families Diplodactylidae, Phyllodactylidae and Sphaerodactylidae are similarly, 

very poorly known (fig. (fig.2).2). A concerted effort should be made to examine karyotypes of a broad range of 

gecko species for the presence of sex chromosomes with special effort to sample representatives from across 

the phylogeny. Modern cytological techniques such as CGH and FISH should be used to identify sex 

chromosomes and subsequently assess homology of presumptive sex chromosomes among related taxa. 

Research along these lines will undoubtedly find many more transitions among gekkotan sex determining 
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systems. Such extraordinary diversity makes geckos excellent candidates as a model clade for studying the 

evolution of sex determining mechanisms in vertebrates. 

New developments in cytogenetics and genomics are making it easier to study sex determination in a variety of 

non-model organisms. Studies of nontraditional organisms have been extremely fruitful and continue to yield 

many new discoveries, including: new examples of master sex determining genes [Matsuda et al., 2002; Nanda 

et al., 2002]; the extreme lability of sex determining systems [Ogata et al., 2008; Ross et al., 2009]; an 

understanding of the interplay between environmental and genetic sex determining factors [Radder et al., 

2008]; and the adaptive significance of sex determining systems [Warner and Shine, 2008]. The continued 

development of nontraditional models is therefore important to an overall understanding of how sex 

determining mechanisms evolve and are maintained. As shown here, geckos can play an important role in that 

research. 
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