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ABSTRACT 

DEVELOPING CONTINUOUS PREDICTIVE CONTROLS 

FOR ANKLE ANGLE AND MOMENT ACROSS 

MULTIPLE MOBILITY TASKS 

 

 

 

John Eganhouse, B.S. 
 

 

Marquette University, 2023 
 

 

 

This thesis aimed to create a predictive model for controlling lower limb 

prostheses, using electrical activity from muscles in the residual limb to predict ankle 

angle and moment across mobility tasks including level ground walking, stair ascent, and 

descent (LW, SA, and SD).  In aim 1, kinematic and kinetic ankle data, were used 

together with electromyographic (EMG) signals obtained from six healthy ambulators to 

train a nonlinear autoregressive (NARX) model to predict ankle angle and moment.  

Networks were trained with a delay of 58.33 ms, using a 120 ms sampling window and 

tested for their ability to predict ankle angle and moment across mobility tasks using a 

10-fold cross validation.  The average root-mean-squared error (RMSE) of networks 

across tasks was 2.93°±0.70° and 0.12±0.03 Nm/Kg when shank velocity was provided 

as input, 4.92◦±1.39° and 0.15±0.04 Nm/Kg when EMG activity was provided as input, 

and 2.37°±0.58° and 0.084±0.026 Nm/Kg when inputs were combined.  In Aim 2, the 

best performing networks were tested in a modified version of a model of the Marquette 

powered prosthetic foot.  Three cases were considered: open-loop NARX prediction with 

internal feedback and closed-loop NARX prediction that used either ankle angle 

feedback, or ankle angle and moment feedback from the prosthetic model.  The internal 

feedback model accurately predicted its target without incorporating information from 

prosthetic foot performance.  Simulations that incorporated modelled moment feedback 

increased error, causing instability over time in some SA and SD trials from a mismatch 

in desired and achieved ankle moment. 

The NARX networks in Aim 1 accurately predicted ankle angle and moment 

across subjects and mobility tasks and could be used to provide kinematic/kinetic control 

input for a powered prosthesis. In Aim 2, the subsequent control simulation performed 

well with internal feedback, but full closed-loop validation requires an updated model 

that incorporates loading and ground reaction forces.  The system's potential for real-time 

operation without conscious input is promising.  Future work should explore human-in-

the-loop control performance and testing with amputee data, to characterize the impact of 

individual sources of variability associated with changes in residual muscle signals, 

adaptation over time, and diverse movement patterns.  
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I. INTRODUCTION AND BACKGROUND 

1.1 Problem Statement and Introduction to Aims 

The purpose of this research is to create a predictive transtibial control system that 

provides continuous predictions of ankle kinetics and kinematics across different mobility 

tasks.  Various control schemes have been proposed for actuated lower limb prostheses 

with the goal of improving gait in amputees.  However, the goal of prosthetics, to provide 

robust real-world function to restore gait which is intuitive to use, remains elusive.  

Discrete control of continuous gait profiles has emerged as a primary means of providing 

user-control across different terrains and mobility tasks.  However, it has inherent 

limitations in its ability to respond quickly to external perturbations and/or conscious 

changes in gait strategy based on environmental conditions and to smoothly transition 

between mobility tasks (i.e, walking to stair ascent) in real-time.    In the literature, 

prosthesis control that combines the above-mentioned features remains absent and the 

union of them is imperative to achieve full rehabilitation for a lower limb amputee.  

Accurate prediction of continuous movement across mobility tasks could address these 

gaps and improve the usability of lower-extremity prostheses. 

Toward this goal, two specific aims were pursued that centered on the 

development and testing of a predictive transtibial control system that operates 

seamlessly across different mobility tasks.  Each aim is divided into sections discussing 

the significance, rationale, approach, results, and their implications toward robust lower-

limb prosthesis control.  Within each aim, key factors are underscored to highlight their 

significance as design outcomes toward the overall goal.  
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1.1.1 Aim 1 - Develop a Recurrent Model of Gait, Capable of Predicting Joint Kinetics 

and Kinematics Across Mobility Tasks 

To develop a control system that continuously drives the ankle angle and moment 

of a transtibial powered prosthesis across mobility tasks, a machine learning approach 

will be used to train networks to predict ankle angle and moment using external inputs to 

ensure accurate and on-time actuation of the prosthesis.  The proposed system will 

incorporate the following features: 

Predict ahead of time – The network will predict ankle angle and moment ahead 

of time in the sagittal plane.  The networks will do so by relating current predicted values 

to past predictions as well as current and past external inputs.  Prediction ahead of time is 

needed to account for transitions and to allow for lagless motor actuation of the prosthetic 

device. 

Function across tasks – This predictive network must work across different 

mobility tasks including walking, stair use, and their transitions. 

Provide continuous control– The networks will continuously update the driving 

signals to the prosthesis to ensure timely response to external disruptions to gait.   

Incorporate real-world inputs– The network must predict future ankle kinetics and 

kinematics using input from sensors that can be reasonably incorporated into an existing 

prosthetic design. 

Have low error – The primary measure of performance will be to minimize the 

root mean squared error (RMSE) of ankle angle and moment across the gait interval 

compared to target timeseries.  
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1.1.2 Aim 2 - Test the Recurrent Model in Conjunction with an Existing Prosthetic 

Control Model 

To validate the predictive network developed in Aim 1, the subject-specific 

trained networks will be incorporated into a real time computer model of prosthetic 

movement and motor actuation.  The ability to maintain stable and accurate movement 

with the combined system (the existing control model and additional predictive network) 

will provide proof-of-concept for the predictive network approach to prosthesis control.  

The combined system will do the following things: 

Incorporate physiological and prosthetic inputs – The intended state of the 

prosthesis will be monitored using a combination of physiologic (electromyographic 

(EMG)) signals and embedded prosthetic sensors. 

Provide stable control in response to model feedback – The response of the 

predictive model must remain stable in response to feedback from estimated (rather than 

true) ankle kinetics and kinematics. 

1.2 Background 

1.2.1 Human Gait Adaptation and Amputee Challenges 

Adaptation is important to human gait and it occurs both over short time and long 

time scales.  When walking, transitioning between directions can occur almost instantly 

and new terrains, angles, obstacles, and other walking contexts can be adjusted over short 

time scales (in seconds) (Choi & Bastian, 2007).  Additionally, it has been found that leg 

movement adaptation occurs independently for each leg (Choi & Bastian, 2007).  

Humans possess the ability to adapt their walking patterns across terrain types and to 

remain stable in a largely automatic/unconscious manner (Kannape & Herr, 2016).  The 

motor systems of the brain can adapt rapidly to internal goals, external factors, and 
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training (Pearson, 2000) and the rhythmic nature of gait can help enforce learning of 

motor patterns.  This automatic and largely unconscious adaptation in movement is 

central to everyday life.  It is an important capacity to restore during rehabilitation and 

restoration of gait in lower limb amputees, and therefore in the development of active 

prosthesis. 

1.2.2 Types of Lower Limb Prosthetics 

Modern lower limb prostheses encompass a wide range of devices designed to 

assist lower limb amputees.  Various terms are used to describe such devices based on the 

type of amputation they are designed to accommodate, such as ‘transfemoral’ for an 

above knee amputation and ‘transtibial’ for below the knee amputation that passes 

through the tibia.  This thesis focuses on aspects of prostheses related to transtibial 

designs. 

Prosthesis can further be subdivided into passive and active (or powered) 

prosthesis.  While the roots of modern lower limb prosthetic technology extend deep into 

medical history, the definition that will be used for “modern” lower limb prosthetic 

technology starts at the solid ankle cushioned heel (SACH) foot.  The SACH foot was 

approved for production in 1957 and is still important today in rehabilitation and it serves 

as inspiration for newer prosthetic designs.  

1.2.3 Passive Prostheses 

Passive prostheses are those which do not provide additional energy during use.  

They can be non-elastic or incorporate energy storage and return (ESR or ESAR) 

elements to better mimic the energy return of the ankle during walking.  The solid ankle 

cushioned heel (SACH) foot is a common example of a relatively inexpensive non-elastic 
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prosthesis used by people who do a limited amount of walking (Hansen et al., 2016).  As 

the name suggests, the SACH foot cushions the impact of the foot hitting the ground, 

which is important for joint health and walking endurance, but it does not provide energy 

return during liftoff of the foot.  Other passive foot prostheses exist such as the SAFE 

(stationary attachment flexible endoskeletal) which is like the SACH foot but 

accommodates inversion and eversion motion (Hansen et al., 2016), enabling  the foot to 

turn into or away from the midline of the body which can help with stability on uneven 

surfaces. 

Although passive prostheses aid tremendously in rehabilitation, walking still 

requires the input of mechanical energy from the body and any mechanical energy lost 

through the prosthesis requires the user to compensate, resulting in greater than normal 

energy expenditure by the user due to the loss in mechanical efficiency.  The amount of 

energy input is low for slow walking but gradually increases with speed leading to a 

noticeable decline in the mechanical efficiency of passive prosthesis.  Compensating for 

this issue often causes other parts of the body to take on atypical forces and/or movement, 

which can lead to suboptimal walking patterns such as leg swinging (Hansen et al., 

2016).  In a study conducted by Sinitski et al. (E. H. Sinitski et al., 2012), the gap in 

efficiency for stair ascent and descent between healthy limbed subjects and passive 

prosthesis aided subjects was found to be significant.  Pelvic rotation was greatly 

increased as amputees swung their leg out more instead of moving primarily in the 

sagittal plane to ensure ground clearance (P. F. Su et al., 2008).   

Increased energy usage and suboptimal movement patterns can make walking 

with a non-elastic prosthetic ankle more fatiguing than with an intact leg and can result in 
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injury over time due to repetitive overexertion and atypical loading of the remaining 

joints during compensatory movements (E. Sinitski et al., 2022).  Moreover, 

asymmetrical movement enhances the possibility of fatigue, strain, or injury over time.  

Minimum foot clearance (MFC) in relation to trips and falls has been found to vary 

across different movement tasks (Loverro et al., 2013), indicating a need for different 

movement (and control) profiles across mobility tasks such as walking, stair ascent, or 

stair descent) .  Protopapadaki et al. (Protopapadaki et al., 2007) support this concept, 

showing significant differences in hip and knee angles and moments between stair ascent 

and descent. 

Energy storage and return (ESR) prosthetic systems, sometimes called dynamic-

response prostheses, store kinetic energy from early stance (starting at heel strike), via a 

spring compression, and release the energy in late stance (ending at toe off) (Hansen et 

al., 2016).  ESR systems help mitigate the extra effort an amputee must put into each step 

by returning energy to the movement in a way that mimics the elastic properties of a 

natural foot and its tendons.  While this energy return has the primary effect of increasing 

rehabilitated movement, some ESR systems have been shown to also reduce impact 

forces and stresses on the side of the intact foot and leg (Hansen et al., 2016).  However, 

ESR prostheses are still not equivalent to an intact foot due to the lack of active power 

input which is needed to achieve appropriate torque at the ankle.  Additionally, ESR feet 

cannot actively compensate for obstacles in the way an intact foot can, due in part to the 

lack of external power (Gardiner et al., 2016). 
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1.2.4 Finite State Powered Prosthesis Control 

More recently, various types of active/powered prosthetic systems have been 

developed for use with lower and upper extremity amputees (for a broader review of the 

state of the art see (Gehlhar et al., 2023)).  Lower limb active/powered prostheses are 

sometimes referred to as microprocessor feet due to their reliance on onboard computing 

(Hansen et al., 2016).  Unlike passive systems, powered prostheses require an actuator 

with a control system to exert forces that coincide with the user’s gait cycle to mimic the 

dynamics of the intact limb.  Finite state control models enable the implementation of 

different control modes across tasks within a single automatic control scheme (Sun et al., 

2014).  In finite state control, each gait cycle is broken down into distinct phases e.g., 

heel strike, foot flat, etc. that cascade together during normal gait, and are augmented by 

data received at key foot contact events and from measurements of joint velocity (Sun et 

al., 2014).  Finite state control allows for the modulation of gait speed and adaptation to 

changes in terrain slope (Hansen et al., 2016).  However, such systems typically rely on 

an expectation of continued cyclical gait events or do not account for multiple types of 

mobility tasks.  For example, when changing to a new locomotive task, such as ascending 

stairs, the user must begin the first step before the prosthesis can recognize the change in 

task and adjust the timing and application of power appropriately.  

Increasingly finite state models are being developed to function across multiple 

mobility tasks.  Some prostheses, such as the BioM developed by Hugh Herr and the MIT 

Media Lab, have integrated finite state control with partial volitional EMG control; see 

Figure 1 for a concept diagram (Kannape & Herr, 2014).  During the toe-off phase of 

gait, the BioM uses control signals that are proportional to muscle activity measured by 

surface electrodes to adjust the lift of the foot.  The incorporation of voluntary user input 



8 

 

 

from muscle activity to dynamically adjust the prosthesis’s performance is referred to as 

volitional control.  Incorporating proportional volitional control increased the power of 

the prosthesis’s output during key parts of foot lift off but did not attain the full power 

expected from normal ambulation of two intact legs.  In spite of this, the performance 

with volitional control came close in power output to that observed in normal ambulation, 

which could make it a viable option for stair ascent with a prosthetic limb given further 

tuning.  However, expanding volitional control in a finite state model increases the 

complexity of the model and testing process.  For instance, each new mobility task (e.g., 

stair ascent) requires the development of a new finite state control and processes for 

switching between all available states. 

 

 

Figure 1: Finite State Model with Additional Proportional Control 

This figure shows a concept level representation of the main approaches used for 

prosthesis control.  At the highest level is the approach for implementing control, finite 

state (I.e., discrete) or continuous control.  The second level addresses the timing of the 

control, whether it is proportional (current time step) or predictive (future time step). The 

third level addresses the type of feedback that can be incorporated from the 

prosthesis/user.  The yellow outline denotes an example of a specific control scheme that 

implements a finite state model with proportional kinematic control, with optional 

myoelectric input. 
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Other studies have combined finite state control with proportional control to 

actuating foot lift during stair ascension (Kannape & Herr, 2014).  Hoover et al. 

developed a transfemoral linear two-state impedance control (Hoover et al., 2013), that 

used proportional myoelectric signals (I.e., surface electrical activity from muscles) to 

modulate knee trajectory during stair ascent.  In contrast to Hoover’s proportional 

myoelectric control, Au et al. used myoelectric sensing of muscle flexion to aid in the 

transition between two finite state controllers (Au et al., 2008).  Another finite state 

model is developed by Grimmer et al. for the Walk-Run ankle; a walking and running 

model that controls from standing to walking and running, as well as their transitions 

(Grimmer et al., 2016).  It adjusts motor position based on the current gait more, gait 

speed, and gait cycle progression percentage by mimicking healthy subject reference 

data.  It was found that the model performed well for walking identifying a speed of 1.6 

m/s, slightly overshot the identified speed for 2.6 m/s running by 0.2 m/s, and slightly 

undershot the 4.0 m/s running case by 0.3 m/s.  In these studies, myoelectric control is 

shown to be possible in a finite state model, but the challenge is to integrate it state by 

state whereas a continuous control method could integrate myoelectric input through the 

entire control scheme. 

1.2.5 Continuous and Myoelectric Control in Powered Prostheses 

During continuous control, the output of the powered prosthesis is directly related 

to the input signal, often through a PID control (Proportional-Integrated-Derivative).  

Unlike finite state models which rigidly progress through phases of gait cycles, 

continuous control does not use defined phases or states.  During continuous myoelectric 

proportional control, the action taken by the prosthesis scales directly with the intensity 
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of the muscle activity measured with EMG.  Compared to the finite state model with 

volitional control which only used proportional myoelectric control in one aspect of gait, 

continuous myoelectric proportional control is fully reliant on the amplitude of the EMG 

signal(s) throughout the gait cycle. 

Upper limb prosthetic systems have used continuous myoelectric control, but 

typically require training to learn how to consciously activate the requisite muscle groups 

and master the timing of activation (Kuiken et al., 2009).  Huang et al. found that lower 

limb amputees could use the electrical activity of residual muscles for continuous 

proportional control of a powered prosthesis in a controlled treadmill environment.  They 

noted that visual feedback on a screen was needed in their test to generate a significantly 

higher peak power (S. Huang et al., 2016).  Other than that, continuous myoelectric 

control has not been widely studied in the context of lower limb prostheses but has been 

more so applied to upper limb prostheses.  One possible reason is that active conscious 

control of lower limb movement is not a natural way to walk.  The process of walking is 

automated (subconsciously) to a much greater extent than upper limb movement.  

Furthermore, unlike for upper limb control, making mistakes in lower limb control will 

lead to tripping.  When developing a lower limb prosthesis, there is a need to replicate the 

unconscious nature of use while avoiding tripping.  Precision in automation is difficult 

when talking about something as complex as fully rehabilitating movement.  Full 

rehabilitation with proportional myoelectric control would require a great deal of 

sophistication, device tuning, and user learning. 
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1.2.6 Pattern Classifier Models in Prosthetic Control 

Pattern classifier models use patterns in the input signals to prompt a system 

response, in which case the user must be trained to replicate those patterns.  Pattern 

classifier models occupy a middle ground for prosthesis control and have been more 

extensively developed in the context of upper limb prostheses.  In these systems, the 

patterns of activated muscles and their relative intensities are used to determine the user’s 

intended movement (Kuiken et al., 2009).  This method can achieve more seamless 

conscious control by matching signals to a fixed set of movement patterns (Kuiken et al., 

2009).  Pattern classifier-based approaches enable more complex control compared to 

proportional control but do not eliminate the need for conscious control by the user which 

may make it less suitable for lower limb prostheses. 

1.2.7 Myoelectric Feedback as Predictive Signals. 

Myoelectric prediction leverages the coupling between neuro-muscular activity 

and the generation of muscle force and the corresponding delay to obtain an electrical 

signal that is predictive of joint kinematics.  This type of data is most readily collected 

from surface EMG (sEMG) sensors placed on the skin above a muscle group and can be 

obtained from residual muscles within socket to predict and control a transtibial 

prosthesis (Farmer et al., 2014).  Silver-Thorn and colleagues (Silver-Thorn et al., 2012), 

showed that independent muscle contractions still occur in the residual limb while 

walking with a prosthesis over multiple gait cycles.  The access to residual muscle 

activity (through sensing of sEMGs) gives an opportunity to measure myoelectric signals 

within the p.  Furthermore, subjects could be quickly trained to strengthen activation of 

residual limb muscle during gait, allowing for an avenue of trained myoelectric control. 
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1.2.8 Continuous Predictive Control 

Continuous predictive control is the concept of controlling across multiple 

mobility tasks such as walking, stair ascent, and descent without the need for switching 

control strategies.  This type of continuous control could provide a more seamless 

approach, whereby future movement is predicted based on previous kinematic and 

myoelectric data, (Farmer et al., 2014).  The approach leverages the cyclic patterns of 

lower extremity movement, similar to pattern recognition (due to a built-in reliance on 

previous kinematics) and could provide seamless user control during different types of 

gait and their transitions.  Continuous predictive control has the benefit of adding user 

intent, like proportional control, while predicting ahead of time to compensate for lags 

between sending a control signal and actuating the motor to achieve a desired angle and 

moment. 

Training a predictive network could reduce the burden of user adaptation by 

tuning the network to the user’s own movement and muscle activation patterns.  Finally, 

due to the nature of a trained network being adapted to a desired set of movements, it 

removes the need to map new segments of gait into incorporate new forms of movement 

such as stair ascent.  The quality of the network revolves around the chosen network 

structure and quality of the input data.  Neither of these factors need to incorporate the 

specific phases of a gait cycle or any other model behavior to function.  With a trained 

predictive network mode, it is not necessary to implement new control states, as with a 

finite state model, to accommodate new types of movement. Instead, the model structure 

can remain fixed and additional training data added that incorporates the desired 

movement. 



13 

 

 

In this thesis, a predictive control system is developed around a nonlinear 

autoregressive neural network that incorporates external inputs (i.e., a nonlinear 

autoregressive model with exogenous inputs (NARX) ).  NARX networks can be trained 

to predict a continuous signal based on a set of continuous inputs.  These types of 

algorithms leverage machine learning to make semi-random adjustments to a network’s 

weights to minimize the error of the predicted output (compared to a set of known ‘true’ 

values).  Once trained, the network functions in the same way as a traditional 

autoregressive moving average network (Braun, 2001). 

To contextualize the plan to develop a predictive control system using NARX 

networks the following is a review of much of the state-of-the-art research in that field 

with the most similar applications.  An example of a study conducted using continuous 

prediction of movement data was performed by Dey et al (Dey et al., 2019).  During the 

study, ankle angle and moment during walking were continuously predicted using a 

vector regression model whose inputs were hip and knee joint motion data.  When the 

model was applied to self-selected walking speeds, the correlations between actual and 

predicted ankle angle and moment were high (R2 = 0.98 and .97 for angle and moment 

respectively).  Eslmay and Alipour (Eslamy & Alipour, 2018) showed that ankle shank 

angle and angular velocity could be used to estimate ankle angle and moment across 

multiple walking speeds though a gaussian process regression.   Haung et al. (H. Huang 

et al., 2009) also found that EMG signals can be used to classify patterns of 

locomotion/mobility tasks.  In a study of eight able-bodied subjects and two long 

transfemoral (lt) amputees, 10 electrode placements on the musculature above the knee 

were shown to differentiate between four phases of gait with errors ranging between 5.2 
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and 12.4%.  Huihui and colleagues (Huihui et al., 2018) demonstrated that sEMG mean, 

variance, and waveform length could be used to estimate ankle angle using a combined 

feature fusion and random forest approach for network optimization.  Similar to the 

approach taken in this work, (Prasertsakul et al., 2012) showed that a nonlinear 

autoregressive model with exogenous inputs (NARX) could be used to predict knee and 

ankle movement when using myoelectric data from eight lower limb muscles. 

Most recently in the study of myoelectric lower limb prosthetic control, (Keleş & 

Yucesoy, 2020) used combinations of five different EMG signals (tibialis anterior, 

medial gastrocnemius, rectus femoris, biceps femoris, and gluteus maximus) to predict 

ankle angle and moment for able bodied subjects during level ground walking.  Studies 

have also been conducted to compare the relative merits of different types of machine 

trained networks in predicting joint torque and found a positive correlation with actual 

torque predicting 0.4 seconds  ahead using long short-term memory neural networks 

(LSTM) from four able bodied subjects standing, walking, running, and sprinting at self-

selected speeds on a treadmill with RMSE averaging 0.08 N*m / Kg for the LSTM 

networks somewhat shifted to a lower RMSE by their standing results (Siu et al., 2021).  

Further experiments in the prediction of multiple mobility tasks have been published 

averaging 2.38 to 5.45 degrees RMSE (Gupta et al., 2020).  These findings further add 

support to the viability of EMG inputs for designing prosthetic control schemes. 

1.3 Background in Relation to Aims 

1.3.1 Aim 1 

In Aim 1, a continuous myoelectric predictive network is developed to predict 

ankle angle and moment across multiple mobility tasks.  Accounting for multiple 
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mobility tasks has always presented a problem for finite state control.  While additional 

control states can be readily incorporated, the process of predicting and transitioning 

between states (i.e., mobility tasks) remains a challenge.  Our approach addresses both 

limitations by developing a model that directly relates continuous changes in EMG 

activity to changes in ankle angle and moment.  By employing the user’s natural patterns 

of EMG activity to predict future ankle state, our approach will address system lag and 

avoid the need for conscious control that is inherent to most proportional control systems.  

The added significance to the field of study will be the continuous control during the 

transitions between mobility tasks as well as the combination of myoelectric and 

kinematic inputs in a predictive model could help reduce overall error. 

 

 

Figure 2: Narx Control System 

This figure shows a concept level representation of the main options in prosthesis control 

that form the basis for the NARX network developed as part of the research.   

 

1.3.2 Aim 2 

The purpose of the second aim is to test the feasibility of the myoelectric 

predictive network developed in Aim 1 for real time control of a transtibial prosthetic 

            
       

             
       

          
       

            
       

          
       

         
       



16 

 

 

device.  To achieve this aim, a proof-of-concept test model developed around an existing 

Marquette powered prosthesis will be used to show that the NARX model can provide a 

stable control signal.  A computer model that takes in an input data stream while 

simultaneously predicting and controlling a prosthetic model will bring us one step closer 

to the final design.  Prosthesis control simulations in literature also don’t incorporate 

continuous predictive controls.  
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II. AIM 1 

1. Introduction 

In aim 1, a continuous myoelectric predictive network is developed to predict 

ankle angle and moment across multiple mobility tasks.  A series of network models is 

examined that vary based on the type of inputs available to the model (kinetic, kinematic, 

and myoelectric) and the structure of the underlying nonlinear autoregressive (NARX) 

model.  No other types of networks besides NARX are tested in this thesis.  The 

predictive qualities of each model are measured based on predictive error to a novel set of 

gait profiles that includes transitions between different types of gait (walking, stair 

ascent, etc.).  One area of significance to the literature is that most studies do not address 

the challenges associated with continuous control between (and across) mobility tasks.  

Task transitions can be difficult to account for with finite state methods.  Furthermore, 

the combination of myoelectric and kinematic inputs in a predictive model could help 

reduce overall error compared to a network using only one of the two types of inputs.  

The hypothesis being that each type of input contributes different information to the 

prediction.  A benefit is expected in predicting mobility task transitions with myoelectric 

data since previous kinematic/motion data does not predict future changes in motion, it 

only aids in predicting that the past cyclic motion will continue.  
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2. Methods 

2.1 Ambulation Data 

Training data was selected from a previously acquired subject data set (Zabre-

Gonzalez et al., 2021).  The gait profiles of six healthy ambulators were selected for 

training and testing the predictive model.  The data for each subject included 10 trials (9 

used for training and 1 held back for testing) of simultaneously collected EMG, and 

kinematic and kinetic measures of gait across three mobility tasks (level-ground walking, 

stair ascent, stair descent, and their transitions).  Subjects had an average age of 21.9 ± 

1.4 years (mass 72.5 ± 8.8 kg, and height 1.8 ± 0.09 m).  EMG (i.e., myoelectric) data 

was collected at 1200 Hz using Trigno™ electrodes placed bilaterally on the tibialis 

anterior, medial gastrocnemius, and the lateral gastrocnemius.  Myoelectric data were 

then down sampled to 120 HZ to match the subject’s kinematic data and were processed 

to extract the low frequency linear envelope of the high frequency EMG signal.  

Simultaneously with EMG signals, 3D joint position (kinematic) data were collected 

using a 16-camera OptiTrak motion capture system, and ground reaction forces/moments 

(kinetic data) were obtained using four 6-DOF force plates embedded in the floor and 

stairway which is used in calculating the ankle moment target over time.  Movements 

were recorded for three mobility tasks: level ground walking, stair ascent, and stair 

descent.  Stair ascent and descent trials contained two steps of level ground walking 

combined with two full sets of left/right steps on the instrumented stairway.  The average 

trial length varied between level ground walking (1.21 s), stair ascent (3.58 s), and stair 

descent (3.33 s).  Additional details regarding the experimental setup and data collection 

can be found in (Zabre-Gonzalez et al., 2021). 
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2.2 Training/Test Data 

The kinematic and kinetic data from the six ambulators (ankle angle and moment 

over time data calculated from motion capture data and the embedded force plates) were 

used to train subject-specific models to predict the intended ankle movement across 

mobility tasks.  To facilitate model training, shank velocity (i.e., velocity of the tibia) was 

extracted from the motion capture data and used as a substitute for on-board 

accelerometer data that would be collected from a transtibial prosthesis.  Velocity was 

chosen instead of acceleration as a movement metric for training to reduce noise 

associated with the derivative calculations applied to the motion tracking position data.  

Conversely, in a physical system, calculating velocity from accelerometer data (by 

integrating acceleration over time) would tend to smooth the movement data.  For 

training the predictive model, the measured ankle angle and moment were specified as 

the model target output, and the EMG and shank velocity data were defined as the model 

input.  Each subject specific model was trained using 9 of the 10 trials (randomly 

selected) from each of the three mobility tasks.  The remaining trial from each mobility 

task was held back from training and used to independently test the generalization 

performance of the trained model.  

To test the stability of different types of network configurations (i.e., number of 

hidden units, duration of sampling window and prediction intervals, etc.) and optimize 

the network structure, a single (typical) subject out of the six was selected for preliminary 

training/testing.  Then, the best performing network structure was used to train and test a 

separate predictive model for each subject.   
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2.3 NARX Networks 

The predictive model was based on a nonlinear autoregressive neural network 

with exogenous input (NARX), which was used to map the past and current 

measurements of EMG and shank velocity to future (in time) values of ankle angle and 

moment during gait.  The term “neural network” refers to the process used to optimize 

the model performance by adapting the weights connecting network nodes based on a 

supervised learning algorithm as seen in Figure 3. 

 

 

Figure 3: "Closed-loop" NARX Network Structure 

The network input x(t) consisted of six timeseries (3 EMG + 3D shank velocity) 

presented within a moving 10-sample window and the network output, y(t), reflected the 

timeseries for ankle angle and moment, predicted seven timesteps ahead of the current 

time point.  The hidden layer contained 16 units with sigmoid transfer functions and the 

output layer contained two units with linear transfer functions. 

 

Once the network was trained, it functioned as a normal autoregressive model.  

The NARX models were initialized and trained using MATLAB’s neural network “Deep 

Learning Toolbox” (R2019a MATLAB version 9.6 and Deep Learning Toolbox version 

12.1).  Each network consisted of a single hidden layer of nonlinear nodes which receives 

inputs from a sample window of previous (delayed) data points and prior model outputs, 
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and a linear output layer trained to predict the future ankle angle and moment.  The 

optimal values for input and feedback delays were examined in this study briefly with 

reference to previous work (Zabre-Gonzalez et al., 2021) and used as the basis for 

selecting the NARX model parameters.  The NARX model structure used for final 

training/testing included 16 hidden units, an input delay of seven timesteps (58.33 ms) 

and a ten timestep (120 ms) prediction interval.  Other model parameters tested included 

training functions, transfer functions, and training exit criteria but had minimal effect on 

the model performance.  The model weights were trained using the Levenberg-Marquardt 

algorithm, which is also the default in MATLAB, to optimize the model performance by 

minimizing the least-squares error between the measured values of ankle angle and 

moment and the model predictions of ankle angle and moment. 

2.4 Closed Loop Networks 

These networks were trained as closed-loop networks which means they did not 

use the true ankle angle and moment as feedback to the input layer.  The only feedback 

the model could directly incorporate was the input (which acts as indirect feedback) and 

the recurrent feedback of the model’s previous predictions.  In other words, they were 

closed to external feedback.  In general, closed networks tend to be less accurate but are 

more robust to variations in input data they receive. 

2.5 Training Set-up 

The main way that network training results were impacted was by manipulating 

the structure of the data input into the networks during training.  Various combinations of 

inputs were examined including two to three EMG inputs with and without 3D shank 

velocity.  The inputs were always matched against the “real” expected ankle angle and 
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moment recorded from the 3D motion capture system mentioned in section 2.1.  Separate 

networks were trained using only EMG data, only shank velocity data, or both as inputs 

to characterize the relative contributions of each input source to the overall model 

performance.  In all training permutations, networks were trained by sampling whole 

trials rather than randomly sampled points.  This whole trial sampling was done to ensure 

that an equal amount of level ground walking, stair ascent, and stair descent data was 

used to avoid biases in training error minimization.  The specific MATLAB NARX 

model properties used during training were divideFnc = ‘divideblock’, dividemode = 

‘sample’, trainingRatio = 0.80, valRatio = 0.20, testRatio = 0, such that 80% of the 

training data was used optimize the model weights, and the remaining 20% of the training 

data was used to validate the generalizability of the weight changes.  Additionally, during 

training both angle and moment data were normalized to ensure an equal contribution to 

the error minimization process. 

2.6 Cross Validation 

Each subject-specific model was trained and tested using a 10-fold cross-

validation strategy to ensure that all trials were evaluated for generalizability. During 

training, a single set of trials (one from each mobility task) was withheld for testing that 

network’s performance on novel data.  In other words, for every network configuration 

that was generated, ten different networks which had all seen a slightly different subset of 

nine from the total ten data sets (and a unique set of novel trial data to assess 

performance) were trained and saved. 

For each training/test ‘fold’, ten separate models were trained, each with 

randomized initial weights and the best performing network was selected for each fold. 
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Finally, the errors in predicted ankle angle and moment were averaged across the 10-

folds to characterize the overall performance of the predictive model.  This process 

helped to minimize the likelihood of randomly seeded network weights leading to non-

optimal network performance; such bad performance as from a local minimum trap, 

where the network training ceases early due to reaching the training parameter maximum 

iterations of failed error improvement or one of the other criteria outline in section 2.7.  

2.7 Training Evaluation Criteria 

The performance criteria used in the MATLAB training was a normalized 

combination of angle RMSE and moment RMSE averaged over the whole trial.  The 

training of each network halted after failing six consecutive validations, wherein the 

weight changes applied to the model increased the error on the validation data.  

Alternatively, one of the other default training exit conditions could be met to end early, 

such as minimum performance gradient.  Lastly, training could exit due to meeting the 

error goal, but this did not occur since the error goal was set to zero. 

2.8 Input Permutations 

The difference in most of the network types tested was the content of the inputs to 

the network.  Networks were trained with inputs consisting of only 3D shank velocity, 

only myoelectric data, or a combination of both.  These network permutations were 

trained to assess the necessity and complementary nature of the inputs towards predicting 

ankle angle and moment.  As indicated in Section 2.4, all networks used the real ankle 

angle and moment for the purpose of training but as closed networks they were not 

allowed to access this information as feedback to predict future estimates of ankle angle 

and moment.  This input limitation was done for multiple reasons.  First, open-loop 
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network training was found to create networks with unstable predictions due to the 

disconnect between the model predictions and unchanging ‘true’ kinematic, kinetic, and 

myoelectric data.  In a real system this data would change in response to network output 

providing active feedback, but this effect cannot be replicated in training.  Second, target 

kinetic and kinematic data were not assumed to be accessible signals whereas myoelectric 

and accelerometer data could be relied on with a system implemented with surface 

electrodes. 

For networks trained using shank velocity data, the model received three inputs 

corresponding to the three dimensions of shank velocity.  The networks were trained 

against the real ankle angle and moment but when performance was evaluated for the test 

trial the model was only provided with shank velocity as the external input.  Networks 

with only velocity inputs were trained to evaluate the sole predictive qualities of previous 

movement data for predicting future kinematics and kinetics. 

Networks that were reliant only on myoelectric inputs were trained on either two 

or all three of the EMG signals recorded from the tibialis anterior, medial gastrocnemius, 

and lateral gastrocnemius.  EMG only trained networks were created to evaluate the sole 

predictive qualities of EMG data. 

Finally, networks were trained with combinations of 3D shank velocity and 

myoelectric data resulting in five or six inputs depending on whether 2 or 3 EMG inputs 

were used.  This was done to evaluate the complementary nature of shank velocity and 

myoelectric data. 
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2.9 Network Analysis 

Once a network was trained its ability to predict ankle angle and moment was 

evaluated using the withheld set of level walking, stair ascent, and stair descent ‘test’ 

trials.  Several metrics were used to evaluate the trained network performance.  First, the 

neural network performance metrics defined within the neural network toolbox were 

compared based on the average normalized combined error of angle and moment.  

Second, average RMSE was calculated for each mobility task (level walking, ascent, and 

descent) as well as the RMSE across all task types.  Third, prediction vs the target time 

series were plotted for comparison and evaluated with respect to their time series 

correlation. 
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3. Results 

3.1 Network Type Comparison on a Single Subject 

Figure 4: Prediction vs target ankle angle and moment across task type. 

Average angle and moment predictions are shown for Subject #5  using networks trained 

with EMG only (EMG; blue), velocity only (VEL; green), or both (E+V; purple) inputs.  

Model predictions are shown for level ground walking, stair ascent, and stair descent 

from left to right.  The averaged target profile (average of 10 trials) is denoted by the 

solid black line. 

 

Figure 4 shows the predicted ankle angle and moment profiles averaged across the 

10-fold cross-validation for each mobility task (walking, stair ascent, and descent) as a 

function of the type of input (EMG only, velocity only (VEL), or EMG and velocity 

(E+V)) used to train the NARX model. The average target profile (across the 10 trials) 

for each task is shown for comparison. On average, E+V trained networks most closely 
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predicted ankle angle and moment profiles across tasks followed by VEL and EMG 

trained networks respectively. 

Figure 5: Average absolute error over time across mobility tasks. 

Average absolute error over time for angle angle and moment  for a typical subject 

(Subject #5) using networks trained with EMG only (EMG; blue), velocity only (VEL; 

green), or both (E+V; purple inputs.  Model errors are shown for level ground walking, 

stair ascent, and stair descent from left to right. 

 

 

Figure 5 shows the absolute error over time between the model and target profiles 

averaged across the 10-folds.  Average error over time was consistently lowest for E+V 

trained networks.  The average error of VEL trained networks was sporatically lower at 

times as seen in the graph, especially in the walking condition and at the beginning of the 

angle prediction.  The average error spiked at certain time points but was not consistent 

between network types, although there are certainly areas of similar error highs and lows.  

Usually, error spikes corresponded to the prediction failing to hit target peaks or 
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lags/leads in sharp curves.  Particularly there is lower error at the begining and end 

generally, which is due to those time points being more deterministic in the experimental 

set up because each trial starts and ends in the same phase. 

 

Figure 6: Average RMSE across networks and task types. 

RMSE of ankle angle and moment for EMG, VEL, and E+V (Subject #5) trained 

networks averaged across the 10 training/test folds for Walking, Stair Ascent and Stair 

Descent trials. Error bars denbote ± 1 SD.   

 

The RMSE of ankle angle and moment averaged across the 10 test folds is shown 

in Figure 3 for the three mobility tasks. The average error for both angle and moment 

shows is lowest for the walking, followed by stair ascent, and stair descent.  However, the 

angle prediction of E+V shows little difference between stair ascent and descent in 

average RMSE.  Additionally, the moment prediction of VEL nets is also similar between 

stair and descent on average in terms of RMSE. 
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3.2 Cross Subject Comparison 

Figure 7: E+V absolute error of ankle angle and moment over time across subjects 

Absolute error over time averaged across six subjects (solid line) for networks trained 

with E+V inputs.  Columns correspond to the error in ankle angle (top row) and ankle 

moment (bottom row) for the three mobility tasks.  The shaded region in each plot 

corresponds to ±1 SD. 

 

The absolute error over time averaged across subjects of E+V trained networks is 

shown in Figure 7.  The average error in ankle angle across subjects was less than 2.5 

degrees during walking and less than 3.5 degrees for stair ascent and descent.  The 

average error in ankle moment was consistent across mobility tasks (<0.125 N-m/kg). 
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Figure 8: RMSE across the gait cycle for each subject and task type for networks trained 

with E+V inputs. 

Ankle angle (top row) and moment (bottom row) RMSE across the gait cycle for subjects 

1-6 (colored bars left to right by task) for networks trained with E+V inputs.  Error bars 

indicate ±1 SD.  Each colored line represents a different subject. 

 

Figure 8 shows the RMSE across the gait cycle for each subject. It is noteworthy 

that subject 1 (blue) had an abnormally high error trial during walking which drove the 

increase in the mean and standard deviation.  Otherwise, the predictive networks 

performed similarly across subjects within each mobility task in terms of RMSE.  Subject 

4 consistently had the lowest RMSE across tasks for both ankle angle and moment.  

Subject 5 (green) had the most representative RMSE across subjects and was the example 

subject used in the comparison between EMG, VEL, and E+V networks.  Some 

anomalous behavior is seen as subject 1 (blue) has a particularly bad prediction on 1 of 

10 trials affecting the whole average.  This anomalous trial performed poorly in angle and 

moment but more so in moment. 
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4. Discussion 

4.1 Principles/Relationships/Generalizations 

4.1.1 Closed Loop Networks 

The results demonstrate that a closed-loop nonlinear autoregressive network can 

be trained to accurately predict ankle angle and moment from myoelectric, kinetic, and 

kinematic inputs across mobility tasks (level ground walking, stair ascent, and stair 

descent) and their transitions.  The performance of networks combining myoelectric 

(EMG), and velocity (VEL) inputs performed better than for networks using either set of 

inputs alone.  The average error across trials for E+V networks was lower for every task, 

with a RMSE of 2.37 degrees and 0.0837 N*m/kg for ankle angle and moment 

respectively.  In addition, the network correlation to the target was higher on average and 

had better error versus range of motion ratio.  RMSE versus range of motion gives 

context to the error values of angle, comparing the error to the extent a joint is moving in 

the data. 

4.1.2 Impact of Network Input Structure 

In general, velocity trained networks performed better than myoelectric trained 

networks across mobility tasks.  The RMSE of velocity trained networks was 39.62% 

lower for ankle angle and 21.41% lower for predictions of ankle moment.  The average 

standard deviation of RMSE across trials was also lower in velocity only networks.  

However, E+V networks performed best with RMSE 20.81% and 30.88% lower than 

velocity trained networks for ankle angle and moment respectively. 

The improvement in performance stems from the complimentary nature of the 

two input signals but it is worth examining the differences between the two sets of inputs.  

Myoelectric data is a measure of the electrical activity of muscle and contains electrical 
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signals that necessarily precede the generation of muscle force and limb movement.  

Shank velocity data (measured at the midpoint between the knee and ankle) does not 

contain a predictive signal with respect to the underlying biomechanics.  It can signal 

cyclic movements well, but it does poorly in predicting limb adjustments made during the 

transition from one task to another. 

There are several reasons that velocity may have improved performance over 

myoelectric input alone despite not containing information about subject intent.  First, 

shank velocity has a higher signal to noise ratio compared to myoelectric inputs.  In a 

prosthetic system, the integration of shank acceleration, vis-à-vis accelerometers, to 

measure velocity could act to reduce the contribution of random noise across the time 

series and further increase the signal to noise ratio.  This factor was not able to be 

exploited in this case but could further improve performance in real system 

implementation.  In contrast however, velocity measures based on differentiation of 

sampled position data (such as from a motion capture system) may increase noise.  

Despite the possibility for higher noise, the signal to noise ratio of the shank velocity 

inputs derived from the motion capture system was still higher than the myoelectric 

(EMG) inputs to the network. 

Second, regardless of how shank velocity was computed, the velocity 

measurements were less affected by motion artifacts (unlike the EMG data).  In both 

cases motion artifacts can occur when the position of the sensor (or in the case of motion 

capture, the position of a marker) moves.  The difference is that during movement, non-

isometric muscle contraction will cause movement of the muscle relative to the skin that 

will shift the position of the surface EMG electrode relative to the muscle being 
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measured.  The physical shift manifests as motion artifacts that are highly coupled to the 

task-related EMG inputs and can be challenging to remove from the underlying data.  

Motion artifacts due to shifts in the sensor the surface of the skin can also occur, but the 

movement of the muscle due to contraction is unavoidable and ever present. 

A third factor is that the muscle activity measured with EMG is derived from a 

summation of all electrical impulses measurable from the skin surface and may contain 

elements that are not correlated to the muscle contractions controlling the movement of 

the ankle.  The final reason velocity networks can outperform EMG networks is that the 

trials being trained on are highly regular.  When comparing trials of the same task type, 

such as level ground walking, there is relatively low inter-trial variance.  EMG’s 

advantage of reflecting a subject’s intent matter less when movement is cyclical, and the 

subject’s intent does not reflect an unanticipated change in movement.  The more similar 

gait intervals are, the more each individual trial resembles one period of a repeating 

cyclical profile.  It stands to reason that under more non-cyclical conditions, the 

performance gap based on the type of network input (EMG vs. shank velocity) would 

shrink or may even flip so that EMG networks were more advantageous.  The 

experimental set up that produced the training data was chosen to measure a variety of 

movement types and transitions but was constrained in its complexity by the 

instrumentation used to obtain the kinetic and kinematic data and standardization of the 

tasks across subjects.  Therefore, in the current datasets the amount of time where user 

intent to modify gait is relevant represents a relatively small portion of the total training 

data.  In other words, the time interval where future intent matters in these trials is small 

relative to the portions where it is cyclical. 
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In general, providing more inputs to a model does not necessarily lead to a better 

model prediction, however, here the complimentary nature of the shank velocity and 

EMG inputs lead to significantly better performance overall.  As discussed previously, 

shank velocity inputs have a high SNR signal and can facilitate the prediction of cyclic 

movements that are common during gate while myoelectric inputs provide information 

regarding cyclic gait and subject intent.  Other contributing factors to the non-redundancy 

of the data are that that there is a time differential between the onset of both signals and 

the fact that the muscle activity being measured did not directly cause the movement of 

the shank itself. 

With respect to the mobility tasks, all networks performed best for walking 

conditions in terms of average RMSE even though the total training time for walking 

trials was lower (the walking trials represent less total time of gait).  This is not a surprise 

due to the lower complexity in the ankle angle and moment profiles and the lower range 

of motion (RoM) over time, but it’s worth noting that the trend held across all 

configurations of the network inputs.  The design of the network training was influenced 

by the concern that overspecification to a specific task type could occur when different 

tasks are represented by unequal amounts of total time.  This difference in total time 

could become problematic if the training was performed in the default mode of randomly 

sampling time points across the training data.  Random sampling would not guarantee 

that all gait trials (and types of gait) were equally represented.  Therefore, training was 

done on entire gait trials using the same number of trials for each task type.  This did not 

mean that training time was equivalent between task trials just that the training ratios 

were held constant.  The bias towards walking trials in terms of average RMSE can be 
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explained in part by their lower target variance even though the total training time on 

walking trials was lower. 

Similarly, E+V networks had the highest correlation in each task type for both 

angle and moment.  Input type did have a differential impact on correlations of angle and 

moment predictions.  EMG only trained networks was the worst and velocity was the best 

in terms of RMSE and correlation but E+V had virtually no bias either compared to EMG 

in terms of correlation.  Between task type correlation bias and angle/moment bias E+V 

wins.  The lack of bias between the variables in trial prediction is a good indication that 

the networks performance was reaching a ceiling with an average Pearson correlation 

coefficient of .976 for ankle angle and .986 for ankle moment across all task types. 

4.1.3 Adjustments to Network Size 

As outlined in the methods, a network node count of 16 was chosen based on the 

lack of a substantive impact of larger networks on performance during preliminary 

testing.  The RMSE exhibited a nonlinear asymptotic decrease as the size of the network 

(i.e., number of nodes in the network) increased up to 16 nodes and was approximately 

constant with 24 and 32 nodes.  While average network RMSE was similar in the larger 

networks individual network performance was more variable, particularly for networks 

incorporating EMG inputs.  As a result, the value of larger networks was considered 

questionable, and they were not examined further.  However, it was unclear why a larger 

network does not translate into better performance.  Since more nodes give a network 

more degrees of freedom, it is possible that the model prediction was under-constrained.  

When networks are under-constrained the weights in each node can become too well fit 

to the training data.  This over-specification to the trained data typically hurts network 
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generalization to novel data.  The use of a 10-fold cross validation during training helped 

to ensure that the optimal number of nodes was identified despite performance variations 

which can result from the random seeding of the initial training weights. 

4.2 Exceptions 

Predictions for EMG-based networks had relatively high errors at the start and 

end of trial predictions across task types.  When trial variability over time was examined, 

the start and end points of trials for each task type were similar for ankle angle 

predictions.  This outcome is reasonable since the start and stop points of each trial were 

defined based on heel strike resulting in similar foot positions.  However, EMG-based 

networks consistently started out with 2 degrees of angle error across tasks as shown in 

Figure 5.  In the walking condition, the E+V networks showed a similar onset error but 

yielded values that fell between EMG and velocity networks.  During stair ascent and 

descent errors in E+V and velocity networks were similar.  Despite the cyclic nature of 

the tasks, the parsing of gait into discrete trials resulted in onset transients due to the 

recursive structure of the network. In a practical application, where measures of ankle 

angle and moment are continuous over time, these onset transients would not be present 

in the network prediction. 

4.3 Comparison to Previous Work 

4.3.1 Myoelectric Predictive Networks  

Keleş et al. examined the ability of a network trained with combinations of one to 

five surface EMG signals (tibialis anterior, medial gastrocnemius, rectus femoris, biceps 

femoris, and gluteus maximus) to predict ankle angle and moment for able bodied 

subjects (Keleş & Yucesoy, 2020).  Their networks used 32 nodes with a nineteen-data-
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point delay and did not predict beyond the next time point.  Input combinations ranging 

from a single EMG up to all five EMGs were used to train the model and performance 

was ranked based on the number of EMG inputs.  Networks trained with five EMG inputs 

were found to perform the best for level ground walking trials.  In direct comparison to 

this work, the ankle error was comparable, but the addition of shank velocity improved 

prediction quality in terms of average RMSE.  The ability to achieve comparable 

performance using fewer inputs makes for a simpler design solution.  It may be possible 

that a larger set of EMG inputs (for example using high density EMG arrays) could yield 

better performance but at the expense of increasing complexity.  To date, however, no 

studies have leveraged high density surface EMG arrays for myoelectric predictions of 

gait. To the extent that such arrays are used, the increase in performance may be limited 

due to correlations between electrodes and the additive noise contributions of each EMG 

signal. 

In a separate study Zarshenas et al. used time delayed neural networks to predict 

ankle moment for exoskeleton control during level treadmill walking (Zarshenas et al., 

2020).  They compared networks designed to use EMG alone to predict ankle moment as 

well as networks that combined EMG and kinematic inputs.  In addition to using larger 

network models (up to 40 nodes), their networks were trained to predict ankle moment up 

to 2 seconds into the future.  They showed good prediction performance for cyclic 

walking.  As expected, error rose with the prediction time interval but not as dramatically 

as might be expected (error typically rises the further a prediction is from the sample 

window).  This lower error rise is likely tied to the cyclical nature of the walking task, 

which is more amenable to extrapolation.  Although the result for their zero-time ahead 
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model (the closest result to our study) was good at 8.5% torque RMSE/ROM (range of 

motion), it was still worse compared to the E+V trained networks here whose average 

cross subject RMSE/ROM for the same condition (level ground walking) was 5.5%.  The 

average torque RMSE/ROM for their EMG only network was 12.5% which is 

comparable to the performance of EMG trained networks here (11.6%).  Interestingly 

their networks performed worse even though they were trained only on walking trials 

whereas here the networks were forced to generalize over three mobility tasks. The larger 

network structure may have hurt performance in the next timestep prediction (as opposed 

to the predictions 2 seconds into the future). 

Other models have predicted joint torque for multiple gait profiles, from level 

ground walking to sprinting; using a variety of network structures including dense 

feedforward networks (6 layers with 80 hidden units), convolution neural networks, 

neural ODEs with 110 hidden units, and long short-term memory (LSTM) networks with 

64 hidden units and 2 dense layers with 16 hidden units (Siu et al., 2021).  Models trained 

with a combination of surface EMGs and accelerometer data showed good sequence-to-

sequence prediction, the primary network test case for this work.  A sequence-to-

sequence prediction is where the entire prediction timeseries is computed in one batch 

based on an input timeseries.  With the LSTM network, sequence to sequence performed 

the best with a moment RMSE of 0.08 N*m/kg for all activities and an average Pearson 

correlation of 0.88.  The performance is similar, but the sequence used to predict gait 

required a substantially larger sample window.  For future angle predictions (0.5 and 3s), 

an average activity RMSE of 0.09 N*m/kg and average correlation of 0.6735 was 
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achieved.  Although the average error of future ankle angle remained similar to the 

regular sequence-to-sequence prediction, the correlation over time dropped dramatically. 

Gupta R. et al. modelled continuous angular position of the ankle during 

unconstrained locomotion (level ground walking as well as ascent and descent of stairs 

and ramps) using a combination of surface EMG and knee joint angle inputs (Gupta et 

al., 2020).  They used a similar NARX architecture and examined performance as a 

function of the network size (5 to 30 nodes) across delays ranging from 1 to 10 timesteps 

or 8.33 to 83.3ms.  With a delay of 58.3ms, the same as in this study, the best performing 

network in the level ground walking condition was the 5-node network with an RMSE of 

approximately 11 degrees.  With a one timestep delay, the model prediction improved 

and to levels consistent with the results reported here.  They also found that the inclusion 

of knee angle greatly reduced performance.  While the network structure was very similar 

to the one implemented here, the decreased performance might be attributed to addition 

of ramp ascent and descent during training which increased the variability between 

expected target patterns.  The optimization reported with a node count of 5 suggests that a 

low node count may be preferable for these types of predictive networks. 

4.3.2 Classifier Networks 

Another approach to solving ankle prosthesis control is using classifier models.  

One such study (Young et al., 2014) used EMG and mechanical sensors to enhance intent 

recognition in powered lower limb prostheses, similar to the prediction of ankle angle and 

moment incorporated in the current model.  They reported that the state transition error 

decreased by 12.2 – 18.4% over their original model.  Convolution neural networks have 

also been used to predict the type of gait (walking, ascent and descent of ramp and stairs) 
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for a transfemoral prosthesis using inertial measurement units (B. Y. Su et al., 2019).  

The model achieved classification accuracies of 94.15% ± 3.04% for healthy ambulators 

and 89.23% ± 7.56% accuracy for transfemoral amputees, show a different way in using 

EMG as a control signal. 

4.4 Implications of Findings 

This study examined the use of a predictive networks architecture for closed-loop 

control of ankle angle and moment for use in a transtibial prosthesis.  The capability of 

the system to be quickly optimized for the individual user and the ability to operate in 

real time without conscious input from the user could improve prosthesis control when 

coupled with robust prediction across different types of ambulation. 

The finding that network performance was optimized with a relatively small (16 

node) architecture could facilitate real time implementation within a larger control 

system.  With fewer nodes in the network, fewer computations are required for each time 

step prediction.  Compared to other approaches incorporating more complicated network 

structures, E+V networks consistently performed better across locomotion tasks and 

provided a forward time prediction that could be used to compensate for control system 

and motor actuation delays when implemented in a prosthesis.  Finally, the combination 

of surface EMG with onboard accelerometry enables the use of fewer sensors which 

simplifies implementation within existing prosthesis control systems. 
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III. AIM 2 

1. Introduction 

The purpose of the second aim was to test the feasibility of incorporating the 

myoelectric predictive network developed in Aim 1 for control of a transtibial prosthetic 

device.  A proof-of-concept control simulation based on the Marquette transtibial 

prosthesis was used to demonstrate that a closed-loop NARX network can provide a 

stable control signal for actuating prosthesis ankle angle and moment in real time.  The 

proof-of-concept control simulation developed here takes an important next step toward 

implementation in a physical prosthesis and ultimately tests of human-in-the-loop 

control. 

2. Methods 

2.1 Preexisting Model 

The simulation is based around a model of a transtibial prosthesis developed at 

Marquette University (Sun et al., 2014)(Klein, 2018), the Marquette Prosthesis II.  The 

model simulates the ankle mechanism’s dynamics approximated as a quasi-static system.  

In this quasi-static model the dynamics are calculated as static models over a sequence of 

small steps.  The mode of control used for the model translates desired ankle angle and 

moment into commands to a motor interfaced with a torsional spring to move the ankle.  

Low-level control of motor position was implemented using a proportional-integral (PI) 

impedance controller (Klein, 2018).  The original model used a time dependent function 

fit to the generalized profile of ankle position and torque vs time reported by Winter 

(Winter, 2009) and was run on MATLAB 2019a. 
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2.2 Modeling Variable Timeseries 

To be used with the predictive model from Aim 1, the Marquette Prosthesis II 

control model was adapted to accept and test using novel timeseries data.  MATLAB 

scripts were used to approximate a best fit function of the target gait data using the 

approach described by Klein  for direct comparison (Klein, 2018).  A range of level 

ground walking, stair ascent, and stair descent trials were tested for each subject to 

characterize the robustness of the model response and range of motion. 

Testing for the original model developed by Klein was done on timeseries from 

each movement condition: level ground walking, stair ascent, and stair descent.  Of the 

three types of movement stair descent had the largest range of motion, ranging from 36 to 

-27 degrees across all subjects which necessitated modifications to the Marquette model 

(Klein, 2018).  The physical movement of the system is constrained by a four-bar 

mechanism which physically limited the range of ankle angle from 15 degrees positive 

and 60 degrees negative.  Positive and negative ankle angles are defined relative to the 

reference ankle angle that occurs when the foot is perpendicular to the ankle shank.  

Initial tests revealed that the positive angle limit was not sufficient to accommodate the 

measured ankle angles obtained from subjects during stair descent.  Based on the results 

of the initial range of motion tests, modifications were made to the four-bar mechanism 

to accommodate the appropriate range of motion in angle.  The modification made to the 

bar length (L3; Figure 9) reflected the smallest adjustment sufficient to achieve the 

positive 40 degree limit of positive ankle angles measured from subjects during stair 

descent trials (Aim 1). 
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Original Design     Modified Design 

 

Figure 9: Modifications to the Four-bar Mechanism to accommodate the measured range 

of ankle angle. 

In the original four-bar mechanism the model’s torsional spring was attached at point A, 

the bar L0 has the same orientation as the ankle shank, the bar L1 has the same orientation 

as the foot and the angle at point D between L0 and L1 represents the ankle angle 

(measured relative to the perpendicular orientation of L0 and L1 such that a positive 

changes in angle reflected absolute angles less than 90 degrees.  The dimensions of the 

original 4-bar mechanism were L0 = 6 cm, L1 = 5.48 cm, L2 = 9 cm, and L3 = 2 cm.  In 

the modified design, the length of L3 was increased to 4.3 cm. 

 

2.3 Network Implementation 

To fully model the control system, the NARX network (Figure 1) was 

incorporated into the modified prosthesis ankle model.  Based on the results from Aim 1, 

E+V network was used with 6 inputs corresponding to the 3 EMGs and 3D shank 

velocity.  The networks were incorporated into the Simulink model (R2019a Simulink 

Version 9.3) utilized the deep learning toolbox for Simulink.  In the final implementation, 

the model was able to take EMG and velocity signals and control inputs and then 
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translate them first into motor output, and then ankle movement in accordance with the 

target angle and moment timeseries. 

The open-loop control model used a static timeseries of angles and moments as 

input for the desired state.  Then the desired inputs were translated into the desired motor 

position.  Finally, the desired motor position was actuated using PI control. 

 

 

Figure 10: Marquette prosthesis open-loop control model for ankle angle with NARX 

prediction. 

The NARX network takes in E+V signal input and outputs desired θ and .  The outputs 

are fed into the biomechanics model that translates them to the desired motor position 

which is passed to the motor controller.  Actuation of the motor translates results in a 

change in the motor joint angle Ψ which is translated into a change ankle angle θ via the 

four-bar mechanism. 

 

When implementing the networks into the Simulink model, see Figure 10, the 

NARX network was trained to sample inputs and predict ankle angle/moment at 120 Hz.  

This sample rate differed from the variable runtime of the Simulink model itself which 

averaged a simulation rate that was approximately ten times faster.  Due to this difference 

in sampling rates, the motor position was only updated when the NARX model had a new 

output (i.e., at 120 Hz). 

2.4 Testing Across Task Types and Networks 

The new NARX-Simulink model was tested separately using each subject’s 

individually trained NARX model to predict ankle angle and moment across gait tasks.  

A MATLAB script was created to generate the network Simulink structure and modify 
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the primary simulation each time it was run.  The simulation output was measured at a 

120 Hz sampling rate and exported for analysis. 

2.5 Testing with No Simulated Feedback 

 

 

Figure 11: Maquette prosthesis closed loop control model with NARX prediction. 

The external feedback model has the same basic structure as Figure 8 but with the 

addition of the ankle torque estimator.  The ankle torque model combines the desired y 

and desired a from the biomechanics model with the desired q and t from the NARX 

network.  In addition, that NARX network can be configured to receive either the actual θ 

with and without the t estimate to account for the inability to directly measure ankle 

torque in the four-bar mechanism. 

 

The NARX model itself is a closed-loop system that relies on internal feedback of 

the predicted angle and moment.  External feedback in this context refers to feedback that 

occurs outside of the NARX model, which corresponded here to the feedback of ankle 

angle and moment of the simulated prosthesis.  The performance of the full control model 

seen in Figure 11 was tested under two external feedback conditions.  First, a test using 

only external feedback of the simulated prosthesis ankle angle was performed and then a 

second test was performed using external feedback of the simulated prosthesis ankle 

angle and moment.  The testing was split into two conditions because the ankle angle can 

be read directly from the ankle joint prosthetic model; however, the applied torque could 
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not be computed without simulating the biomechanics of loading weight on to the joint 

during gait which was performed using a separate forward model.  This divergent 

moment feedback resulted in an error characteristic that was not the same for angle and 

moment in the simulated model’s output. 

2.6 Evaluation Criteria 

For the purposes of comparison, the outputs of the Simulink simulations were 

resampled to 120 Hz to match the data from Aim 1.  The main measure used to test the 

success of the control simulation was the output ankle angle.  For each task trial, the error 

between the simulation ankle angle and expected target angle was calculated as the 

absolute error over time and the average RMSE across task trials.  Variability was 

quantified using standard deviation for each type of measured error.  The average inter-

subject error over time was also calculated using the average error trial for each subject. 

3. Results 

The control simulations based on NARX networks predictions of ankle angle and 

moment were successfully executed using the modified four bar mechanism dimensions. 

Results are reported below for three simulated control conditions: 1) NARX predictions 

based on internal estimates of ankle angle and moment, 2) NARX predictions based on 

external estimates of ankle angle and internal estimates of ankle moment, and 3) NARX 

predictions based on external estimates of both ankle angle and moment. 

3.1 Control Model Performance Based on Internal NARX model feedback 

Figure 10 shows the control system performance average across subjects when the 

NARX model predictions were based on internal feedback of the NARX estimates for 
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ankle angle and moment.  In this condition the control system did not “see” the target 

timeseries. 

 
Figure 12: Maquette prosthesis closed loop control model with NARX prediction. 

The average target profile is shown in black, the average NARX prediction is shown in 

blue and the average control simulation ankle angle output is shown in red. 

 

The difference between the NARX prediction and the control simulation over 

time was low across all task types.  The error relative to average target was also low and 
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resulted predominantly from an slight lag or lead in the trajectory profile over time.  The 

average RMSE of across trials was 1.93 ± 0.65 degrees for walking, 2.51 ± 0.51 degrees 

for stair ascent, and 2.68 ± 0.55 degrees for stair descent.  The average RMSE between 

the NARX prediction vs the control simulation output was 3.38*10-4 ± 3.14*10-5 degrees 

for walking,  8.53*10-4 ± 8.37*10-5 degrees for stair ascent, and  1.03*10-3 ± 1.09*10-4 

degrees for stair descent. 

Figure 12 shows the absolute error over time for all comparisons.  The error 

between the target and the NARX prediction as well as the target and the control 

simulation are virtually identical.  This lack of divergence is further illustrated by the 

near zero error between the outputs of the NARX prediction and control simulation over 

time. 
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Figure 13: Average absolute error of closed-loop control simulation across task types. 

The blue line shows the error between NARX prediction and the target profile.  The red 

line shows the error between the control simulation and the target profile and the yellow 

line shows the error between the NARX prediction and control simulation output.   

 

The average error of the the prediction and the output to the target went to zero at 

several points typically corresponding to areas with a lack of lag or with high similarity 
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among training trials.  The spikes correspond to areas of consistent lags or leads in 

prediction. 

 

Table 1: RMSE (in degrees) of the control simulation ankle angle relative to the target 

timeseries across subjects and task types.   

 RMSE    SD    
Subject Walking Ascent Descent Average Walking Ascent Descent Average 

1 2.70 2.61 2.75 2.69 2.24 0.79 0.72 1.25 

2 1.52 2.66 2.64 2.27 0.21 0.55 0.37 0.38 

3 1.79 2.65 2.75 2.40 0.29 0.32 0.67 0.43 

4 1.53 2.28 2.52 2.11 0.27 0.48 0.48 0.41 

5 1.87 2.62 2.61 2.37 0.37 0.53 0.51 0.47 

6 2.15 2.20 2.79 2.38 0.50 0.39 0.53 0.47 

Average 1.93 2.51 2.68 2.37 0.65 0.51 0.55 0.57 

 

In Table 1 the average RMSE across subjects and task types was 2.37 ± 0.57 

degrees.  This average RMSE is very similar to the NARX prediction performance. 

 

Table 2:  RMSE (in degrees) of the control simulation ankle angle relative to the NARX 

prediction across subjects and task types.   

 RMSE    SD    

Subject Walking Ascent Descent Average Walking Ascent Descent Average 

1 0.000394 0.000848 0.001153 0.000799 0.000033 0.000051 0.000200 0.000095 

2 0.000255 0.000707 0.000819 0.000594 0.000015 0.000057 0.000055 0.000042 

3 0.000313 0.000903 0.000959 0.000725 0.000027 0.000119 0.000116 0.000087 

4 0.000353 0.000808 0.001063 0.000741 0.000034 0.000098 0.000073 0.000068 

5 0.000323 0.000951 0.001090 0.000788 0.000035 0.000106 0.000077 0.000073 

6 0.000389 0.000902 0.001074 0.000789 0.000045 0.000071 0.000133 0.000083 

Average 0.000338 0.000853 0.001026 0.000739 0.000031 0.000084 0.000109 0.000075 

 

 

Table 2 shows that the error between the simulated results and the NARX prediction is 

very low, almost non-existent.  This holds across all mobility tasks, averaged across 

subjects. 
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3.2 Control Performance with Partial External Feedback 

In the first set of control simulations, the control system was feedforward because 

the predictive networks used internal feedback.  For the second set of control simulations, 

a hybrid closed-loop model was used where the ankle angle resulting from the control 

and simulated prosthesis was fed back to the to the NARX model.  The ankle moment 

continued to be taken from internal feedback within the NARX model because it was 

directly measurable from the simulated ankle joint, but the model’s moment estimate did 

not account for ground force interactions.  The results for these simulations were nearly 

identical to the open-loop control simulations, those of the internal feedback system.  The 

low error in the actuation seems to make no observable difference in accuracy of ankle 

angle across the gait tasks. 

3.3 Control Model Performance Based on External Feedback 

The full external feedback control simulation incorporated feedback from 

simulated prosthesis resultant ankle angle and moment.  The moment produced by the 

system was calculated separately from mechanical ankle simulation based on the original 

control model for the Marquette prosthesis.  This secondary torque calculation was done 

because the Simulink model was not sophisticated enough to produce an accurate torque 

response at the ankle joint.  Direct model measurement of torque would have required a 

model that simulated real-time loading on the ankle joint.  In its current form, the 

moment model represents a static loading of the ankle.  However, the ankle torque 

solution produced by the model did not fit the torque profiles obtained from the 

experimental data.  Therefore, it was anticipated that the control simulation performance 

would be less stable over time. 
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Table 3: Average number of open-loop simulation failures across task types due to 

control instability. 

Failures Walking Ascent Descent Average 

Average 0.0 3.3 4.2 2.5 

 

 

A failure is a trial that failed to simulate to the completion of its timeseries.  As 

seen in Table 3, there was surprisingly not enough instability to cause failures across 

subjects for level ground walking trials.  There was a bifurcation in the stair ascent trials 

such that half the subjects had 1-2 failures (out of 10) and the other half had 5-6 failures.  

Stair descent control simulations had the most failures averaging 4.2 failures per subject 

with one subject’s profiles resulting in 8 out of 10 failures.   
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Figure 14: Average performance across task types for closed-loop control simulations 

with external feedback. 

Each profile corresponds to the average across subjects.  The average target profile is 

shown in black, the average NARX prediction profile is shown in blue and the average 

control simulation profile is shown in red.  This average is not normalized.  

 

The average absolute error tended to decrease over time during walking but 

approached instability toward the end of the stair descent profile in Figure 14. 
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Figure 15: Average performance across task types for closed-loop control simulations 

with external feedback. 

Each profile corresponds to the absolute error averaged across subjects.  The blue line 

shows the error between NARX prediction and the target profile.  The red line shows the 

error between the control simulation and the target profile, and the yellow line shows the 

error between the NARX prediction and control simulation output.  
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Figure 15 shows that even for trials that didn’t fail to fully simulate, 

destabilization occurred over time.  Destabilization was especially present for the stair 

descent task which also had the most failed trials for each subject. 

 

Table 4: Difference in NARX prediction RMSE between open-loop control simulations 

and closed-loop control simulations with external feedback with failed trials removed. 

Error differences are highlighted in red.  Zeros indicate a difference that does not appear 

on the 120 Hz timescale. 

 RMSE    SD    

Subject Walking Ascent Descent Average Walking Ascent Descent Average 

1 0 2.04 2.78 1.61 0 3.37 8.11 3.83 

2 0 -1.93 0.81 -0.37 0 1.52 11.06 4.19 

3 0 0.40 4.72 1.71 0 -12.07 12.89 0.27 

4 0 3.04 -1.50 0.51 0 -24.00 10.04 -4.65 

5 0 -7.53 9.89 0.78 0 1.56 -13.51 -3.98 

6 0 8.81 -13.13 -1.44 0 26.76 32.02 19.59 

Average 0.00 0.81 0.59 0.47 0.00 -0.47 10.10 3.21 

 

 

As can be seen in Table 4, there are no failures that occurred or error detectable in 

the walking condition.  Error increases in stair ascent and descent where the range of 

motion is greater.  There is a great difference of error variance in the stair descent mode 

between subjects.  The average RMSE across subjects and task types increased by 0.47 

degrees. 
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Table 5: Difference in RMSE target vs closed-loop simulation 

NARX predictions with external feedback.  Comparing the target vs the simulation 

output with failed trials removed. 

RMSE    SD    

Walking Ascent Descent Average Walking Ascent Descent Average 

3.10 3.04 5.12 3.75 2.15 0.64 4.13 2.31 

1.51 2.90 2.82 2.41 0.20 0.65 0.29 0.38 

2.02 3.30 5.09 3.47 0.71 0.99 2.97 1.56 

1.90 2.58 2.50 2.33 0.44 0.28 0.44 0.39 

2.19 2.58 2.99 2.59 0.40 0.75 0.65 0.60 

2.31 2.47 11.71 5.50 0.62 0.50 13.54 4.89 

2.17 2.81 5.04 3.34 0.75 0.64 3.67 1.69 

 

In the full model feedback condition, there is a cross subject average error 

between the simulated output and the target of 3.34 ± 1.69 degrees, averaged over task 

types, see Table 5.  Again, there is a wide range between subjects from 11.71 ± 4.89 

degrees to 2.82 ± 0.38.  

 

Table 6: Average RMSE by Subject and Task Type, Open Loop vs Closed Loop 

RMSE between the open-loop NARX prediction and closed-loop control simulation with 

external feedback with failed trials removed.  

 RMSE    SD    

Subject Walking Ascent Descent Average Walking Ascent Descent Average 

1 1.33 1.48 3.45 2.09 0.66 0.84 4.46 1.99 

2 0.73 1.06 1.15 0.98 0.28 0.31 0.44 0.34 

3 1.28 1.77 3.80 2.28 0.88 1.24 3.56 1.89 

4 1.04 0.86 0.72 0.87 0.21 0.19 0.23 0.21 

5 1.30 0.96 1.10 1.12 0.29 0.19 0.37 0.28 

6 0.93 0.99 11.34 4.42 0.41 0.25 15.03 5.23 

Average 1.10 1.19 3.59 1.96 0.45 0.50 4.02 1.66 

 

 

In the case of Table 6, the average difference among successful trials from the 

closed loop prediction and simulation prediction/simulation ankle output can be seen. 
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4. Discussion 

4.0 Overview 

In aim 2 it was shown that the NARX predictive model can provide desired states 

for a prosthesis control system.  However, prior to human-in-the-loop testing, full 

validation will require an updated dynamic model of the prosthesis that incorporates 

realistic torque and ground reactions of movement. 

4.1 Principles 

Aside from the model adjustments made to accommodate the wider range of 

motion from the experimental data, incorporation of the NARX model as a control signal 

into the prosthesis controller simulation worked as expected.  All trials for all subjects 

were simulated successfully across gait tasks. 

The open-loop control simulation, in which the NARX model utilized internal 

feedback, added negligible error to the actuated ankle angle and moment.  The average 

error between the control simulation and the NARX prediction of ankle angle was 3768 

times less than the NARX prediction error averaged across ask types and subjects.  With 

the primary source of error being resulting from the forward prediction of ankle angle and 

moment, further training improvement should translate into direct performance gains 

from the system.  Across the range of network structures and parameters setting 

examined, the NARX model using 3 EMG + 3D velocity inputs resulted in the best 

overall performance across subjects for the tested types of gait (walking, stair ascent and 

descent).  It is possible that EMG inputs from additional muscles could yield better 

results as suggested by (Keleş & Yucesoy, 2020) with their best predictive model 

including five EMG signals.  More EMG inputs would yield similar computational time 

for the control model but would increase the amount of training required. 
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The original Simulink control model used a variable sample rate that was 5-10 

times higher than the 120 Hz sampling used in the NARX model.  To accommodate this 

limitation, the control simulation analysis was down sampled to 120 Hz for direct 

comparison to the experimental data.  This difference in speed may account for the low 

error since the control simulation had plenty of time to adjust to changes in the NARX 

output.  The small variations may be lost in the translation to 120 Hz but this is unlikely 

to be a problem since the NARX model can be trained to operate at higher sampling rates 

typical of EMG and physical sensor systems.   

For the control simulations with external feedback of ankle angle, the model 

performance did not change significantly, suggesting that external feedback of ankle 

moment was not critical for replicating the gait profiles of ankle angle across tasks in 

model.  By comparison, the control simulations with external feedback of both ankle 

angle and moment to NARX proved to be less stable due to limitations in the Simulink 

model.  Since the moment produced by the model was not derived from the model 

physics of the 4-bar mechanism they had to be calculated separately.  This limitation was 

a characteristic of the original Marquette prosthetic model, due to the lack of a full body 

model to replicate realistic foot loading.  The inability to simulate the appropriate ankle 

moments in response to ground reaction forces resulted in an overall increase in the 

control system error with respect to the target gait profiles.  Control simulation instability 

increased with the mismatch between the desired ankle moment generated by the NARX 

model and the external moment feedback obtained from the Marquette prosthetic model.  

Trial failures due to instability increased to 7.5 per subject with a 0% failure rate for 

walking trials, 33% failure rate for stair ascent trials, and a 42% failure rate for stair 
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descent trials on average.  Across subject datasets, the number of failed trials in the stair 

ascent condition ranged from 10% to 60% and ranged from 20% to 80% in the stair 

descent condition.  Among successful trials, the average angle RMSE increased by 1.96 ± 

1.66 degrees relative to the NARX prediction.   

Based on the control simulation performance with external feedback of ankle 

angle, it is expected that stability would improve if the prosthetic model replicated the 

realistic moment response during gait.  There was zero measurable error recorded from 

adding external angle feedback so it is expected that the inclusion of accurate external 

moment feedback would result in lower overall controller error.  Until a model with 

accurate moment feedback is incorporated, it is difficult to determine the extent of the 

error tolerance for the predictive system.  One way error produced by the system could be 

simulated would be by adding random noise to NARX model feedback.  Finally, the 

range of experimentally measured ankle angles suggests that the mechanical structure of 

the Marquette prosthetic system may need to be modified to achieve a wider range of gait 

profiles across users.  In other words, the range of motion possible in the model was 

insufficient to simulate the range of motion of the data set used in this thesis and that 

could bear out in the real hardware.  

4.2 Exceptions 

The gait profiles for one subject proved particularly problematic for the original system, 

and ultimately required that the length of the L3 bar be doubled.  Limitations to the range 

of motion were most prominent for stair descent trials.  The maximum angles of the 

target profiles were all close to or exceeded the maximum allowed angle of the adjusted 
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4-bar mechanism.  For this subject, a further adjustment to 4.3 cm was necessary to 

successfully run the control simulation across trials. 

Further adjustments to the prosthesis may be warranted depending on the range of 

mobility desired.  The adjustment in this study did not have a noticeable impact on the 

capability to accurately drive simulated ankle actuation.  However, further adjustments to 

the mechanism’s dimensions will have an impact on the amount of motor torque required.  

Additionally, although motor simulation occurs another layer of reality that is lacking is 

the motor actuation time.  In the physical implementation of the control system, the 

NARX prediction ahead of time will be used to counteract lag but this effect on error or 

instability would still need to be studied. 

In the case of the external angle and moment feedback model, the adjustment 

made to the prosthetic model was not sufficient to successfully simulate all trials.  The 

failures typically occurred where error built up until the control system became unstable, 

with enough error the simulations maximum RoM was violated and the simulation ended 

prematurely.  The main way to rectify this problem would be more accurately simulating 

the moment feedback of the prosthesis during gait.  Again, it is possible this issue would 

not be present in the real-world system when moment would be applied realistically. 

4.3 Previously Published works 

Importantly, current systems are generally lacking in their ability to provide 

smooth gait transitions and their ability to account for lag in the control and motor 

actuation.  Continuous control for lower limb prosthetic devices is still a novel and 

growing field of development.  As discussed previously, predictive ankle models are 
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another developing area and continuous predictive prosthesis control remains 

underdeveloped. 

The vast majority of powered transtibial prosthesis control systems can be 

classified as finite state machines.  They break gait down into a continuous repetition of 

phases (Sun et al., 2014).  Many of these systems have attempted to incorporate multiple 

mobility tasks (Kannape & Herr, 2014) (Culver et al., 2018) to varying degrees of 

success.  Task switching and volitional control are two methods used to account for 

changes in gait, such as when transitioning from level ground walking to stair ascent. 

Among finite state control models, one of the most well developed on is BioM, 

developed by Dr. Hugh Herr and studied at MIT.  The controller for the BioM was 

originally intended for walking conditions only (Wang et al., 2013).  Operating in this 

mode did not give the user the power input required to properly ascend stairs.  Tests were 

performed to adapt the device to accommodate stair ascent using volitional control 

(Kannape & Herr, 2014).  In the volitional control model, a proportional EMG signal was 

used to modulate the ankle extension and power desire for stair ascent.  However, the 

appropriate controlled powered output was not achieved.  In a more recent study by 

(Culver et al., 2018), the finite state model did not incorporate proportional EMG control 

and was shown to provide improved torque characteristics in stair ascent and stair descent 

cases compared to a passive prosthesis. 

As stated in the purpose for this study, a continuous model circumvents the 

challenges of increasing the complexity of a finite state system to meet the varied needs 

of a user.  In that regard, the ability to accurately predict and provide control outputs for 

multiple mobility tasks and task transitions have been demonstrated to work in a 
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simulation of a real prosthetic device.  This continuous approach may be 

computationally simpler than incorporating new finite states and transitions to account 

for all gait scenarios. 

In regard to human-in-the-loop (HIL) training, it’s hard to compare this study 

because the subject data being used was quasi-static.  In a human-in-the-loop simulation, 

the subject is considered part of the control system rather than an external input to the 

system.  Further exploration of the effect of HIL control would require subject testing. 

4.4 Practical Implications 

The implications of lagless continuous control extend beyond use in transtibial 

prostheses.  The approach is applicable to other types of prosthetic devices such as 

transfemoral prostheses or upper extremity prosthesis.  In power exoskeletons or other 

EMG based control systems, predictive control improves usability by eliminating system 

lag. 

Across applications, implementing a predictive NARX model for EMG-based 

control requires the collection of training data sampled at rates appropriate to the control 

system.  It’s still unknown how the predictive system would respond to human-in-the-

loop changes in EMG and movement kinetics/kinematics or whether the control system 

itself may lead to subject specific changes in EMG patterns over time to improve 

controllability. 

4.5 Main Take Away and Significance Towards Future Works 

The internal feedback NARX model functioned as desired with little to no error.  

External model feedback to the NARX model may work in the future considering the 

success of external angle feedback but does not work with the current ankle moment 
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approximation of the model.  As it stands the lag-compensated and continuous nature of 

the model is could be promising for lower limb prosthesis where a delay in actuation can 

create major falling hazards, again, real world testing will need to be done to prove this. 

Future studies might include employing a prosthesis simulation that incorporates a 

full body model to better simulate moment mechanics.  It would also be important to 

evaluate the error tolerance of the NARX external feedback model as it has been shown 

in the failed simulation trials that certain levels of error can lead to destabilization.  In 

addition to more sophisticated model testing, real world testing on the prosthetic device 

could also be used to provide appropriate moment feedback.  Real world testing, 

however, might prove challenging because the measurement of EMG signals within 

socket and velocity signals from the prosthesis would need to be integrated into the 

physical system design.  Preliminary testing on real world subjects would need to be done 

using a harness system to prevent falling in case of prosthesis instability. 

This study used data from six subjects.  It is possible a larger study utilizing more 

subject data could lead to a predictive model that is generalizable across subjects. This 

type of model would not require individual training, but it seems unlikely that a subject 

independent model would achieve the low RMSE obtained with subject specific NARX 

models.  What might prove interesting to study is a set of data that includes less rigid and 

therefore more varied data.  Such tasks could include ramp ascent and descent which 

incorporates variable foot placement.  Acquiring more free form trials with the current 

experimental setup would be difficult to achieve due to limitations in the size of the 

motion capture space and the need for multi-axis measurements of ground reaction force 

to characterize ankle moment during gait. 
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Another possibility would be to create a generalized NARX model.  Such a model 

could provide a generic prosthesis control but would prove to be less ideal that one 

individual attune to the user.  However, if similarities in the EMG profiles of amputees 

were theoretically found, a general model could provide the basis for an adaptive control 

model for prosthetic use.  That is, one that starts from some baseline function and then 

adapts to the user’s profile through use.   

Finally, it is likely that other predictive network models could work just as well as 

the NARX model.  It was found the model needed to be nonlinear and does need external 

inputs but other networks that fit that criteria could work.  
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IV. CONCLUSION 

1. Findings 

This study examined the use of predictive networks for closed-loop control of 

ankle angle and moment for use in a transtibial prosthesis.  The capability of the system 

to be quickly optimized for the individual user and the ability to operate in real time 

without conscious input from the user, could improve prosthesis control when coupled 

with robust prediction across different types of ambulation. 

In the thesis, results demonstrate that a closed-loop nonlinear autoregressive 

network can be trained to accurately predict ankle angle and moment from kinetic, 

kinematic, and myoelectric inputs across level ground walking, stair ascent, and stair 

descent tasks.  Six input E+V networks used the combination of 3D ankle shank velocity 

and 3 EMG signals to predict ankle angle and moment across multiple mobility tasks 

with an average angle RMSE of 2.37 degrees and average moment RMSE of 0.0837 

N*m/kg.  The best-found networks used 16 nodes and predicted 58.33 ms ahead of time 

with a 120 ms sample window.  This result is enough to account for system lag and 

facilitate instantaneous control of a prosthetic device.   

In Aim 2, computer model simulation of prosthesis control using the network in 

real time using static EMG and ankle velocity signals matched with average RMSE 

7.39E-04 degree versus target timeseries.  Using feedback from the simulated ankle angle 

proved as successful but the use of imperfect moment calculation as feedback to the 

NARX network produced error build.  A model that incorporates proper subject weight 

and GRF is necessary to properly test that type of feedback. 
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2. Implications 

Continuous predictive control across mobility tasks helps to circumvent the 

dilemma of an ever-expanding finite state model.  Instead of incorporating more states or 

more volitional control, one must only fine tune their training data sets to improve 

performance or include new forms of movement.  It’s possible that there is some limit to 

this exact type of method, during the process of picking the appropriate networks, some 

error was still present, if not less so than some of the other studies analyzed in this paper.  

Still, molding data sets is far simpler than designing a finite state model to react to every 

new situation. 

As for the predictive nature of the control, the implication of lagless control is 

also very helpful for overcoming input lag of a prosthetic device and the user’s perceived 

fluidity of control.  This type of lag is a constant and unavoidable issue in traditional 

proportional control.  However, the type of lag generated by a user’s change in movement 

intent, such as changing directions on a whim will obviously still generate some lag in the 

response of predictive control due to the averaging of previous data points.  Although 

there is no way around this type of lag, it is still a possible problem is end-user control 

that should be explored. 

The finding that networks of this nature perform best with a relatively small (16 

node) architecture also aids in real life implementation.  The fewer nodes in the network, 

the fewer computations occur at each sample interval and the faster the network can be 

trained.  Compared to some of the methods discussed in other papers, these networks 

seem to do well even against more complicated network structures.  The main takeaway 

from this benefit is an aid in the iterative process of developing low error networks.  

More networks can be trained faster in different permutations.  Furthermore, for the 
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deployment of commercial machine trained prosthetic devices, fast and relatively 

resource non-intensive computer training could be used to implement practical and 

painless recalibration to the available options of prosthetists or even end users for 

affordable means of customization. 

Implications of the types of inputs found to be effective are a limit to the number 

of necessary sensors needed to run such a network.  The more sensors needed, the greater 

cost and complexity of design.  Using sEMG with onboard accelerometry is all that is 

needed for this type of network.  No need for complicated integration of feedback from 

the prosthesis itself.  This method still requires the implementation of a prosthesis socket 

that incorporates the sensors in a way that maintains user comfort and consistent sensor 

contact so limiting the number of needed sensors is important.  It is likely that even 

simpler methods could be achieved with the use of thin sEMGs unintrusively layered 

inside the prosthesis’s socket and accelerometers mounted on the outside surface of the 

prosthesis itself making modification of the prosthesis socket limited or unnecessary. 

3. Future Directions 

Further testing for amputee data would be necessary to gage the effect of using 

residual muscle signals.  Strategies such as using different combinations of muscles to 

account for non-standard residual muscle EMG behavior or other post amputation 

variables may be necessary.  It would also stand to reason that the adaptation/degradation 

amputee user muscles experience over time would change the ability for the network to 

predict movement properly.  A long-term study may be needed as changes in muscle 

activity over time is far more likely in the amputee population which the technology was 

originally intended for. 
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In addition, further forms of movement may be helpful to include in network 

training data sets.  Data such as walking up and down ramps can provide a more 

heterogeneous set of data and may add further robustness to predictions.  Furthermore, 

data including different types of movement starting and stopping patterns, such as 

gradual or abrupt stops could help round out functions of the network prediction.  Though 

as of now it is not clear how networks of these types will react to other forms of data.  

The last main important sets of data that should be used for testing these networks is real 

time data.  In Aim 2 the feasibility of trained networks was tested against static data.  

Human-in-the-loop testing is an important factor.  The device will react to user input, but 

the feedback does not stop there in a real system.  All these factors would seem necessary 

to take this technology to the next level. 

Applications of this lagless continuous control should be possible for different 

types of prosthetic devices or in myoelectrically controlled exoskeletons for rehabilitation 

or industrial means.  User control of such devices in a natural and intuitive way 

leveraging their own muscle movements could improve these technologies greatly. 
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APPENDIX AIM 1 

Statistics for Network Methods 

EMG Angle RMSE/ROM Moment RMSE/ROM 

  Avg Std % 

% 

Std Avg STD % 

% 

Std 

Walking 4.10 0.85 11.60 2.41 0.12 0.04 7.30 2.12 

Up 4.89 0.67 9.72 1.33 0.17 0.02 10.63 1.54 

Down 5.75 1.76 9.41 2.89 0.17 0.05 11.18 2.97 

All 4.92 1.37 10.24 2.86 0.15 0.04 9.70 2.73 

          
VEL Angle RMSE/ROM Moment RMSE/ROM 

  Avg Std % 

% 

Std Avg STD % 

% 

Std 

Walking 2.22 0.36 6.21 1.01 0.10 0.02 5.94 1.15 

Up 3.20 0.66 6.32 1.30 0.14 0.03 8.69 2.04 

Down 3.37 0.29 5.52 0.47 0.13 0.02 8.33 1.39 

All 2.93 0.69 6.02 1.41 0.12 0.03 7.65 1.90 

          
E+V Angle RMSE/ROM Moment RMSE/ROM 

  Avg Std % 

% 

Std Avg STD % 

% 

Std 

Walking 1.87 0.36 5.27 1.00 0.06 0.02 3.60 1.02 

Up 2.62 0.51 5.21 1.01 0.09 0.02 5.63 1.00 

Down 2.61 0.49 4.28 0.80 0.10 0.02 6.61 1.31 

All 2.37 0.57 4.92 1.19 0.08 0.03 5.28 1.60 

 

Table 7: (Appendix) Average RMSE and RMSE/ROM across networks 

Looking at the first box: EMG.  In rows, you have the average statistic of the column for 

the walking condition (Walking), stair ascent condition (Up), stair descent condition 

(Down), and overall average (All).  In the first four column, there are the average RMSE 

in angle predictions, average standard deviation in angle, the average percentage of 

RMSE/ROM in angle predictions, the average percentage of standard deviation of 

RMSE/ROM in angle predictions.  In the second four columns, there are the same 

statistics for the moment predictions.  This format is the same for each set EMG, VEL, 

E+V. 

 

 

In Table 7 RMSE is averaged across each entire time course and the average 

RMSE in each condition is the average of each RMSE over time.  For angle predictions, 
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level ground walking prediction always the best, followed by stair ascent, and then stair 

descent for EMG and VEL network.  For E+V networks the stair ascent and stair descent 

averages differ by only 0.01 degrees within the standard deviation.  For moment 

predictions, level ground walking is still best but again there is no clear winner between 

stair ascent and descent differing between 0 to 0.01 within the standard deviation.  The 

statistic RMSE/ROM represents the ratio of the average RMSE to the average ROM, 

range of motion, shown in the table as a percentage.  This statistic represents a unitless 

interpretation of what the RMSE means compared to the entire movement.  In other 

words, if a trials range of motion is low an equivalent RMSE would represent a larger 

percentage than for a trial with a higher range of motion.  If one considers a lower range 

of motion movement to have a lower tolerance for error, RMSE/ROM may hold a useful 

comparison.  On the other hand, a movement with a larger range of motion will end up 

having a larger variability in input and therefore a larger variability in average outputs 

and in output error. 

Table 8: (Appendix) Average Correlation Coefficient 

Shown is the average correlation coefficient for each of the three network types.  In rows, 

each mobility condition and in each column corresponding to angle and moment for 

EMG networks, then for velocity networks, then E+V networks. 

  EMG   Vel   E+V   

  q t q t q t 

Walking 0.88404 0.97578 0.96777 0.98834 0.97517 0.99429 

Up 0.91517 0.93631 0.96577 0.9565 0.97765 0.98182 

Down 0.92962 0.93736 0.97892 0.96781 0.98798 0.97832 

Average 0.90961 0.949817 0.97082 0.970883 0.980267 0.98481 
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Table 9: (Appendix) Percent increase in correlation of moment over angle 

Shown is the percentages of moment correlation compared to angle correlation, (t/q-1) * 

100%.  A positive percentage indicated greater performance in moment prediction and a 

negative indicated a greater performance in angle prediction. 

  EMG Vel E+V Avg 

Walking 10.37736 2.125505 1.960684 4.821182 

Up 2.309953 -0.95986 0.426533 0.59221 

Down 0.832598 -1.13492 -0.97775 -0.42669 

Average 4.420209 0.006524 0.463479 1.630071 

 

 

As can be seen in Table 11, the largest disparity in training occurred in the 

walking condition for EMG network, 10.4%.  For each network, the bias towards 

moment performance is highest in the walking condition.  In the velocity and E+V 

networks cases, there was a small or even negative bias.  The average bias is greatest in 

the EMG networks case, almost zero in the velocity networks case, and very small in the 

E+V networks case (10x less than the EMG network). 
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