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ABSTRACT 

ANALYSIS OF SENSOR SIGNALS FOR ONLINE DETECTION 

OF HYDROCARBONS IN LIQUIDS IN THE  

PRESENCE OF INTERFERENTS 

 

 

Karthick Sothivelr, B.S.E.E., M.S.E.E. 

 

Marquette University, 2018 

 

 

Current applicability of many chemical sensors is limited due to the lack of 

adequate selectivity to enable real-world applications. Often, the chemically sensitive 

element of the sensor is only partially selective to any specific target analyte, potentially 

giving rise to low probability of detection. Other challenges include the need to identify 

and quantify the target analytes in a mixture, especially in the presence of non-target 

interferents. In this dissertation, to enhance the selectivity of the sensor, analysis of sensor 

signals for detection and quantification of mixtures of hydrocarbon compounds in liquids 

in the presence of interferents using estimation theory and polymer-coated sensor devices 

is proposed. In particular, signal processing techniques are developed that can be employed 

for real-time detection and quantification of target analytes (specifically, petroleum 

hydrocarbons) in the presence of interferents using only a single polymer-coated shear 

horizontal surface acoustic wave (SH-SAW) sensor device. Estimation theory is used for 

signal processing because it enables near real-time data processing, minimal computational 

requirements, and minimal memory requirements for real-world implementations. The 

proposed techniques are based on bank of Kalman filters (BKFs) and/or exponentially 

weighted recursive least squares estimation (RLSE). The success of the approach depends 

on appropriate analytical modeling of the sensor response. A general 𝑛-analyte model is 

formulated that takes into account the responses due to the target analytes and non-target 

interferents that interact with the polymer coated sensor. The model, which assumes that 

sorption of one analyte does not prevent sorption of other analytes in the mixture, utilizes 

two sensor parameters, i.e. response time constant and sensitivity. Non-ideal cases, the 

non-step-like concentration versus time profile seen by the sensors, as well as 

concentration-dependent sensitivity are also considered. 

The proposed techniques are tested using experimental sensor response data 

collected using polymer coated SH-SAW sensors with actual groundwater samples. The 

estimated analyte concentrations are compared to the results obtained independently using 

gas chromatography. Very good agreement (within about 10-15% accuracy) between the 

estimated and measured concentrations is found, even in the presence of non-target 

interferents. No complex training data set is required for the proposed technique. 
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1 INTRODUCTION 

 

1.1 Chemical Sensors: General Background 

 

In recent years, there has been a growing need for chemical sensors for in-situ 

applications, which demand continuous real-time detection and monitoring of hazardous 

compounds in both gas and liquid environments (as opposed to sample collection on-site 

and transportation to an off-site laboratory for further analysis). Chemical sensors are 

devices or instruments that are used to determine the detectable presence, concentration 

(or quantity) of specific chemical substances (analytes) [1]. The working principle of a 

chemical sensor consists of converting a chemical stimulus due to the interaction between 

the target analytes and the sensor into an electrical signal (or optical signal in some 

cases). Further processing of this electrical (or optical) signal is performed to identify and 

quantify the analytes that induce the stimulus. A typical chemical sensor system consists 

of a recognition element (often a coating that is sensitive to the target analytes), a 

transduction element and a readout technology used to measure and convert the chemical 

perturbation into an electrical (or optical) signal as illustrated in Figure 1.1 [2]. 
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Figure 1.1: Typical chemical sensor system [2]. 

 

 

 

Chemical sensors are used in monitoring hazardous substances in many 

applications including manufacturing processes, environmental monitoring (both indoor 

and outdoor), and health monitoring. Of these applications, the most crucial application 

area for chemical sensors is in the detection of toxic chemicals in the environment. Toxic 

chemicals in the environment can be present in gas or liquid phase. Examples of toxic 

chemicals that need to be monitored in the gas phase include carbon monoxide, hydrogen 

cyanide, nitrites, arsine, carbon dioxide, volatile organic compounds (VOCs) and 

methane to name a few [3]. In the liquid phase, toxic chemicals that need to be monitored 

include VOCs, pesticides, pharmaceutical wastes etc. Often the presence of interfering 

species in the environment complicates the detection and quantification of the target 

hazardous compounds in both gas and aqueous environments. Interferents are the non-

target analytes that are present along with the target analytes that can interfere with or 

disrupt the detection of target analytes. 
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The characteristics of the chemical sensor developed for a specific application are 

strongly dependent upon the requirements of the application. However, regardless of the 

application, the key characteristics that a chemical sensor must exhibit include: 

 

▪ Sensitivity: Defined as the change in the measurement (output) signal per 

concentration unit change of the analyte [4, 5]. The slope of the calibration curve 

can be used for computing the sensitivity of the chemical sensor. The sensitivity 

of the sensor can be a constant, linear or nonlinear for the entire range of 

concentrations the sensor is exposed to. 

▪ Selectivity: The ability of the chemical sensor to distinguish target analytes from 

non-target analytes [6] or to distinguish one target analyte from another. Strongly 

dependent upon the capability of the sensitive element of the sensor to recognize 

the size, shape, or dipolar properties of the target analytes [7]. 

▪ Detection limit: The smallest concentration of an analyte a chemical sensor can 

reliably detect. ‘Reliably’ here refers to an adequate signal-to-noise ratio [8].  

▪ Dynamic range (Span): Concentration range that the chemical sensor can detect 

[9]. Concentrations outside this range may be unintelligible by the sensor. 

▪ Stability: The ability of the chemical sensor to produce the same output value 

when measuring a fixed concentration over a period of time [9]. 

▪ Repeatability: Chemical sensor’s ability to produce the same output for successive 

measurements of the same analyte concentration [9]. 

▪ Reproducibility: Ability to reproduce the same output responses for the same 

analyte concentration after some measurement condition has been altered [9]. 
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▪ Time constant: The time taken for the sensor response to reach 63% of its final 

value when exposed to a step change in concentration [3]. 

▪ Linearity: Depends on the closeness of the calibration curve to an ideal straight 

line [9]. 

 

As indicated earlier, the primary task of chemical sensors is to detect and quantify 

the concentrations of target analytes in either gas or liquid phase. The detection and 

quantification of certain hazardous compounds has become of great importance for 

human health and ecosystems. In some cases, it is a legal obligation to monitor the level 

of certain hazardous compounds in the environment. These regulatory requirements are 

set by governmental agencies such as the Environmental Protection Agency, the Food 

and Drug Administration, the Occupational Safety and Health Administration, etc. The 

detection and quantification of hazardous compounds such as chemical warfare agents 

and VOCs like benzene, toluene, ethylbenzene and xylenes are of utmost importance due 

to the known hazard potentials of these compounds. The general pathways for human 

exposure to hazardous compounds are summarized in Figure 1.2 [1]. Based on Figure 

1.2, it is vital to design a chemical sensor that can be placed at either the emission source 

of these hazardous compounds or in the media that transport these compounds so that the 

spreading of these hazardous compounds can be halted in the beginning stages (before 

human exposure). 

Chemical sensors can be implemented using various sensing platforms such as 

optical devices, electrochemical devices, capacitive devices, resistive devices, micro-

electromechanical systems (MEMS) and acoustic wave devices [10]. The overall 
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sensitivity of the chemical sensor is highly dependent on the chosen sensing platform. To 

be more precise, the overall device sensitivity is the product of the sensitivity of the 

chemically sensitive element to the target analytes and the sensitivity of the sensor 

platform to changes in the sensing element. Choice of sensing platform also plays a 

significant role in determining the suitable readout technique for a chemical sensor which 

in turn can greatly affect the overall complexity of the chemical sensor device. 

Optical chemical sensors monitor the chemically induced changes in the optical 

parameters such as index of refraction, amount of absorbance, or intensity of 

photoluminescence in order to detect and quantify the target analytes [11]. Typically, a 

chemically sensitive layer will be placed on the optical device, which will be sensitive to 

the target analytes. The interaction between the target analytes and the chemically 

sensitive layer will result in the changes in a particular optical parameter, which can be 

related to the concentration of the target analytes [10, 11]. 

For electrochemical sensors, the sensing mechanism is based on monitoring the 

interaction between the target analytes and the electrodes of the device. A measurable 

signal (e.g. change in conductivity) will be induced due to the interaction between the 

target analytes and the electrode that can be related to the concentration of the target 

analytes [12]. Electrochemical sensors include voltammetric sensors, potentiometric 

sensors and amperometric sensors. 

Capacitive and resistive chemical sensors have the advantage of the measurand 

signal already being an electrical signal (which eliminates the need for converting the 

measurand signal into electrical signal for further processing). In capacitive chemical 

sensors, the sensing principle is based on monitoring the changes in the capacitance of 
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the sensor device due to the interaction with the target analytes [13, 14]. The sensing 

principle of resistive chemical sensors (also known as chemiresistors) is based on 

monitoring the changes in the electrical resistance in response to interaction of the sensor 

with the target analytes [15]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Schematic pathway for human exposure to hazardous compounds [1]. 
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MEMS based chemical sensors belong to a relatively new class of chemical 

sensors which includes microbridges [16], microplates [17], and microcantilevers [18], 

etc. The mechanical or electrical properties of these micro-scaled devices are monitored, 

and any changes observed in these properties of the device can be related to the 

concentration of the target analytes [18]. One of the most promising MEMS based 

devices for chemical sensing is the microcantilever. A microcantilever is a diving-board-

like structure usually only a few hundred microns in length and can be operated either in 

the dynamic mode or in the static mode. In the dynamic mode, the resonant frequency 

and quality factor of the device are monitored whereas in the static mode, the deflection 

of the microcantilever is monitored [19]. Microcantilevers can be used as a chemical 

sensor when a chemically sensitive layer is placed on the surface of a microcantilever. In 

dynamic mode, the analyte will interact with the polymer coating producing mass loading 

and stress effects, which will change the resonant frequency and quality factor of the 

microcantilever [19]. These changes can be related to the concentration of the analyte. On 

the other hand, in static mode, the differential surface stress from analyte sorption causes 

the microcantilever to bend and the magnitude of the bending of the microcantilever can 

be related to the concentration of analyte [19]. 

Acoustic wave chemical sensors include a wide variety of devices such as 

thickness shear mode (TSM) resonators [8, 20-22], surface acoustic wave (SAW) device 

[8, 24], shear-horizontal surface acoustic wave (SH-SAW) device [8, 26, 27], flexural 

plate wave (FPW) device [28] and acoustic plate mode (APM) device [29]. These devices 

can be used as chemical sensors for the detection of target analytes in gas and/or liquid 

phase. In general, acoustic wave devices utilize elastic waves at frequencies well above 
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the audible range propagating in piezoelectric crystals. Typically, acoustic wave devices 

are operated between the frequencies of 1 MHz to slightly above 1000 MHz [8]. The 

sensing mechanisms for acoustic wave devices are based on chemical interactions 

between the target analytes and the chemically sensitive coating placed on the sensor. 

This interaction will cause a perturbation in the propagation characteristics of the wave 

such as frequency and amplitude which can be related to the target analytes. TSM 

resonator and SAW devices are the most commonly used sensor platforms for chemical 

sensing applications [8, 20-24]. TSM resonators are capable of both gas and liquid phase 

detection of the target analytes. SAW devices, on the other hand, are only capable of gas 

phase detection. This is because when SAW devices are used for liquid phase sensing, the 

vertical displacement component of the wave will cause unacceptably high attenuation. 

Therefore, for liquid-phase detection, SH-SAW device is used rather than the standard 

SAW device [8, 26, 27]. For SH-SAW, the displacement component of the wave is 

parallel to the surface of the device and will not cause high attenuation of the wave in 

liquid phase. 

The common issues for all chemical sensor technologies discussed earlier are lack 

of adequate sensitivity and selectivity. Both sensitivity and selectivity are highly 

dependent on the chemical interaction between the chemically sensitive layer (or 

polymer) and the target analytes. Therefore, the selection of the chemically sensitive 

element is critical to achieve the desired degree of sensitivity and selectivity for a 

particular application. To some extent, the issue with chemical sensitivity is solvable by 

selecting the appropriate sensor coating that can achieve the required degree of response 

for a given application. However, the issue with selectivity of a chemical sensor is very 
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difficult to rectify. Unlike biological sensors, chemical sensors are only partially selective 

i.e. the chemically sensitive element is not selectively sensitive to any specific analyte or 

group of analytes. For instance, if one wants to detect only methane in the air, it is 

difficult to develop a chemical sensor that only detects methane. The sensor is most likely 

to respond to ethane, propane and other similar molecules in the air making it difficult to 

determine which analyte is present and causing the response. Hence, the current 

applicability of many chemical sensors is limited due to the lack of sufficient selectivity 

to enable real-world applications. Lack of adequate selectivity of the chemical sensors 

further exacerbates the challenge in identifying and quantifying target analytes in a 

mixture of compounds. This is often caused by the chemical similarity within a group of 

target analytes, as well as the presence of non-target interferents to which the sensor is 

also responding. 

One solution to enhance the selectivity of a chemical sensor is to use an array of 

partially selective chemical sensors instead of only a single sensor for a particular 

application [30-33]. All the sensors in the array respond to most if not all analytes in the 

sensing environment, but the pattern of responses from the sensors provides a unique 

fingerprint for each analyte or group of analytes [32]. The sensor array approach was 

initially proposed by Zaromb and Stetter who noted that while a single sensor could not 

discriminate a target analyte from possible interferents, many sensors would be able to 

detect multiple target analytes in the presence of interferents [30]. The sensor array 

approach to detect and quantify target analytes is often facilitated by dimensionality 

reduction and pattern-recognition techniques [34-39] including linear-discriminant 

analysis, principal-component analysis, and cluster analysis. Using a sensor array for 
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chemical sensing does, however, has potential drawbacks, the most critical drawback 

being the inability to obtain accurate results for multi-analyte mixtures. The sensor array 

approach often works well only for single analyte compounds or pre-defined mixtures. 

But as the complexity of the mixture increases, the approach will fail or produce 

inaccurate results for detection and quantification of target analytes. Other drawbacks of 

sensor arrays include increased signal- and data-processing time and potential 

misclassification. In general, sensor arrays require additional processing time compared 

to the processing time of only a single sensor. Unfortunately, this problem is further 

exacerbated with the increase in the number of sensors in the array, which will lead to 

increased data dimensionality and complexity. Furthermore, sensor arrays are also prone 

to misclassification errors which are particularly likely if the chemical diversity 

(“chemical orthogonality” [32]) and partial selectivity of the sensor coatings is 

insufficient. Moreover, the use of only one sensing parameter per sensor for 

classification, as is often the case, further intensifies the error due to misclassification 

[31]. Given all the drawbacks of the chemical sensors and chemical sensor arrays, there is 

a pressing need to develop a novel advanced signal processing approach that can 

overcome the existing challenges with the use of chemical sensors for in-situ 

applications. The goal is to develop a smart chemical sensor system by incorporating an 

advanced signal processing approach that enables the chemical sensor to operate 

effectively for in-situ applications. Since most of the existing approaches to develop a 

smart chemical sensor focus on the use of a sensor array, a brief review of signal 

processing techniques [40-42] with a sensor array will be discussed next. 
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1.2 Review of Signal Processing Techniques for Sensor Arrays 

 

Signal processing of a chemical sensor array is a tedious process and demands 

significant computational capability to process the signal and data from each sensor in the 

array. Typically, in a sensor array, each of the sensors must be processed separately to 

eliminate noise, outliers and baseline fluctuations in the sensor response. Then, features 

(sensing parameters) are extracted from each of the individual sensor responses. The 

number of features used for classification dictates the dimensionality of the data collected 

from the sensor array for further processing. To avoid the issues that arise when 

analyzing data in high-dimensional spaces, often a dimensionality reduction technique is 

employed in a chemical sensor array by transforming the features to a new smaller 

dimensional feature space that retains the information most relevant for classification 

[43]. Finally, the sensor array data must be processed collectively using some form of 

pattern recognition technique to identify and quantify the target analytes causing the 

response. The main signal processing components of a chemical sensor array are depicted 

in Figure 1.3. In general, the main signal processing components of a chemical sensor 

array include signal preprocessing, feature extraction and dimensionality reduction 

algorithms, and pattern recognition and classification techniques [42]. In this section, a 

brief review of some of the common signal preprocessing techniques, feature extraction 

and dimensionality reduction techniques, and pattern recognition techniques employed in 

a chemical sensor array will be given. 
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Figure 1.3: Main signal processing components of a chemical sensor array. 

 

 

 

1.2.1 Signal Preprocessing 

 

Chemical sensors in the array are susceptible to noise, outliers, and baseline 

fluctuations (or baseline drift) which could negatively influence the classification 

process. Therefore, the raw signal has to be preprocessed first to correct the data and 

remove these unwanted distortions. 

Noise is basically any unwanted modifications that corrupt the true signal, 

whereas, an outlier is any observation point that is secluded from other observation 

points. Noise and outliers have significant impact on the signal-to-noise ratio (SNR) of a 

signal and thus, need to be filtered to improve the SNR. In order to eliminate the noise 

and outliers in the sensor response data, often digital filtering techniques are employed. 

Digital filters can be classified into two groups, i.e. infinite impulse response (IIR) filters 

and finite impulse response (FIR) filters [44]. For IIR filters, the output (filtered data) 

depends on the inputs and the previous outputs and for FIR filters, the output only 

depends on the inputs. Both types of digital filters have their own pros and cons. For 

instance, IIR filters are easier to implement but are susceptible to instability whereas FIR 

filters avoid instability with increased implementation complexity and longer propagation 
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delay [44]. Therefore, the choice of filter used to eliminate noise and outliers depends 

highly on the application and computational capability of the sensing system. 

Baseline drift is another problem known to affect sensor signal and can greatly 

degrade the performance of a chemical sensor array, potentially resulting in 

misclassification errors. Baseline drift occurs due to fluctuations in environmental 

conditions such as changes in temperature, humidity, and pressure [45, 46]. Since it is 

difficult to control the environmental conditions where the sensor array is placed, often 

baseline correction techniques are employed to correct for the baseline drift. There are 

several baseline correction techniques that allow the estimation of the true baseline 

during the exposure to the analyte(s) such as linear extrapolation, linear interpolation, 

cubic interpolation and using estimation theory to estimate the baseline. The choice of the 

baseline correction technique to be employed depends on the duration of the sensor 

response. Linear extrapolation and linear interpolation are often used for sensors with 

short response time where it is implicitly assumed that the baseline slope remains 

constant during exposure. The linear extrapolation technique has the advantage of only 

requiring the data obtained before the sensor is exposed to the analyte(s) for estimating 

the baseline. On the other hand, linear interpolation requires data obtained both before the 

analyte(s) is added and after it has been flushed from the sensor for estimating the 

baseline [41], requiring additional time for the measurement to be completed before the 

estimation can be performed. However, linear interpolation is usually more accurate than 

linear extrapolation. For sensors with longer response time, linear extrapolation and 

linear interpolation could lead to a poor estimate of the baseline due to the possibility of 

baseline drift rate or direction change during a response [45]. In this case, cubic 
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interpolation function and a relatively new approach that utilizes estimation theory can be 

used. In most cases, as the complexity of the baseline correction techniques increases, it 

will yield a better result as depicted in Figure 1.4 [45]. It is imperative to note that the 

estimation theory approach for baseline drift correction can be implemented in real-time 

as the measurement is recorded, which could drastically shorten the overall time required 

to identify and quantify the analyte(s) from the sensor responses of the array [45, 46]. 

 

Figure 1.4: Illustration of several baseline correction techniques [45]. In the figure 

𝒚𝒔𝒔 represents the steady-state response and 𝒚𝒃 represents the baseline response. 

 

1.2.2 Feature Extraction and Dimensionality Reduction 

 

After preprocessing of the measured sensor responses from the array, the sensor 

responses are now ready for feature extraction (or sensor parameters extraction). The 

extraction of sensing parameters from each sensor in the array is the most crucial step 
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that will determine the successful identification and quantification of the target analytes. 

The sensor parameter most commonly used as the key feature to define the sensor 

response of each sensor in the array and to identify and quantify the target analytes is the 

steady-state feature [33]. Table 1.1 lists some common steady-state features and their 

formulae used for different types of sensor platforms [33]. There are several issues 

associated with the use of steady-state features to define a sensor response, the most 

critical issue being increased time-to-detection of the target analytes. If steady-state 

features are used, one must wait until the response reaches its steady-state before features 

can be extracted for further processing, i.e., before target analytes are identified and 

quantified. In some cases, the sensor could take a fairly long time before it reaches 

steady-state, especially in liquid phase detection where absorption can be slow (response 

time can be on the order of several minutes to hours). In these cases, if a dangerous level 

of a toxic chemical is present in the environment, the sensor would not be able to detect 

and quantify the toxic chemical rapidly, thus preventing the necessary remediation action 

to be carried out on time. In order to decrease the time-to-detection, the initial derivative 

of the sensor response is sometimes used instead of steady-state feature. By using initial 

derivative method, only the first few data points of the sensor response and an estimate of 

the initial derivative are required to quantify the target analytes [33]. However, the initial 

derivative method is prone to flow effects (i.e. how quickly the sensor is exposed to the 

sample) and higher noise (taking the derivative of the sensor response amplifies noise 

significantly). 
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Table 1.1: List of common steady-state features used for identification and 

quantification of chemical analytes [33]. 

Steady-State Feature Formulae Sensor Types 

 

Difference 

 

𝑥 =  𝑦𝑠𝑠 − 𝑦𝑏 

 

Acoustic Wave Device 

Metal-Oxide Resistor 

 

Relative 

 

𝑥 =  𝑦𝑠𝑠 𝑦𝑏⁄  

 

Metal-Oxide Resistor 

Polymer Resistor 

 

Fractional Change 

 

𝑥 =  (𝑦𝑠𝑠 − 𝑦𝑏) 𝑦𝑏⁄  

 

Metal-Oxide Resistor 

Polymer Resistor 

 

Log Relative 

 

𝑥 =  ln(𝑦𝑠𝑠 𝑦𝑏⁄ ) 

 

Metal-Oxide Resistor 

 

 

*𝒚𝒔𝒔 represents the steady-state response and 𝒚𝒃 represents the baseline response. 

 

 

If only one feature or sensor parameter is available (or if the decision is made to 

ignore all but one parameter or feature) for analyte identification and quantification, 

misclassification errors are more likely to occur. For instance, if only steady-state feature 

is used for classification, there will be scenarios where two or more different analytes 

with different concentrations have the same steady-state value which will ultimately 

result in misclassification error. In this case, the sensor array will fail to identify the 

analyte most likely to have caused the sensor response. Hence, to improve the reliability 

of the classification of the sensor array, it is imperative to add another feature or sensing 

parameter for classification [47]. The addition of another feature will drastically improve 

the selectivity of the sensor array, thus permitting the construction of sensor arrays with 

fewer sensors. This will definitely contribute towards the reduction of the system cost, 

complexity and size. Another potential sensing parameter that could be utilized is the 

transient information of the sensor responses (assuming the transient information is 
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measurable). Often the sensor response to an analyte holds distinct transient information 

that can be used for analyte identification. If both transient and steady-state features are 

exploited, it can result in improved identification and increased recognition accuracy 

[46]. 

Once the features have been extracted from each of the individual sensor 

responses, a feature or observation vector is formed [33]. Typically, the feature vector, 𝑋 

is defined as 

 

𝑋 = 

[
 
 
 
 
𝑥1

𝑥2

𝑥3

⋮
𝑥𝑁]

 
 
 
 

 ,      (1.1) 

 

where 𝑥𝑖 is the 𝑖th feature from the sensor array and 𝑁 is the total number of measured 

features. The dimension of the feature space is dependent on the number of features 

extracted from each of the individual sensor responses. Due to the issues that might arise 

when analyzing data in high-dimensional feature space, a dimensionality reduction 

technique is often employed in a chemical sensor array to reduce the dimensionality of 

the features by transforming the features to a new smaller dimensional feature space that 

retains the information most relevant for classification. Dealing with high-dimensional 

feature space can result in sub-optimal performance of the pattern recognition technique 

[43]. Thus, it is crucial to reduce the dimension of the higher-dimensional feature space. 

Usually, the dimension of the feature space will be reduced down to three- or even two-

dimensional space for easier visualization. The general idea behind dimensionality 
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reduction techniques is to find a transformational matrix that can map an 𝑁-dimensional 

feature vector into smaller 𝑀-dimensional feature vector as shown in 

 

[
 
 
 
 
𝑥1

′

𝑥2
′

𝑥3
′

⋮
𝑥𝑀

′ ]
 
 
 
 

= [𝐴𝑀×𝑁]

[
 
 
 
 
𝑥1

𝑥2

𝑥3

⋮
𝑥𝑁]

 
 
 
 

 ’      (1.2) 

 

where [𝐴𝑀×𝑁] is an 𝑀-by-𝑁 matrix with 𝑀 < 𝑁. The transformation represented by 

[𝐴𝑀×𝑁] is usually optimized in some way to allow classification. Common 

dimensionality reduction techniques include principal component analysis (PCA) and 

linear discriminant analysis (LDA). In PCA, the transformation gives the best 

representation in the least-square sense of the feature vector, 𝑋, in the new 𝑀-

dimensional feature space [34]. On the other hand, LDA tries to find the transformation 

that will maximize the separation between analyte classes in the new feature space [34]. 

 

1.2.3 Pattern Recognition and Classification 

 

The final and important stage in chemical sensor array signal processing is pattern 

recognition and classification. Some common pattern recognition techniques include 

Bayesian decision rule, linear and nonlinear discriminant functions, nearest neighbor 

algorithm, neural networks, clustering algorithms, perceptron, etc. [33-39, 43]. The 

objective of pattern recognition and classification is to determine the possible analytes 

that are most likely to have caused the response, given the measured feature vector. The 
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pattern recognition process is divided into two steps, training and classification. The 

training step involves teaching the pattern recognition algorithm how the sensor array 

will respond to a known analyte or a group of analytes [38]. The classification step is 

where the information learned in training is used to determine the analyte (or group of 

analytes) that is most likely to have caused the given response [38]. The goal of pattern 

recognition is mathematically equivalent to finding the analyte(s) with the greatest 

probability given the measured feature vector, 

 

𝑎∗ = argmax
𝑖

𝑃(𝑎𝑖|𝑋) ,     (1.3) 

 

where 𝑎∗ represents the analyte or group of analytes identified as causing the response of 

the sensor array, 𝑎𝑖 represents possible analytes and 𝑋 represents the measured feature 

vector. Note that Bayesian probability theory can be used to find the conditional 

probability of each analyte in eq. (1.3). However, the use of Bayesian analysis requires 

the knowledge of the analyte (class) conditional probability density of the feature vector, 

𝑃(𝑋|𝑎𝑖), for each analyte that might be present [34]. In general, estimating 𝑃(𝑋|𝑎𝑖) 

requires extensive training using the data that was collected from experiments for which 

the analyte information is known. There are also some pattern recognition techniques 

such as 𝑘 nearest neighbor, linear discriminant functions, and neural networks that do not 

require direct calculation of the probability, 𝑃(𝑋|𝑎𝑖), instead using a metric that is 

correlated to 𝑃(𝑋|𝑎𝑖) [34]. The success of the pattern recognition algorithm in correctly 

identifying and quantifying the analyte(s) depends on the amount of training data used to 

train the algorithm. For instance, there is a high chance of misclassification error if a new 
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scenario that the algorithm has not been trained for were encountered. Generally, to 

design a sensor array that is robust to the wide variety of possible interferents requires a 

large number of sensors, which in turn, increases the dimensionality of the feature space 

and leads to the necessity of requiring more training data. 

In summary, the signal processing involved with a chemical sensor array is 

complex and cumbersome. Even with these complex signal processing steps, there is no 

guarantee that the chemical sensor array will correctly detect and quantify the target 

analytes that might have caused the responses. This is especially true for applications 

which require the detection and quantification of the target analytes in the presence of 

interferents. Chemical sensor arrays will fail considerably as the complexity of the 

mixtures increases. Given all the drawbacks and the complex signal processing 

algorithms required with a chemical sensor array, there is a need to develop a novel 

signal processing approach that can enhance the ability of the chemical sensors for 

applications which require the detection and quantification of target analytes in the 

presence of interferents. 

 

1.3 Problem Statement 

 

The current applicability of many chemical sensors is limited due to the lack of 

adequate selectivity to enable real-world applications. In many chemical sensing 

applications, the chemically sensitive element of the sensor is only partially selective to 

any specific target analyte, potentially giving rise to low probability of detection and false 

positive or false negative results. Lack of adequate selectivity of the chemical sensors 

further exacerbates the challenge in identifying and quantifying the target analytes in a 
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mixture with potential presence of non-target interferents. Lack of selectivity is also often 

due to the chemical similarity within a group of target analytes.  

One such real-world application which demands highly selective chemical sensors 

is in-situ monitoring of groundwater near underground storage tanks (USTs), pipelines, 

petrochemical processing facilities and military sites for accidental releases of petroleum 

hydrocarbons. The groundwater near these sites is always at risk of being contaminated 

with hazardous analytes and in some cases, it is a legal obligation to monitor such sites 

[1]. For example, the groundwater near USTs is subject to legal monitoring requirements 

by government agencies for accidental releases of fuel and oil [48]. The task of detecting 

and quantifying target contaminants in groundwater samples is challenging, not only 

because of the low concentrations that need to be detected, but also due to the presence of 

many chemically similar organic compounds as well as the presence of non-target 

interferents such as dissolved salts, aliphatic hydrocarbons, dissolved gases, particles and 

sediments, ethers, esters, ethanol, 1,2,4-trimethylbenzene, naphthalene, n-heptane, MTBE 

(methyl tert-butyl ether) etc. The volatile organic compounds (VOCs) benzene, toluene, 

ethylbenzene and xylenes (BTEX) are the target analytes of interest that can potentially 

contaminate groundwater because they are present in crude oil and its refined products 

and serve as good indicators of gasoline releases [49, 50]. The presence of BTEX 

compounds in groundwater is a major concern due their hazard potential and relatively 

high solubility in water [50-53]. The US Environmental Protection Agency (EPA) 

maximum contaminant levels of BTEX compounds in drinking water are in the low ppb 

(µg/L) to low ppm (mg/L) range [52]. Among the BTEX compounds, benzene is of 

particular importance due to its carcinogenicity and relatively higher water solubility [47, 
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53, 54]. Thus, it is imperative to monitor the presence of BTEX compounds in 

groundwater at critical sites regularly so that remediation actions can be carried out 

rapidly if leaks are detected. The chemical similarity of BTEX compounds as a group, 

and the frequent presence of other non-target interferents such as dissolved salts, aliphatic 

hydrocarbons, dissolved gases, particles and sediments, ethers, esters etc., further 

complicates the detection and quantification of BTEX analytes in groundwater. 

Current methods for monitoring BTEX compounds in groundwater involves the 

use of either spectroscopy or gas chromatography [55-59]. Examples include infrared 

evanescent field spectroscopy [55-57] and Raman spectroscopy [58]. Although these 

methods are capable of accurately identifying and quantifying BTEX compounds, they 

are relatively impractical for use as a field-deployed system due to their total size and 

complexity in sample preparation procedures. The majority of the techniques that use 

spectroscopy and/or gas chromatography as the BTEX detection mechanism are only 

suitable for laboratory analysis. Hence, to utilize these techniques, groundwater samples 

have to be manually collected at the monitoring well and shipped to an ex-situ laboratory 

for analysis. Moreover, the existing methods are always at risk of losing vital information 

in the sample during sample collection, storage and transportation to an off-site 

laboratory for analysis. The entire process is expensive, labor-intensive and time-

consuming, thus preventing frequent monitoring of groundwater near USTs, pipelines, 

petrochemical processing facilities and military sites. For instance, the groundwater near 

USTs is generally only monitored in 2-3 year intervals due to the high cost and labor-

intensive process involved in sample collection at the monitoring well and shipping to an 
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ex-situ laboratory for analysis [60]. Due to such long monitoring intervals, leakages could 

go unnoticed for a long period of time. 

An alternative approach for on-site BTEX monitoring would be to use a sensor 

array constructed with appropriately chosen partially selective chemical sensors [61, 62]. 

All sensors in the array respond to most if not all analytes, but the pattern of responses 

provides a unique fingerprint for each single target species or target mixture. Chemical 

sensor arrays based on various sensing platform technologies such as optical fibers [63], 

chemiresistors [61, 62] and SAW (surface acoustic wave) sensors [64, 65] have been 

investigated for the detection and quantification of BTEX compounds in water and soil. 

Identification and quantification based on arrays of partially selective sensor responses is 

often facilitated by pattern-recognition techniques as reviewed above. However, as 

indicated earlier, there are various drawbacks of using a sensor array. The drawbacks 

include increased signal- and data-processing time and potential misclassification. Data 

dimensionality and complexity, and hence processing resources and time, increase with 

the number of sensors in the array. Misclassification errors are particularly likely if the 

chemical diversity (“chemical orthogonality” [32]) and partial selectivity of the sensor 

coatings is insufficient. This problem is intensified if only one sensing parameter per 

sensor is used for classification, as is often the case [32]. Moreover, chemical sensor 

arrays often work well only for single compounds or pre-defined mixtures. A chemical 

sensor array alone is not a suitable candidate for applications which require the detection 

and quantification of the target analytes in the presence of interferents. Therefore, a need 

clearly exists to develop a chemical sensor system that is accurate, fast and inexpensive 

for in-situ and long-term monitoring of groundwater. The sensor system should be 
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capable of identifying and quantifying the hazardous compounds (i.e. BTEX compounds) 

present in the groundwater near the USTs, pipelines, petrochemical processing facilities 

and military sites in an automated way. Given the need for high accuracy in the 

estimation of target analyte concentrations under field conditions, the system needs a 

capable chemical sensor and an advanced signal processing unit. In-situ chemical sensors 

capable of direct liquid phase sensing are currently under development and SH-SAW 

devices coated with certain types of polymers are showing promise in detecting BTEX 

compounds in trace amounts in the presence of interferents commonly found in 

groundwater. 

The work described in this dissertation focuses on the development of a capable 

signal processing unit that can enhance the ability of an array of polymer coated SH-

SAW sensors or even a single polymer coated SH-SAW sensor to detect and quantify 

BTEX compounds in the presence of interferents in near real-time. The development of 

the advanced signal processing technique will be based on estimation theory. Utilizing 

estimation theory for this purpose offers several advantages which include the ability to 

process data in near real-time and low memory requirements for implementation using 

microcontrollers for in-situ applications. Specifically, the investigated novel signal 

processing approach utilizes estimation-theory-based technique comprised of both 

exponentially weighted recursive least-squares estimation (RLSE) and bank of Kalman 

filters (BKFs). With the awareness that the use of advanced signal processing techniques 

is only possible when the response of the sensor (SH-SAW in this work) to the target 

analytes in the presence of common interferents is accurately modeled, a 𝑛-analyte model 

that take into account the responses due to the target analytes and non-target interferents 
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for the selected polymer coated sensor is developed and investigated. The sensor 

response model is developed based on empirical results of individual target analytes, 

multi-analyte mixtures of target analytes and also based on the investigations of the 

common interferents found in the groundwater. The model utilizes two sensor 

parameters, i.e. the equilibrium frequency shift and the response time (for individual 

analyte), the latter being specific for each combination of coated device and analyte. 

Once the model is formulated, it will then be transformed into state-space form, so that 

exponentially weighted RLSE and BKFs can be used to estimate BTEX concentrations in 

the presence of interferents. Moreover, the use of desorption data to provide more 

information about the analyte-specific interactions with the polymer film will also be 

investigated. Estimation algorithms tailored for the application of detecting and 

quantifying BTEX compounds in the presence of interferents will be proposed and tested 

using the experimental data obtained using polymer coated SH-SAW sensors. All the 

estimation results obtained will be recorded, processed and analyzed. 

Furthermore, the necessary modifications that need to be made in the sensor 

response model when non-ideal conditions occur are also addressed. The two non-ideal 

cases addressed are non-step-like concentration versus time profile (i.e. the transition 

from clean water to the sample in the flow cell containing the sensor is not sufficiently 

fast) and concentration-dependent sensitivity of the sensor. The ideal concentration 

versus time profile is the step-like concentration versus time profile where it is assumed 

that the sensor is exposed rapidly to the analyte containing sample (i.e. instantaneous 

transition from the clean water to the sample in the flow cell containing the sensor). In 

the real-world scenario, the concentration versus time profile seen by the sensor depends 
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on a number of measurement system parameters such as the average flow speed of the 

sample, the total length of the tube separating the point of sample introduction and the 

sensor device and diffusion coefficient of the soluble substance in the sample. These 

measurement system parameters determine whether the concentration versus time profile 

seen by the sensor is step-like or non-step-like. Hence, the modifications that need to be 

made in the sensor response model for the non-step-like concentration versus time profile 

is discussed. As for the sensitivity of the sensor, constant sensitivity is preferred for easier 

analysis. However, in most cases, for a larger concentration of the analyte (or sample), 

sensitivity will vary based on the concentration of the analyte which will result in non-

constant value for the sensitivity. Thus, the possible modifications that can be made in the 

sensor response model when the sensor exhibits concentration-dependent sensitivity are 

also discussed.  

Moreover, online sensor signal processing techniques based on either 

exponentially weighted RLSE or BKFs for the detection and quantification of multi-

analyte mixtures (including single analyte responses) of target analytes in the absence of 

the interferents are also discussed. Specifically, a sensor signal processing technique 

based on BKFs is proposed for the detection and quantification of single and binary 

mixtures of analytes whereas a sensor signal processing technique based on multi-stage 

exponentially weighted RLSE is proposed for the detection and quantification of multi-

analyte mixtures (including single analyte responses). These sensor signal processing 

techniques will be tested using experimental data obtained using polymer coated SH-

SAW sensors. All estimation results obtained will be recorded, processed and analyzed. 
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1.4 Organization of the dissertation 

 

This dissertation is presented in seven chapters. Chapter 1 gives an introduction to 

the chemical sensors and discusses the issues currently limiting in-situ applications of 

many chemical sensors. Significant emphasis is placed on chemical sensor arrays and 

issues related to their implementation. A brief review of signal processing techniques for 

chemical sensor arrays is given to illustrate the complexity in the successful 

implementation of sensor arrays for applications requiring detection of target analytes in 

the presence of interferents. Chapter 1 also introduces the main objective of this 

dissertation, namely, to develop a capable signal processing unit that can enhance the 

ability of an array of polymer coated SH-SAW sensors or even a single polymer coated 

SH-SAW sensor to detect and quantify BTEX compounds in the presence of interferents 

in near real-time. The importance for monitoring BTEX compounds in groundwater is 

also addressed in Chapter 1. Chapter 2 gives a review of all the estimation theory-based 

algorithms utilized in this dissertation. Specifically, the derivation and implementation of 

recursive least squares estimation, Kalman filter and bank of Kalman filters are 

discussed. Chapter 3 presents the model of the sensor responses to the target analytes. 

The use of estimation theory-based signal processing techniques is only possible if the 

response of the sensor to the analytes can be modeled analytically. These sensor response 

models were developed based on empirical results. Since the single analyte sensor 

response model serves as the basis for the multi-analyte sensor response model, the 

former is reviewed first. Then, by making necessary assumptions based on empirical 

observations, the single analyte model is extended to multi-analyte sensor responses. 



28 
 

 

 

Finally, by taking into account the sensor responses to the common non-target 

interferents found in the groundwater, the generic model was used for the detection and 

quantification of target analytes in the presence of possible interferents. Specifically, two 

different example models were used for the detection and quantification of BTEX 

compounds in the presence of interferents, i.e. four-analyte model and five-analyte 

model. Also discussed in Chapter 3 are the model for the non-ideal cases i.e. non-step-

like concentration versus time profile and concentration-dependent sensitivity of the 

sensor. In chapter 4, the sensor signal processing techniques employed for the detection 

and quantification of multi-analyte mixtures of BTEX compounds with or without the 

presence of interferents (including single analyte responses of BTEX compounds) are 

presented. The justifications behind the proposed signal processing algorithm are also 

given. In Chapter 5, the specifics of SH-SAW sensors that were used to collect the data 

analyzed in this dissertation and the process of data acquisition using the SH-SAW sensor 

are discussed. In Chapter 6, the estimation results for the detection and quantification of 

multi-analyte mixtures of BTEX compounds with or without the presence of the 

interferents (including single analyte responses of BTEX compounds) using the 

formulated signal processing techniques are presented. These estimation results will be 

compared to the results obtained independently using gas chromatograph-photoionization 

detector (GC-PID) and gas chromatograph-mass spectrometry (GC-MS). All the 

proposed signal processing techniques will be tested using measured SH-SAW sensor 

responses (time-dependent frequency shift transient) to multi-analyte mixtures of BTEX 

compounds with or without the presence of the interferents (including single analyte 

responses of BTEX compounds). The sensors data were collected by the research team at 
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the Microsensors Research Laboratory, Marquette University. The results obtained from 

some of these tests are discussed in detail to highlight the effectiveness of the proposed 

sensor signal processing techniques. Finally, Chapter 7 provides a summary of the work 

performed in this dissertation, and also gives some suggestions regarding possible 

extensions of this work for future research in the field. 
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2 ESTIMATION THEORY: A REVIEW 

 

2.1 Introduction 

 

In this dissertation, estimation-theory-based techniques are used extensively for 

sensor signal processing to facilitate the detection and quantification of the target analytes 

in the presence of measurement noise and interferents. Estimation-theory-based 

techniques are utilized because they offer various advantages, including near real-time 

data processing, minimal computational requirements, and minimal memory 

requirements for real-world implementations. In general, estimation theory is a branch of 

statistics and signal processing that deals with estimating the values of unknown 

parameters or unmeasured states based on the measurement data [66]. These estimates 

are obtained using an estimator that attempts to approximate the unknown parameters or 

the unmeasured states using measured outputs. There are various forms of estimator and 

estimation techniques that are commonly used in different applications, including 

Kalman filter (KF) and its various derivatives, maximum likelihood estimators, Bayes 

estimators, Cramer-Rao bound, Wiener filter, Particle filter, least-squares filtering, 

Markov Chain Monte Carlo (MCMC) etc. Some of these estimators can be used to solve 

three common problems in state estimation, namely: 

 

• Smoothing: Estimating the past values of states using the available measurements. 

• Filtering: Estimating the present value of states using the available measurements. 

• Prediction: Estimating the future value of states using the available measurements. 
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In fact, most of these modern estimation-theory-based techniques can be found at the 

heart of many electronic signal processing systems designed to extract information [66]. 

Typical application areas and example applications in areas utilizing estimation theory 

are listed in Table 2.1 [66]. 

All the signal processing techniques proposed in this dissertation are based on 

Bank of Kalman filters (BKFs) and/or exponentially weighted recursive least squares 

estimation (RLSE). Both BKFs and exponentially weighted RLSE are related to the 

Kalman filter (KF). As such, KF will be reviewed first in this chapter. A very detailed 

discussion on KF will be given including discussions on possible extension (or 

modification) to KF for nonlinear systems. A detailed review on RLSE technique will 

then be given starting with a brief introduction into RLSE, followed by a derivation of 

RLSE and exponentially weighted RLSE. Finally, a review on the derivation and 

implementation of BKFs is given. 
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Table 2.1: Applications of estimation theory [66]. 

Area of application Example application 

 

 

Control Systems 

 

Estimation of the position of a powerboat for 

correcting navigation in the presence of sensor 

and environmental noise. 

 

 

 

Communications 

 

Estimation of the carrier frequency of a signal for 

demodulation to the baseband in the presence of 

degradation noise. 

 

 

Seismology 

 

Estimation of the underground distance of an oil 

deposit in the presence of noisy sound reflections. 

 

 

Biomedical 

 

Estimation of the heart rate of a fetus in the 

presence of environmental noise. 

 

 

 

Image Processing 

 

Estimation of the position and orientation of an 

object from a camera image in the presence of 

illumination changes and background noise. 

 

 

Radar Communications 

 

Estimation of the delay in the received pulse echo 

in the presence of noise. 

 

 

 

Speech Signal Processing 

 

Estimation of the parameters of the speech model 

in the presence of speech variability and 

environmental noise. 

 

 

Sensor Signal Processing 

 

Estimation of the baseline drifts in the sensor 

response in the presence of noise. 
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2.2 Kalman Filter: A Review 

 

In this section, the derivation of the KF and possible modifications that can be 

made to KF for estimating the states of a nonlinear system are reviewed [67-74]. This 

detailed discussion will provide a better understanding of the least squares based filter 

and BKFs described in the later sections. 

Kalman filter is named after R.E. Kalman, one of the primary developers of the 

theory behind it. In 1960, R.E. Kalman first used Kalman Filter to obtain a recursive 

solution to the discrete-data linear filtering problem [67, 68].  Today KFs are being used 

in many areas of applications, particularly in the area of assisted or autonomous 

navigation. 

In general, KF is an online state estimation technique that is based on a set of 

mathematical equations providing an efficient recursive means to estimate the states of a 

system in a way that minimizes the mean of the squared error [68-71]. KF supports the 

estimation of the present states of a system given the available measurement data and 

with appropriate modifications can also be used to estimate the past and even future 

values of the states of a system [69]. Using KF, good state estimates can be obtained even 

when the precise nature of the modeled system is unknown [68]. 

For the derivation of KF, consider a general linear stochastic discrete-time system 

with internal states, 𝑥𝑘, outputs, 𝑦𝑘, inputs, 𝑢𝑘, and time-varying system matrices 𝐴𝑘, 𝐵𝑘, 

𝐶𝑘 and 𝐷𝑘 as following (note that the system matrices can also be time-invariant), 

 

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝐹𝑘𝑣𝑘  ,    (2.1a) 
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𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘 + 𝐺𝑘𝑤𝑘 ,    (2.1b) 

 

where, 𝑣𝑘 is the process or state noise with zero mean and covariance, 𝑉𝑘, and 𝑤𝑘 

represent the measurement noise with zero mean and covariance, 𝑊𝑘. It is assumed that 

both process and measurement noises are normally-distributed white noises (uncorrelated 

in time) and uncorrelated with each other. This assumption is made in line with most 

systems in real-world having white measurement and process noises. With the 

assumption that the system in eq. (2.1) meets the detectability criteria (i.e. if all unstable 

modes of the system are observable [75]), then it is possible to estimate the unknown 

states, 𝑥𝑘 of the system by using only the available measurement data, 𝑦𝑘 [68-71]. 

In order to estimate the new states of the system, 𝑥̂𝑘+1, an estimator is formed 

using the information that will be available at any time, 𝑘. Typically, at any time, 𝑘, one 

will have access to three sources of information which include the present value of the 

state estimate, 𝑥̂𝑘, the present value of the input, 𝑢𝑘 and the present value of the 

measurement, 𝑦𝑘. Using  𝑥̂𝑘, 𝑢𝑘, and 𝑦𝑘, an estimator of the form given in eq. (2.2) can 

be obtained as [69]. 

 

𝑥̂𝑘+1 = 𝐴𝑘𝑥̂𝑘 + 𝐵𝑘𝑢𝑘 + 𝐾𝑘(𝑦𝑘 − 𝑦̂𝑘),    (2.2) 

 

where 𝑦̂𝑘 is the estimate of the measurement, 

 

𝑦̂𝑘 = 𝐶𝑘𝑥̂𝑘 + 𝐷𝑘𝑢𝑘.      (2.3) 
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In eq. (2.2), 𝐾𝑘 is called the estimator gain matrix (also commonly referred to as Kalman 

gain) and the quantity (𝑦𝑘 − 𝑦̂𝑘) is called the correction/innovation term. By substituting 

eq. (2.3) into eq. (2.2), eq. (2.2) can be rewritten as, 

 

𝑥̂𝑘+1 = 𝐴𝑘𝑥̂𝑘 + 𝐵𝑘𝑢𝑘 + 𝐾𝑘(𝑦𝑘 − [𝐶𝑘𝑥̂𝑘 + 𝐷𝑘𝑢𝑘]).  (2.4) 

 

Note that the convergence of the state’s estimator, eq. (2.4) to the actual states of system 

are highly dependent on the gain, 𝐾𝑘. Therefore, to obtain the best possible estimate for 

the states, optimal gain, 𝐾𝑘 need to be found. The optimal gain, 𝐾𝑘 can be found by 

minimizing the error covariance. For that, the estimation error, 𝑒𝑘+1 and the error 

covariance, 𝑃𝑘+1 = 𝐸{(𝑒𝑘+1)(𝑒𝑘+1)
𝑇} have to be defined first. Note that (∙)𝑇 denotes 

matrix transpose. The estimation error can be defined as the difference between the true 

state of the system and the state estimate,  

 

𝑒𝑘+1 = 𝑥𝑘+1 − 𝑥̂𝑘+1.      (2.5) 

 

Substitution of eqs. (2.1) and (2.4) into eq. (2.5) yields, 

 

𝑒𝑘+1 = (𝐴𝑘 − 𝐾𝑘𝐶𝑘)𝑒𝑘 + 𝐹𝑘𝑣𝑘 − 𝐾𝑘𝐺𝑘𝑤𝑘.   (2.6) 

 

From eq. (2.6), the estimation error mean can be computed as, 
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𝐸[𝑒𝑘+1] = (𝐴𝑘 − 𝐾𝑘𝐶𝑘)𝐸[𝑒𝑘] + 𝐹𝑘𝐸[𝑣𝑘] − 𝐾𝑘𝐺𝑘𝐸[𝑤𝑘].   (2.7) 

 

From eq. (2.7), if 𝐸[𝑣𝑘] = 0, 𝐸[𝑤𝑘] = 0 and 𝐸[𝑒𝑘] = 0, then 𝐸[𝑒𝑘+1] = 0. This implies 

that if the process noise, 𝑣𝑘 and measurement noise, 𝑤𝑘 is zero-mean for all 𝑘, and if the 

initial estimate of 𝑥 is set equal to the expected value of 𝑥, i.e. 𝑥̂0 = 𝐸[𝑥], then the 

expected value of 𝑥̂𝑘+1 will be equal to 𝑥𝑘+1 for all 𝑘. Thus, the assumed estimator form 

of eq. (2.2) is an unbiased estimator [69]. Next, the expression for error covariance, 𝑃𝑘+1 

can be found using eq. (2.6),    

 

𝑃𝑘+1 = 𝐸{(𝑒𝑘+1)(𝑒𝑘+1)
𝑇} 

       

𝑃𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇 − 𝐴𝑘𝑃𝑘𝐶𝑘

𝑇𝐾𝑘
𝑇 − 𝐾𝑘𝐶𝑘𝑃𝑘𝐴𝑘

𝑇 + 𝐾𝑘𝐶𝑘𝑃𝑘𝐶𝑘
𝑇𝐾𝑘

𝑇 + 𝐹𝑘𝑉𝑘𝐹𝑘
𝑇 +

𝐾𝑘𝐺𝑘𝑊𝑘𝐺𝑘
𝑇𝐾𝑘

𝑇.   (2.8) 

 

As indicated earlier, to determine the Kalman gain, 𝐾𝑘, the optimality criterion that was 

chosen to be minimized is the error covariance, 𝑃𝑘+1. Note that the error covariance 

matrix, 𝑃𝑘+1 is a diagonal and symmetric matrix. Therefore, minimizing the error 

covariance matrix is equivalent to minimizing the trace of 𝑃𝑘+1 (i.e. 𝑇𝑟{𝑃𝑘+1}) [68]. 

Thus, the Kalman gain, 𝐾𝑘, can be found by taking the partial derivative of 𝑇𝑟{𝑃𝑘+1} 

with respect to 𝐾𝑘 and solving it for 𝐾𝑘 by setting the resulting equation to zero. Taking 

the partial derivative of 𝑇𝑟{𝑃𝑘+1} with respect to 𝐾𝑘 yields 

 

𝛿 𝑇𝑟{𝑃𝑘+1}

𝛿 𝐾𝑘
= −2𝐴𝑘𝑃𝑘𝐶𝑘

𝑇 + 2𝐾𝑘(𝐶𝑘𝑃𝑘𝐶𝑘
𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘

𝑇).  (2.9) 
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Setting eq. (2.9) to zero and solving it for 𝐾𝑘 yields 

 

𝐾𝑘 = 𝐴𝑘𝑃𝑘𝐶𝑘
𝑇(𝐶𝑘𝑃𝑘𝐶𝑘

𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘
𝑇)−1.   (2.10) 

 

Therefore, the Kalman gain of eq. (2.10) is the value of the gain that would result in 

minimum error covariance at any given time 𝑘. Using eq. (2.10), alternate form of the 

error covariance of eq. (2.8) can be obtained, 

 

𝑃𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇  + 𝐹𝑘𝑉𝑘𝐹𝑘

𝑇 − 𝐴𝑘𝑃𝑘𝐶𝑘
𝑇 (𝐶𝑘𝑃𝑘𝐶𝑘

𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘
𝑇)−1𝐶𝑘𝑃𝑘𝐴𝑘

𝑇 .  (2.11) 

 

Equations (2.4), (2.10) and (2.11) form the KF estimator which leads to a recursive 

algorithm for updating the state estimate based on the measurement data. Only the current 

estimate of the states and the latest measurement value is required to update the state 

estimate. Therefore, by using Kalman filter, the estimation can be performed in real-time 

under strict memory requirements as it is not required to store all the measurement 

values. 

 Note that if the system is a nonlinear stochastic discrete-time system, then some 

modifications need to be made, so that the estimation of the states of a nonlinear system 

can be performed using the KF equations developed earlier. This modification is done in 

the form of Taylor series expansion about the current state-estimate and neglecting the 

higher order terms (i.e. terms higher than first order). Since this modification is just an 

extension to the original KF, it is commonly referred to as extended Kalman filter (EKF). 
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Consider a general non-linear stochastic discrete-time system with internal states 𝑥𝑘, 

outputs 𝑦𝑘, and inputs 𝑢𝑘, given by, 

 

𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘, 𝑣𝑘),     (2.12a) 

 

𝑦𝑘 = ℎ(𝑥𝑘, 𝑢𝑘 , 𝑤𝑘).     (2.12b) 

 

In eq. (2.12), 𝑓(∙) and ℎ(∙) are the nonlinear function of the state and output of the 

nonlinear system. As mentioned earlier, to perform the estimation for the nonlinear 

system of eq. (2.12) using the KF equations developed earlier, the nonlinear system has 

to be linearized by performing a Taylor series expansion about the current state estimate 

and by neglecting the higher-order terms. This will lead to the following approximation,  

 

𝑥𝑘+1  ≅  𝑓(𝑥̂𝑘, 𝑢𝑘 , 𝑣̅) + 𝐴𝑘𝑒𝑘 + 𝐹𝑘𝑣𝑘 ,   (2.13a) 

 

𝑦𝑘  ≅ ℎ(𝑥̂𝑘, 𝑢𝑘 , 𝑤̅) + 𝐶𝑘𝑒𝑘 + 𝐺𝑘𝑤𝑘,    (2.13b) 

 

where 𝑒𝑘 represents the error term (i.e. 𝑒𝑘 = 𝑥𝑘 − 𝑥̂𝑘), 𝑥̂𝑘 is used to represent the state 

estimate, 𝑣̅ and 𝑤̅ represent the expected (mean) value of process and measurement 

noise, respectively, and matrices 𝐴𝑘, 𝐶𝑘, 𝐹𝑘, and 𝐺𝑘 are defined as, 

 

𝐴𝑘 = (
𝜕𝑓

𝜕𝑥
)𝑥=𝑥̂𝑘
𝑢=𝑢𝑘
𝑣𝑘=𝑣̅

, 
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𝐶𝑘 = (
𝜕ℎ

𝜕𝑥
) 𝑥=𝑥̂𝑘

𝑢=𝑢𝑘
𝑤𝑘=𝑤̅

, 

 

𝐹𝑘 = (
𝜕𝑓

𝜕𝑣
)𝑥=𝑥̂𝑘
𝑢=𝑢𝑘
𝑣𝑘=𝑣̅

 , 

 

𝐺𝑘 = (
𝜕ℎ

𝜕𝑤
) 𝑥=𝑥̂𝑘

𝑢=𝑢𝑘
𝑤𝑘=𝑤̅

. 

 

Note that the partial derivatives are actually time-varying Jacobian matrices and are 

evaluated at the current state estimate, known input value and mean of noise. For 

nonlinear systems, these Jacobian matrices will serve as the system matrices and can be 

used to perform the estimation in a similar fashion as KF by using eqs. (2.4), (2.10) and 

(2.11). However, for nonlinear systems, some modifications need to be made to eq. (2.4), 

 

𝑥̂𝑘+1 = 𝑓(𝑥̂𝑘, 𝑢𝑘, 𝑣̅) + 𝐾𝑘[𝑦𝑘 −  ℎ(𝑥̂𝑘, 𝑢𝑘, 𝑤̅)].   (2.14) 

  

Thus, for nonlinear systems, eqs. (2.10), (2.11) and (2.14) can be used for estimating and 

updating the states based on the measurement data. This recursive algorithm for the 

nonlinear system is often referred to as EKF algorithm. It is important to note that EKF is 

not an optimal filter because Gaussianity of the probability distributions will not be 

preserved under a nonlinear transformation [76]. However, the EKF does give useful 
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estimates of the states and will demonstrate convergence for certain conditions. The 

convergence of EKF is dependent on the initial value of the error covariance and the 

value of process and measurement noise [76]. 

The implementation of the KF is rather straightforward using the equations 

developed earlier. KF estimates the states of a system using a form of feedback control 

which estimates and updates the states of a system using the feedback obtained in the 

form of output measurement [68]. Basically, the new state estimate will be updated or 

corrected using the new measurement value with a weighted average, where more weight 

is assigned to estimates with higher certainty.  

Before applying the KF algorithm, it is crucial to convert the system into state-

space model and determine the system matrices 𝐴𝑘, 𝐵𝑘, 𝐶𝑘 and 𝐷𝑘 for the linear system, 

and for the nonlinear system, one has to determine the general expression of the Jacobian 

matrices. Next, it is important to determine the measurement noise covariance, 𝑊𝑘 and 

process noise covariance, 𝑉𝑘. In actual implementation of KF, the measurement noise 

covariance, 𝑊𝑘 is usually measured prior to the operation of the filter. Typically, 𝑊𝑘 is 

determined using some off-line sample measurements. On the other hand, determination 

of the process noise covariance, 𝑉𝑘, is generally more difficult as the states are not 

observed directly. Therefore, often, 𝑉𝑘 is set by tuning the parameter to its optimum 

value. The general KF algorithm is outlined in Table 2.2. 
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Table 2.2: Summary of Kalman filter algorithm. 

 

Step 1: Initialize the state estimate and the error covariance as follows: 

 

𝑥̂0 = 𝐸[𝑥] 
 

𝑃0 = 𝐸[(𝑥 − 𝑥̂0)(𝑥𝑘 − 𝑥̂0)
𝑇] 

 

(Note: If no knowledge of 𝑥 is available before measurements are taken, then set 𝑃0 =
∞𝐼) 

 

Step 2: Calculate Kalman gain: 

 

𝐾𝑘 = 𝐴𝑘𝑃𝑘𝐶𝑘
𝑇(𝐶𝑘𝑃𝑘𝐶𝑘

𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘
𝑇)−1 

 

Step 3: Update the state estimate: 

 

[Linear system] 

 

𝑥̂𝑘+1 = 𝐴𝑘𝑥̂𝑘 + 𝐵𝑘𝑢𝑘 + 𝐾𝑘(𝑦𝑘 − [𝐶𝑘𝑥̂𝑘 + 𝐷𝑘𝑢𝑘]) 

 

[Nonlinear system] 

 

𝑥̂𝑘+1 = 𝑓(𝑥̂𝑘, 𝑢𝑘, 𝑣̅) + 𝐾𝑘[𝑦𝑘 −  ℎ(𝑥̂𝑘, 𝑢𝑘, 𝑤̅)] 
 

Step 4: Update the error covariance: 

 

𝑃𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇  +  𝐹𝑘𝑉𝑘𝐹𝑘

𝑇 − 𝐴𝑘𝑃𝑘𝐶𝑘
𝑇 (𝐶𝑘𝑃𝑘𝐶𝑘

𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘
𝑇)−1𝐶𝑘𝑃𝑘𝐴𝑘

𝑇 

 

Step 5: Repeat Step 2 – 4, as long as new output data are collected. 

 

 

 

2.3 Recursive Least Squares Estimation: A Review 

 

In this section, RLSE is reviewed [69, 72, 77, 78]. RLSE belongs to the class of 

adaptive filters, which recursively estimate the coefficients or the unknown parameters by 

minimizing the weighted least squares cost (or objective) function related to the known 

signal (i.e. unknown parameters are estimated by minimizing the error between the actual 
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measured data and the estimated measured data). It is commonly accepted that RLSE was 

first developed by Gauss in the 1800’s but was ignored for almost a century and half 

before it was redeveloped by Plackett in 1950 [77]. It was only after the advent of 

Kalman filter in 1960 that RLSE gained popularity. RLSE is an attractive adaptive 

filtering technique because it overcomes some practical limitations of other adaptive 

techniques such as least mean squares (LMS) by providing a faster rate of convergence 

and a performance insensitive to variations in the eigenvalue spread of the correlation 

matrix of the known signal [77]. These advantages come with the penalty of increased 

computational complexity compared to adaptive techniques such as LMS.     

 In reality, RLSE is a special case of KF (that emphasizes the notion of a state and 

state-space model) [72]. In fact, in many applications, RLSE has long been utilized as a 

viable alternative to the KF, especially in applications that require the estimation of 

constant unknown parameters. The striking difference between RLSE and KF is that, 

RLSE does not place the importance on the notion of state and state-space model, 

whereas KF as an estimator is well known to be optimal under the requirement of 

complete prior knowledge of the state-space model and its parameters [77]. Moreover, 

the implementation of RLSE is computationally cheaper compared to the implementation 

of the KF [77]. 

The derivation of RLSE equations is very similar to the derivation of KF 

equations. To be more precise, there is a one-to-one correspondence between RLSE and 

KF. For the derivation of RLSE, the following linear system is considered: 

 

𝑦𝑘 = 𝐻𝑘𝜃𝑘 + 𝑤𝑘.     (2.15) 



43 
 

 

 

 

In eq. (2.15), 𝑦𝑘 represents the measurement vector, 𝜃𝑘 represents a vector of unknown 

parameters, 𝐻𝑘 represents the vector or matrix of known signals or observations and 𝑤𝑘 

represents the measurement noise term. The measurement noise is assumed to be white 

noise with zero mean and covariance, 𝑊𝑘. The easiest way to derive the RLSE equations 

is through the utilization of the KF equations derived earlier. For that purpose, the linear 

system of eq. (2.15) can be rewritten in the state-space from as, 

 

𝜃𝑘+1 =  𝐼𝜃𝑘,      (2.16a) 

 

𝑦𝑘 = 𝐻𝑘𝜃𝑘 + 𝑤𝑘.     (2.16b) 

 

By direct comparison between eq. (2.1) and eq. (2.16), it is obvious that the state-space 

model of eq. (2.16) is obtained through the following assignment of the internal states 

and system matrices of eq. (2.1), 

 

𝑥𝑘 = 𝜃𝑘,     (2.17) 

 

𝐴𝑘 = 𝐼,     (2.18) 

 

𝐵𝑘 = [0],     (2.19) 

 

𝐹𝑘 = [0],     (2.20) 
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𝐶𝑘 = 𝐻𝑘,     (2.21) 

 

𝐺𝑘 = [1].     (2.22) 

 

Therefore, by substituting eqs. (2.17) through (2.22) into eqs. (2.4), (2.10) and (2.11), 

RLSE update equations are obtained, 

 

 𝜃𝑘+1 = 𝜃𝑘 + 𝐾𝑘(𝑦𝑘 − 𝐻𝑘𝜃𝑘),    (2.23) 

 

𝐾𝑘 = 𝑃𝑘𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝑊𝑘)
−1,    (2.24) 

 

𝑃𝑘+1 = 𝑃𝑘 − 𝑃𝑘𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝑊𝑘)
−1𝐻𝑘𝑃𝑘.   (2.25) 

 

Equations (2.23), (2.24) and (2.25) form the recursive least squares estimator. The 

implementation of RLSE to estimate the unknown parameters using the measurement 

data is very similar to the implementation of KF. In fact, RLSE can be implemented in 

real-time with lower computational costs. 

 

2.3.1 Exponentially Weighted Recursive Least Squares Estimation 

 

Typically, measurement data will be received sequentially over time and the 

information contained in the new set of data is crucial to improve the estimate of the 
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unknown parameters, 𝜃𝑘. However, as the time, 𝑘 increases, the error covariance, 𝑃𝑘 and 

the gain, 𝐾𝑘 will start decreasing to a very small value [70, 78]. This means that the 

corrections made to estimate the unknown parameters over time get small, independent of 

the newly collected measurement data. This event is sometimes referred to as the RLSE 

estimator ‘going to sleep’. Therefore, to prevent the RLSE estimator from failing to 

respond adequately to the new data, exponential data weighting is often employed [70, 

78]. 

The objective of exponential data weighting is to prevent the error covariance, 𝑃𝑘 

and the gain, 𝐾𝑘 from getting too small as new data are processed using the RLSE 

estimator. This will ensure more credibility is given to the recent data. Data weighting 

can be performed by setting the measurement noise covariance equal to 

 

𝑊𝑘 = 𝑊𝜆2(𝑘+1),     (2.26) 

 

for 𝜆 (forgetting factor) between 0 and 1 (0 < 𝜆 ≤ 1; λ=0 means no memory and λ=1 

indicates infinite memory) and constant 𝑊. Since 0 < 𝜆 ≤ 1, as time 𝑘 increases, the 

measurement noise covariance decreases, giving more credibility to the recent data [70]. 

Substituting eq. (2.26) into eq. (2.25), the new error covariance is found to be equal to 

 

𝑃𝑘+1 = 𝑃𝑘 − 𝑃𝑘𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝑊𝜆2(𝑘+1))−1𝐻𝑘𝑃𝑘.   (2.27) 

 

Multiplying both sides of eq. (2.27) with 𝜆−2(𝑘+1) yields, 
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𝑃𝑘+1 =
1

𝜆2
[𝑃𝑘𝜆−2𝑘 − 𝑃𝑘𝜆

−2𝑘𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘𝜆

−2𝑘𝐻𝑘
𝑇 + 𝑊𝜆2)−1𝐻𝑘𝑃𝑘𝜆

−2𝑘]. 

(2.28) 

 

By defining the weighted error covariance as 

 

𝑃𝑘
𝜆 = 𝑃𝑘𝜆

−2𝑘,      (2.29) 

 

eq. (2.28) can be rewritten as 

  

𝑃𝑘+1
𝜆 =

1

𝜆2
[𝑃𝑘

𝜆 − 𝑃𝑘
𝜆𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
𝜆𝐻𝑘

𝑇 + 𝑊𝜆2)−1𝐻𝑘𝑃𝑘
𝜆]. 

(2.30) 

 

Note that the initial condition for the weighted error covariance, 𝑃𝑘
𝜆 is the same as the 

initial condition for error covariance, 𝑃𝑘 (i.e. 𝑃0
𝜆 = 𝑃0). Substitution of eq. (2.26) into the 

gain, 𝐾𝑘 eq. (2.24) yields 

 

𝐾𝑘 = 𝑃𝑘𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘𝐻𝑘

𝑇 +  𝑊𝜆2(𝑘+1))−1,   (2.31) 

 

which can be written in terms of weighted error covariance as 

 

𝐾𝑘 = 𝑃𝑘
𝜆𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
𝜆𝐻𝑘

𝑇 +  𝑊𝜆2)−1.    (2.32) 
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In summary, exponentially weighted RLSE estimator can be implemented using eqs. 

(2.23), (2.30) and (2.32). Exponentially weighted RLSE algorithm is outlined in Table 

2.3, which can be used to estimate the unknown parameters, 𝜃𝑘 recursively. 

 

Table 2.3: Summary of exponentially weighted recursive least squares estimation 

(RLSE) algorithm. 

 

Step 1: Initialize the algorithm by setting: 

 

𝜃0 = 𝐸[𝜃] 
 

𝑃0
𝜆 = 𝐸 [(𝜃 − 𝜃0)(𝜃 − 𝜃0)

𝑇
] 

 

0 < 𝜆 ≤ 1 

 

(Note: If no knowledge of 𝜃 is available before measurements are taken, then set 𝑃0 =
∞𝐼; λ=0 means no memory and λ=1 indicates infinite memory) 

 

Step 2: When 𝑦𝑘 and 𝐻𝑘 becomes available, update the gain, 𝐾𝑘, unknown parameters, 

𝜃𝑘 and the weighted covariance matrix, 𝑃𝑘
𝜆: 

 

𝐾𝑘 = 𝑃𝑘
𝜆𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
𝜆𝐻𝑘

𝑇 +  𝑊𝜆2)−1. 
 

𝜃𝑘+1 = 𝜃𝑘 + 𝐾𝑘(𝑦𝑘 − 𝐻𝑘𝜃𝑘) 

 

𝑃𝑘+1
𝜆 =

1

𝜆2
[𝑃𝑘

𝜆 − 𝑃𝑘
𝜆𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
𝜆𝐻𝑘

𝑇 + 𝑊𝜆2)−1𝐻𝑘𝑃𝑘
𝜆] 

 

Step 3: Repeat Step 2, as long as the new measurement data are collected or until the 

unknown parameters converge to the actual value. 
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2.4 Bank of Kalman filters 

 

Kalman filters require an exact knowledge of the system parameters (system 

model) and noise statistics for the accurate estimation of the states of a linear dynamical 

system [79]. However, in many engineering applications, it is difficult to construct a 

precise system model due to the underlying processes being too complex for scientific 

analysis [71]. Often, for systems with parameters that do not vary with time, it is possible 

to construct a model for the system using test input-output data off-line or on-line from 

the measurement data itself [71]. However, some systems have parameters which vary 

slowly in some random manner. Therefore, it is often preferred to come up with an 

adaptive filtering scheme that can estimate and adapt to variations in the system 

parameters on-line. 

Typically for simultaneously estimating the unknown system parameters and the 

states on-line, it is common practice in many adaptive estimation schemes to treat the 

unknown system parameters as states too. The implication of treating the unknown 

parameters as states is that it often makes the adaptive estimation scheme to become too 

complex and highly nonlinear to solve directly without any simplifying assumptions. By 

making the simplifying assumption that the unknown parameters belong to a discrete set, 

a parallel processing technique which consists of multiple KFs (bank of KFs) can be used 

to estimate and adapt to variations in the system parameters on-line [71, 79]. This 

simplifying assumption ensures the adaptive estimation scheme does not become too 

complex and highly nonlinear. In most cases, the simplifying assumption allows the 
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system to stay linear. In general, the bank of KFs (BKFs) approach for parallel processing 

can be formulated as follows [79]: 

• It is assumed that the unknown parameters vector, 𝜃 is discrete or suitably 

quantized to a finite number of grid points {𝜃1, … , 𝜃𝑁}, with known or assumed ‘a 

priori’ probability for each 𝜃𝑗 . 

• The conditional mean estimator includes a parallel bank of 𝑁 Kalman filters 

where the 𝑗th filter is a standard Kalman filter designed on the assumption that 

𝜃 = 𝜃𝑗 and yielding conditional state estimates 𝑥̂𝑘+1|𝑘, 𝜃𝑗
. 

• The filter bank is driven by the noisy signal measurements, 𝑦𝑘. 

• The conditional mean state estimate, 𝑥̂𝑘+1|𝑘 is given by a weighted sum of the 

conditional state estimate of the Kalman filters, 𝑥̂𝑘+1|𝑘, 𝜃𝑗
. 

• The weighted coefficient of the state of the 𝑗th Kalman filter is the ‘a posteriori’ 

probability of 𝜃𝑗 , which can be updated recursively using the noisy signal 

measurements and the state of the 𝑗th Kalman filter.  

The recursion equation to update the ‘a posteriori’ probability of 𝜃𝑗  is crucial to the 

implementation of BKFs. In order to derive the recursion equation, first, a general linear 

stochastic discrete-time system (similar to eq. (2.1)) expressed in terms of the unknown 

parameter vector, 𝜃 that is assumed to belong to the discrete set {𝜃1, … , 𝜃𝑁} is considered: 

 

𝑥𝑘+1,𝜃𝑗
= 𝐴𝑘,𝜃𝑗

𝑥𝑘,𝜃𝑗
+ 𝐵𝑘𝑢𝑘 + 𝐹𝑘𝑣𝑘 ,   (2.33a) 

 

𝑦𝑘 = 𝐶𝑘,𝜃𝑗
𝑥𝑘,𝜃𝑗

+ 𝐷𝑘𝑢𝑘 + 𝐺𝑘𝑤𝑘,    (2.33b) 
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where 𝑗 = 1, 2, … , 𝑁. Then, the conditional probability of 𝜃𝑗  assuming a sequence of 

measurements, 𝑌𝑘 = {𝑦0, 𝑦1, … , 𝑦𝑘} is equal to 

 

𝑝(𝜃𝑗|𝑌𝑘) =
𝑝(𝑌𝑘, 𝜃𝑗)

𝑝(𝑌𝑘)
 

 

                           =
𝑝(𝑦𝑘, 𝑌𝑘−1, 𝜃𝑗)

𝑝(𝑦𝑘, 𝑌𝑘−1)
, 

(2.34) 

 

where 𝑝(𝜃𝑗|𝑌𝑘) (‘a posteriori’ probability) is shorthand for 𝑝(𝜃 = 𝜃𝑗|𝑌𝑘) and lower-case 

𝑝 is used interchangeably to denote a probability or probability density. Now, through the 

application of Bayes’ rule, eq. (2.34) can be manipulated into the following relationships 

 

𝑝(𝜃𝑗|𝑌𝑘) =
𝑝(𝑦𝑘, 𝜃𝑗|𝑌𝑘−1)𝑝(𝑌𝑘−1)

𝑝(𝑦𝑘|𝑌𝑘−1)𝑝(𝑌𝑘−1)
 

 

                                 =
𝑝(𝑦𝑘|𝑌𝑘−1, 𝜃𝑗)𝑝(𝜃𝑗|𝑌𝑘−1)

∑ 𝑝(𝑦𝑘|𝑌𝑘−1, 𝜃𝑗)𝑝(𝜃𝑗|𝑌𝑘−1)
𝑁
𝑗=1

 . 

(2.35) 

 

The denominator of eq. (2.35) is just a normalizing constant. In order to determine the 

recursive equation to update the ‘a posteriori’ probability, the computation of 
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𝑝(𝑦𝑘|𝑌𝑘−1, 𝜃𝑗) is crucial [71, 79-81]. For Gaussian signal models, 𝑝(𝑦𝑘|𝑌𝑘−1, 𝜃𝑗) will be 

Gaussian with mean 𝑦̂𝑘,𝜃𝑗
 and covariance 𝑆𝑘,𝜃𝑗

 which is equal to 

 

𝑆𝑘,𝜃𝑗
= 𝐸 [(𝑦𝑘 −  𝑦̂𝑘,𝜃𝑗

) (𝑦𝑘 −  𝑦̂𝑘,𝜃𝑗
)
𝑇

] 

 

= 𝐶𝑘,𝜃𝑗
𝑃𝑘,𝜃𝑗

𝐶𝑘,𝜃𝑗

𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘
𝑇.           (2.36) 

 

Hence, for a 𝛾-vector 𝑦𝑘, the Gaussian probability density, 𝑝(𝑦𝑘|𝑌𝑘−1, 𝜃𝑗) [71, 79-81] 

will be equal to 

 

𝑝(𝑦𝑘|𝑌𝑘−1, 𝜃𝑗) = (
1

2𝜋
)

𝛾
2⁄

|𝑆𝑘,𝜃𝑗
|
−0.5

 ×  𝑒𝑥𝑝 {−0.5 [𝑦𝑘 −  𝑦̂𝑘,𝜃𝑗
]
𝑇

 [𝑆𝑘,𝜃𝑗
]
−1

 [𝑦𝑘

−  𝑦̂𝑘,𝜃𝑗
]}, 

(2.37) 

 

and clearly 𝑝(𝜃𝑗|𝑌𝑘) can be calculated recursively from 

 

𝑝(𝜃𝑗|𝑌𝑘) =  
1

𝑐
 |𝑆𝑘,𝜃𝑗

|
−0.5

 ×  𝑒𝑥𝑝 {−0.5 [𝑦𝑘 −  𝑦̂𝑘,𝜃𝑗
]
𝑇

 [𝑆𝑘,𝜃𝑗
]
−1

 [𝑦𝑘

−  𝑦̂𝑘,𝜃𝑗
]} 𝑝(𝜃𝑗|𝑌𝑘−1), 

(2.38) 
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where 𝑐 is a normalizing constant independent of 𝜃𝑗 , chosen to ensure that 

∑ 𝑝(𝜃𝑗|𝑌𝑘)
𝑁
𝑗=1 = 1. Based on eq. (2.38) it is evident that the ‘a posteriori’ probabilities of 

all the filters in the bank are computed by evaluating how well the measurement, 𝑦𝑘 

compares to each KFs estimate of the measurement, 𝑦̂𝑘,𝜃𝑗
. This means that the KF which 

produces the smallest difference between the actual measurement, 𝑦𝑘 and the estimate of 

the measurement, 𝑦̂𝑘,𝜃𝑗
 will be weighted more heavily (larger ‘a posteriori’ probability) 

compared to the other KFs in the bank. Finally, to obtain parallel processing state 

estimation and its error covariance, the following equations can be used [71, 79], 

 

𝑥̂𝑘+1|𝑘 =  ∑𝑝(𝜃𝑗|𝑌𝑘)𝑥̂𝑘+1|𝑘, 𝜃𝑗

𝑁

𝑗=1

, 

(2.39) 

 

𝑃𝑘+1 =  ∑𝑝(𝜃𝑗|𝑌𝑘) (𝑃𝑘+1,𝜃𝑗
+ [𝑥̂𝑘+1|𝑘,𝜃𝑗

] [𝑥̂𝑘+1|𝑘,𝜃𝑗
]
𝑇

) − [𝑥̂𝑘+1|𝑘][𝑥̂𝑘+1|𝑘]
𝑇

 

𝑁

𝑗=1

. 

(2.40) 

 

For the case of time-varying unknown parameters, various modifications to the 

BKFs scheme are possible. Two common modifications include the use of exponential 

data weighting and reinitializing the states and ‘a priori’ probabilities of the KFs in the 

bank with the frequency of reset related to the rate of time variation of the unknown 

parameters [71, 79]. Note that the exponential data weighting can be implemented on the 

KFs in bank and/or on the ‘a posteriori’ probability, 𝑝(𝜃𝑗|𝑌𝑘) update equation. Table 2.4 
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summarizes the BKFs algorithm that can be used to obtain the best estimate for the 

unknown parameters vector, 𝜃 and the states, 𝑥̂𝑘+1|𝑘 recursively.  

 

 

Table 2.4: Summary of bank of Kalman filters algorithm. 
 

 

Step 1: Suitably quantize the unknown parameters vector, 𝜃 into a finite number of grid 

points {𝜃1,  … ,  𝜃𝑁}. (Note: this step will determine the number of parallel filters in the 

bank) 

 

Step 2: Initialize the state estimate, 𝑥̂0, 𝜃𝑗
, the ‘a priori’ probabilities, 𝑝(𝜃𝑗|𝑌0) and the 

error covariance, 𝑃0,𝜃𝑗
 for all the filters in the bank. 

 

Step 3: Calculate the Kalman gain, 𝐾𝑘,𝜃𝑗
 for all the filters in the bank: 

 

𝐾𝑘,𝜃𝑗
= 𝐴𝑘,𝜃𝑗

𝑃𝑘,𝜃𝑗
𝐶𝑘,𝜃𝑗

𝑇 (𝐶𝑘,𝜃𝑗
𝑃𝑘,𝜃𝑗

𝐶𝑘,𝜃𝑗

𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘
𝑇)

−1

 

 

Step 4: Update the state estimate, 𝑥̂𝑘, 𝜃𝑗
 and error covariance, 𝑃𝑘,𝜃𝑗

 of all the filters in 

the bank: 

 

𝑥̂𝑘+1, 𝜃𝑗
= 𝐴𝑘,𝜃𝑗

𝑥̂𝑘,𝜃𝑗
+ 𝐵𝑘𝑢𝑘 + 𝐾𝑘, 𝜃𝑗

(𝑦𝑘 − 𝑦̂𝑘, 𝜃𝑗
) 

 

𝑃𝑘+1,𝜃𝑗
= 𝐴𝑘,𝜃𝑗

𝑃𝑘,𝜃𝑗
𝐴𝑘,𝜃𝑗

𝑇  +  𝐹𝑘𝑉𝑘𝐹𝑘
𝑇

− 𝐴𝑘,𝜃𝑗
𝑃𝑘,𝜃𝑗

𝐶𝑘,𝜃𝑗

𝑇  (𝐶𝑘,𝜃𝑗
𝑃𝑘,𝜃𝑗

𝐶𝑘,𝜃𝑗

𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘
𝑇)

−1

𝐶𝑘,𝜃𝑗
𝑃𝑘,𝜃𝑗

𝐴𝑘,𝜃𝑗

𝑇  

 

where, 

 

𝑦̂𝑘, 𝜃𝑗
= 𝐶𝑘,𝜃𝑗

𝑥̂𝑘,𝜃𝑗
+ 𝐷𝑘𝑢𝑘 

 

Step 5: Compute the ‘a posteriori’ probabilities: 

 

𝑝(𝜃𝑗|𝑌𝑘) =  
1

𝑐
 |𝑆𝑘,𝜃𝑗

|
−0.5

 ×  𝑒𝑥𝑝 {−0.5 [𝑦𝑘 −  𝑦̂𝑘,𝜃𝑗
]
𝑇

 [𝑆𝑘,𝜃𝑗
]
−1

 [𝑦𝑘

−  𝑦̂𝑘,𝜃𝑗
]} 𝑝(𝜃𝑗|𝑌𝑘−1) 

 

where,  

 

𝑆𝑘,𝜃𝑗
=  𝐶𝑘,𝜃𝑗

𝑃𝑘,𝜃𝑗
𝐶𝑘,𝜃𝑗

𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘
𝑇 
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𝑦̂𝑘, 𝜃𝑗
= 𝐶𝑘,𝜃𝑗

𝑥̂𝑘,𝜃𝑗
+ 𝐷𝑘𝑢𝑘 

 

Step 6: Calculate the conditional mean state estimate and its covariance: 

 

𝑥̂𝑘+1|𝑘 =  ∑𝑝(𝜃𝑗|𝑌𝑘)𝑥̂𝑘+1|𝑘,𝜃𝑗

𝑁

𝑗=1

 

 

𝑃𝑘+1 =  ∑𝑝(𝜃𝑗|𝑌𝑘) (𝑃𝑘+1,𝜃𝑗
+ [𝑥̂𝑘+1|𝑘,𝜃𝑗

] [𝑥̂𝑘+1|𝑘,𝜃𝑗
]
𝑇

) − [𝑥̂𝑘+1|𝑘][𝑥̂𝑘+1|𝑘]
𝑇

 

𝑁

𝑗=1

 

 

Step 7: Repeat Step 3 – Step 6 for all the available measurement data, 𝑦𝑘. (Note: For 

the time varying unknown parameters, the states and ‘a priori’ probabilities might need 

to be reinitialized before repeating Step 3 – 6)  

 

Step 8: Based on the 𝑝(𝜃𝑗|𝑌𝑘), the best case for the unknown parameters vector, 𝜃 can 

be determined. 
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3 MODELING THE SENSOR RESPONSE 

 

3.1 Introduction 

 

In this chapter, models of the polymer coated shear-horizontal surface acoustic 

wave (SH-SAW) sensor responses to single analyte and multiple analytes are presented. 

SH-SAW sensors are used because of their ability for direct liquid phase detection of 

organic compounds. Note that, in this dissertation, three different polymer coatings were 

chosen as the chemically sensitive layer for the analytes of interest: 

poly(epichlorohydrin) (PECH), poly(isobutylene) (PIB) and poly(ethyl acrylate) (PEA). 

More details on SH-SAW devices, the chosen polymer coatings and experimental setup 

used to collect the sensor data analyzed in this work are given in Chapter 5. The use of 

estimation-theory-based techniques (reviewed in Chapter 2) for the detection and 

quantification of BTEX compounds in the presence of interferents requires an accurate 

analytical model that describes the response of the polymer coated SH-SAW sensor to the 

BTEX containing samples. The sensor response models presented here were developed 

based on empirical results. First, the model of sensor responses to single analytes are 

discussed. The single analyte sensor response model serves as the basis for the multi-

analyte sensor response model. The general model of the multi-analyte sensor responses 

was then developed and modified based on empirical results obtained for the sensor 

responses to common non-target interferents found in contaminated groundwater. 

Specifically, most of the common groups of non-target interferents that are known to 

cause a response of the selected polymer coated SH-SAW sensors were studied in detail. 

Based on studies performed on these commonly known non-target interferents, a general 
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model for a system containing 𝑛 analytes consisting of both analytes of interest and 

interferents was formulated. Finally, discussions on possible modifications to the sensor 

response models for non-ideal cases are given. Specifically, possible modifications for 

the case of non-step-like concentration versus time profile and concentration-dependent 

sensitivity of the sensor are discussed.    

 

3.2 Model of the Single-Analyte Sensor Response 

 

The model for the polymer coated SH-SAW sensor response to single-analyte 

samples was formulated based on the experimental data for various SH-SAW sensor 

responses to the individual BTEX compounds, as well as to some non-target interferents 

in the groundwater that are known to interact with the selected polymer coatings. Typical 

polymer coated SH-SAW sensor responses to single-analyte samples are shown in Figure 

3.1. Based on such measured responses for BTEX compounds and for non-target 

interferents in the groundwater, several assumptions were made in order to model the 

single-analyte sensor response. These assumptions are listed below: 

 

1) It is assumed that the coated SH-SAW sensor is exposed to a step change in the 

analyte concentration for the transition from clean (filtered) water to the sample 

(for sorption) or vice versa (for desorption). In other words, the sensor sees an 

instantaneous transition in the concentration (i.e. step-like concentration versus 

time profile) when the sample containing the analyte is introduced to the sensor or 

when the sample is switched with the clean water. This implies that the 
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concentration presented to the sensor, 𝐶𝑎𝑚𝑏(𝑡), is almost equal to the maximum 

equilibrium ambient concentration, 𝐶𝑒𝑞 of the sample containing the analyte. 

Mathematically, it can be represented using the following equation, 

 

𝐶𝑎𝑚𝑏(𝑡) = 𝐶𝑒𝑞𝑢𝑠(𝑡),     (3.1) 

 

where 𝑢𝑠(𝑡) is the unit step function. Note that achieving a step-like concentration 

versus time profile will depend on the measurement system set-up and parameters 

used for the experiments. For the measurement system used to collect the data 

analyzed in this dissertation, this assumption is valid. More details will be given 

later in section 3.5. 

 

2) It is assumed that only physisorption occurs since the sorption process is 

reversible. Note that sensor reversibility is the ability of the sensor to return to its 

original baseline condition after exposure to an analyte [82]. As can be seen from 

the sample measurement data of Figure 3.1, the polymer coated SH-SAW sensor 

responses to the analytes of interest are reversible and have rapid sorption and 

desorption response time. Such responses indicate that only physisorption occurs. 

In physisorption, only weaker intermolecular forces (van der Waals force) occur 

between the coating and the analyte [82, 83]. 

 

3) It is assumed that the investigated concentration range for the analytes obeys the 

linear sorption isotherm. Linear sorption isotherm represents ideal sorption 
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behavior and is classified as type I sorption where the analyte concentration in the 

coating will be proportional to the ambient concentration of the analyte [83, 84]. 

Therefore, only low concentration range (analyte concentrations in the 0 – 10 ppm 

(parts per million) range) was investigated. 

 

4) It is assumed that the rate of change in analyte concentration in the coating is 

proportional to the difference in the concentration of the analyte in the polymer 

coating at time 𝑡, 𝐶(𝑡) and the equilibrium concentration in the polymer coating. 

Therefore, when the polymer coated SH-SAW sensor is exposed to the aqueous 

solution containing the analyte, the sensor will respond rapidly at first and then 

slowly as the analyte concentration in the polymer coating approaches equilibrium 

(where the amount of analyte molecules entering and leaving the polymer coating 

will be equal). The extent of analyte sorption and the distribution of analyte 

between the polymer coating and the aqueous solution is characterized by the 

equilibrium constant which is also known as polymer-water partition coefficient, 

𝐾𝑝−𝑤 [2, 82, 83]. Note that, at equilibrium, the concentration of the analyte in the 

polymer coating will be equal to the product of the maximum equilibrium ambient 

concentration, 𝐶𝑒𝑞 and the polymer-water partition coefficient, 𝐾𝑝−𝑤. The 

constant 𝐾𝑝−𝑤 determines the overall strength of the interactions between the 

polymer coating and analyte. As a result, larger 𝐾𝑝−𝑤, indicates stronger analyte 

sorption.  

 

5) It is assumed that the rate of frequency change is proportional to the rate of 

change of the analyte concentration in the coating. 
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6) It is assumed that the absolute magnitude of the equilibrium frequency shift is the 

same for both analyte sorption response (measurements made immediately after 

exposing the sensor to the analyte containing sample) and analyte desorption 

response (measurements made by exposing the sensor to clean (or filtered) water 

after the analyte sorption process reaches equilibrium). As can be seen from the 

sample measurement data shown in Figure 3.1, the behavior of both analyte 

sorption response and analyte desorption response are identical. For analyte 

desorption it is also observed that the sensor signal changes rapidly at first and 

then more slowly as it reaches equilibrium. However, for the investigated sensor 

and coatings, analyte sorption will produce a negative frequency shift and 

desorption a positive frequency shift with the same absolute magnitude of 

equilibrium frequency shift. This means that the sensor responses are reversible. 

However, sorption and desorption responses might not necessarily have the same 

response-time constants. Empirically, it is observed that the desorption time 

constants are slightly different from the sorption time constants, but the difference 

is usually within the experimental error margins. 

 

Based on these assumptions and the measured response in Figure 3.1, the single analyte 

sensor response (both analyte sorption and desorption responses) can be effectively 

modeled by an exponential rise to a steady-state governed by a single time constant, 𝜏, 

 

∆𝑓(𝑡) =  𝑎 𝐾𝑝−𝑤 𝐶𝑒𝑞 [1 − 𝑒−𝑡
𝜏⁄ ] 𝑢𝑠(𝑡),   (3.2) 
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where ∆𝑓(𝑡) is the frequency shift as a function of time, 𝑎 represents the sensitivity of 

the sensor platform (which also depends on coating thickness), and 𝐾𝑝−𝑤 is the 

polymer/water partition coefficient for a given analyte/coating pair. Note that the term 

𝑎𝐾𝑝−𝑤 represents the overall sensitivity of the sensor. Alternatively, eq. (3.2) can be 

written in terms of 𝐶(𝑡) as 

 

∆𝑓(𝑡) =  𝑎𝐶(𝑡),     (3.3a) 

 

where 𝐶(𝑡), the concentration of analyte in the coating at time 𝑡, is the solution to the 

following first-order differential equation: 

 

𝐶̇(𝑡) =  −
1

𝜏
𝐶(𝑡) +

 𝐾𝑝−𝑤

𝜏
 𝐶𝑎𝑚𝑏(𝑡) . 

(3.3b) 

 

 Equations (3.2) or (3.3) can be used to represent the single analyte responses (BTEX 

compounds or non-target interferents in the groundwater that are known to interact with 

the selected polymer coatings). 

By fitting the single-analyte sensor response to eq. (3.2) or eq. (3.3), two sensor 

parameters could be extracted, namely, response time constant, 𝜏 and sensitivity, 𝑎𝐾𝑝−𝑤 

(Hz of frequency shift per ppm-by-mass of analyte concentration) for each 

coating/analyte combination. Experimental results show that both 𝜏 and 𝑎𝐾𝑝−𝑤 are 

independent of analyte concentration in the range of interest. In particular, the 
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characteristic value of 𝜏 can be used to identify the analyte(s) and the characteristic value 

of 𝑎𝐾𝑝−𝑤 can be used to quantify the analyte(s) (i.e. to determine its concentration) for a 

given sensor coating. Note that at equilibrium (𝑡 = ∞), eq. (3.2) can be represented as 

 

∆𝑓(∞) = 𝑓∞ =  𝑎𝐾𝑝−𝑤𝐶𝑒𝑞 ,     (3.4) 

 

where 𝑓∞ denotes the equilibrium frequency shift. Thus, by using the experimentally 

determined sensitivity, 𝑎𝐾𝑝−𝑤 for a given analyte/coating pair, the maximum equilibrium 

ambient concentration, 𝐶𝑒𝑞 can be computed by dividing the equilibrium frequency shift, 

𝑓∞ by the sensitivity, 𝑎𝐾𝑝−𝑤, 

 

𝐶𝑒𝑞 =
𝑓∞

𝑎𝐾𝑝−𝑤
 . 

(3.5) 

 

Note that eq. (3.5) can be used to calculate the concentration of the analyte if the 

sensitivity of the analyte for a given coating is known. Therefore, the determination of 

average response time constant, 𝜏 and average sensitivity, 𝑎𝐾𝑝−𝑤 of an analyte for a 

given coating is sufficient for successful the detection and quantification of the analyte. 

As such, several (more than 10) single-analyte measurements were made to determine the 

average values of the response time constants and sensitivities of the analytes of interest 

(here BTEX) and some interferents that are commonly found in contaminated 

groundwater. The measured mean sensitivities and response time constants for various 
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coatings are listed in Tables 3.1 and 3.2. For the investigated sensor coatings, chemical 

isomers ethylbenzene and the mixtures of three xylenes (𝑚, 𝑜, 𝑝-xylenes) are found to 

have nearly identical values for the response times and sensitivities. Therefore, no 

attempt was made to distinguish the response time constants and sensitivities between 

them. 

The single-analyte responses of the common interferents found in the 

contaminated groundwater that were analyzed experimentally include ethanol, 1,2,4-

trimethylbenzene, naphthalene, n-heptane, and MTBE (methyl tert-butyl ether). Based on 

the single-analyte experiments for the selected polymer coatings, no significant response 

to ethanol was found up to concentrations of 100 ppm. For MTBE, a very low sensitivity 

was found for the selected coatings (~1 Hz/ppm) and since this compound is usually 

present at low concentrations in groundwater, its contribution to the sensor response is 

insignificant and can be ignored. High sensitivity and long response time were found for 

1,2,4-trimethylbenzene and naphthalene for both PECH and PIB sensor coatings. In 

addition, PIB also exhibits high sensitivity and long response time for n-heptane. 

Therefore, the response to these compounds cannot be ignored and must be included in 

the model. Their mean sensitivities and response time constants are also listed in Tables 

3.1 and 3.2 for different polymer coatings. 
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Figure 3.1: (a) Response of a SH-SAW sensor coated with 0.8 µm PIB, successively 

exposed to various samples of benzene in water (concentrations are indicated in the 

graph in parts per billion). (b) Response of a SH-SAW sensor coated with 0.8 µm 

PIB to various samples of toluene in water (concentrations in parts per billion). 

 

 

a) 

b) 
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Table 3.1: Measured Mean Sensitivities, 𝒂𝑲𝒑−𝒘 (in Hz/ppm) and Response Time 

Constants, 𝝉 (in s), for sensors coated with 0.6 𝝁m Poly(epichlorohydrin) (PECH) to 

Various BTEX Analytes and Common Interferents, Together with Their Standard 

Errors. 

 Mean Sensitivities, 𝑎𝐾𝑝−𝑤 

(in Hz/ppm) 

Mean Response Times, 𝜏 

(in s) 

 Sorption Desorption Sorption Desorption 

Benzene 109 (±9) 110 (±11) 27 (±8) 27 (±9) 

Toluene 435 (±25) 422 (±4) 78 (±3) 74 (±5) 

Ethylbenzene 1450 (±240) 1410 (±240) 175 (±13) 171 (±13) 

1,2,4-

trimethylbenzene 

3540 (±420) 3390 (±410) 428 (±22) 461 (±27) 

Naphthalene 1562 (±30) 1605 (±27) 495 (±87) 665 (±24) 

n-heptane ≈ 0 ≈ 0 not applicable not 

applicable 

Ethanol ≈ 0 ≈ 0 not applicable not 

applicable 

MTBE ≪ benzene ≪ benzene < benzene < benzene 

 

 

 

Table 3.2: Measured Mean Sensitivities, 𝒂𝑲𝒑−𝒘 (in Hz/ppm) and Response Time 

Constants, 𝝉 (in s), for sensors coated with 0.8 𝝁m Poly(isobutylene) (PIB) to 

Various BTEX Analytes and Common Interferents, Together with Their Standard 

Errors. 

 Mean Sensitivities, 𝑎𝐾𝑝−𝑤 

(in Hz/ppm) 

Mean Response Times, 𝜏 

(in s) 

 Sorption Desorption Sorption Desorption 

Benzene 78 (±7) 78 (±12) 36 (±7) 31 (±3) 

Toluene 403 (±39) 408 (±85) 88 (±7) 88 (±9) 

Ethylbenzene 1160 (±57) 1100 (±85) 230 (±12) 215 (±11) 

1,2,4-

trimethylbenzene 

3640 (±230) 3440 (±165) 610 (±18) 667 (±31) 

Naphthalene 621 650 250 254 

n-heptane ≫ 

ethylbenzene 

5932 ≫ 

ethylbenzene 

9177 

Ethanol ≈ 0 ≈ 0 not applicable not 

applicable 

MTBE ≪ benzene ≪ benzene < benzene < benzene 
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3.3 Model of the Multi-Analyte Sensor Response 

 

The single-analyte sensor response model developed in the previous section can 

readily be extended to multi-analyte sensor responses. This extension is made based on 

the experimental data for various polymer coated SH-SAW sensor responses to multi-

analyte mixtures, like the one depicted in Figure 3.2. Figure 3.2 shows the responses of a 

polymer coated SH-SAW sensor to a binary mixture of BTEX analytes (specifically, a 

mixture of toluene and ethylbenzene) and to the individual analytes that comprise the 

mixture. Based on Figure 3.2, it is evident that the measured total frequency shift for the 

binary mixture at any time, 𝑡 is the sum of the frequency shifts of the individual analytes 

(i.e. ∆𝑓(𝑡) = ∆𝑓1(𝑡) + ∆𝑓2(𝑡)). Based on such measured responses for multi-analyte 

mixtures, several assumptions were made in order to formulate the general analytical 

model for the sensor response to a mixture of 𝑛 analytes. These assumptions are listed 

below: 

 

1) It is assumed that all the assumptions made previously for the single-analyte 

sensor responses are still valid for the sensor responses of the multi-analyte 

mixtures. 

 

2) It is assumed that for analyte concentrations in the range of 0 to 50 ppm 

(depending on the analyte), both sorption and desorption of the multi-analyte 

mixture by the polymer coating obey Henry’s law [47, 50, 64]. Based on this 

assumption, it can be inferred that for a dilute mixture of multiple soluble species, 



66 
 

 

 

the sorption of any given species into the polymer does not affect the sorption of 

the other species in any way. Similar to the single analyte response, free 

partitioning of analytes between polymer and aqueous phase is assumed, 

including the implication that the sorption process is fully reversible at room 

temperature (i.e. only physisorption occurs). All this implies that the 

concentration of the mixture in the coating at any time 𝑡 is the sum of the 

concentrations of each individual 𝑖th analyte, 𝐶𝑖(𝑡), as it would be measured in a 

single-analyte response, i.e. 𝐶𝑚𝑖𝑥𝑡𝑢𝑟𝑒(𝑡) =  𝐶1(𝑡) + 𝐶2(𝑡) + ⋯+ 𝐶𝑛(𝑡). 

 

3) Likewise, it is assumed that the equilibrium frequency shifts are also mutually 

independent, i.e. the frequency shift due to the mixture at any time 𝑡 is the sum of 

the frequency shifts due to each analyte in the mixture at that time. 

 

4) It is assumed that the values of the sensor parameters, response time constant, 𝜏 

and sensitivity, 𝑎𝐾𝑝−𝑤 of each analyte in the mixture is the same as those 

obtained from single analyte experiment for a given polymer coating. 

 

Considering these assumptions, the sensor response to a mixture of 𝑛 analytes can be 

modeled as the sum of the individual responses of each analyte in the mixture and is 

given by, 

 

∆𝑓(𝑡) =  ∑𝑎𝐾𝑝−𝑤,𝑖𝐶𝑒𝑞,𝑖 [1 − 𝑒−𝑡
𝜏𝑖

⁄ ]

𝑛

𝑖=1

𝑢𝑠(𝑡) . 

(3.6) 
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Alternatively, eq. (3.6) can be written in terms of 𝐶𝑖(𝑡) as 

 

∆𝑓(𝑡) = ∑ 𝑎𝐶𝑖(𝑡)

𝑛

𝑖=1

 , 

(3.7a) 

 

where 𝐶𝑖(𝑡), the concentration of each analyte in the coating at time 𝑡, is the solution to 

the following first-order differential equation: 

 

𝐶̇𝑖(𝑡) =  −
1

𝜏𝑖
𝐶𝑖(𝑡) +  

𝐾𝑝−𝑤,𝑖

𝜏𝑖
 𝐶𝑎𝑚𝑏,𝑖(𝑡) . 

(3.7b) 

 

All variables are as previously defined, with subscript 𝑖 = 1, 2, … , 𝑛 referring to each 

analyte in the mixture. Equations (3.6) or (3.7) represent the general analytical model for 

the sensor response to any number of analytes in the sample, provided that each analyte 

and possible interferents in the sample have been separately characterized for the 

appropriately selected coating and in the concentrations range of interest. 
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Figure 3.2: Response of a SH-SAW sensor coated with 1.0 µm PEA to toluene, 

ethylbenzene and their binary mixture. All concentrations are 10 ppm (binary 

mixture: 10 ppm toluene + 10 ppm ethylbenzene). Experimental data are modeled 

with single- and dual-exponential fits for single analytes and the binary mixture of 

analytes, respectively. 

 

 

 

In order to utilize the estimation-theory-based techniques presented in Chapter 2 to 

extract recognition and quantification, the general multi-analyte sensor response model of 

eq. (3.7) was normalized and discretized. Equation (3.7) was normalized by dividing with 

𝐾𝑝−𝑤,𝑖𝐶𝑒𝑞,𝑖. By defining new variables as 

 

𝑚𝑖(𝑡) =  
𝐶𝑖(𝑡)

𝐾𝑝−𝑤,𝑖 𝐶𝑒𝑞,𝑖
 , 

(3.8a) 
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𝑢𝑠(𝑡) =  
𝐶𝑎𝑚𝑏,𝑖(𝑡)

𝐶𝑒𝑞,𝑖
 , 

(3.8b) 

 

and 

        

𝑓∞,𝑖 =  𝑎𝐾𝑝−𝑤,𝑖𝐶𝑒𝑞,𝑖 ,                   (3.8c) 

 

the following normalized differential equations and output equation are obtained as, 

 

𝑚̇𝑖(𝑡) =  −
1

𝜏𝑖
𝑚𝑖(𝑡) +  

1

𝜏𝑖
 𝑢𝑠(𝑡), 

(3.9a) 

 

and 

 

∆𝑓(𝑡) = ∑𝑓∞,𝑖𝑚𝑖(𝑡)

𝑛

𝑖=1

 , 

(3.9b) 

 

where, for analyte i, 𝑚𝑖(𝑡) represents the normalized concentration absorbed/desorbed at 

time 𝑡, 𝑓∞,𝑖 is the equilibrium frequency shift, and 𝑢𝑠(𝑡) represents the unit step 

concentration versus time profile observed by the sensor during the rapid transition from 
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clean water to the sample (for 𝑡 < 0, 𝐶𝑎𝑚𝑏,𝑖(𝑡) = 0; for 𝑡 > 0, 𝐶𝑎𝑚𝑏,𝑖(𝑡) = 𝐶𝑒𝑞,𝑖 𝑢𝑠(𝑡)) 

or vice versa for desorption. 

Since the frequency shift data are collected at discrete-time instants, 𝑡 = 𝑘𝑇𝑠, 

where 𝑇𝑠 is the sampling period and 𝑘 is a non-negative integer, the normalized model of 

eq. (3.9) was converted into a discrete-time model using Euler’s first-order forward 

method, 

 

𝑚̇𝑖(𝑡) =  
𝑚𝑖,𝑘+1 − 𝑚𝑖,𝑘

𝑇𝑠
 , 

(3.10) 

 

which yields the following discrete-time equations, 

 

𝑚𝑖,𝑘+1 = (1 − 𝑆𝑖)𝑚𝑖,𝑘 + 𝑆𝑖𝑢𝑠,𝑘 ,            (3.11a) 

 

∆𝑓𝑘 = ∑𝑓∞,𝑖𝑚𝑖,𝑘

𝑛

𝑖=1

+  𝑤𝑘 . 

(3.11b) 

 

In eq. (3.11), 𝑆𝑖 is defined as 

 

𝑆𝑖 =  
𝑇𝑠

𝜏𝑖
, 

(3.12) 
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and is commonly referred to as the sorption/desorption rate constant. Also note that in eq. 

(3.11), the term 𝑤𝑘 is added to represent the measurement noise with variance 𝜎𝑤
2 , which 

is likely to be present during data collection. It is assumed that the measurement noise is 

white noise (uncorrelated in time). 

From eq. (3.11), the state-space form of the general multi-analyte sensor response 

model can be obtained by assigning state variables to the normalized concentrations, 𝑚𝑖,𝑘 

absorbed/desorbed at time instant 𝑘, 

 

[
 
 
 
 𝑥𝑘+1

(1)

𝑥𝑘+1
(2)

⋮

𝑥𝑘+1
(𝑛)

]
 
 
 
 

= [

1 − 𝑆1 0 0 0
0 1 − 𝑆2 0 0
0 0 ⋱ 0
0 0 0 1 − 𝑆𝑛

]

[
 
 
 
 𝑥𝑘

(1)

𝑥𝑘
(2)

⋮

𝑥𝑘
(𝑛)

]
 
 
 
 

+ [

𝑆1

𝑆2

⋮
𝑆𝑛

] 𝑢𝑠,𝑘 = 𝐴𝑥𝑘 + 𝐵𝑢𝑠,𝑘 , (3.13a) 

 

𝑦𝑘 = ∆𝑓𝑘 = ∑𝑓∞,𝑖𝑥𝑘
(𝑖)

𝑛

𝑖=1

+ 𝑤𝑘 = 𝐶𝑥𝑘 + 𝑤𝑘, 

(3.13b) 

 

where, 

 

𝑥𝑘 = [𝑥𝑘
(1)

𝑥𝑘
(2)

⋯ 𝑥𝑘
(𝑛)]

𝑇
, 

 

𝐴 = [

1 − 𝑆1 0 0 0
0 1 − 𝑆2 0 0
0 0 ⋱ 0
0 0 0 1 − 𝑆𝑛

], 
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𝐵 = [𝑆1 𝑆2 ⋯ 𝑆𝑛]𝑇 , 

 

𝐶 = [𝑓∞,1 𝑓∞,2 ⋯ 𝑓∞,𝑛] . 

 

In eq. (3.13), 𝑥𝑘
(𝑖)

 represents the normalized concentration of absorbed/desorbed analyte 

at time instant 𝑘, and 𝐴, 𝐵 and 𝐶 represent the system matrices. Note that for near real-

time 𝑛-analyte quantification, the unknown parameters that need to be estimated in the 

model defined by eq. (3.13) are the equilibrium frequency shifts (i.e., 𝑓∞,𝑖, 𝑖 = 1, 2, … , 𝑛). 

By using the estimated equilibrium frequency shift of each analyte in the mixture and 

known sensitivity, 𝑎𝐾𝑝−𝑤 value for a given analyte/coating pair, the equilibrium ambient 

concentration for each analyte can be determined using eq. (3.5). It is recalled here that, 

because of 𝐾𝑝−𝑤, the actual concentration of the analyte in the coating is different from 

the equilibrium ambient concentration for each analyte.  

 

3.4 Model of the Target Analytes in the Presence of Interferents 

 

In general, the sample under the test (or liquid environment of interest) may 

contain various chemical compounds other than the target chemical compounds. The 

presence of these non-target interferents often complicates the detection and 

quantification of the target analytes from the sensor response data. Typically, through the 

selection of appropriate sorbent polymer coatings, the sensor would not respond to most 

of these non-target interferents. Such polymer coatings were selected to collect the sensor 
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response data. However, the chosen polymer coatings do respond to some non-target 

interferents. Therefore, to enable the detection and quantification of the target analytes in 

the presence of interferents from the polymer coated SH-SAW sensor response data, the 

sensor response due to target analytes and the detectable interferents have to be taken into 

account in the sensor response model. Based on the sensor response to the detectable 

interferents, several different representations of the target analytes in the presence of 

interferents are possible using the general discrete-time sensor response model of eq. 

(3.11). All possible representations of the sensor response due to the target analytes and 

interferents in the sensor response model are given below: 

 

Case 1: If all the detectable interferents have distinct sensor parameters (i.e. response 

time constants and sensitivities), the sensor response due to each of these 

interferents must be explicitly represented using individual exponential term (or 

single-analyte term) in the sensor response model. Therefore, in this case, eq. 

(3.11) can be used to represent the response due to the 𝑝 detectable interferents 

using 𝑝 individual exponential terms and 𝑞 target analytes using 𝑞 exponential 

terms where 𝑛 = 𝑞 + 𝑝. Note that 𝑛 represents the total number of exponential 

terms in the sensor response model. 

 

Case 2: If the all the detectable interferents have very low sensitivity to the chosen 

polymer coatings, the response due to the interferents can be ignored in the 

sensor response model. In this case, eq. (3.11) can be used to only represent the 

response due to the target analytes. 
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Case 3: If the response due to all the detectable interferents have nearly similar time 

constant and sensitivity, the combined response due to the interferents can be 

represented using only one exponential term. In this case, eq. (3.11) can be used 

to represent the response due to all detectable interferents using only one 

exponential term (i.e. 𝑝 = 1) and 𝑞 target analytes using 𝑞 exponential terms 

where 𝑛 = 𝑞 + 1. 

 

Case 4: If the response due to the different groups of interferents have different time 

constant and sensitivity, the combined response due to each group of 

interferents with nearly similar sensor parameters can be represented using one 

exponential term. In this case, eq. (3.11) can be used to represent the response 

due each group of detectable interferents with nearly similar time constant and 

sensitivity using only one exponential term (i.e. 𝑝 = 𝑝1 + 𝑝2 + 𝑝3 + ⋯) and 𝑞 

target analytes using 𝑞 exponential terms where 𝑛 = 𝑞 + 𝑝. 

 

The general discrete-time sensor response model of eq. (3.11) will be used for the 

detection and quantification of BTEX compounds in the presence of interferents. For the 

chosen polymer coatings, based on the experimental observations of the sensor responses 

to the common interferents found in the contaminated groundwater, it has been found that 

the non-target interferents will either have slower response time constants or lower 

sensitivities than the target analytes (see Table 3.1 and Table 3.2). This indicates that the 

chosen polymer coatings have significantly larger partition coefficients for the target 
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analytes than some non-target interferents (thus, low sensitivities), or the target analytes 

have low solubility in water and are present at very small concentrations (thus leading to 

slow response times). Therefore, based on the experimental data on the sensor responses 

to the common interferents found in the contaminated groundwater, two specific example 

models, i.e. four-analyte model and five-analyte model, for the detection and 

quantification of BTEX compounds in the presence of interferents will be discussed. 

 

3.4.1 Example 1: Four-Analyte Model (𝒏 = 𝟒, 𝒑 = 𝟏) 

 

For the four-analyte model, the total number of single-analyte terms, 𝑛 is four 

(𝑛 = 4) and all the detectable interferents in the mixture with a response time constant 

longer or sensitivity lower than that of all BTEX analytes are modeled using a single 

exponential term, i.e. 𝑝 = 1. Note that, as indicated earlier, ethylbenzene and the three 

xylenes are chemical isomers that have similar characteristic response time constants (for 

the selected coatings) which permits representation of the response to all of them by a 

single exponential term. This means that, for the four-analyte model, the subscript 𝑖 =

1,  2,  3 represents the response due to the target analytes benzene, toluene, and the 

combination of the four C8 isomers, respectively, and the subscript 𝑖 = 4 represents the 

combined response due to all the interferents in the mixture. The investigations 

performed on contaminated groundwater samples using polymer coated SH-SAW sensors 

indicates that the response to 1,2,4-trimethylbenzene is more pronounced than the 

response to other interferents; 1,2,4-trimethylbenzene is often the most common 

constituent of petroleum C9 aromatic compounds. Therefore, the time constant for 𝑖 = 4 
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can be set close to that of the characteristic time constant of 1,2,4-trimethylbenzene. The 

four-analyte discrete-time model is as follows: 

 

𝑚𝑖,𝑘+1 = (1 − 𝑆𝑖)𝑚𝑖,𝑘 + 𝑆𝑖𝑢𝑠,𝑘    𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, 3, 4  (3.14a) 

 

∆𝑓𝑘 = ∑𝑓∞,𝑖𝑚𝑖,𝑘

4

𝑖=1

+  𝑤𝑘 

(3.14b) 

 

and the corresponding state-space form of the four-analyte model is as follows, 

 

[
 
 
 
 
 𝑥𝑘+1

(1)

𝑥𝑘+1
(2)

𝑥𝑘+1
(3)

𝑥𝑘+1
(4)

]
 
 
 
 
 

= [

1 − 𝑆1 0 0 0
0 1 − 𝑆2 0 0
0 0 1 − 𝑆3 0
0 0 0 1 − 𝑆4

]

[
 
 
 
 
 𝑥𝑘

(1)

𝑥𝑘
(2)

𝑥𝑘
(3)

𝑥𝑘
(4)

]
 
 
 
 
 

+ [

𝑆1

𝑆2

𝑆3

𝑆4

]𝑈𝑘  (3.15a) 

 

𝑦𝑘 = ∆𝑓𝑘 = ∑𝑓∞,𝑖𝑥𝑘
(𝑖)

4

𝑖=1

+ 𝑤𝑘 . 

(3.15b) 

 

Note that for four-analyte state-space model of eq. (3.15), the unknown parameters that 

need to be estimated for near real-time detection and quantification of target analytes are 

𝑓∞,𝑖, 𝑖 = 1, 2, 3, 4. 
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3.4.2 Example 2: Five-Analyte Model (𝒏 = 𝟓, 𝒑 = 𝟐) 

 

For the five-analyte model, two exponential terms, i.e. 𝑝 = 2 are used to represent 

the response due to all the detectable interferents in the mixture with a response time 

constant longer or sensitivity lower than that of target analytes. As a result, for the five-

analyte model, the total number of single-analyte terms, 𝑛 is five (𝑛 = 5). Here, the 

subscript 𝑖 = 1,  2,  3 represents the response due to the target analytes benzene, toluene, 

and the combination of the four C8 isomers, respectively, and the subscript 𝑖 = 4, 5 

represents the combined response due to all the interferents in the mixture. In this model, 

the response to the interferent 1,2,4-trimethylbenzene, which is often dominant among 

the responses of the interferents, is treated individually as an analyte (𝑖 = 4) whereas the 

responses due to all the other interferents in the mixture are modeled collectively as a 

single-analyte (𝑖 = 5) with its characteristic time constant set higher than that of 1,2,4-

trimethylbenzene; this has empirical reasons but is also consistent with the fact that 

besides 1,2,4-trimethylbenzene and similar C9 aromatic compounds, the second largest 

group of interferents identified in the contaminated groundwater samples are C10 

aromatics which are expected to show even longer response times. The five-analyte 

discrete-time model is as follows: 

 

𝑚𝑖,𝑘+1 = (1 − 𝑆𝑖)𝑚𝑖,𝑘 + 𝑆𝑖𝑢𝑠,𝑘    𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, 3, 4, 5  (3.16a) 

 

∆𝑓𝑘 = ∑𝑓∞,𝑖𝑚𝑖,𝑘

5

𝑖=1

+  𝑤𝑘 
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(3.16b) 

 

and the corresponding state-space form of the five-analyte model is as follows, 

 

[
 
 
 
 
 
 𝑥𝑘+1

(1)

𝑥𝑘+1
(2)

𝑥𝑘+1
(3)

𝑥𝑘+1
(4)

𝑥𝑘+1
(5)

]
 
 
 
 
 
 

=

[
 
 
 
 
1 − 𝑆1 0 0 0 0

0 1 − 𝑆2 0 0 0
0 0 1 − 𝑆3 0 0
0 0 0 1 − 𝑆4 0
0 0 0 0 1 − 𝑆5]

 
 
 
 

[
 
 
 
 
 
 𝑥𝑘

(1)

𝑥𝑘
(2)

𝑥𝑘
(3)

𝑥𝑘
(4)

𝑥𝑘
(5)

]
 
 
 
 
 
 

+

[
 
 
 
 
𝑆1

𝑆2

𝑆3

𝑆4

𝑆5]
 
 
 
 

𝑈𝑘 (3.17a) 

 

𝑦𝑘 = ∆𝑓𝑘 = ∑𝑓∞,𝑖𝑥𝑘
(𝑖)

5

𝑖=1

+ 𝑤𝑘 . 

(3.17b) 

 

Note that for five-analyte state-space model of eq. (3.17), the unknown parameters that 

need to be estimated for near real-time detection and quantification of target analytes are 

𝑓∞,𝑖, 𝑖 = 1, 2, 3, 4, 5. 

 

3.5 Model for the Non-Ideal Cases 

 

The coated SH-SAW sensor response models discussed in the earlier sections 

were developed for the ideal cases where it is assumed that the sensor is exposed rapidly 

to the analyte containing sample (i.e. step-like concentration versus time profile: 

instantaneous transition from the clean water to the sample or vice versa for desorption) 
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and constant sensitivity (i.e. linear relationship between the frequency shift at 

equilibrium, 𝑓∞ and the maximum equilibrium ambient concentration, 𝐶𝑒𝑞). However, 

these ideal assumptions are often not met due to the limitations of the measurement 

system and sensor platform used to collect the sensor response data. If such non-ideal 

cases are encountered, the sensor response model must be modified in order to accurately 

represent the measured data. In this section, the possible modifications to the sensor 

response models for the case of non-step-like concentration versus time profile and 

concentration-dependent sensitivity of the sensor are discussed. 

 

3.5.1 Non-Step-Like Concentration versus Time Profile 

 

In many chemical sensing applications, the sample collected from the 

environment (with concentration, 𝐶𝑒𝑞) is transferred rapidly to a cell containing the 

sensor(s). Typically, in such cases, it is assumed that the concentration presented to the 

sensor(s), 𝐶𝑎𝑚𝑏(𝑡), is almost equal to 𝐶𝑒𝑞, 

 

𝐶𝑎𝑚𝑏(𝑡)

𝐶𝑒𝑞
≈ 1 . 

(3.18) 

 

Hence, if the flow of the sample to the sensor is sufficiently fast, the concentration versus 

time profile observed by the sensor during the transition from clean water to the sample 

or vice versa for desorption, 𝑢(𝑡) can be assumed to be equal to unit step function (for 

𝑡 < 0, 𝐶𝑎𝑚𝑏(𝑡) = 0; for 𝑡 > 0, 𝐶𝑎𝑚𝑏(𝑡) = 𝐶𝑒𝑞). However, in practice, non-step-like 
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concentration versus time profile is often observed when the sample is introduced to the 

sensor. This is due to the dispersion which occurs when the sample is introduced into a 

tube containing steadily flowing clean water which will transport the sample to the sensor 

[85]. Dispersion is caused by the combined action of convection parallel to the axis and 

molecular diffusion in the radial direction, which in turn, depends on the measurement 

system parameters such as the average flow speed, 𝑣, the total length of the tube 

separating point of sample introduction and the sensor device, 𝑙, and diffusion coefficient 

of the soluble substance, 𝐷 [85]. Therefore, the concentration versus time profile seen by 

the sensor depends on these measurement system parameters and can be accurately 

described using a modified error function [85, 86],     

 

 

𝑢(𝑡) =
1

2
[1 − 𝑒𝑟𝑓 (

𝑙 − 𝑣𝑡

2√𝐷𝑡
)] . 

(3.19) 

 

Equation (3.19) is the generalized expression for the concentration versus time profile 

and also can be used to determine whether the concentration versus time profile observed 

by the sensor can be assumed to be unit step function, 𝑢𝑠(𝑡) or not. For measurement 

systems with sufficiently high 𝑣, short 𝑙, and very small 𝐷, eq. (3.19) reduces to unit step 

function (i.e. step-like concentration versus time profile). If this is not the case, the value 

of the concentration versus time profile observed by the sensor at time, 𝑡, has to be 

determined using eq. (3.19). Note that, for non-step-like concentration versus time profile 

cases, one can still use the sensor response model developed in earlier sections but with 
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𝑢𝑠(𝑡) replaced with 𝑢(𝑡) given by eq. (3.19). Therefore, eq. (3.19) is a simple adaptation 

that can be employed for measurement systems with non-step-like concentration versus 

time profile. 

For the measurement system with sampling period, 𝑇𝑠 = 12𝑠, used to collect the 

data analyzed in the present work, the parameters are as follows, 

 

𝑙 = 185.7 𝑚𝑚 , 

 

𝑣 = 6.19𝑚𝑚
𝑠⁄  , 

 

𝐷 = 0.8 × 10−9𝑚2𝑠−1 𝑡𝑜 1.03 × 10−9𝑚2𝑠−1 (for BTEX compounds). 

 

These parameters will yield concentration versus time profile as shown in Figure 3.3. 

Based on Figure 3.3, it is evident that the concentration versus time profile, for the 

measurement system used to collect the data analyzed in this dissertation, can be assumed 

to be a unit step function, 𝑢(𝑡) = 𝑢𝑠(𝑡) after neglecting several initial data points 

immediately after transition from clean water to sample or from sample to clean water, 

due to a time delay of 𝑡𝐷 = 𝑙 𝑣⁄ . 
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Figure 3.3: Concentration versus time profile of the measurement system used to 

collect the data analyzed in this dissertation. 

 

 

 

3.5.2 Concentration-Dependent Sensitivity 

 

As mentioned earlier, the characteristic value of sensitivity, 𝑎𝐾𝑝−𝑤 is needed to 

accurately determine the concentration of the analyte(s) from a given coated SH-SAW 

sensor response. The slope of the calibration curve (plot of equilibrium frequency shift, 

𝑓∞ versus equilibrium ambient concentration, 𝐶𝑒𝑞) can be used to compute the sensitivity 

of the coated SH-SAW sensor. Ideally, it is desired for the relationship between 𝑓∞ and 

𝐶𝑒𝑞 to be linear, so that the sensitivity, 𝑎𝐾𝑝−𝑤 determined from the slope of the linear 

line is a constant, 
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𝑎𝐾𝑝−𝑤 =
𝑓∞
𝐶𝑒𝑞

 . 

(3.20) 

 

If the sensitivity, 𝑎𝐾𝑝−𝑤 is constant, then eq. (3.5) can be used to compute the 

concentration of the analyte using the measured or estimated value for 𝑓∞. However, 

linear relationship between 𝑓∞ and 𝐶𝑒𝑞 is only observed for small concentration range of 

BTEX compounds. For a larger concentration range, the relationship between 𝑓∞ and 𝐶𝑒𝑞 

is usually nonlinear. As an example, Figure 3.4 shows the plot of equilibrium frequency 

shift, 𝑓∞ versus maximum equilibrium ambient concentration, 𝐶𝑒𝑞 for concentrations of 

ethylbenzene between 0 ppm to 70 ppm. As can be seen from Figure 3.4, linear 

relationship between 𝑓∞ and 𝐶𝑒𝑞 is observed for ethylbenzene concentrations between 0 

ppm to 40 ppm and nonlinear relationship between 𝑓∞ and 𝐶𝑒𝑞 is observed for 

ethylbenzene concentrations between 0 ppm to 70 ppm. The nonlinear relationship 

between 𝑓∞ and 𝐶𝑒𝑞 for a larger concentration range will cause the sensitivity to vary 

based on the concentration of the analyte (i.e. non-constant sensitivity). In such cases, it 

is not possible to extract the concentration for the analyte using eq. (3.5). Therefore, a 

more general approach that could be utilized for a larger concentration range with non-

constant sensitivity is desired. 

One simple approach that could be employed is to express the nonlinear 

relationship between 𝑓∞ and 𝐶𝑒𝑞 (for a large concentration range) using a mathematical 

function, 𝐹(. ) that adequately captures the nonlinearity between 𝑓∞ and 𝐶𝑒𝑞, 
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𝑓∞ = 𝐹(𝐶𝑒𝑞) .     (3.21) 

 

Based on the relationship between 𝑓∞ and 𝐶𝑒𝑞, it is preferable to utilize analytic functions 

such as exponential function or 𝑛th order polynomial function to express the nonlinear 

relationship between 𝑓∞ and 𝐶𝑒𝑞. Once the function of eq. (3.21) is determined using the 

calibration data for the required large concentration range of the analyte(s), the inverse of 

the function of eq. (3.21) can then be used to extract the concentration of the analyte(s) 

from the sensor response using the measured or estimated value for 𝑓∞, 

 

𝐶𝑒𝑞 = 𝐹−1(𝑓∞) .    (3.22) 

 

Note that eq. (3.22) is a generalized equation that can be used to extract the concentration 

of analyte(s) even from a highly nonlinear calibration curve. 
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Figure 3.4: Plot of equilibrium frequency shift, 𝒇∞ versus maximum equilibrium 

ambient concentration, 𝑪𝒆𝒒 for concentration of ethylbenzene between 0 ppm to 70 

ppm. Note that values for 𝒇∞ were extracted from measured sensor response data 

for different 𝑪𝒆𝒒 collected using SH-SAW sensor coated with 0.6 𝝁m PECH. Linear 

and nonlinear region are indicated in the figure. Also shown in the figure is the 

linear fit (red line) for the linear region of the plot where the slope of the line is the 

constant sensitivity, 𝒂𝑲𝒑−𝒘. 

 

For example, the calibration data of Figure 3.4, can be adequately well-fitted 

using exponential function of the form, 

 

𝑓∞ = 𝐹(𝐶𝑒𝑞) = 𝛼(1 − 𝑒−𝛽𝐶𝑒𝑞) ,   (3.23) 

 

where 𝛼 and 𝛽 are constant parameters that can be determined by fitting the calibration 

data of Figure 3.4 with eq. (3.23). The exponential fit along with the calibration data is 

shown in Figure 3.5. In this case, once the equilibrium frequency shift, 𝑓∞ was measured 
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or estimated from the sensor response, the concentration of the analyte can be determined 

using the following equation, 

 

𝐶𝑒𝑞 =
−𝑙𝑛 (1 −

𝑓∞
𝛼⁄ )

𝛽
 . 

(3.24) 

 

In summary, for the large concentration range of the analyte(s) where the 

calibration data is usually nonlinear, the nonlinear relationship between 𝑓∞ and 𝐶𝑒𝑞 can 

be expressed using an analytic function. The function can then be used to directly extract 

the concentration of the analyte(s) from the sensor response using the measured or 

estimated value of 𝑓∞. Note that this approach is highly dependent on the chosen 

mathematical function to express the nonlinearity between 𝑓∞ and 𝐶𝑒𝑞. If a suitable 

function is properly selected, the approach is capable of yielding highly accurate results 

for the extracted concentration of the analyte(s). This approach can also be adopted to 

deal with multi-analyte responses as long as the analytes in the sample are chemically 

inactive to each other (i.e. the analytes do not interact with each other). 
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Figure 3.5: Exponential fit (red curve) to calibration data (blue dots) for 

ethylbenzene with concentration between 0 ppm to 70 ppm (large concentration 

range). The calibration data were collected using SH-SAW sensor coated with 0.6 

𝝁m PECH.   
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4 ESTIMATION-THEORY-BASED SENSOR SIGNAL PROCESSING 

 

4.1 Introduction 

 

In this chapter, the sensor signal processing techniques used for the detection and 

quantification of chemical samples for four different cases are discussed. It is noted that 

these techniques could be utilized for the detection and quantification of any chemical 

analytes, provided that the characteristic response time constants and sensitivities of the 

analytes in the sample are known for the selected coating. In this dissertation, the sensor 

signal processing techniques will be demonstrated for the detection and quantification of 

BTEX compounds. The four different cases discussed are as following: 

 

Case 1: Detection and quantification of single analyte from sensor response to solution 

containing any arbitrary single analyte. 

Case 2: Detection and quantification of binary mixtures from sensor response to solution 

containing any arbitrary binary mixtures. 

Case 3: Identification and quantification of various analytes in a sample mixture 

containing n different analytes. 

Case 4: Detection and quantification of various analyte targets in the presence of 

interferents in a chemical sample. 

 

The signal processing techniques for all those cases are based on estimation theory 

because it offers various advantages, including near real-time data processing and 
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minimal computational and memory requirements for real-world implementations. 

Specifically, as indicated in Chapter 2, all signal processing techniques proposed in this 

dissertation are based on Bank of Kalman filters (BKFs) and/or exponentially weighted 

recursive least squares estimation (RLSE). Also, it is recalled here that the estimation-

theory-based signal processing techniques are developed based on the coated SH-SAW 

sensor response models and their corresponding state-space models discussed in Chapter 

3.  

The sensor signal processing techniques proposed for Case 1 and 2 are based on 

BKFs. For Case 3, sensor signal processing based on multi-stage exponentially weighted 

RLSE is proposed, which will be implemented in series (multiple stages) in order to 

obtain a more accurate identification and quantification result. Finally, for Case 4, a two-

step sensor signal processing technique based on both exponentially weighted RLSE and 

BKFs is proposed. In the two-step signal processing, an initial estimation of the unknown 

parameters is performed using exponentially weighted RLSE, which is then used as input 

for the second step using BKFs to refine the estimation results. More details on the 

implementation of the proposed techniques will be discussed in the subsequent sections. 

All the proposed techniques will be tested using experimental data obtained from 

chemical samples which contains BTEX compounds. 

 

4.2 Online Detection and Quantification of Single Analyte in Solutions Containing 

any Arbitrary Single Analyte Using Bank of Kalman Filters 

 

 

 

In this section, a novel approach based on BKFs for the online detection and 

quantification of a single analyte from an unknown single analyte sensor response is 
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discussed. The goal here is to identify and quantify the analyte which is most likely to 

have caused the measured sensor response using SH-SAW devices. The proposed 

approach will be demonstrated for detection and quantification of single analytes, in the 

present case, benzene, toluene, and chemical isomers ethylbenzene and xylenes.  

The single analyte sensor response model has already been discussed in Chapter 3 

and its state-space model can be obtained directly from eq. (3.13) with the substitution of 

𝑛 = 1, 

 

𝑥𝑘+1 = (1 − 𝑆) 𝑥𝑘 + 𝑆𝑢𝑠,𝑘 = 𝐴𝑥𝑘 + 𝐵𝑢𝑠,𝑘,   (4.1a) 

 

𝑦𝑘 = ∆𝑓𝑘 = 𝑓∞𝑥𝑘 + 𝑤𝑘 = 𝐶𝑥𝑘 + 𝑤𝑘,   (4.1b) 

 

where, 𝑆 =  
𝑇𝑠

𝜏
 is the sorption/desorption rate constant of the analyte. For the 

implementation of BKF to identify and quantify the analyte in real-time, the parameters, 

𝑆 which is related to the response time constant, 𝜏 of the analyte, and the equilibrium 

frequency shift, 𝑓∞ which is related to the sensitivity, 𝑎𝐾𝑝−𝑤 of the analyte will be treated 

as the unknown parameters that need to be identified based on the measured sensor 

response. Note that for the investigated coatings, the parameter 𝑆, like the response time 

constant of the analyte, will be unique for the analytes of interest, i.e. benzene, toluene, 

and chemical isomers ethylbenzene and xylenes (refer to Tables 3.1 and 3.2 from the 

previous chapter). Hence, 𝑆 can be used to identify the analyte that is most likely to have 

caused the sensor response. Subsequently, 𝑓∞ can be used to quantify the analyte using 

eq. (3.5) based on the sensitivity, 𝑎𝐾𝑝−𝑤 of the identified analyte. Note that 𝑎𝐾𝑝−𝑤 is 
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also unique for the analytes of interest and the selected coating (refer to Tables 3.1 and 

3.2 from the previous chapter). The implementation of BKF requires these unknown 

parameters to be suitably quantized into a finite set. Based on the knowledge of possible 

analytes that can cause the sensor response, 𝑆 can be quantized to a finite number of grid 

points, {𝑆𝑏𝑒𝑛𝑧𝑒𝑛𝑒 , 𝑆𝑡𝑜𝑙𝑢𝑒𝑛𝑒 , 𝑆𝑒𝑡ℎ𝑦𝑙𝑏𝑒𝑛𝑧𝑒𝑛𝑒 & 𝑥𝑦𝑙𝑒𝑛𝑒𝑠} and based on the possible equilibrium 

concentration range for the analyte, 𝑓∞ can be quantized to a finite number of grid points, 

{𝑓∞; 1, 𝑓∞; 2, … , 𝑓∞; 𝑁}. Therefore, the unknown parameters vector, 𝜃, which is formed 

based on all possible combinations of the discrete points of the unknown parameters 𝑆 

and 𝑓∞, will belong to a finite number of grid points {𝜃1, … , 𝜃𝑁}. For each 𝜃𝑗 , the 

corresponding system matrices 𝐴𝜃𝑗
, 𝐵𝜃𝑗

 and 𝐶𝜃𝑗
 of eq. (4.1) can be computed and using 

the BKF algorithm as outlined in Table 2.4, the analyte most likely to have caused the 

sensor response can be identified and quantified in real-time. Note that this technique can 

be used as an alternative to a sensor array for single analyte identification and 

quantification. In fact, as opposed to a sensor array, the proposed approach has the 

advantages of not requiring a complex training data set and enabling real-time detection 

and quantification of the analyte based on the sensor response from only a single sensor 

device. 

 

4.3 Online Detection and Quantification of Binary Mixtures in Solutions Containing 

any Arbitrary Binary Mixtures Using Bank of Kalman Filters 

 

 

 

In this section, a novel approach based on BKFs for the online detection and 

quantification of binary mixtures from an unknown binary mixture sensor response is 

discussed. The objective here is, based on the measured coated SH-SAW sensor response 



92 
 

 

 

to binary mixtures samples, to identify and quantify the analytes which are most likely to 

have caused the measured response. The proposed approach is demonstrated here for 

various binary mixture responses of BTEX compounds. The state-space model for binary 

mixtures can be obtained directly from eq. (3.13) with the substitution of 𝑛 = 2, 

 

[
𝑥𝑘+1

(1)

𝑥𝑘+1
(2)

] = [
1 − 𝑆1 0

0 1 − 𝑆2
] [

𝑥𝑘
(1)

𝑥𝑘
(2)

] + [
𝑆1

𝑆2
] 𝑢𝑠,𝑘 = 𝐴𝑥𝑘 + 𝐵𝑢𝑠,𝑘,  (4.2a) 

 

𝑦𝑘 = ∆𝑓𝑘 = [𝑓∞,1 𝑓∞,2] [
𝑥𝑘

(1)

𝑥𝑘
(2)

] + 𝑤𝑘 = 𝐶𝑥𝑘 + 𝑤𝑘 .   (4.2b) 

 

In using BKF to identify and quantify the binary mixture of analytes in real-time, the 

parameters 𝑆1, 𝑆2, 𝑓∞,1, and 𝑓∞,2 can be treated as the unknown parameters that need to 

be determined based on the measured binary mixture response. All these unknown 

parameters have to be quantized to a finite number of grid points. From the knowledge of 

possible binary mixtures of analytes to have caused the sensor response, [
𝑆1

𝑆2
] can be 

quantized to a finite number of grid points 

{[
𝑆𝑏𝑒𝑛𝑧𝑒𝑛𝑒

𝑆𝑡𝑜𝑙𝑢𝑒𝑛𝑒
] , [

𝑆𝑏𝑒𝑛𝑧𝑒𝑛𝑒

𝑆𝑒𝑡ℎ𝑦𝑙𝑏𝑒𝑛𝑧𝑒𝑛𝑒 & 𝑥𝑦𝑙𝑒𝑛𝑒𝑠
] , [

𝑆𝑡𝑜𝑙𝑢𝑒𝑛𝑒

𝑆𝑒𝑡ℎ𝑦𝑙𝑏𝑒𝑛𝑧𝑒𝑛𝑒 & 𝑥𝑦𝑙𝑒𝑛𝑒𝑠
]}. The unknown parameters, 

[
𝑓∞,1

𝑓∞,2
] can be quantized to a finite number of grid points based on the expected 

concentration range of the identified analytes. Therefore, the unknown parameters vector, 

𝜃, which is formed based on all possible combinations of the discrete points of all the 

unknown parameters, will belong to a finite number of grid points {𝜃1, … , 𝜃𝑁}. Since 𝜃 



93 
 

 

 

belongs to a discrete set, the state-space model of eq. (4.2) and the BKF algorithm as 

outlined in Table 2.4 can be utilized to identify and quantify the binary mixture of 

analytes that is most likely to have caused the sensor response in real-time. Note that, 

based on each 𝜃𝑗 , the corresponding system matrices 𝐴𝜃𝑗
, 𝐵𝜃𝑗

 and 𝐶𝜃𝑗
 of eq. (4.2) can be 

computed. The proposed approach is a viable alternative for binary mixture identification 

and quantification using a sensor array and offers similar advantages as mentioned in the 

previous section. It is also important to note that, direct extension of this technique for the 

detection and quantification of multi-analyte mixtures (i.e. mixtures of analytes with 

more than two analytes) is rather ineffective due to the exponential rise in the 

implementation complexity of the technique. Note that as the number of analytes required 

to be detected in the sample increases, the number of Kalman filters in the bank (needed 

for accurately identifying and quantifying the analytes) increases as well, thus, increasing 

the implementation complexity of the technique based on BKFs for multi-analyte 

detection and quantification. Alternative approaches for detection and quantification of 

multiple analytes in a mixture are discussed in the subsequent sections. 

 

4.4 Online Identification and Quantification of Various Analytes in Multi-Analyte 

Mixtures Using Multi-Stage Exponentially Weighted RLSE 

 

 

 

In this section, a sensor signal processing technique for online identification and 

quantification of various analytes in multi-analyte mixtures (including single analyte 

samples) using only the measured sensor response from a single polymer coated SH-

SAW sensor device is discussed. The objective is to develop a technique that can be used 

for the identification and quantification of 𝑛 analytes in a mixture that are most likely to 
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have caused the measured sensor response, provided the characteristic response time 

constants and sensitivities of all possible analytes in the mixture are known. As indicated 

in Chapter 3, this is achieved by characterizing all possible analytes to which the selected 

coated sensor responds. 

In order to achieve the aforementioned objective, a sensor signal processing 

technique based on multi-stage exponentially weighted RLSE that utilizes two sensing 

parameters (i.e. response time constant and sensitivity) is proposed. The initial stages of 

exponentially weighted RLSE will be used to eliminate analytes that are erroneously 

identified as present in the mixture (i.e. analytes that are not present or analytes with 

concentrations close to zero) and the final stage of exponentially weighted RLSE with the 

corresponding sensor response model representing the analytes present in the mixture 

will be used to obtain a more accurate quantification result of the analytes. In this 

technique, exponentially weighted RLSE is used to estimate the equilibrium frequency 

shifts of the various analytes in the mixture, 𝑓∞,𝑖 that collectively produced the measured 

total frequency response. Based on the estimated 𝑓∞,𝑖, the concentrations of the analytes 

assumed to be present in the mixture can be determined using eq. (3.5) and sensitivities, 

𝑎𝐾𝑝−𝑤,𝑖 of the analytes. In the proposed approach, initial estimation of 𝑓∞,𝑖 is performed 

using exponentially weighted RLSE and the 𝑛-analyte sensor response model. If 

erroneous analyte detections are identified from the initial estimation step, the estimation 

process is repeated using the appropriate sensor response model (i.e. sensor response 

model for analytes less than 𝑛) and exponentially weighted RLSE to obtain a more 

accurate analyte quantification result. This is because the estimated concentrations 

associated with erroneously detected analytes can greatly influence the quantification 
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result obtained for the analytes that are present in the mixture. Therefore, by repeating the 

estimation using exponentially weighted RLSE with the corresponding sensor response 

model for only the analytes identified to be in the mixture, a more accurate analytes 

quantification result can be obtained. Note that erroneous analyte detections can be 

identified by comparing the estimated concentrations of the analytes to the detection limit 

of the chosen sensor polymer-coated sensor platform for that analyte. If the estimated 

concentration of a particular analyte is negative or lower than a threshold value that was 

selected to be close to the detection limit for that analyte, the concentration of the analyte 

can be assumed to be zero.  

A block diagram depicting the proposed sensor signal processing technique is 

illustrated in Figure 4.1. In summary, for the proposed approach, the initial (𝑀 − 1) 

exponentially weighted RLSE stages along with appropriate sensor response models is 

used to identify erroneously detected analytes in the mixture and finally, using the 𝑀𝑡ℎ 

exponentially weighted RLSE and the appropriate sensor response model, the 

concentrations of the analytes that are present in the mixture are determined based on the 

estimated equilibrium frequency shifts of the analytes. Note that for as long as erroneous 

analyte detections are identified, the estimation process will be repeated using 

exponentially weighted RLSE and the appropriate sensor response model to obtain a 

more accurate analyte quantification result. 
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Figure 4.1: Multi-stage exponentially weighted RLSE for online identification and 

quantification of various analytes in multiple analyte mixtures. 

 

 

 

The implementation of exponentially weighted RLSE to estimate the unknown 

parameters 𝑓∞,𝑖 is demonstrated using the state-space form of the general multi-analyte 

sensor response model of eq. (3.13). For the implementation of exponentially weighted 

RLSE to estimate the unknown parameters 𝑓∞,𝑖, eq. (3.13b) can be rearranged into the 

following form, 

 

𝑦𝑘 = ∆𝑓𝑘 = [𝑥𝑘
(1)

⋯ 𝑥𝑘
(𝑛)] [

𝑓∞,1

⋮
𝑓∞,𝑛

] + 𝑤𝑘 = 𝐻𝑘𝜃 + 𝑤𝑘,  (4.3) 

 

where 𝐻𝑘 = [𝑥𝑘
(1)

⋯ 𝑥𝑘
(𝑛)]

𝑇
 is a vector of known signals (regressor) which can be 

determined at every time step, 𝑘 using eq. (3.13a), and 𝜃 = [𝑓∞,1 ⋯ 𝑓∞,𝑛]𝑇 is a vector 

of unknown parameters that need to be estimated. Note that the form of eq. (4.3) is 

similar to that of eq. (2.15) in Chapter 2. Therefore, the exponentially weighted RLSE 

Measurement Data 

RLSE 1, RLSE 2, …, RLSE M-1 

(Identify Erroneously Detected Analytes) 

RLSE M 

(Perform Estimation Using the Appropriate Model) 

Estimated Concentrations 
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algorithm as outlined in Table 2.3 can be used to estimate the unknown parameters, 𝑓∞,𝑖 

recursively.  

In this dissertation, the effectiveness of the proposed approach is tested using the 

measured responses of polymer coated SH-SAW sensors to various multi-analyte 

mixtures of benzene, toluene, ethylbenzene and xylenes, and 1,2,4-trimethylbenzene 

(TMB). Basically, the approach will be demonstrated for identification and quantification 

of single, binary, ternary or quaternary mixtures of BTEX compounds and TMB that are 

most likely to have caused a given measured sensor response. The threshold values close 

to the detection limits of BTEX compounds and TMB that were used for the 

implementation of this approach are listed in Table 4.1. The proposed approach can be 

used as a viable alternative to chemical sensor arrays for multi-analyte detection and 

quantification, offering the advantages of not requiring a complex training data set and 

allowing near real-time detection and quantification of the analytes. In direct comparison 

to the sensor signal processing techniques based on BKFs discussed in the preceding 

sections, the approach based on multi-stage exponentially weighted RLSE discussed in 

this section is far superior. This is because the technique discussed in this section is 

capable of detecting and quantifying 𝑛 analytes in a mixture, provided the characteristic 

response time constants and sensitivities of the analytes are known. However, as 

mentioned earlier, this cannot be achieved using the technique based on BKFs due to the 

exponential rise in the implementation complexity of the technique for the multi-analyte 

detection and quantification. 
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Table 4.1: Threshold values (approximate detection limits) of BTEX compounds 

and 1,2,4-trimethylbenzene (TMB) in water for SH-SAW sensors coated with either 

0.6 𝝁m PECH or 0.8 𝝁m PIB. 

 

Analyte Detection Limit (ppb) 

Benzene 100 

Toluene 50 

Ethylbenzene & Xylenes 30 

1,2,4-trimethylbenzene 10 

 

 

 

4.5 Near Real-Time Detection and Quantification of Multiple Target Analytes in a 

Chemical Sample Also Containing Various Interferents 

 

 

 

In this section, a novel near real-time signal processing technique for the detection 

and quantification of target analytes (i.e. BTEX compounds in this dissertation) in the 

presence of interferents is discussed. The objective of the proposed signal processing 

technique is to facilitate the detection and accurate quantification of the target analytes in 

the presence of noise and interferents. In Chapter 3, two examples of state-space models 

(i.e. four-analyte state-space model, eq. (3.15) and five-analyte state-space model, eq. 

(3.17)) for the detection and quantification of BTEX compounds in water in the presence 

of interferents were presented. Also, as indicated in Chapter 3, in those state-space 

models, the unknown parameters that need to be estimated for near real-time detection 

and quantification of target analytes are the equilibrium frequency shifts, 𝑓∞,𝑖 of the 

analytes. This is because, by estimating 𝑓∞,𝑖, the corresponding concentration of analytes 

can be determined using eq. (3.5) based on the sensitivity, 𝑎𝐾𝑝−𝑤,𝑖 of the analytes. This 

means that, by estimating 𝑓∞,𝑖 in near real-time, the target analytes can also be identified 

and quantified in near real-time. In order to estimate the unknown parameters in near 

real-time, suitable estimation-theory-based techniques are selected for sensor signal 
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processing based on the formulated state-space models. Specifically, based on our 

investigations, an estimation-theory-based technique comprised of exponentially 

weighted RLSE and bank of KFs (two-step processing) was selected as the most suitable 

signal processing approach for accurate multi-analyte detection and quantification [87]. 

In the two-step processing, an initial estimation of the unknown parameters is 

performed using exponentially weighted RLSE, which is then used as input for the second 

step using BKFs to refine the estimation results. For the implementation of the two-step 

processing, the unknown parameters vector (i.e. 𝜃4 = [𝑓∞,1 𝑓∞,2 𝑓∞,3 𝑓∞,4]𝑇 for the 

four-analyte model and 𝜃5 = [𝑓∞,1 𝑓∞,2 𝑓∞,3 𝑓∞,4 𝑓∞,5]𝑇 for the five-analyte model) 

is first formed. Then, for the application of the exponentially weighted RLSE algorithm to 

estimate the unknown parameters vector, as outlined in Table 2.3, eq. (3.15b) for the four-

analyte model and eq. (3.17b) for the five-analyte model are rearranged into the form of 

eq. (2.15). For the four-analyte model, the rearrangement will result in, 

 

𝑦𝑘 = ∆𝑓𝑘 = [𝑥𝑘
(1)

𝑥𝑘
(2)

𝑥𝑘
(3)

𝑥𝑘
(4)]

[
 
 
 
𝑓∞,1

𝑓∞,2

𝑓∞,3

𝑓∞,4]
 
 
 

+ 𝑤𝑘 = 𝐻𝑘
4𝜃4 + 𝑤𝑘,  (4.4) 

 

where 𝐻𝑘
4 = [𝑥𝑘

(1)
𝑥𝑘

(2)
𝑥𝑘

(3)
𝑥𝑘

(4)]
𝑇
 is a vector of known signals (regressor) which 

can be determined at every time step, 𝑘 using eq. (3.15a). For the five-analyte model, the 

rearrangement will result in the same form as eq. (4.4) but with 𝐻𝑘
4 and 𝜃4 replaced with 

𝐻𝑘
5 and 𝜃5 respectively, where 𝐻𝑘

5 = [𝑥𝑘
(1)

𝑥𝑘
(2)

𝑥𝑘
(3)

𝑥𝑘
(4)

𝑥𝑘
(5)]

𝑇
 is a vector of 

known signals (regressor) which can be determined at every time step, 𝑘 using eq. 
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(3.17a). Note that the form of eq. (4.4) is similar to that of eq. (2.15) in Chapter 2. Thus, 

the exponentially weighted RLSE algorithm as outlined in Table 2.3 can be used to 

estimate the unknown parameters vector, 𝜃 recursively. 

By using the exponentially weighted RLSE algorithm, an initial estimate for the 

unknown parameters vector, 𝜃𝑛 (where 𝑛 = 4 for the four-analyte model and 𝑛 = 5 for 

the five-analyte model) can be obtained. Next, based on the results from exponentially 

weighted RLSE, the unknown parameters vector, 𝜃𝑛 can be suitably quantized into a 

finite number of grid points {𝜃1
𝑛, … , 𝜃𝑁

𝑛} with assumed a priori probability for each 𝜃𝑗
𝑛 

(where subscript 𝑗 = 1,… ,𝑁 (total number of filters)). Note that 𝜃𝑛 are quantized into 

finite number of grid points based on the estimated equilibrium frequency shifts, 𝑓∞,𝑖 

obtained from exponentially weighted RLSE. The values for 𝑓∞,𝑖 are increased and 

decreased by 20% (or by a user defined value) to define limits for a range of possible 

equilibrium frequency shifts for the analytes. Within these limits, by uniformly 

quantizing the equilibrium frequency shifts, a finite number of grid points {𝜃1
𝑛, … , 𝜃𝑁

𝑛} are 

obtained. Since 𝜃𝑛 belongs to a discrete set, the state-space model of eq. (3.15) for the 

four-analyte model and eq. (3.17) for the five-analyte model, and the BKF algorithm as 

outlined in Table 2.4 can be used to obtain the best estimate for the unknown parameters 

vector, 𝜃𝑛. Note that for each 𝜃𝑗
𝑛, the corresponding system matrices 𝐴𝜃𝑗

𝑛 , 𝐵𝜃𝑗
𝑛 and 𝐶𝜃𝑗

𝑛 

can be computed. By following all the steps in the BKF algorithm as outlined in Table 

2.4, the best (i.e., most likely) case for the unknown parameters vector, 𝜃𝑗
𝑛 can be 

determined by finding the case that produces the highest a posteriori probability, 

𝑝(𝜃𝑗
𝑛|𝑌𝑘). 
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In an effort to obtain more reliable and accurate estimation results using the two-

step processing for the detection and quantification of the target analytes in the presence 

of interferents, both sorption and desorption data including the error range in the 

measured mean response times as listed in Tables 3.1 and 3.2 are utilized. The sensor 

signal processing procedure used to obtain the final estimated concentrations of BTEX 

compounds in the presence of interferents using the data collected from only a single 

polymer-coated SH-SAW device is summarized in Figure 4.2. By incorporating 

desorption transients (which are often more sensitive to energies of desorption of 

analytical targets) in the signal processing procedure, more information about the 

analyte/polymer interactions can be obtained. The proper use of this additional 

information can potentially result in a more accurate estimated concentration for BTEX 

compounds compared to only using sorption transients alone. Moreover, utilizing both 

sorption and desorption data in the signal processing can reduce the error in the 

estimation due to measurement noise, making this procedure highly tolerant of such 

noise. In summary, the utilization of both sorption and desorption data can improve the 

accuracy of the extracted concentrations and the reliability of chemical speciation. 

As can be seen from Figure 4.2, the sorption data are used to estimate benzene 

and toluene (BT) concentrations whereas the desorption data are used to obtain an 

estimate for the combined concentrations of ethylbenzene and xylenes (EX). This is 

because based on the initial investigations using the proposed signal processing 

technique, it was observed consistently that using the sorption data always results in more 

accurate estimates of BT concentrations whereas using the desorption data always results 

in more accurate estimates for the combined concentrations of EX. The observed scenario 
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might be due to the analyte’s general interaction with (and diffusion through) the polymer 

coatings. During analyte sorption, compounds with shorter response times (BT) are 

absorbed into a relatively clean coating, similar to the case of single analyte detection that 

was used to determine individual response time constants and sensitivities. The remaining 

compounds (EX, interferents) are then absorbed into a coating that already contains BT, 

thus introducing a slight error in sorption time constant. The reverse will be true for 

analyte desorption. Therefore, in the proposed signal processing procedure, the sorption 

data are used to estimate BT concentrations whereas the desorption data are used to 

obtain an estimate for the combined concentrations of EX. For both sorption and 

desorption data, the algorithm obtains the estimates using the two-step processing as 

depicted in Figure 4.2. Note that this technique is independent of the initial values of the 

unknown parameters, 𝑓∞,𝑖. Therefore, any concentration range of BTEX compounds can 

be analyzed and the results can be obtained in near real-time. Note that this approach can, 

in general, be used for the detection and quantification of multi-analyte mixtures in the 

presence of interferents if the sensor parameters such as characteristic response time 

constants and sensitivities associated with the target analytes are known. 
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Figure 4.2: Estimation-theory-based sensor signal processing procedure that utilizes 

both sorption and desorption data for detection and quantification of BTEX 

analytes in the presence of interferents. “BT” and “EX” refers to the respective 

BTEX analytes. 
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5 COATED SH-SAW SENSOR DATA ACQUISITION 

 

5.1 Introduction 

 

The signal processing techniques discussed in Chapter 4 are tested and validated 

using experimental sensor response data collected using a polymer-coated shear 

horizontal surface acoustic wave (SH-SAW) sensor platform. In this chapter, the 

specifics of this SH-SAW device are discussed. The physics of the SH-SAW devices are 

briefly discussed. The SH-SAW sensor platform has been chosen for the sensing 

experiments because it has been shown in [47, 50, 64, 65] that it has the potential of 

being used as an in-situ chemical sensor for direct aqueous phase detection of BTEX 

compounds. Moreover, the information on the types of the polymer films used in the 

present work to detect the target analytes is also given. Note that these polymer films 

were coated for the sensor platform to enhance the sensitivity and to provide partial 

selectivity for the target analytes. Furthermore, the details of the measurement setup and 

data acquisition are also discussed in this chapter. It is noted that all data acquisitions for 

the selected coated sensors were done by various research team members of the 

Microsensor Research Laboratory, Marquette University.  

 

5.2 Shear Horizontal Surface Acoustic Wave (SH-SAW) Devices 

 

The shear horizontal surface acoustic wave (SH-SAW) devices are a specific type 

of sensor platform that belong to the family of acoustic wave sensors that can be used for 
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direct liquid-phase sensing applications, where the device is in direct contact with the 

chemical solutions of interest. SH-SAW devices are fabricated on rotated Y-cut LiTaO3, 

a piezoelectric substrate cut and orientation, which supports shear horizontal surface 

acoustic wave (SH-SAW) [8, 88], thus making the device suitable for liquid-phase 

sensing applications. 

There exist only selected few acoustic wave devices that can operate efficiently in 

aqueous environments, and they include the thickness shear mode (TSM), shear 

horizontal acoustic plate mode (SH-APM), flexural plate wave (FPW) and SH-SAW 

devices. This is because, the generation of compressional waves in the liquid (that are 

associated with ‘ordinary’ SAW or Rayleigh SAW) is absent with those devices. 

Therefore, these devices cannot radiate compressional waves in the liquid, hence 

resulting in a small amount of acoustic energy being dissipated into the liquid. Among 

the different types of acoustics wave sensors for liquid-phase sensing, SH-SAW devices 

are often preferred because SH-SAW devices have high operational frequency and 

surface waves are more sensitive to surface perturbations. Other interesting features of 

SH-SAW devices include high quality factor, compactness, robustness and low 

fabrication cost. All these attractive features of SH-SAW devices will enable the 

development of a small, portable, cost-effective sensor system for field applications. 

SH-SAW and surface acoustic wave (SAW) sensing platforms are structurally 

similar. However, despite their structural similarity, SH-SAW devices often propagate 

slightly deeper (1 ~ 5 wavelengths) within the substrate [83, 89]. As a result, SH-SAW’s 

sensitivity to surface perturbations are reduced. In order to increase SH-SAW devices 

sensitivity to surface perturbations, a thin guiding layer is often deposited on the device 
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surface. The purpose of the thin guiding layer is to trap the energy near the surface of the 

device so that the device sensitivity to surface perturbations can be increased significantly 

and enable the device to be operated efficiently in liquid. The amount of acoustic energy 

trapped in the guiding layer depends on the thickness of the layer. Empirical results show 

that acoustic energy trapped increases with the thickness up to an optimum value. 

Therefore, coated SH-SAW sensors are typically modeled as a multilayered structure 

[90]. The SH-SAW sensor structure used in this dissertation is commonly referred to as 

the three-layer structure as shown in Figure 5.1. The three-layer structure consists of the 

piezoelectric crystal substrate (LiTaO3) with input and output interdigital transducers 

(IDTs) arranged in a delay line configuration, a viscoelastic polymer layer of finite 

thickness, ℎ and a liquid layer for transport of chemical samples. The purpose and 

characteristics of each layer is as following: 

 

Piezoelectric 

substrate: 

 Convert the electrical signal into a mechanical signal 

(strain) (i.e. the acoustic wave) and vice versa. 

 Serve as a support for the entire device. 

 

Polymer layer:  Have lower shear wave velocity than the substrate 

(precondition for the confinement of the SH-SAW to the 

surface). 

 Can also serves as both a wave-guiding layer and a 

chemically sensitive layer [2, 91, 92]. 
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Liquid layer:  Assumed to be a Newtonian fluid (because the solutions 

being tested are dilute aqueous solutions). 

 Used for transport of chemical species. 

 

Note that since the polymer layer is of thickness, ℎ, the polymer layer is considered as a 

finite layer while the substrate and the liquid layer are considered as semi-infinite layers 

[91].  

 

 

Figure 5.1: Three-layer structure and coordinate system. The guided SH-SAW will 

propagate in the 𝒙𝟏direction, 𝒙𝟐 is in the direction of the acoustic wave particle 

displacement, and 𝒙𝟑 is normal to the sensing surface [92]. 

 

The basic delay line configuration of a guided SH-SAW sensor device used in the 

experiments is shown in Figure 5.2. In Figure 5.2, only one delay line is shown for 

simplicity but for actual data acquisition a dual delay line configuration is used. In a dual 

delay line configuration, one line serves as a sensing line and the other as a reference line. 

This design enables for the common environmental interactions (such as temperature and 
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pressure) producing responses from both lines to be eliminated by subtraction (i.e. 

differential measurement) [26, 92]. In order to eliminate acoustoelectric interactions with 

the load, a thin metal layer is used between the two IDTs (input and output IDTs) to 

create an electric short. As a result, only sensing caused by mechanical loading (i.e. 

changes in the mechanical properties of the polymer coating) is monitored.       

 

 

 
 

Figure 5.2: The delay line configuration of a guided SH-SAW sensor device. The 

device is a two-port device and for simplicity, only one delay line is shown [83]. 

 

 

5.3 Measurement Setup and Data Acquisition 

 

As indicated earlier, the sensor response data analyzed in this work were collected 

using the 36° YX-LiTaO3 guided SH-SAW device as the sensing platform [47, 64, 65]. 

The SH-SAW devices were fabricated with 10/80 nm-thick Ti/Au interdigital transducers 

(IDTs) using a multielectrode design that produces an operating frequency for the third 

harmonic SH-SAW of 103 MHz for polymer-coated devices [47, 64, 65]. As dual-delay-

line configuration was used where both delay lines include a metalized path between the 

IDTs. The sensing and reference line were coated with different types of polymer 
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coatings. The sensing line was coated with sorbent polymer coatings that respond to the 

analytes of interest. They include poly(ethyl acrylate) (PEA), poly(epichlorohydrin) 

(PECH), and poly(isobutylene) (PIB), all purchased from Sigma-Aldrich, St. Louis, MO. 

These polymers were deposited on the sensing line from solution in toluene (PEA) or 

chloroform (PECH, PIB) by spin coating and baking for 15 min at 55°C. This will result 

in thicknesses of 1.0 μm for PEA, 0.6 μm for PECH and 0.8 μm for PIB. Note that the 

baking step is crucial to ensure repeatability of the sensor responses. On the other hand, 

the reference line was coated with poly(methyl methacrylate) (PMMA) (purchased from 

Scientific Polymer Products, Ontario, NY) and baked for 120 min at 180 °C, resulting in 

a glassy, nonsorbent coating, which will be chemically insensitive (i.e. does not absorb 

appreciable amounts of analyte) at the concentration ranges of interest. The chemical 

structure and basic properties of the four polymers utilized for data acquisition is shown 

in Figure 5.3 and Table 5.1, respectively. Note that the basic properties of these polymers 

as listed in Table 5.1, served as a guide for the selection of these coatings for the 

detection of BTEX compounds. In particular, the glass transition temperature, 𝑇𝑔 of the 

chosen polymer coatings influence the rate of sensor responses to analytes of interest. For 

most applications, it is desirable that the chosen polymer coatings have a 𝑇𝑔 that is below 

room temperature and/or the operating temperature of the sensor in order to promote 

rapid sorption/desorption process [2, 93-95]. 
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Figure 5.3: Chemical structure of PMMA, PIB, PECH, and PEA [83]. 

 

 

 

Table 5.1: Basic properties of four polymers (PIB, PECH, PEA, PMMA) [83, 96]. 

 PMMA PIB PECH PEA 

Density (g/cm3) 

at 25°C 

1.19 0.92 1.36 1.12 

Glass 

transition 

temperature, 

𝑻𝒈 (°C) 

105 -73 -15 ~ -22 -21 

Repeat unit C5H8O2 C4H8 C3H5ClO C5H8O2 

Uses thermoplastic elastomer elastomer elastomer 

Monomer methyl 

methacrylate 

isobutylene epichlorohydrin ethyl acrylate 

 

 

The target analytes, i.e. BTEX analytes used in the experiments were purchased 

from Sigma-Aldrich with purities of at least 98.5%. The BTEX analytes were diluted to 

various concentrations using either deionized (DI) water or groundwater. The 

groundwater and light non-aqueous phase liquid (LNAPL) samples used in the 

experiments were collected from actual groundwater monitoring wells in California. 

Commonly found interferents in groundwater were also tested in the experiments, 

including n-heptane, 1,2,4-trimethylbenzene, naphthalene, MTBE (methyl tert-butyl 
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ether), and ethanol. The interferents were all purchased from Sigma-Aldrich and had 

purities of ≥ 98%, except ethanol which was denatured and had ≥ 90% purity. The 

concentrations of these samples are reported in parts per million (ppm) or parts per billion 

(ppb) by weight. 

The measurement setup used to collect the sensor response data consists of a 

network analyzer (Agilent E5061B, Santa Clara, CA), a switch/control system (Agilent 

34980A) to switch between the two SH-SAW delay lines on each device, a PC based 

HPVEE (Hewlett-Packard Visual Engineering Environment) program for data acquisition 

(insertion/device loss, frequency, phase and temperature), a measurement chamber and a 

liquid delivery system. The measurement chamber contains a flow cell with the coated 

guided SH-SAW device, chemical samples, reference sample, and 3-way valve. The 

liquid delivery system is comprised of a peristaltic pump (IDEX Ismatec Reglo Digital 

MS, Oak Harbor, WA) and a waste container. The schematic of the measurement setup 

used for the data collection in the Microsensor Research Laboratory is shown in Figure 

5.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Schematic of the measurement setup used for the data collection in the 

Microsensor Research Laboratory [97]. 

 

Blue arrow: sample flow 

Black arrow: sensor signal flow 
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In order to provide an independent measurement of BTEX concentrations for the 

aqueous LNAPL solutions, a portable GC-PID (gas chromatograph-photoionization 

detector) system (Defiant Technologies FROG-4000, Albuquerque, NM) was used. Note 

that the BTEX concentrations determined using GC-PID are subject to an average error 

of ±7% [98]. In some cases, analyte concentrations were further confirmed using GC-

MS (gas chromatography−mass spectroscopy). Note that the LNAPL samples tested were 

prepared by placing the LNAPL above DI water in a separatory funnel for 3 days to 

create a saturated aqueous solution, which was further diluted with either DI water or 

groundwater for the respective experiments to yield concentrations of 1 ppm or less for 

each BTEX compound. PTFE tubing, PTFE valves, and PTFE sealed glass vials were 

used throughout the experiments to minimize the loss of volatile analytes, and for the 

same reason the headspace in the sample vials was kept negligible. As indicated above, 

actual sample concentrations as seen by the sensor were determined by the subsequent 

GC-PID measurements. The experiments were performed by placing the SH-SAW sensor 

inside a flow cell that was designed in the Microsensor Research Laboratory, Marquette 

University [82, 83]. A peristaltic pump was used to pump the solutions through the flow 

cell and to minimize the hydrodynamic forces from the flowing fluid, the solutions were 

pumped at a constant sample flow rate of 7 μL/s.  

It should be noted that prior to the introduction of the samples containing the 

analyte(s) into the flow cell, a reference solution (DI water or groundwater) was drawn 

through the cell to obtain a stable baseline output signal. For groundwater samples, 

filtration was first performed to remove sediments and other physical interferents in the 

sample, before pumping these samples into the flow cell. After the sensor signal reached 
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the equilibrium response to the analytes, the reference solution was again pumped 

through the system to flush the flow cell. This latter step causes the analyte(s) to desorb 

from the polymer coating of the sensor. The process was repeated for different analyte 

samples and concentrations. Note that all the measurements were conducted at an 

approximately constant temperature of 22 ± 0.1 °C. The experiments were conducted 

using samples containing multi-analyte mixtures of BTEX compounds, trimethylbenzene 

(TMB), and (diluted) LNAPL samples. The tested LNAPL samples contain BTEX 

compounds as well as chemical and physical interferents. 

All the experimental sensor response data collected using the sensor system 

described above exhibit some degree of baseline drift during the response and sometimes 

outlier points are also recorded probably due to the presence of bubbles or minute 

changes in the local concentration in the cell. Therefore, pre-processing had to be done 

first to correct the data for baseline drift and to eliminate any outlier points in the data 

before further signal processing. There are various baseline drift and outlier correction 

techniques that can be utilized for pre-processing. In this work, linear interpolation was 

used for baseline drift compensation. Online techniques for baseline and outlier 

corrections are discussed in [45, 46]. These online pre-processing techniques can be used 

in a field deployable smart sensor system. 
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6 ESTIMATION RESULTS AND DISCUSSION 

 

6.1 Introduction 

 

In this chapter, the estimation results obtained using the proposed sensor signal 

processing techniques for the various cases discussed in Chapter 4 are presented. The 

estimation results are obtained by testing and validating the sensor signal processing 

techniques using experimental sensor response data collected using polymer coated SH-

SAW sensors with actual groundwater samples. The process of data acquisition has 

already been discussed in Chapter 5. It is also pertinent to note that the signal processing 

techniques discussed in Chapter 4 are applicable for the detection and quantification of 

any analytes, provided that the characteristic response time constants and sensitivities of 

the analytes are known. As mentioned earlier, in this dissertation, the proposed signal 

processing techniques will be demonstrated for the detection and quantification of multi-

analyte mixtures of BTEX compounds with or without the presence of interferents 

(including single analyte responses of BTEX compounds). 

The signal processing techniques will be used to estimate the unknown 

parameters needed for the detection and quantification of the analytes. The analyte(s) can 

be quantified using eq. (3.5) based on the estimated equilibrium frequency shift, 𝑓∞ and 

the sensitivity, 𝑎𝐾𝑝−𝑤 of the corresponding analyte (listed in Table 3.1 and 3.2 for SH-

SAW sensors coated with PECH and PIB, respectively). In order to evaluate the 

performance of the proposed techniques, the estimated analyte concentration(s) will be 

compared to the results obtained independently using gas chromatograph-photoionization 
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detector (GC-PID) and gas chromatograph-mass spectrometry (GC-MS). It is noted that 

analyte concentrations determined using GC-PID are subject to an average error of ±7% 

[93]. 

All proposed sensor signal processing techniques are tested extensively using 

multiple measured SH-SAW sensor responses (time-dependent frequency shift transients) 

to multi-analyte mixtures of BTEX compounds with or without the presence of the 

interferents. In order to highlight the effectiveness of the proposed techniques, only a few 

selected representative results will be shown and discussed here. More results are 

presented in the Appendix section. However, whenever possible, the results obtained 

from these tests are summarized either graphically or by using a table.    

 

6.2 Results of Detection and Quantification of Single Analytes Using Bank of 

Kalman Filters 

 

 

 

In this section, the results of detection and quantification of unknown single 

BTEX compounds using a Bank of Kalman filters (BKFs) are presented. The technique 

used to perform the detection and quantification of single analytes has already been 

discussed in detail in Chapter 4. The objective here is to accurately identify and quantify 

the analyte which is most likely to have caused the measured polymer coated SH-SAW 

sensor response. For the implementation of the proposed approach, the unknown 

parameters, sorption/desorption rate constant of the analyte, 𝑆 and equilibrium frequency 

shift, 𝑓∞ were quantized to a finite number of grid points. In this work, the parameter 𝑆 

was quantized as {𝑆𝑏𝑒𝑛𝑧𝑒𝑛𝑒, 𝑆𝑡𝑜𝑙𝑢𝑒𝑛𝑒 , 𝑆𝑒𝑡ℎ𝑦𝑙𝑏𝑒𝑛𝑧𝑒𝑛𝑒 & 𝑥𝑦𝑙𝑒𝑛𝑒𝑠} and the parameter 𝑓∞ was 

quantized to a finite number of grid points, {𝑓∞; 1, 𝑓∞; 2, … , 𝑓∞; 𝑁} by assuming that the 
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concentration of the analyte will be below 5 ppm. Thus, the unknown parameters vector, 

𝜃 which is formed based on all possible combinations of the discrete points of the 

unknown parameters 𝑆 and 𝑓∞, will belong to a finite number of grid points. By utilizing 

the BKF algorithm as outlined in Table 2.4, the most probable case for the unknown 

parameters vector, 𝜃 is determined based on the highest a posteriori probability, 

𝑝(𝜃𝑗|𝑌𝑘). Based on the selected probable case for 𝜃, the values for unknown parameters, 

sorption/desorption rate constant, 𝑆 and equilibrium frequency shift, 𝑓∞ are determined. 

Note that based on the selected 𝑆, the analyte most likely to have caused the response is 

identified and based on the selected 𝑓∞, the identified analyte concentration is determined 

using eq. (3.5). The results are compared to the actual analyte concentration measured 

independently using GC-PID (and GC-MS). 

The proposed approach was tested using several time-dependent frequency shift 

transients measured with polymer-coated SH-SAW sensors. The single analyte 

identification and quantification results obtained from these tests are summarized in 

Table 6.4 at the end of this section. Three representative results are presented first in 

order to highlight the attractive features of the proposed technique. First, the results 

obtained using the response of a SH-SAW sensor coated with 0.6µm PECH to 670 ppb 

benzene are discussed. Figure 6.1 and Table 6.1 show the results obtained using the 

aforementioned data and the proposed signal processing technique. Figure 6.1 shows the 

measurement data (in blue) and the estimated sensor response curve (in red) along with 

the identification and quantification result obtained using all the measurement data 

points. As can be seen from Figure 6.1, the estimated sensor response curve is a good fit 

to the measured data points, indicating correct identification and accurate quantification 
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of the analyte. Given the data of Figure 6.1, the proposed technique has correctly 

identified the analyte as benzene and estimated its concentration as 660 ppb which is very 

close (±1.5 % difference) to the benzene concentration measured using GC-PID. Table 

6.1 shows the identification and quantification results obtained using just the 

measurement data collected for the first 1, 2, 3 and 5 minutes after the analyte has been 

introduced to the sensor. Based on the results shown in Table 6.1, it is evident that in this 

case the proposed technique is able to accurately identify the analyte most likely to have 

caused the measured response using just the data collected for the first 1 minute of 

analyte introduction to the sensor. In addition, a good estimated analyte concentration 

with less than ±10 % difference to the analyte concentration measured using GC-PID can 

be obtained using just the measurement data collected for the first 2 minutes. Therefore, 

the results obtained imply that an extremely rapid analyte identification and 

quantification is possible using the proposed technique which utilizes BKFs. This result 

certainly highlights the advantage of the proposed technique compared to using the 

conventional technique based on sensor arrays for analyte identification and 

quantification. 
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Figure 6.1: Measured response of a SH-SAW sensor coated with 0.6µm PECH to a 

single analyte sample of 670 ppb benzene (B). Also shown (red line) is the estimated 

sensor response obtained using the most probable unknown parameters determined 

using bank of Kalman filters. The actual and estimated analyte concentration is 

shown in the inset. 

 

Table 6.1: Identification and quantification results obtained using the measured 

response data (of a SH-SAW sensor coated with 0.6µm PECH to 670 ppb benzene) 

collected for the first 1, 2, 3 and 5 minutes after the analyte has been introduced to 

the sensor. Also shown in the table are the percentage differences between the 

estimated concentration and the concentration of the analyte determined using GC-

PID. 

Identification and 

Quantification Result 

Identification 

Results  

Estimated Concentration in ppb  

(% difference to actual analyte concentration) 

After 1 minute Benzene 570 (15 %) 

After 2 minutes Benzene 630 (6 %) 

After 3 minutes Benzene 650 (3 %) 

After 5 minutes Benzene 660 (1.5 %) 
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Figure 6.2 and Table 6.2 show the results of another test of the proposed 

technique, in this case using the response of a SH-SAW sensor coated with 0.8µm PIB to 

640 ppb toluene. As can be seen from Figure 6.2, the estimated sensor response curve (in 

red) shows good agreement with the measured data points. This means that the selected 

best case for the unknown parameters vector, 𝜃 should contain parameter values that are 

close to the actual values. Also shown in Figure 6.2, is the identification and 

quantification result obtained using the proposed approach. Again, the proposed approach 

accurately identified and quantified the detected analyte as toluene with a concentration 

of 640 ppb (0 % difference to the toluene concentration measured using GC-PID). Table 

6.2 shows the results obtained using measured data collected for the first 4, 5, 6 and 9 

minutes after the analyte has been introduced to the sensor. Based on the results, the data 

collected for the first 5 minutes are required to accurately identify and quantify the 

analyte (with less than ±10 % difference to the toluene concentration measured using 

GC-PID). This is slightly longer than the time required for the identification and 

quantification of benzene in the previous case which is about 2 minutes (see Table 6.1). 

Several factors might contribute to the overall time to detection and quantification. These 

include the noise of the measured data and the total response length of the measured 

analyte, i.e. the time required for the analyte to cause equilibrium frequency shift 

response for the selected coating. Data with high noise level might increase the time 

required for accurately identifying and quantifying the analyte using the proposed 

approach. In cases with extremely poor signal-to-noise ratio (SNR), misidentification is 

also possible. The total time required for the analyte sensor response to reach equilibrium 

frequency shift may also affect the time required for accurate detection and 
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quantification. Note that for times much shorter than the response time, the onset of an 

exponential response is approximately linear, which precludes identification of the 

analyte at this point. Therefore, analytes with longer response time will result in slightly 

more time for identification and quantification using the proposed technique compared to 

analytes with shorter response time. Toluene (tested in the present case) has a longer 

response time compared to benzene (tested in the previous case). Therefore, toluene is 

expected to take slightly longer for accurate identification and quantification than 

benzene. Moreover, the measured data of Figure 6.2 (for the present case) has slightly 

higher noise compared to the measured data of Figure 6.1 (the previous case). The 

aforementioned factors might have influenced the time required for accurate analyte 

identification and quantification in the present case. Nonetheless, accurately identifying 

and quantifying toluene in just 5 minutes with less than ±10 % error using the proposed 

technique is still extremely fast compared to using the conventional technique of a sensor 

array. 
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Figure 6.2: Measured response of a SH-SAW sensor coated with 0.8µm PIB to a 

single analyte sample of 640 ppb toluene (T). Also shown (red line) is the estimated 

sensor response obtained using the most probable unknown parameters determined 

using bank of Kalman filters. The actual and estimated analyte concentration is 

shown in the inset. 

 

Table 6.2: Identification and quantification results obtained using the measured 

response data (of a SH-SAW sensor coated with 0.8µm PIB to 640 ppb toluene) 

collected for the first 4, 5, 6 and 9 minutes after the analyte has been introduced to 

the sensor. Also shown in the table are the percentage differences between the 

estimated concentration and the concentration of the analyte determined using GC-

PID. 

Identification and 

Quantification Result 

Identification 

Results  

Estimated Concentration in ppb  

(% difference to actual analyte concentration) 

After 4 minutes Ethylbenzene 360 (N/A: Error in Analyte Identification) 

After 5 minutes Toluene 650 (2 %) 

After 6 minutes Toluene 660 (3 %) 

After 9 minutes Toluene 640 (0 %) 
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Finally, for the third example, the proposed approach was tested using the 

response data of a SH-SAW sensor coated with 0.8µm PIB to a 370 ppb ethylbenzene 

sample. Figure 6.3 and Table 6.3 show the results. By using the proposed approach and 

all the measurement data points, it has been identified that the measured response is most 

probably caused by ethylbenzene at the concentration of 370 ppb (0 % difference to the 

ethylbenzene concentration measured using GC-PID). Once again, the proposed approach 

is capable of accurately identifying and quantifying the analyte most likely to have 

caused the measured response. Table 6.3 shows the identification and quantification 

results obtained using only the measurement data collected for the first 3, 4, 6 and 11 

minutes after the analyte has come in contact with the sensor. Based on the results, in 

order to accurately identify and quantify the analyte (with less than ±10 % difference to 

the analyte concentration measured using GC-PID), the measured data collected for the 

first 3 minutes of analyte introduction to the sensor are sufficient. It is noted that the 

minimum time required to obtain accurate analyte identification and quantification for the 

third case is slightly longer than that of the first case but faster than that of the second 

case. Since the response time to ethylbenzene is slightly longer than for both benzene 

(first case) and toluene (second case), the reason for this might be due to the noise level 

in the data for the second case being higher than the third case. This indicates that the 

noise level in the measured data may play a significant role in determining time to 

accurate identification and quantification of the analyte. Nonetheless, in all three 

representative results presented here, by using the proposed technique based on BKFs, 

the analyte which is most likely to have caused the measured response was identified and 

quantified well before the sensor response reaches steady-state, i.e., equilibrium 
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frequency shift. The ability to rapidly detect and quantify the analyte is necessary in most 

real-world applications, particularly where detection and quantification of hazardous 

analytes is required. 

 

 

 

 
 

Figure 6.3: Measured response of a SH-SAW sensor coated with 0.8µm PIB to a 

single analyte sample of 370 ppb ethylbenzene (E). Also shown (red line) is the 

estimated sensor response obtained using the most probable unknown parameters 

determined using bank of Kalman filters. The actual and estimated analyte 

concentration is shown in the inset. 
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Table 6.3: Identification and quantification results obtained using the measured 

response data (of a SH-SAW sensor coated with 0.8µm PIB exposed to 370 ppb 

ethylbenzene) collected for the first 3, 4, 6 and 11 minutes after the analyte has been 

introduced to the sensor. Also shown in the table are the percentage differences 

between the estimated concentration and the concentration of the analyte 

determined using GC-PID. 

Identification and 

Quantification Result 

Identification 

Results  

Estimated Concentration in ppb  

(% difference to actual analyte concentration) 

After 3 minutes Ethylbenzene 340 (8 %) 

After 4 minutes Ethylbenzene 350 (5 %) 

After 6 minutes Ethylbenzene 360 (3 %) 

After 11 minutes Ethylbenzene 370 (0 %) 

 

 

 

In addition to the three representative results presented above, several additional 

experiments with different concentrations of benzene, toluene and ethylbenzene were 

conducted to test the proposed signal processing technique. The results are summarized 

in Table 6.4, which includes estimates obtained using the measured data of SH-SAW 

sensors coated with either 0.6µm PECH or 0.8µm PIB. In all the cases shown in Table 

6.4, the proposed technique was able to accurately identify and quantify the analyte in 

real-time. Overall, the percentage error between the estimated and the measured analyte 

concentration using GC-PID is less than ±10 %. For single analyte sensor responses, the 

results discussed in this section clearly demonstrate the potential of the proposed signal 

processing technique based on BKFs to rapidly identify and quantify the analyte which is 

most likely to have caused the response. These results highlight the advantages of the 

proposed technique as a viable alternative to using the conventional technique of sensor 

arrays for single analyte identification and quantification. Specifically, the proposed 

technique has the advantages of not requiring a complex training data set and offering 



125 
 

 

 

real-time detection and quantification of the analyte based on the sensor response of only 

a single sensor device. 

 

 

Table 6.4: Summary of identification and quantification results obtained using bank 

of Kalman filters and the measured response data of SH-SAW sensors coated with 

either 0.6µm PECH or 0.8µm PIB. Also shown in the table are the percentage 

differences between the estimated concentration and the concentration of the 

analyte determined using GC-PID. 

Data Identification 

Results 

Estimated Concentration (ppb) 

(% difference to actual analyte 

concentration) 

1: Benzene  

(1930 ppb) 

Benzene 1910 (1 %) 

2: Toluene  

(360 ppb) 

Toluene 360 (0 %) 

3: Ethylbenzene  

(1400 ppb) 

Ethylbenzene 1390 (1 %) 

4: Benzene  

(670 ppb) 

Benzene 660 (1.5 %) 

5: Toluene  

(880 ppb) 

Toluene 870 (1 %) 

6: Ethylbenzene  

(380 ppb) 

Ethylbenzene 380 (0 %) 

7: Benzene  

(1920 ppb) 

Benzene 1850 (4 %) 

8: Toluene  

(930 ppb) 

Toluene 920 (1 %) 

9: Toluene  

(640 ppb) 

Toluene 640 (0 %) 

10: Ethylbenzene  

(370 ppb) 

Ethylbenzene 370 (0 %) 
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6.3 Results of Detection and Quantification of Binary Mixtures Using Bank of 

Kalman Filters 

 

 

 

In this section, the novel approach based on BKFs will be applied to the rapid 

detection and quantification of binary mixtures of analytes from polymer-coated SH-

SAW sensor responses to unknown binary mixtures of BTEX compounds. For a detailed 

discussion on the proposed technique, refer to Chapter 4.    

For the implementation of the proposed technique, the unknown parameters: the 

sorption/desorption rate constant of each analyte (i.e. 𝑆1 and 𝑆2) and the corresponding 

equilibrium frequency shift of each analyte (i.e. 𝑓∞,1, and 𝑓∞,2) were quantized to a finite 

number of grid points. The parameters 𝑆1 and 𝑆2 were quantized based on the knowledge 

of possible binary mixtures of analytes to have caused the response. In this work, [
𝑆1

𝑆2
] 

were quantized as {[
𝑆𝑏𝑒𝑛𝑧𝑒𝑛𝑒

𝑆𝑡𝑜𝑙𝑢𝑒𝑛𝑒
] , [

𝑆𝑏𝑒𝑛𝑧𝑒𝑛𝑒

𝑆𝑒𝑡ℎ𝑦𝑙𝑏𝑒𝑛𝑧𝑒𝑛𝑒 & 𝑥𝑦𝑙𝑒𝑛𝑒𝑠
] , [

𝑆𝑡𝑜𝑙𝑢𝑒𝑛𝑒

𝑆𝑒𝑡ℎ𝑦𝑙𝑏𝑒𝑛𝑧𝑒𝑛𝑒 & 𝑥𝑦𝑙𝑒𝑛𝑒𝑠
]}. In 

order to quantize the parameters 𝑓∞,1, and 𝑓∞,2, it is assumed that the concentration of the 

analytes will be below 5 ppm, as it is often the case for actual groundwater contamination 

from gasoline spills. Based on this assumption, 𝑓∞,1 and 𝑓∞,2 were quantized into a finite 

number of grid points. Thus, the unknown parameters vector, 𝜃 which is formed based on 

all possible combinations of the discrete points of all the unknown parameters, will 

belong to a finite number of grid points. This enables the application of the BKF 

algorithm (presented in Table 2.4) in order to determine the best case for the unknown 

parameters vector, 𝜃 based on the highest a posteriori probability, 𝑝(𝜃𝑗|𝑌𝑘). Based on the 

selection of the best case, the analytes most likely to have caused the response were 

identified using the selected sorption/desorption rate constant of the analytes (i.e. 𝑆1 and 
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𝑆2) and quantified using the selected equilibrium frequency shifts (i.e. 𝑓∞,1 and 𝑓∞,2) and 

eq. (3.5). Similar to the previous section, the quantification results obtained will be 

compared to the concentration of the analyte measured independently using GC-PID (and 

GC-MS).   

The proposed approach was tested using several measured polymer-coated SH-

SAW sensor responses to binary mixture samples. However, only two representative 

results are presented in detail to highlight the potential of the proposed technique to 

accurately identify and quantify the analytes most likely to have caused the measured 

binary mixture response. At the end of this section, the results obtained from some of 

these tests are summarized in Table 6.7. 

First, the results obtained using the measured SH-SAW sensor coated with 0.6µm 

PECH to a binary mixture of 980 ppb benzene and 340 ppb toluene are discussed. The 

results are shown in Figure 6.4 and Table 6.5. Figure 6.4 shows the measurement data (in 

blue) and the estimated sensor response curve (in red) along with the identification and 

quantification result obtained using all the measurement data points. As can be seen from 

the inset of Figure 6.4, the proposed technique managed to identify and quantify the 

analytes most like to have caused the measured response accurately with less than ±10 % 

difference to the analyte concentrations measured using GC-PID. Table 6.5 shows the 

identification and quantification results obtained using just the measurement data 

collected for the first 3, 5, 6 and 9 minutes after the analyte has been introduced to the 

sensor. It is evident that the proposed technique can accurately identify and quantify the 

analytes using just the data collected for the first 3 minutes. This means that by utilizing 
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the proposed technique, binary mixtures of analytes can be identified and quantified well 

before the measured response reaches equilibrium frequency shift.    

 

 

 

 

 

 

 
 

Figure 6.4: Measured response of a SH-SAW sensor coated with 0.6µm PECH to 

binary mixtures of 980 ppb benzene (B) and 340 ppb toluene (T). Also shown (red 

line) is the estimated sensor response obtained using the most probable unknown 

parameters determined using bank of Kalman filters. The actual and estimated 

analyte concentrations are shown in the inset. 
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Table 6.5: Identification and quantification results obtained using the measured 

response data (of a SH-SAW sensor coated with 0.6µm PECH to 980 ppb benzene 

and 340 ppb toluene) collected for the first 3, 5, 6 and 9 minutes after the binary 

mixture sample has been introduced to the sensor. Also shown in the table are the 

percentage differences between the estimated concentration and the concentration 

of the analyte determined using GC-PID. 

Identification and 

Quantification 

Result 

Identification 

Results 

Estimated Concentration (ppb)  

(% difference to actual analyte 

concentration) 

After 3 minutes Benzene 

Toluene 

890 (9 %) 

370 (9 %) 

After 5 minutes Benzene 

Toluene 

1020 (4 %) 

320 (6 %) 

After 6 minutes Benzene 

Toluene 

940 (4 %) 

350 (3 %) 

After 9 minutes Benzene 

Toluene 

1000 (2 %) 

330 (3 %) 

 

 

 

For the second example, the proposed technique was tested using the sensor 

response data of SH-SAW sensor coated with 0.8µm PIB to binary mixtures of 510 ppb 

benzene and 260 ppb ethylbenzene. The results are shown in Figure 6.5 and Table 6.6. 

From the results, it can be concluded that the proposed technique is capable of accurately 

identifying and quantifying the analytes most likely to have caused the measured 

response as being benzene and ethylbenzene with less than ±10 % difference to the 

analytes concentration measured using GC-PID, and it is able to do so using only the 

measured data collected for the first 7 minutes. This is slightly longer than the time 

required for the identification and quantification of a binary mixture of benzene and 

toluene in the previous example, which was about 3 minutes (see Table 6.5). The 

difference in the minimum time required to identify and quantify the analytes accurately 
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might be due to the total response time of the binary mixture of benzene and 

ethylbenzene being longer than for the binary mixture of benzene and toluene.   

Nevertheless, accurately identifying and quantifying the analytes causing the response in 

only 7 minutes for a sample instead of a total response time (equilibrium response) of 

about 15 minutes is still an important improvement. 

 

 

 
 

Figure 6.5: Measured response of a SH-SAW sensor coated with 0.8µm PIB to a 

binary mixture of 510 ppb benzene (B) and 260 ppb ethylbenzene (E). Also shown 

(red line) is the estimated sensor response obtained using the most probable 

unknown parameters determined using bank of Kalman filters. The actual and 

estimated analyte concentrations are shown in the inset.  
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Table 6.6: Identification and quantification results obtained using the measured 

response data (of a SH-SAW sensor coated with 0.8µm PIB to 510 ppb benzene and 

260 ppb ethylbenzene) collected for the first 4, 6, 7 and 10 minutes after the binary 

mixture sample has been introduced to the sensor. Also shown in the table are the 

percentage differences between the estimated concentration and the concentration 

of the analyte determined using GC-PID. 

Identification and 

Quantification 

Result 

Identification 

Results 

Estimated Concentration (ppb)  

(% difference to actual analyte 

concentration) 

After 4 minutes Toluene 

Ethylbenzene 

50 (N/A) 

250 (N/A) 

After 6 minutes Toluene 

Ethylbenzene 

350 (N/A) 

150 (N/A) 

After 7 minutes Benzene 

Ethylbenzene 

550 (8 %) 

250 (4 %) 

After 10 minutes Benzene 

Ethylbenzene 

550 (8 %) 

250 (4 %) 

 

 

Results for all the tested binary mixtures of BTEX compounds are summarized in 

Table 6.7, which includes estimates obtained using the measured data of SH-SAW 

sensors coated with either 0.6µm PECH or 0.8µm PIB. For all the examples shown in 

Table 6.7, the proposed technique was able to accurately identify and quantify the two 

analytes in the tested samples rapidly. Specifically, for most of the tested samples the 

analytes could be identified and quantified well before the sensor response reached 

equilibrium frequency shift. It is also pertinent to note that using the proposed technique, 

high quantification accuracy i.e. less than ±15 % difference to the analyte concentrations 

measured using GC-PID can be achieved. It is noted that this accuracy can still be further 

improved by appropriately selecting or finding a coating with higher sensitivity to the 

analytes of interest or with higher liquid-phase polymer-analyte partition coefficients.  
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In summary, the results shown and discussed in this section clearly demonstrate the 

potential of the proposed technique, which is based on BKFs, to rapidly identify and 

quantify the two analytes in a sample based on the measured response from only a single 

polymer coated SH-SAW sensor. By utilizing the proposed technique, a more tedious 

sensor array signal processing protocol could be avoided. Moreover, using the proposed 

technique, the analytes could be identified and quantified in real-time, a feat that cannot 

be achieved using a sensor array and only equilibrium frequency shift as the sole sensing 

parameter. 

 

Table 6.7: Summary of identification and quantification results obtained using bank 

of Kalman filters and the measured binary mixtures response data of SH-SAW 

sensors coated with either 0.6µm PECH or 0.8µm PIB. Also shown in the table are 

the percentage differences between the estimated concentration and the 

concentration of the analyte determined using GC-PID. 

Binary Mixture Data Identified Analytes and their Estimated 

Concentrations in ppb 

(% difference with actual analyte concentration) 

1: Benzene (1000 ppb) 

Toluene (500 ppb) 

Benzene: 940 (6 %) 

Toluene: 510 (2 %)  

2: Benzene (1060 ppb) 

Ethylbenzene (1410 ppb) 

Benzene: 970 (9 %) 

Ethylbenzene: 1360 (4%) 

3: Benzene (620 ppb) 

Ethylbenzene (1260 ppb) 

Benzene: 590 (5 %) 

Ethylbenzene: 1200 (5 %) 

4: Benzene (2260 ppb) 

Toluene (740 ppb) 

Benzene: 2010 (11 %) 

Toluene: 790 (7 %)  

5: Benzene (500 ppb) 

Toluene (1000 ppb) 

Benzene: 490 (2 %) 

Toluene: 1000 (0 %)  

6: Benzene (1000 ppb) 

Ethylbenzene (800 ppb) 

Benzene: 920 (8 %) 

Ethylbenzene: 800 (0 %) 
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6.4 Results of Identification and Quantification of Multi-Analyte Mixtures Using 

Multi-Stage Exponentially Weighted RLSE 

 

 

 

In this section, the results of detection and quantification of multi-analyte 

mixtures using a sensor signal processing technique based on multi-stage exponentially 

weighted RLSE are presented. Note that this technique could be used for the detection 

and quantification of 𝑛 analytes in a mixture that are most likely to have caused the 

measured sensor response, provided the characteristic response time constants and 

sensitivities of the analytes-coating pairs are known. However, in this dissertation, the 

proposed technique was demonstrated for the detection and quantification of multi-

analyte mixtures of BTEX compounds and TMB using the time-transient frequency shift 

response of a single polymer-coated SH-SAW sensor. The measured sensor responses 

were either obtained from SH-SAW sensors coated with 0.6μm PECH or 0.8μm PIB. For 

reference, analyte concentrations were also independently measured using GC-PID. A 

detailed discussion on the implementation of the proposed technique can be found in 

Chapter 4 (specifically section 4.4).  It is noted that the proposed technique is insensitive 

to the initial values of the unknown parameters (i.e. the equilibrium frequency shifts, 

𝑓∞,𝑖). Thus, for the implementation of the proposed technique, the unknown parameters, 

𝑓∞,𝑖 were set to zero for all the tested data. Once the unknown parameters, 𝑓∞,𝑖 are 

estimated, the corresponding concentrations associated with each of these unknown 

parameters are calculated using eq. (3.5). In this technique, the unknown parameters, 𝑓∞,𝑖 

are no longer being discretized into a finite number of grid points as in the previous 

techniques. 
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In order to validate the proposed technique, multiple tests were performed on 

detection and quantification of multi-analyte samples, but also including tests using 

single-analyte samples. Selected results from these tests are summarized at the end of this 

section. The results obtained from three different tests are discussed first in order to 

highlight the effectiveness of the proposed technique. 

The first sample result is shown in Figure 6.6. This result was obtained using the 

sensor response data of a SH-SAW sensor coated with 0.8µm PIB to multi-analyte 

mixtures of 590 ppb benzene (B), 420 ppb toluene (T), and 330 ppb ethylbenzene and 

xylenes (EX). Note that ethylbenzene and the three xylenes are grouped together because 

they are chemical isomers which have similar response time constants and sensitivities 

for the investigated coatings. Figure 6.6 shows the measurement data (in blue) and the 

estimated sensor response curve (in red) along with the identification and quantification 

results. The measured and estimated frequency shift response in Figure 6.6 are in good 

agreement, resulting in accurate identification of the analytes in the sample with the 

estimated analyte concentrations within ±10 % of reference analyte concentrations 

measured using GC-PID. Table 6.8 shows the identification and quantification results 

obtained using the measured data collected for the first 14, 16, 18 and 20 minutes after 

the multi-analyte sample has come in contact with the sensor. As can be seen from Table 

6.8, for this multi-analyte sample, at least the data collected for the first 14 minutes are 

needed to accurately identify and quantify the analytes with less than ±20 % difference to 

the analyte concentrations measured using the GC-PID. Using just the measured data 

collected for less than the first 14 minutes will either result in misidentification or 

inaccurate quantification of the analytes. In this case, a longer time is needed to 
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accurately identify and quantify the analytes present in the mixture. This indicates that, as 

the number of analytes in the mixture increases, the minimum time to accurately detect 

and quantify the analytes in the sample might increase. 

 

 

 

 

 

 
 

Figure 6.6: Measured response of a SH-SAW sensor coated with 0.8µm PIB to 

multi-analyte mixtures of 590 ppb benzene (B), 420 ppb toluene (T), and 330 ppb 

ethylbenzene and xylenes (EX). Also shown (red line) is the sensor response 

estimated using the multi-stage exponentially weighted RLSE. The actual and 

estimated analyte concentrations are shown in the inset. 
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Table 6.8: Identification and quantification results obtained using the measured 

response data (of a SH-SAW sensor coated with 0.8µm PIB to 590 ppb benzene, 420 

ppb toluene, and 330 ppb ethylbenzene and xylenes) collected for the first 14, 16, 18 

and 20 minutes after the multi-analyte sample has been introduced to the sensor. 

Also shown in the table are the percentage differences between the estimated 

concentration and the concentration of the analyte determined using GC-PID. 

Identification and 

Quantification 

Result 

Identified Analytes and their Estimated Concentrations in ppb 

(% difference to actual analyte concentration) 

After 14 minutes Benzene: 714 (20 %) 

Toluene: 392 (7 %)  

Ethylbenzene & Xylenes: 347 (5 %) 

After 16 minutes Benzene: 527 (11 %) 

Toluene: 469 (12 %)  

Ethylbenzene & Xylenes: 330 (0 %) 

After 18 minutes Benzene: 534 (10 %) 

Toluene: 466 (11 %)  

Ethylbenzene & Xylenes: 330 (0 %) 

After 20 minutes Benzene: 588 (1 %) 

Toluene: 445 (6 %)  

Ethylbenzene & Xylenes: 335 (2 %) 

 

 

 

Next, the results obtained using the measured data of a 0.6µm PECH coated SH-

SAW sensor to a binary mixture sample containing 980 ppb benzene and 340 ppb toluene 

are presented. Figure 6.7 and Table 6.9 show the results. Once again, using the proposed 

technique, the two analytes in the sample were identified and quantified accurately. For 

the second sample, estimated analyte concentrations are within ±10 % difference to the 

analyte concentrations measured using the GC-PID. The accurate identification and 

quantification result obtained is also consistent with the excellent agreement between the 

measured data points and the estimated sensor response. From the results shown in Table 

6.9, a minimum of the data collected for the first 3 minutes are sufficient to detect and 
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quantify the two analytes in the sample with less than ±20 % difference to the analyte 

concentrations measured using the GC-PID. This implies that, using the proposed 

technique, rapid identification and quantification of the analytes is possible. In 

comparison to the results of the first sample discussed earlier, the minimum time required 

to accurately detect and quantify the analytes for the second sample is shorter. This result 

is consistent with the inference made earlier that the number of analytes in the mixture 

dictates the minimum time required to accurately detect and quantify the analytes in the 

sample. Moreover, the total response time of a binary mixture sample containing benzene 

and toluene is shorter than the total response time of the multi-analyte mixture sample 

containing BTEX compounds discussed earlier. 

 

 
 

Figure 6.7: Measured response of a SH-SAW sensor coated with 0.6µm PECH to 

binary mixtures of 980 ppb benzene (B) and 340 ppb toluene (T). Also shown (red 

line) is the sensor response estimated using the multi-stage exponentially weighted 

RLSE. The actual and estimated analyte concentrations are shown in the inset. 
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Table 6.9: Identification and quantification results obtained using the measured 

response data (of a SH-SAW sensor coated with 0.6µm PECH to 980 ppb benzene 

and 340 ppb toluene) collected for the first 3, 4, and 8 minutes after the binary 

mixture sample has been introduced to the sensor. Also shown in the table are the 

percentage differences between the estimated concentration and the concentration 

of the analyte determined using GC-PID. 

Identification and 

Quantification 

Result 

Identified Analytes and their Estimated Concentrations in ppb 

(% difference to actual analyte concentration) 

After 3 minutes Benzene: 1044 (7 %) 

Toluene: 271 (20 %)  

After 4 minutes Benzene: 994 (1 %) 

Toluene: 307 (10 %)  

After 8 minutes Benzene: 943 (4 %) 

Toluene: 334 (2 %)  

 

 

 

For the third example, the proposed approach is tested using the sensor response 

data of a SH-SAW sensor coated with 0.8µm PIB to 600 ppb 1,2,4-trimethylbenzene 

(TMB). The results for the third case are shown in Figure 6.8 and Table 6.10. Based on 

these results, it can be concluded that the proposed technique is able to accurately 

identify and quantify the analyte in the sample as TMB with less than ±15 % difference 

to the TMB concentration measured using the GC-PID. In fact, the analyte is accurately 

identified and quantified (with ±20 % difference to the TMB concentration measured 

using GC-PID) using only the measured data collected for the first 5 minutes, which is 

just a fraction of the total response time of TMB. In this case, valuable time could be 

saved (approximately 20 minutes of response time of TMB) by utilizing the proposed 

technique. 
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Figure 6.8: Measured response of a SH-SAW sensor coated with 0.8µm PIB to 600 

ppb 1,2,4-trimethylbenzene (TMB). Also shown (red line) is the sensor response 

estimated using the multi-stage exponentially weighted RLSE. The actual and 

estimated analyte concentrations are shown in the inset. 
 
 

Table 6.10: Identification and quantification results obtained using the measured 

response data (of a SH-SAW sensor coated with 0.8µm PIB to 600 ppb 1,2,4-

trimethylbenzene) collected for the first 5, 8, 10 and 14 minutes after the single 

analyte sample has been introduced to the sensor. Also shown in the table are the 

percentage differences between the estimated concentration and the concentration 

of the analyte determined using GC-PID. 

Identification and 

Quantification 

Result 

Identified Analytes and their Estimated Concentrations in ppb 

(% difference with actual analyte concentration) 

After 5 minutes 1,2,4-trimethylbenzene: 484 (19 %) 

After 8 minutes 1,2,4-trimethylbenzene: 509 (15 %) 

After 10 minutes 1,2,4-trimethylbenzene: 518 (14 %) 

After 14 minutes 1,2,4-trimethylbenzene: 527 (12 %) 
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As mentioned earlier, in addition to these three sample results, multiple tests were 

performed on the proposed technique for the detection and quantification of multi-analyte 

samples (including tests using single analyte samples). Some of the results obtained from 

these tests are summarized in Table 6.11, which includes estimates obtained using the 

measured data of SH-SAW sensors coated with either 0.6µm PECH or 0.8µm PIB. These 

results demonstrate the ability of the proposed technique to accurately identify and 

quantify the analytes (with less than ±20 % difference to the analytes concentration 

measured using GC-PID) in the mixture using just the measured response from a single 

polymer coated SH-SAW device. It is pertinent to note that using the proposed technique, 

the detection and quantification of the analytes can be performed in real-time as the 

measurements are recorded. The results clearly demonstrate the ability of the multi-stage 

exponentially weighted RLSE to identify and quantify multi-analyte mixtures using only 

the measured sensor response from a single polymer coated SH-SAW sensor in real-time. 

Clearly, this technique can be used as a viable alternative to chemical sensor arrays for 

multi-analyte detection and quantification, offering the advantages of not requiring a 

complex training data set, reduced cost of implementation, and rapid detection and 

quantification of the analytes. 

 

 

 

 

 

 

 

 

 

 



141 
 

 

 

Table 6.11: Summary of identification and quantification results obtained using 

multi-stage exponentially weighted RLSE and frequency transient data of SH-SAW 

sensors coated with either 0.6µm PECH or 0.8µm PIB, compared to analyte 

concentrations in the mixture measured using GC-PID. In the table ‘B’ denotes 

benzene, ‘T’ denotes toluene, ‘EX’ denotes ethylbenzene and xylenes, and ‘TMB’ 

denotes 1,2,4-trimethylbenzene. 

Data Actual Concentrations  

(in ppb) 

Estimated Concentrations  

(in ppb) 

B T EX TMB B T EX TMB 

1 1920 0 0 0 1880 0 0 0 

2 0 360 0 0 0 360 0 0 

3 0 0 370 0 0 0 370 0 

4 620 0 1260 0 660 0 1240 0 

5 870 520 70 0 950 510 67 0 

6 390 810 70 0 450 720 82 0 

7 170 450 360 0 140 470 350 0 

8 0 0 0 500 0 0 0 430 

9 0 0 0 1000 0 0 0 1030 

10 0 640 0 0 0 630 0 0 

 

 

 

6.5 Results of Detection and Quantification of Multi-Analyte in the Presence of 

Interferents 

 

 

 

In this section, the results of the detection and quantification of multi-analyte 

samples in the presence of interferents using the formulated signal processing approach 

based on exponentially weighted RLSE and BKFs are discussed. The proposed sensor 

signal processing procedure was introduced and discussed in detail in Chapter 4 (section 

4.5). In general, the proposed technique can be used for the detection and quantification 

of any number of target analytes in the presence of interferents, provided that the 

characteristic response time constants and sensitivities of the target analytes and the 
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dominant interferents for the selected coatings are known. In this dissertation, the 

proposed technique was tested for the detection and quantification of BTEX compounds 

in the presence of interferents commonly found in the contaminated groundwater using 

only the time-transient frequency shift response from a single polymer-coated SH-SAW 

sensor. The results reported here are obtained using the formulated signal processing 

approach and either four-analyte model or five-analyte model. For the four-analyte 

model, the response due to all the detectable interferents in the sample is modeled using a 

single exponential term, whereas for the five-analyte model, the response due to all the 

detectable interferents in the sample is modeled using a dual-exponential term. Since the 

sensor response to the interferents is often dominated by 1,2,4-trimethylbenzene, the 

parameters of the single exponential term designated for the interferents in the four-

analyte model were set close to those of 1,2,4-trimethylbenzene. In the five-analyte 

model, one of the exponential terms is used to represent the response due to 1,2,4-

trimethylbenzene and the other is used to represent the contributions of the other less 

dominant interferents by setting the parameters of the exponential term slightly higher 

than those of 1,2,4-trimethylbenzene. Note that more details on these example models 

can be found in Chapter 3.  

The proposed approach was tested extensively using measured SH-SAW sensor 

responses (frequency shifts) to BTEX compounds in actual groundwater (which contains 

various non-target interferents such as dissolved salts, aliphatic hydrocarbons, dissolved 

gases, particles and sediments, ethers, esters, ethanol, 1,2,4-trimethylbenzene, 

naphthalene, n-heptane and MTBE (methyl tert-butyl ether)). The tested groundwater 

sample were collected from groundwater monitoring wells in California. The measured 
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sensor responses to contaminated groundwater were either obtained from SH-SAW 

sensors coated with 0.6μm PECH or 0.8μm PIB. Since the proposed technique is 

independent of the initial values of the unknown parameters (i.e. the equilibrium 

frequency shifts, 𝑓∞,𝑖), the initial values of all the unknown parameters (i.e. four unknown 

parameters in the four-analyte model and five unknown parameters in the five-analyte 

model) were set to zero for all the tested data. Once the unknown parameters are 

estimated, the corresponding concentrations associated with each of these unknown 

parameters are determined using eq. (3.5). The estimated concentrations are then 

compared to the BTEX concentrations in the samples measured independently using a 

GC-PID (and GC-MS). These results are summarized graphically in Figures 6.13-6.22 at 

the end of this section. A pair of representative estimation results for each coating (i.e. 

PECH and PIB) are presented first to highlight the effectiveness of the proposed 

technique. 

Figures 6.9 and 6.10 show results for sensor response data collected using a SH-

SAW sensor coated with 0.6µm PECH to a LNAPL sample containing 370 ppb of 

benzene, 660 ppb of toluene, and 330 ppb of ethylbenzene and xylenes in the presence of 

interferents (such as dissolved salts, aliphatic hydrocarbons, dissolved gases, particles 

and sediments, ethers, esters, ethanol, 1,2,4-trimethylbenzene, naphthalene, n-heptane 

and MTBE (methyl tert-butyl ether) commonly found in groundwater. Figure 6.9 shows 

the results obtained using the four-analyte model and Figure 6.10 shows the results 

obtained using the five-analyte model. Table 6.12 summarizes the results obtained using 

the two different models. Both Figures 6.9 and 6.10 show very good agreement between 

the measured data and the estimated sensor response obtained using the proposed signal 
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processing technique. This implies that the estimated equilibrium frequency shifts, 𝑓∞,𝑖 

(especially, the 𝑓∞,𝑖 associated with the target analytes) should be close to the actual 

values of the equilibrium frequency shifts of the analytes. As explained in section 4.5, 

sorption data was used to estimate the concentrations of benzene and toluene whereas the 

desorption data was used to estimate the combined concentrations of chemical isomers 

ethylbenzene and xylenes. The results in Table 6.12 indicate very good agreement 

between the concentrations measured using GC-PID and the concentrations estimated 

using the proposed approach. For the four-analyte model all the estimated concentrations 

are well within 20% of the GC-PID measurements and for the five-analyte model the 

estimated concentrations are well within 15% of the GC-PID measurements. Note that, 

since the proposed technique utilizes both sorption and desorption data, the target 

analytes can only be quantified accurately soon (i.e. within several minutes) after the 

desorption data was collected. Thus, the proposed technique is capable of near-real time 

detection and quantification of target analytes in the presence of interferents. 
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Figure 6.9: Measured response of a SH-SAW sensor coated with 0.6µm PECH to a 

LNAPL sample in groundwater containing 370 ppb benzene, 660 ppb toluene, and 

330 ppb ethylbenzene/xylenes, and unknown concentration of interferents (top: 

sorption data, bottom: desorption data). Also shown (red dashed line) are the 

estimated sensor responses obtained using four-analyte model.  
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Figure 6.10: Measured response of a SH-SAW sensor coated with 0.6µm PECH to a 

LNAPL sample in groundwater containing 370 ppb benzene, 660 ppb toluene, and 

330 ppb ethylbenzene/xylenes, and unknown concentration of interferents (top: 

sorption data, bottom: desorption data). Also shown (red dashed line) are the 

estimated sensor responses obtained using five-analyte model. 
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Table 6.12: Estimated concentrations of BTEX compounds obtained using the 

measurement data of a LNAPL sample in groundwater (collected using a SH-SAW 

device coated with 0.6µm PECH) compared to concentrations measured using GC-

PID. 

Target 

Analyte 

Analyte 

Concentrations from 

GC-PID (ppb) 

Estimated Concentrations (ppb) 

[% difference with actual concentration] 

Four-Analyte Model Five-Analyte Model 

Benzene 370 309 [16%] 317 [14%] 

Toluene 660 531 [20%] 649 [2%] 

Ethylbenzene 

& Xylenes 

330 370 [12%] 296 [10%] 

 

 

 

The estimation results obtained using the response of a SH-SAW sensor coated 

with 0.8µm PIB to a LNAPL sample containing 670 ppb of benzene, 1340 ppb of 

toluene, and 510 ppb of ethylbenzene and xylenes in the presence of interferents (such as 

dissolved salts, aliphatic hydrocarbons, dissolved gases, particles and sediments, ethers, 

esters, ethanol, 1,2,4-trimethylbenzene, naphthalene, n-heptane and MTBE (methyl tert-

butyl ether)) are shown in Figure 6.11 (for four-analyte model) and Figure 6.12 (for five-

analyte model). Table 6.13 summarizes the results obtained using both models. Based on 

Figures 6.11 and 6.12, it is observed that the estimated response curves are in close 

agreement with the measured data points, indicating the estimated equilibrium frequency 

shifts, 𝑓∞,𝑖 obtained using either four-analyte or five-analyte model are indeed close to the 

actual values. As can be seen from Table 6.13, the estimated concentrations obtained 

using either four-analyte or five-analyte model are in good agreement with the 

concentrations determined using GC-PID. In this case, all the estimated concentrations 

for both four-analyte and five-analyte models are within 15% of the GC-PID 

measurements. However, the estimated concentrations obtained using the five-analyte 
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model are slightly more accurate than the quantification results obtained using the four-

analyte model. It is important to note that for the sample results shown, if the desorption 

data were not used in the proposed signal processing procedure, the estimation error for 

ethylbenzene and xylenes would have been much higher (about 30% for both four-

analyte and five-analyte model). As for the time to quantification, as mentioned earlier, 

the target analytes can be quantified accurately within several minutes after the 

desorption data was collected. The accurate results obtained for the two sample data 

discussed here clearly illustrate the effectiveness of the proposed technique for the 

detection and quantification of the target analytes in the presence of interferents. 
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Figure 6.11: Measured response of a SH-SAW sensor coated with 0.8µm PIB to a 

LNAPL sample in groundwater containing 670 ppb benzene, 1340 ppb toluene, 510 

ppb ethylbenzene/xylenes, and an unknown concentration of interferents (top: 

sorption data, bottom: desorption data). Also shown (red dashed line) are the 

estimated sensor responses obtained using four-analyte model. 
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Figure 6.12: Measured response of a SH-SAW sensor coated with 0.8µm PIB to a 

LNAPL sample in groundwater containing 670 ppb benzene, 1340 ppb toluene, 510 

ppb ethylbenzene/xylenes, and an unknown concentration of interferents (top: 

sorption data, bottom: desorption data). Also shown (red dashed line) are the 

estimated sensor responses obtained using five-analyte model. 
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Table 6.13: Estimated concentrations of BTEX compounds obtained using the 

measurement data of a LNAPL sample in groundwater (collected using a SH-SAW 

device coated with 0.8µm PIB) compared to concentrations measured using GC-

PID. 

 

Target 

Analyte 

Analyte 

Concentrations from 

GC-PID (ppb) 

Estimated Concentrations (ppb) 

[% difference with actual concentration] 

Four-Analyte Model Five-Analyte Model 

Benzene 670 644 [4%] 688 [3%] 

Toluene 1340 1491 [11%] 1398 [4%] 

Ethylbenzene 

& Xylenes 

510 584 [15%] 570 [12%] 

 

 

 

About 100 measured sensor data with LNAPL/groundwater samples containing 

various BTEX concentrations ranging from low ppb to low ppm levels were tested using 

the proposed technique. The results from these tests are summarized in Figures 6.13, 

6.14, 6.15, 6.16 and 6.17 for the four-analyte model and in Figures 6.18, 6.19, 6.20, 6.21 

and 6.22 for the five-analyte model by plotting the estimated concentrations versus the 

concentrations measured by GC-PID. The concentrations measured by GC-PID provide 

an independent reference for comparison of the results obtained using the proposed 

technique. However, it is also noted that the GC-PID data are subject to an average of 

±7% error [93]. Also shown in Figures 6.13-6.22 are the relative percentage errors 

between the estimated concentrations and concentrations determined using GC-PID, the 

±20% error line (or in some cases, ±15% error line) and the ideal line with the slope of 

one which represents the ideal case when the estimated concentrations of the analytes are 

equal to the concentrations determined using GC-PID. Note that the closer a point in 

those figures to the ideal line, the more accurate the concentration estimate of the 

analytes. Based on Figures 6.13-6.22, it can be seen that most of the estimated 
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concentrations of BTEX compounds lie in close proximity to the ideal line. This indicates 

that the estimated concentrations are in very good agreement with the concentrations 

determined using GC-PID for the tested samples. Specifically, for the four-analyte model 

the estimated concentrations (utilizing both sorption and desorption) are within ±9% for 

benzene (as shown in Figure 6.15), ±10% for toluene (as shown in Figure 6.16), and 

±14% for ethylbenzene and xylenes (as shown in Figure 6.17) and for the five-analyte 

model the estimated concentrations are within ±7% for benzene (as shown in Figure 

6.20), ±8% for toluene (as shown in Figure 6.21), and ±11% for ethylbenzene and 

xylenes (as shown in Figure 6.22). Given the measurement error of the GC-PID 

instrument [93], this implies the estimated concentrations are in excellent agreement with 

the concentrations determined using GC-PID. Further analysis into the results obtained 

from these tests reveals that, for the five-analyte model, about 90% and about 95% of the 

tested data produces estimates which are within ±15% and ±20%, respectively, of the 

concentrations determined using GC-PID. 

The estimation results obtained show the ability of the proposed approach to 

detect and quantify target analytes in the presence of non-target interferents using only a 

single polymer coated sensor. Specifically, for the detection and quantification of BTEX 

compounds in the presence of interferents, the results obtained using the five-analyte 

model are slightly more accurate than the results obtained using the four-analyte model. 

This may be related to the representation of all the detectable interferents using these 

models. For the four-analyte model, all the detectable interferents in the sample were 

represented using only one exponential term whereas for the five-analyte model, all the 

detectable interferents in the sample were represented using two exponential terms. If 
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multiple interferents are present at significant concentrations, their representations using 

a single exponential term will introduce an error in the estimation of the analyte 

concentrations. This means that the target analytes can only be detected and quantified 

with high accuracy if the responses due to all the detectable interferents are modelled 

separately and accurately. Ideally, to obtain accurate estimation results, the model should 

accurately describe the sensor responses due to each analyte (which includes both the 

target analytes and non-target analytes) that interact with the selected polymer coatings. 

Thus, it is imperative to determine the interferents that interact with the chosen polymer 

coatings and the resulting sensor parameters associated with these interferents. Based on 

experiments conducted on several interferents commonly found in the contaminated 

groundwater using the selected polymer coatings, it has been identified that 1) the 

polymer coatings respond to only some interferents such 1,2,4-trimethylbenzene, 

naphthalene, n-heptane and MTBE, 2) the response to these interferents will either have 

larger response time constants or lower sensitivities than the target analytes and 3) the 

sensor response to 1,2,4-trimethylbenzene is more pronounced than the response to other 

detectable interferents. Based on the investigations, two example models were formulated 

i.e. for-analyte model and five-analyte model.  In the four-analyte model, the response 

parameters of 1,2,4-trimethylbenzene were used as a representative of the response due to 

the interferents whereas, in the five-analyte model, the contribution of 1,2,4-

trimethylbenzene to the sensor response is treated individually as one analyte, and the 

contributions of the other less dominant interferents in the groundwater are represented 

by a single common term in the model like a separate analyte. Therefore, the 

representation of interferents in the five-analyte model is slightly more accurate than the 
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four-analyte model. Hence, the results obtained using five-analyte model is slightly more 

accurate than the results obtained using four-analyte model. This clearly indicates that for 

a sample which contains multiple dominant interferents, a more accurate result is 

obtainable if all the dominant interferents are modeled separately using one exponential 

term. It should be noted that inaccurate representation of the response due to the 

detectable interferents in the sensor response model can greatly increase the error in the 

detection and quantification of the target analytes. 

The utilization of both sorption and desorption data for signal processing provide 

more information about the analyte-specific interactions with the polymer film. This 

enables a more accurate detection and quantification of target analytes with improved 

accuracy, high tolerance to measurement noise and improved selectivity. The motivation 

to selectively include desorption data in the signal processing technique is based on the 

realization that the desorption transients, which are often more sensitive to energies of 

desorption of analytical targets, could provide additional information about 

analyte/polymer interactions.  

Moreover, the results obtained indicate that among the BTEX compounds, the 

estimation errors for ethylbenzene and xylenes are the largest (in percent). This may be 

due to the low concentration range (low ppb range) tested for these compounds as well as 

the sensor detection limit for these compounds. In the low ppb range, the signal noise 

limits the accuracy of the estimated concentrations. Another factor contributing to these 

inaccuracies may be the simplifying assumption made in modeling the combined 

response of interferents in the mixture (i.e. as a single analyte using one exponential term 

in the four-analyte model and as two analytes using two exponential terms in the five-
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analyte model). It is also noted that the estimation error for ethylbenzene and xylenes is 

not as critical as that for benzene, because the latter has a greater hazard potential and 

lower maximum contaminant level for drinking water. For benzene, an excellent 

estimation error within ±10% was found for both sensor coatings investigated. 

By utilizing the proposed approach, BTEX compounds can be quantified in near 

real-time with high accuracy within approximately two minutes after data collection 

(including both sorption and desorption responses). For applications which only require 

high accuracy for the estimated concentrations of benzene, even faster processing time 

can be achieved by just processing the sorption response data. In this case, benzene can 

be quantified with high accuracy in real-time even before the sorption response reaches 

steady-state [46, 84]. Furthermore, the accurate results obtained clearly highlight the 

potential of the proposed approach to detect and quantify BTEX compounds in aqueous 

phase using only the data collected from a single polymer-coated SH-SAW device. If 

needed, in some applications, redundancy and improved detection limits could be 

achieved using the proposed approach with a small sensor array (consisting of 2 to 3 

devices) coated with appropriately selected coatings. 

It is important to point out here that the signal-to-noise ratio (SNR) of the 

measured frequency response also plays a significant role in the ability of the proposed 

technique to accurately detect and quantify the target analytes in the presence of 

interferents, especially for analyte concentrations close to the detection limit of the 

sensor. The presence of high noise in the measured frequency response data can greatly 

decrease the accuracy of the results obtained using the proposed technique. This is 
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especially true if the concentrations of the target analytes are in the low ppb range. 

Therefore, it is necessary to ensure that the measured response has a very high SNR. 

 

 

 

 

 
 

Figure 6.13: BTEX concentrations estimated using the proposed signal processing 

technique and four-analyte model. The measured data were obtained from SH-SAW 

sensors coated with 0.6µm PECH. The legends show the average relative percentage 

error between the estimated and the GC-PID measured concentrations. The 

diagonal line represents the ideal case (estimated concentration = measured 

concentration). Also shown in the figure is the ±20% error line. 
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Figure 6.14: BTEX concentrations estimated using the proposed signal processing 

technique and four-analyte model. The measured data were obtained from SH-SAW 

sensors coated with 0.8µm PIB. The legends show the average relative percentage 

error between the estimated and the GC-PID measured concentrations. The 

diagonal line represents the ideal case (estimated concentration = measured 

concentration). Also shown in the figure is the ±20% error line. 
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Figure 6.15: Benzene concentrations estimated using the proposed signal processing 

technique and four-analyte model. The measured data were obtained from SH-SAW 

sensors coated with either 0.6µm PECH or 0.8µm PIB. The legends show the 

average relative percentage error between the estimated and the GC-PID measured 

concentrations. The diagonal line represents the ideal case (estimated concentration 

= measured concentration). Also shown in the figure is the ±15% error line. 
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Figure 6.16: Toluene concentrations estimated using the proposed signal processing 

technique and four-analyte model. The measured data were obtained from SH-SAW 

sensors coated with either 0.6µm PECH or 0.8µm PIB. The legends show the 

average relative percentage error between the estimated and the GC-PID measured 

concentrations. The diagonal line represents the ideal case (estimated concentration 

= measured concentration). Also shown in the figure is the ±15% error line. 
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Figure 6.17: Ethylbenzene and xylenes (EX) concentrations estimated using the 

proposed signal processing technique and four-analyte model. The measured data 

were obtained from SH-SAW sensors coated with either 0.6µm PECH or 0.8µm 

PIB. The legends show the average relative percentage error between the estimated 

and the GC-PID measured concentrations. The diagonal line represents the ideal 

case (estimated concentration = measured concentration). Also shown in the figure 

is the ±20% error line. 
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Figure 6.18: BTEX concentrations estimated using the proposed signal processing 

technique and five-analyte model. The measured data were obtained from SH-SAW 

sensors coated with 0.6µm PECH. The legends show the average relative percentage 

error between the estimated and the GC-PID measured concentrations. The 

diagonal line represents the ideal case (estimated concentration = measured 

concentration). Also shown in the figure is the ±20% error line. 
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Figure 6.19: BTEX concentrations estimated using the proposed signal processing 

technique and five-analyte model. The measured data were obtained from SH-SAW 

sensors coated with 0.8µm PIB. The legends show the average relative percentage 

error between the estimated and the GC-PID measured concentrations. The 

diagonal line represents the ideal case (estimated concentration = measured 

concentration). Also shown in the figure is the ±20% error line. 

 

 

 

 

 

 

 

 



163 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.20: Benzene concentrations estimated using the proposed signal processing 

technique and five-analyte model. The measured data were obtained from SH-SAW 

sensors coated with either 0.6µm PECH or 0.8µm PIB. The legends show the 

average relative percentage error between the estimated and the GC-PID measured 

concentrations. The diagonal line represents the ideal case (estimated concentration 

= measured concentration). Also shown in the figure is the ±15% error line. 
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Figure 6.21: Toluene concentrations estimated using the proposed signal processing 

technique and five-analyte model. The measured data were obtained from SH-SAW 

sensors coated with either 0.6µm PECH or 0.8µm PIB. The legends show the 

average relative percentage error between the estimated and the GC-PID measured 

concentrations. The diagonal line represents the ideal case (estimated concentration 

= measured concentration). Also shown in the figure is the ±15% error line. 
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Figure 6.22: Ethylbenzene and xylenes concentrations estimated using the proposed 

signal processing technique and five-analyte model. The measured data were 

obtained from SH-SAW sensors coated with either 0.6µm PECH or 0.8µm PIB. The 

legends show the average relative percentage error between the estimated and the 

GC-PID measured concentrations. The diagonal line represents the ideal case 

(estimated concentration = measured concentration). Also shown in the figure is the 

±20% error line. 
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7 SUMMARY, CONCLUSIONS AND FUTURE WORK 

 

7.1 Summary 

 

The main objective of this work was to develop a signal processing technique that 

can enhance the ability of an array of polymer coated SH-SAW sensors or even a single 

polymer coated SH-SAW sensor to detect and quantify target analytes (i.e. benzene, 

toluene, ethylbenzene and xylenes (BTEX) compounds) in the presence of interferents in 

near real-time. Apart from the main objective, several other signal processing techniques 

for different cases leading towards the main objective were also investigated. All the 

cases investigated in this work are listed below: 

 

Case 1:  Investigation of a signal processing technique for the detection and 

quantification of single analyte from sensor response to solution containing any 

arbitrary single analyte. 

 

Case 2:  Investigation of a signal processing technique for the detection and 

quantification of binary mixtures from sensor response to solution containing any 

arbitrary binary mixture. 

 

Case 3:  Investigation of a signal processing technique for the identification and 

quantification of multi-analyte mixtures using only the measured sensor response 
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from a single polymer coated sensor, given the characteristic response time 

constants and sensitivities of the analytes are known. 

 

Case 4:  Investigation of a signal processing technique for the detection and 

quantification of multiple target analytes in a chemical also containing various 

interferents using only the measured sensor response from a single polymer 

coated sensor. 

 

Note that the investigations of Case 1 to Case 3 serve as building blocks towards 

the development of the signal processing technique for realizing the main objective, i.e. 

to detect and quantify target analytes in the presence of interferents in near real-time 

based only on the measured response of a single polymer coated SH-SAW sensor device 

(Case 4). In many applications, the signal processing techniques proposed in this work 

can be used as an alternative to that of a sensor array. In fact, in some applications, as 

opposed to the use of sensor arrays which are complex and have various drawbacks, the 

proposed technique will enable the development of a smart sensor system that can detect 

and quantify the analytes of interest in near real-time without the need of a complex 

training data set. 

All the signal processing techniques proposed in this dissertation are based on 

estimation theory. Estimation-theory-based techniques were utilized because they offer 

various advantages, including near real-time data processing, minimal computational 

requirements, and minimal memory requirements for real-world implementations. In 

particular, the signal processing techniques proposed in this dissertation were based on 
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Bank of Kalman filters (BKFs) and/or exponentially weighted recursive least squares 

estimation (RLSE). Therefore, a detailed review of the theory and implementation of 

exponentially weighted RLSE and BKFs was given in Chapter 2. 

The use of estimation-theory-based techniques for the detection and quantification 

of target analytes in the presence (or absence) of interferents requires an accurate 

analytical model that describes the response of the SH-SAW sensor to the samples 

containing the target analytes. Therefore, sensor response models were developed for 

different cases based on the empirical data collected for the investigated polymer 

coatings. These models were discussed in detail in Chapter 3. All the formulated sensor 

response models utilize two sensor parameters, i.e. the equilibrium frequency shift and 

the response time constant (for individual analyte), the latter being specific for each 

combination of coated device and analyte. First, the model of sensor responses to the 

single analytes was discussed. The single analyte model was formulated based on suitable 

assumptions (these assumptions were listed in Chapter 3, section 3.2) and serves as the 

basis for the multi-analyte sensor response model. The general model of the multi-analyte 

sensor responses was then developed and modified based on the empirical results 

obtained for the sensor responses to the common non-target interferents found in the 

groundwater. A detailed study on the common groups of non-target interferents that are 

known to interact with the selected polymer coated SH-SAW sensors was performed in 

order to formulate accurate models for the detection of BTEX compounds in the presence 

of non-target interferents. Based on those studies, several assumptions were made to 

formulate a general model for detection of samples containing 𝑛 analytes consisting of 

both analytes of interest and interferents. The formulated general model of the multi-



169 
 

 

 

analyte sensor responses was then normalized, discretized and transformed into state-

space form, so that exponentially weighted RLSE and BKFs can be applied to identify 

and quantify the analytes of interest. Furthermore, the necessary modifications that need 

to be made in the sensor response model when non-ideal cases occur were also addressed 

in this dissertation. Specifically, two non-ideal cases were discussed: non-step-like 

concentration versus time profile (i.e. the transition from clean water to the sample in the 

flow cell containing the sensor is not sufficiently fast) and concentration-dependent 

sensitivity of the sensor. The concentration versus time profile seen by the sensor 

depends on a number of measurement system parameters such as the average flow speed 

of the sample, the total length of the tube separating point of sample introduction and the 

sensor device, and diffusion coefficient of the soluble substance in the sample. Thus, the 

modifications that need to be made in the sensor response model for the non-step-like 

concentration versus time profile were discussed. For most sensors, for large analyte 

concentrations, the sensitivity of the sensor depends on the concentration range of the 

analyte (or sample). Therefore, the modifications that can be made in the sensor response 

model when the sensor exhibits concentration-dependent sensitivity were discussed. 

Moreover, the details and implementations of the proposed sensor signal 

processing techniques for all the investigated cases were discussed. The proposed signal 

processing techniques for all the four cases discussed above, along with the advantages 

and disadvantages of the proposed techniques, are summarized in Table 7.1. 
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Table 7.1: Summary of the proposed signal processing techniques for the 

investigated cases. 

Descriptions Proposed Signal Processing Technique 

Case 1: Detection and 

quantification 

of single 

analyte from 

single analyte 

sensor response 

 

• Bank of Kalman filters 

 Advantages:  

1) Online detection and quantification of the 

analyte. 

2) Information about the analyte causing the 

response is not required. 

3) Alternative to sensor array. 

 

 Disadvantage: Requires considerable 

computational power. 

 

Case 2: Detection and 

quantification 

of binary 

mixtures of 

analytes from 

binary mixture 

sensor response 

 

• Bank of Kalman filters 

 Advantages:  

1) Online detection and quantification of the 

analytes. 

2) Information about the analytes causing the 

response is not required. 

3) Alternative to sensor array. 

 

 Disadvantage: Requires considerable 

computational power. 

 

Case 3: Identification 

and 

quantification 

of multi-analyte 

mixtures 

 

• Multi-stage exponentially weighted RLSE 

 Advantages:  

1) Online identification and quantification of the 

analytes. 

2) Alternative to sensor array. 

3) Can be used for analysis of up to 𝑛 analytes in 

the mixture, provided the characteristic 

response time constants and sensitivities of 

the analytes are known. 

 

Case 4: Detection and 

quantification 

of target 

analytes in the 

presence of 

interferents 

 

• Two-step processing: Exponentially weighted 

RLSE and bank of Kalman filters 

 Advantages:  

1) Near real-time detection and quantification of 

the target analytes. 

2) Alternative to sensor array 

3) Does not require information on approximate 

initial concentration range of the BTEX 

analytes. 
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In order to show the validity of the proposed signal processing techniques for all 

the studied cases, these techniques were tested using experimental sensor response data 

collected in the Microsensor Research Laboratory using polymer coated SH-SAW 

sensors. Thus, before discussing the results obtained using the proposed signal processing 

techniques, the fundamentals of SH-SAW sensors, the polymer coatings chosen for this 

work and the details of measurement setup and data acquisition were reviewed first. In 

particular, the data analyzed in this dissertation were collected using three-layer 

(piezoelectric substrate, polymer layer and liquid layer) SH-SAW structure in a delay line 

configuration. The chosen polymer coatings for the detection of the analytes of interest 

were poly(ethyl acrylate) (PEA), poly(epichlorohydrin) (PECH), and poly(isobutylene) 

(PIB). All the experimental data collected using the sensor system exhibit baseline drift 

during the response and sometimes outlier points were also recorded. Therefore, pre-

processing was performed first in order to correct the measured data for baseline drift and 

to eliminate outlier points before testing the data using the proposed signal processing 

techniques. 

Finally, the results for the experimental verification of the proposed sensor signal 

processing techniques for all the four different cases were presented and discussed. In 

order to evaluate the performance of the proposed signal processing techniques, the 

estimated analyte concentrations were compared to the results obtained independently 

using GC-PID. The results obtained from these tests for all the four different cases are 

summarized in Table 7.2. 

 

 



172 
 

 

 

Table 7.2: Summary of the results obtained using the proposed signal processing 

techniques for the investigated cases. 

Proposed Techniques Summary of Results 

 

Case 1: Online Detection and 

Quantification of Single 

Analyte Using Bank of 

Kalman Filters 

- The proposed technique was able to accurately 

identify and quantify the analyte in real-time. 

 

- The percentage difference between the estimated 

and the measured analyte concentration is less 

than ±10 %. 

 

- Minimum time-to-detection: well before the 

response reaches steady-state. 

 

 

Case 2: Online Detection and 

Quantification of Binary 

Mixtures Using Bank of 

Kalman Filters 

 

- The proposed technique was able to accurately 

identify and quantify the two analytes in the 

samples rapidly. 

 

- The percentage difference between the estimated 

and the measured analyte concentrations is within 

±15 %. 

 

- Minimum time-to-detection: well before the 

response reaches steady-state (slightly longer than 

Case 1). 

 

 

Case 3: Online Identification 

and Quantification of Multi-

Analyte Mixtures Using 

Multi-Stage Exponentially 

Weighted RLSE 

 

- The proposed technique was able to accurately 

identify and quantify the analytes in the samples 

rapidly. 

 

- The technique can be used for the identification 

and quantification of 𝑛 analytes (up to 5 analytes 

tested) in a sample (given the characteristic 

response time constants and sensitivities of the 

analytes are known).  

 

- The percentage difference between the estimated 

and the measured analyte concentrations is within 

±20 %. 

 

- Minimum time-to-detection: well before the 

response reaches steady-state (slightly longer than 

Case 1 and 2 but computationally less expensive 

than Case 1 and 2). 
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Case 4: Near Real-Time 

Detection and Quantification 

of Multi-Analyte Mixtures in 

the Presence of Interferents 

Using Exponentially 

Weighted RLSE and Bank of 

Kalman Filters 

 

- The proposed technique was able to accurately 

detect and quantify the target analytes in the 

presence of interferents in near real-time. 

 

- Four-analyte model: The estimated concentrations 

for target analytes i.e. benzene, toluene, and 

ethylbenzene-plus-xylenes fall within ±9%, ±10%, 

and ±15%, respectively, of the measured 

concentration. 

 

- Five-analyte model: The estimated concentrations 

for benzene, toluene, and ethylbenzene-plus-

xylenes fall within ±8%, ±9%, and ±13%, 

respectively, of the measured concentration. 

 

- Time-to-detection: Approximately two minutes 

after data collection (including both sorption and 

desorption responses). 

 

 

 

 

7.2 Conclusions 

 

One of the major contributions of this work is in the development of analytical 

models that describe the sensor response of the polymer coated SH-SAW sensors to the 

samples containing the analytes of interest. Specifically, the models of the coated SH-

SAW sensor responses to single analytes, multiple analytes and multiple target analytes 

in the presence of non-target interferents were formulated. These models were developed 

based on suitable assumptions (as listed in Chapter 3) and empirical data collected for the 

investigated polymer coatings. Two sensor parameters were utilized in these models, i.e. 

the sensitivity (equilibrium frequency shift) and the response time constant which is 

unique to each coated device and analyte. The formulated general model of the multi-

analyte sensor response can be used to describe the SH-SAW sensor response to any 
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number of analytes in the sample, provided that each analyte and possible interferents in 

the sample (in the concentration range of interest) has been separately characterized for 

the selected polymer coating. In order to use the formulated general model of the multi-

analyte sensor response in combination with the estimation-theory-based techniques, the 

general model was normalized, discretized and transformed into state-space form. 

Another main contribution of this work is in the development of novel sensor 

signal processing techniques for several different cases based on estimation theory. In 

particular, BKFs and/or exponentially weighted RLSE was used for sensor signal 

processing. The proposed techniques were tested and validated using extensive measured 

data. Based on the results obtained from these tests, the following conclusions can be 

made: 

 

1) In general, all the proposed sensor signal processing techniques (for all the cases 

investigated) utilized two sensing parameters, i.e. sensitivity and response time 

constant. The utilization of two sensing parameters contributes significantly towards 

the accurate detection and quantification results obtained using these techniques. 

 

2) All the proposed signal processing techniques have the ability to enhance the 

selectivity of a single polymer coated sensor to enable real-world applications. 

Typically, a sensor array is used to improve the selectivity of a chemical sensor for a 

particular application. However, there are various drawbacks associated with using a 

sensor array including increased signal- and data- processing time and potential 

misclassification for complex mixtures (i.e. mixtures with more than two analytes). 
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Thus, the proposed sensor signal processing techniques can be used as a viable 

alternative to a sensor array. In comparison to a sensor array, the proposed techniques 

have the advantage of not requiring a complex training data set and enabling real-time 

(or near real-time) detection and quantification of the analytes of interest (even in the 

presence of interferents) based on the sensor response from only a single sensor 

device. 

 

3) The ability to process the sensor data in real-time (or in near real-time) using the 

proposed signal processing techniques will enable rapid detection of analytes of 

interest. The sensor response to some analytes may take a relatively long time to 

reach steady-state. In such cases, the use of conventional signal processing techniques 

would require waiting until the sensor response reaches steady-state before the 

analytes of interest could be identified and quantified. However, through the 

utilization of the proposed sensor signal processing techniques, the analytes of 

interest (even in the presence of interferents) could be identified and quantified 

rapidly. Thus, it can be concluded that by utilizing the proposed techniques, time to 

detection and quantification of analytes of interest even in the presence of interferents 

could be reduced significantly (in some cases well before the sensor response reaches 

steady-state). Note that the ability to identify and quantify hazardous analytes in the 

environment is critical. By using the proposed sensor signal processing techniques 

and appropriate sensor platform, these hazardous compounds in the environment 

could be detected and quantified rapidly, so that mitigation plans and remediation 

actions could be carried out earlier and efficiently. Additionally, rapid detection and 
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quantification of analytes of interest will also shorten the sensor exposure time which 

in turn will improve the accuracy, repeatability and longevity of the polymer coatings 

used with the sensor. 

 

4) All the proposed sensor signal processing techniques can be implemented using a 

microcontroller. Therefore, these techniques can be employed for the development of 

a small, portable, and cost-effective smart sensor system for in-situ applications such 

as groundwater monitoring, the monitoring of the plume in a sub-surface marine oil 

spill, and spill clean-ups. 

 

5) The proposed sensor signal processing techniques were demonstrated for the 

detection and quantification of BTEX compounds (in the presence or absence of 

interferents). However, these techniques could also be used for the detection and 

quantification of other chemical analytes, provided the analytes have been 

characterized appropriately for the selected polymer coatings. 

 

6) For Case 4 (near real-time detection and quantification of multi-analyte mixtures in 

the presence of interferents using exponentially weighted RLSE and BKFs), the 

technique is only capable of near real-time detection and quantification of analytes of 

interest because the proposed technique is based on a two-step processing. In the two-

step processing, initial detection and quantification is performed using exponentially 

weighted RLSE and the results obtained from the first step is used as an input to the 

second step using BKFs. The first step can be performed in real-time as the data are 

being collected, however, the second step can only be performed after the first step is 
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completed. Nonetheless, the results obtained indicate that the proposed technique is 

capable of accurately detecting and quantifying the target analytes in approximately 

two minutes after the data collection.  

 

7) For Case 4, it can be concluded that the results obtained using the five-analyte model 

are slightly more accurate than the results obtained using the four-analyte model, as 

expected. This is due to the difference in the representation of the detectable 

interferents between these two models. Hence, it can be inferred that the target 

analytes can only be detected and quantified with high accuracy if the response due to 

all the detectable interferents is modelled accurately. 

 

It is pertinent to note that the sensor signal processing techniques presented in this 

dissertation are independent of the sensing platform used to detect the analytes of interest 

(i.e. not specific to the SH-SAW sensor platform). This means that the proposed signal 

processing techniques could also be used together with the response of other sensor 

platforms such as MEMS-based sensors (e.g. microcantilevers), optical chemical sensors 

and other types of acoustic wave-based sensors, provided the sensor responses to these 

platforms can be modeled analytically. 

 

7.3 Future Work 

 

The work presented in this dissertation could be expanded upon and further 

improved. Further improvements in the sensor response models, sensitivity and 
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selectivity of the sensor and the sensor signal processing techniques may be possible. In 

this section a few possible future research proposals are listed: 

 

1) In this dissertation, the models of the polymer coated SH-SAW sensor responses to 

single analyte and multiple analytes were presented. These models were formulated 

by making several assumptions. As a possible extension of this work, some of these 

assumptions could be relaxed in order to obtain a more general model that could 

better represent the sensor responses in some cases. Some possible investigations that 

could be performed to generalize the sensor response models are listed below: 

 

➢ The formulated sensor response models are for type I sorption where the analyte 

concentration in the coating are proportional to the ambient concentration of the 

analyte [83, 84]. However, in general, this assumption is only valid for a low 

concentration range of the analytes. Thus, as a possible extension of the sensor 

response model, one could investigate and develop a more general sensor 

response model that can account for larger concentration ranges of the analyte. In 

order to develop such a model, different sorption isotherms need to be considered. 

For instance, the BET sorption isotherm (named after the founders of the theory 

Brunauer, Emmett and Teller) can be considered to model the physisorption at 

higher concentrations of the analytes [99, 100]. Therefore, a study could be 

performed to generalize further the existing sensor response model for a larger 

concentration range of the analytes. 
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➢ The sensor response times to analytes of interest are dependent upon the sample 

flow rate. Choosing the optimum sample flow rate, especially for liquid phase 

detection, is crucial for minimizing the hydrodynamic coupling and sensor noise. 

Often, the flow rate will be adjusted until a reasonable trade-off is found between 

the sample flow-rate and the resulting sensor noise. Any changes in the sample 

flow rate would affect the response time of the sensor. Therefore, one could also 

study the possibility of developing a sensor response model that explicitly 

depends upon the sample flow rate. Through the development of such a model, 

the response time of a sensor for different flow rates could be predicted. 

 

2) The accuracy of the results obtained using the proposed sensor signal processing 

techniques are dependent upon the accuracy of the analytical model that describes the 

response of the sensor to the analytes of interest. Any mismatch between the analytical 

model and the actual physical processes causing the response would trigger inaccuracy 

in the detection and quantification of the analytes. For instance, a mismatch between 

the response time constant of a particular analyte used in the sensor response model 

and the actual physical processes causing the response could lead to undesirable results. 

Therefore, a study on the effect of model mismatch could be performed in order to 

develop a model mismatch compensator. Through the development of such 

compensator, the signal processing technique can be made more robust against 

mismatch in the sensor response model. For example, this would help the sensor system 

to compensate for slight changes in flow rate, temperature, etc. that will affect response 

times. 
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3) Common issues for any chemical sensor technologies are the lack of adequate 

sensitivity and selectivity. Several advanced sensor signal processing techniques 

based on estimation theory were introduced to enhance the selectivity of a chemical 

sensor. As for improving the sensitivity of a chemical sensor, the selection of the 

chemically sensitive element is critical. This is because the chemically sensitive layer 

plays a significant role in dictating the desired degree of sensitivity to the analytes of 

interest. Therefore, an investigation on finding and synthesizing more sensitive 

polymer layers to the analytes of interest could be carried out. Through the 

development of highly sensitive polymer layers, a very low concentration of analytes 

of interest could be detected. 

 

4) All the sensor signal processing techniques presented in this dissertation were based 

on estimation theory, in particular, exponentially weighted RLSE and/or BKFs. 

Besides exponentially weighted RLSE and BKFs, there are several other estimation-

theory-based techniques that could also be utilized for sensor signal processing. 

Therefore, as a future work in this area, one could investigate the feasibility of using 

other estimation-theory-based techniques such as Monte Carlo approaches, least mean 

squares filter and Wiener filter for sensor signal processing. Additionally, one could 

also investigate a completely different approach for sensor signal processing that is 

not based on estimation theory. For instance, one could investigate the use of machine 

learning techniques such as deep learning, sparse dictionary learning, clustering, 

neural networks, and Bayesian networks for sensor signal processing.   
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APPENDIX A: ADDITIONAL RESULTS 

 

A.1 Additional Results for Identification and Quantification of Multi-Analyte 

Mixtures Using Multi-Stage Exponentially Weighted RLSE 

 

 

 

Table A. 1: Additional identification and quantification results obtained using 

multi-stage exponentially weighted RLSE and frequency transient data of SH-SAW 

sensors coated with either 0.6µm PECH or 0.8µm PIB, compared to analyte 

concentrations in the mixture measured using GC-PID. In the table ‘B’ denotes 

benzene, ‘T’ denotes toluene, ‘EX’ denotes ethylbenzene and xylenes, and ‘TMB’ 

denotes 1,2,4-trimethylbenzene. 

Data Actual Concentrations (in ppb) Estimated Concentrations (in ppb) 

B T EX TMB B T EX TMB 

1 980 340 0 0 944 334 0 0 

2 0 0 1400 0 0 0 1440 0 

3 1930 0 0 0 1945 0 0 0 

4 1950 0 1670 0 2113 0 1636 0 

5 1060 0 1410 0 878 0 1415 0 

6 2260 740 0 0 1997 794 0 0 

7 4200 0 0 0 4086 0 0 0 

8 1990 0 0 0 1944 0 0 0 

9 0 930 0 0 0 923 0 0 

10 850 370 750 0 743 396 771 0 

11 593 420 330 0 588 445 335 0 

12 157 1014 350 0 222 967 353 0 

13 0 0 0 1000 0 0 0 918 

14 0 0 0 2000 0 0 0 1929 

15 0 0 0 2000 0 0 0 2011 

16 0 0 0 600 0 0 0 528 
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APPENDIX B: MATLAB CODES 

 

The MATLAB codes used to implement the proposed sensor signal processing 

techniques in this dissertation are contained in this Appendix. 

 

B.1 MATLAB Code for Detection and Quantification of Single Analytes Using Bank 

of Kalman Filters 

 

%% 

% Author: Karthick Sothivelr 

%% 

% Description: Code for Single Analyte Identification and Quantification 

% Using Bank of Kalman Filters 

  

%% Sensor Details 

% SH-SAW Coated with 0.6 um PECH 

  

%% Cleaning 

clear all 

close all 

clc 

tic; 

  

%% Open and read the measurement file  

FID = fopen('single_binary_test.ini','r'); % Type in the file name 

data = textscan(FID,'%f %f'); 

fclose(FID); 

  

%% USER INPUT 

% Type in the 'End Point' of data 

data_end = [65]; 

  

% Actual Concentration from FROG (GC-PID) 

CA = 0; CB = 0.360; CC = 0; CD = 0; start=0+10; % 1st 

  

%% Data Preprocessing (Selection of Analyte-In Point) 

T = 12; % Sampling period T=12s 

yy  = data{2}((start+1:data_end(1))); 

vk_raw=0:length(yy)-1; 

  

% Plot of Baseline Corrected Data 

figure, 

h=plot(vk_raw*(T/60),yy,'*'); 

xlabel('Time (min)','FontSize',14); ylabel('Frequency Shift, \Deltaf (kHz)','FontSize',14) 

set(h,'LineWidth',3) 



192 
 

 

 

grid on 

  

%% Time Constant of Analytes (Coating: 0.6um PECH) 

tauA=27; % Benzene 

tauB=78; % Toluene 

tauC=175; % Ethylbenzene 

  

Sa=T/tauA; Sb=T/tauB; Sc=T/tauC; % Sorption Rate 

ssA=0.109; ssB=0.435; ssC=1.450; % Steady-State Sensitivity 

  

%% Analyte Identification and Quantification Using Bank of Kalman Filters 

  

% Generating Unknown Parameters Vector Thetha 

tau_rate = [T/tauA T/tauB T/tauC]; % T/tau 

  

C_range = 0:0.01:5; % Concentration Range in ppm 

  

alphaA = -C_range*ssA; 

alphaB = -C_range*ssB; 

alphaC = -C_range*ssC; 

  

thetha = zeros(2,20); 

j=1; 

for i=1:length(alphaA) 

    thetha(:,j) = [tau_rate(1);alphaA(i)]; 

    j=j+1; 

end 

for i=1:length(alphaB) 

    thetha(:,j) = [tau_rate(2);alphaB(i)]; 

    j=j+1; 

end 

for i=1:length(alphaC) 

    thetha(:,j) = [tau_rate(3);alphaC(i)]; 

    j=j+1; 

end 

  

ne = length(thetha); % total number of filters 

kmax = length(yy); y = yy; 

  

%% Intialize the weights (probability) of each filter 

w = zeros([ne,kmax+1]); cw=zeros([ne,kmax]);% weight (probability) 

w(:,1) = w(:,1) + 1/ne; 

  

%% Initialization of State and Error Covariance 

yhat=zeros([ne,kmax]); inno=yhat; 

x = zeros([1,kmax+1,ne]); 
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P=zeros(1,1,kmax+1,ne); 

xest=zeros(1,kmax+1); Pest=zeros(1,1,kmax+1); 

  

Pt = diag(100*ones(1,1)); 

  

for i=1:ne 

    P(:,:,1,i) = P(:,:,1,i) + Pt; 

end 

  

%% Process and Measurement Noise 

V = 0; 

W = 5e-4; 

Psum = zeros(1,1); 

  

%% System Matrices G and F 

G = 1; % Matrix G  (1 by 1 Matrix) 

F = 1; 

  

%% Bank of Kalman Filters Scheme 

for i=1:kmax 

    for j=1:ne 

        % System Matrices 

        A = (1-thetha(1,j)); 

        B = thetha(1,j); 

        C = thetha(2,j); 

         

        % Estimate of y: yhat 

        h = C*x(:,i,j); 

        yhat(j,i)=h; 

         

        % Finding the innovation 

        inno(j,i) = y(i)-h; 

         

        % Estimator 

        K = (A*P(:,:,i,j)*C')/(C*P(:,:,i,j)*C' + G*W*G'); % Kalman gain 

        x(:,i+1,j) = A*x(:,i,j) + B + K*inno(j,i); % State Update 

        P(:,:,i+1,j) = (A-K*C)*P(:,:,i,j)*(A-K*C)' + K*G*W*G'*K' + F*V*F'; % Error 

Covariance Update 

  

        % Weight Update Equations 

        S = C*P(:,:,i+1,j)*C' + W; 

  

        % Weight before normalization 

        cw(j,i) = ((abs(S))^(-0.5))*(exp(((-0.5)*(inno(j,i))*(inno(j,i)))/(S)))*w(j,i);   

    end 

    % Normalized Weight 
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    c = sum(cw(:,i)); 

    w(:,i+1) = cw(:,i)./c; 

         

    % Estimate of state and error covariance 

    xx = x(:,i+1,:); 

    xx = permute(xx,[3 1 2]); 

    xest(:,i+1) = w(:,i+1)'*xx(:,:,1);  

     

    for j=1:ne 

        Psum = w(j,i+1)*(P(:,:,i+1,j)+(x(:,i+1,j)*(x(:,i+1,j))')) + Psum; 

    end 

    Pest(:,:,i+1) = Psum - xest(:,i+1)*xest(:,i+1)'; 

    Psum = zeros(1,1);  

end 

  

%% Plot and Analysis 

  

% Choosing the Maximum A posteriori Probability MAP 

[Y, I]=max(w(:,kmax+1)); 

  

% Selecting the unknown parameters corresponding to the MAP 

thetha_hat = thetha(:,I); 

  

% Display Identification and Quantification Results in Command Window 

tau_est = 12/thetha_hat(1); 

if tau_est==tauA 

    Con_est = -thetha_hat(2)/ssA; 

    fprintf('\nIdentification Result: Analyte A \n') 

    fprintf('Time Constant (s):') 

    disp(tau_est) 

end 

if tau_est==tauB 

    Con_est = -thetha_hat(2)/ssB; 

    fprintf('\nIdentification Result: Analyte B \n') 

    fprintf('Time Constant (s):') 

    disp(tau_est) 

end 

if tau_est==tauC 

    Con_est = -thetha_hat(2)/ssC; 

    fprintf('\nIdentification Result: Analyte C \n') 

    fprintf('Time Constant (s):') 

    disp(tau_est) 

end 

  

fprintf('The estimated concentration (in ppb) is \n') 

disp(Con_est) 
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% Plot of Results 

vk=0:kmax-1; 

y_est = (thetha_hat(2))*(1-exp(-thetha_hat(1).*vk)); % Estimated Output 

  

yb = zeros(1,5); 

y=[yb y']; y_est=[yb y_est];  

vk=((0:length(y)-1)')*(T/60); vt=(0:0.1:length(y)-1)'*(T/60); 

  

% Plot of y and estimate of y  

figure, 

h=plot(vk, y, '*', vk, y_est, '-'); 

xlabel('Time (min)') 

ylabel('Frequency Shift, \Deltaf (kHz)') 

legend(['Experimental Data (Time Constant: ' num2str(tauA) 's)'], ['Estimated Sensor 

Response (Estimated Time Constant: ' num2str(tau_est) 's)']) 

set(h,'LineWidth',3) 

grid on 

  

t1=0:kmax; t=0:kmax-1; 

% A posteriori plot 

figure, 

plot(t1*(T/60),w(1:ne,:)) 

title('Plot of A Posteriori Probabilities') 

ylabel('A Posteriori Probability') 

xlabel('Time (min)')   

grid on 

  

% Innovation 

figure, 

h=plot(t, inno); 

%set(h,'LineWidth',2) 

title('Innovation Propagation Over Time (y-y_h_a_t)') 

xlabel('Number of Iterations, k') 

ylabel('y-y_h_a_t') 

grid on 

  

toc; 
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B.2 MATLAB Code for Detection and Quantification of Binary Mixtures Using 

Bank of Kalman Filters    

 

%% 

% Author: Karthick Sothivelr 

%% 

% Description: Code for Binary Mixtures Identification and Quantification 

% Using Bank of Kalman Filters 

  

%% Sensor Details 

% SH-SAW Coated with 0.8 um PIB 

  

%% Cleaning 

clear all 

close all 

clc 

tic; 

  

%% Open and read the measurement file  

FID = fopen('binary_data.ini','r'); % Type in the file name 

data = textscan(FID,'%f %f'); 

fclose(FID); 

  

%% USER INPUT 

% Type in the 'End Point' of data 

%data_end = [76 127]; 

data_end = [127]; 

  

% Actual Concentration from FROG (GC-PID) 

%CA = 0.850; CB = 0; CC = 0.260; CD = 0; start=0; % 1st 

CA = 1.170; CB = 0.470; CC = 0; CD = 0; start=76; % 2nd 

  

%% Data Preprocessing (Selection of Analyte-In Point) 

T = 12; % Sampling period T=12s 

  

yy  = data{2}((start+1:data_end(1))); 

  

% Plot of Baseline Corrected Data 

vk_raw=0:length(yy)-1; 

figure, 

h=plot(vk_raw*(T/60),yy,'*'); 

xlabel('Time (min)','FontSize',14); ylabel('Frequency Shift, \Deltaf (kHz)','FontSize',14) 

set(h,'LineWidth',3) 

grid on 

  

%% Time Constant of Analytes (Coating: 0.8um PIB) 



197 
 

 

 

T = 12; % Sampling Period 

tauA = 36;  

tauB = 88; 

tauC = 230; 

  

Sa=T/tauA; Sb=T/tauB; Sc=T/tauC; % Absorption Rate 

ssA=0.078; ssB=0.403; ssC=1.160; % Steady-State Sensitivity 

  

%% Binary Identification and Quantification Using Bank of Kalman Filters 

  

% Generating Unknown Parameters Vector Thetha 

tau_rate = zeros(2,3); 

  

tau_rate(:,1) = [Sa;Sb]; tau_rate(:,2) = [Sa;Sc]; tau_rate(:,3) = [Sb;Sc]; 

  

C_rangeA = 0.01:0.01:1.50; 

C_rangeB = 0.01:0.01:1.50; 

C_rangeC = 0.01:0.01:1.50; 

  

alphaA = -C_rangeA*ssA; 

alphaB = -C_rangeB*ssB; 

alphaC = -C_rangeC*ssC; 

  

thetha = zeros(4,2000); 

j=1; 

for i=1:length(alphaA) 

    for k=1:length(alphaB) 

        thetha(:,j) = [tau_rate(1,1); tau_rate(2,1); alphaA(i); alphaB(k)]; 

        j=j+1; 

    end 

end 

for i=1:length(alphaA) 

    for k=1:length(alphaC) 

        thetha(:,j) = [tau_rate(1,2); tau_rate(2,2); alphaA(i); alphaC(k)]; 

        j=j+1; 

    end 

end 

for i=1:length(alphaB) 

    for k=1:length(alphaC) 

        thetha(:,j) = [tau_rate(1,3); tau_rate(2,3); alphaB(i); alphaC(k)]; 

        j=j+1; 

    end 

end 

  

ne = length(thetha); % total number of filters 

kmax = length(yy); y = yy; 
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%% Intialize the weights (probability) of each filter 

w = zeros([ne,kmax+1]); cw=zeros([ne,kmax]);% weight (probability) 

w(:,1) = w(:,1) + 1/ne; 

  

%% Initialization of State and Error Covariance 

yhat=zeros([ne,kmax]); inno=yhat; %thetha_hat=zeros(2,kmax); 

x = zeros([2,kmax+1,ne]); 

P=zeros(2,2,kmax+1,ne); 

xest=zeros(2,kmax+1); Pest=zeros(2,2,kmax+1); 

  

Pt = diag(100*[1 1]); 

  

for i=1:ne 

    P(:,:,1,i) = P(:,:,1,i) + Pt; 

end 

  

%% Process and Measurement Noise 

V = 0; 

W = 1e-5; 

Psum = zeros(2,2); 

  

% System Matrices G and F 

G = 1; 

F = [1;1]; 

  

%% Bank of Kalman Filters Scheme 

for i=1:kmax 

    for j=1:ne 

        % System Matrices 

        A = [(1-thetha(1,j)) 0; 0 (1-thetha(2,j))]; 

        B = [thetha(1,j); thetha(2,j)]; 

        C = [thetha(3,j) thetha(4,j)]; 

        %h = C*x(:,i,j); 

        h = C(1,1)*(1-exp(-B(1,1).*(i-1))) + C(1,2)*(1-exp(-B(2,1).*(i-1))); 

        yhat(j,i)=h; 

         

        % Finding the innovation 

        inno(j,i) = y(i)-h; 

         

        % Estimator 

        K = (A*P(:,:,i,j)*C')/(C*P(:,:,i,j)*C' + G*W*G'); % Kalman Gain 

        x(:,i+1,j) = A*x(:,i,j) + B + K*inno(j,i); % State Update 

        P(:,:,i+1,j) = (A-K*C)*P(:,:,i,j)*(A-K*C)' + K*G*W*G'*K' + F*V*F'; % Error 

Covariance Update 
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        % Weight Update Equations 

        S = C*P(:,:,i+1,j)*C' + W; 

  

        % Weight before normalization 

        cw(j,i) = ((abs(S))^(-0.5))*(exp(((-0.5)*(inno(j,i))*(inno(j,i)))/(S)))*w(j,i); 

    end 

    % Normalized Weights 

    c = sum(cw(:,i)); 

    w(:,i+1) = cw(:,i)./c; 

         

    % Estimate of state and error covariance 

    xx = x(:,i+1,:); 

    xx = permute(xx,[3 1 2]); 

    xest(:,i+1) = w(:,i+1)'*xx(:,:,1);  

     

    for j=1:ne 

        Psum = w(j,i+1)*(P(:,:,i+1,j)+(x(:,i+1,j)*(x(:,i+1,j))')) + Psum; 

    end 

     

    Pest(:,:,i+1) = Psum - xest(:,i+1)*xest(:,i+1)'; 

    Psum = zeros(2,2);  

end 

  

%% Plot and Analysis 

  

% Choosing the Maximum A posteriori Probability (MAP) 

[Y, I]=max(w(:,kmax+1)); 

  

% Selecting the unknown parameters corresponding to the MAP 

thetha_hat = thetha(:,I); 

  

% Display Identification and Quantification Results in Command Window 

tau_est1 = 12/thetha_hat(1,1); 

if tau_est1==tauA 

    Con_est1 = -thetha_hat(3,1)/ssA; 

    fprintf('\nIdentification Result: Analyte A \n') 

    fprintf('Time Constant (s):') 

    disp(tau_est1) 

end 

if tau_est1==tauB 

    Con_est1 = -thetha_hat(3,1)/ssB; 

    fprintf('\nIdentification Result: Analyte B \n') 

    fprintf('Time Constant (s):') 

    disp(tau_est1) 

end 

if tau_est1==tauC 
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    Con_est1 = -thetha_hat(3,1)/ssC; 

    fprintf('\nIdentification Result: Analyte C \n') 

    fprintf('Time Constant (s):') 

    disp(tau_est1) 

end 

  

tau_est2 = 12/thetha_hat(2,1); 

if tau_est2==tauA 

    Con_est2 = -thetha_hat(4,1)/ssA; 

    fprintf('\nIdentification Result: Analyte A \n') 

    fprintf('Time Constant (s):') 

    disp(tau_est2) 

end 

if tau_est2==tauB 

    Con_est2 = -thetha_hat(4,1)/ssB; 

    fprintf('\nIdentification Result: Analyte B \n') 

    fprintf('Time Constant (s):') 

    disp(tau_est2) 

end 

if tau_est2==tauC 

    Con_est2 = -thetha_hat(4,1)/ssC; 

    fprintf('\nIdentification Result: Analyte C \n') 

    fprintf('Time Constant (s):') 

    disp(tau_est2) 

end 

  

fprintf('\nThe estimated concentration of Analyte 1 (in ppb) is \n') 

disp(Con_est1) 

fprintf('\nThe estimated concentration of Analyte 2 (in ppb) is \n') 

disp(Con_est2) 

  

% Plot of Results 

vk=0:kmax-1; 

y_est = (thetha_hat(3,1))*(1-exp(-thetha_hat(1,1).*vk)) + (thetha_hat(4,1))*(1-exp(-

thetha_hat(2,1).*vk)); % Estimated Output 

  

yb = zeros(1,5); 

y=[yb y']; y_est=[yb y_est];  

vk=((0:length(y)-1)')*(T/60); vt=(0:0.1:length(y)-1)'*(T/60); 

  

figure, 

h=plot(vk, y, '*', vk, y_est, '-'); 

xlabel('Time (min)') 

ylabel('Frequency Shift, \Deltaf (kHz)') 
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legend(['Experimental Data (Time Constants: [' num2str(tauA) 's] [' num2str(tauC) 's])'], 

['Estimated Sensor Response (Estimated Time Constants: [' num2str(tau_est1) 's] [' 

num2str(tau_est2) 's])']) 

set(h,'LineWidth',3) 

grid on 

  

toc; 

 

 

 

B.3 MATLAB Code for Identification and Quantification of Multi-Analyte Mixtures 

Using Multi-Stage Exponentially Weighted RLSE 

 

%% 

% Author: Karthick Sothivelr 

%% 

% Description: Code for Identification and Quantification of Multi-Analyte 

% Mixtures Using Multi-Stage Exponentially Weighted Recursive Least Squares 

% Estimation (EW-RLSE) 

  

%% Sensor Details 

% SH-SAW Coated with 0.8 um PIB 

  

%% Cleaning 

clear all 

close all 

clc 

tic; 

  

%% Open and read the measurement file  

FID = fopen('pib_ternary_data.ini','r'); % Type in the file name 

data = textscan(FID,'%f %f'); 

fclose(FID); 

  

%% USER INPUT 

% Type in the 'End Point' of data 

data_end = [106]; 

  

% Actual Concentration from FROG (GC-PID) 

CA = 0.593; CB = 0.420; CC = 0.330; CD = 0; start=0+8; % 1st 

  

%% Data Preprocessing (Selection of Analyte-In Point) 

T = 12; % Sampling period T=12s 

  

yy  = data{2}((start+1:data_end(1))); 
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% Plot of Baseline Corrected Data 

vk_raw=0:length(yy)-1; 

figure, 

h=plot(vk_raw*(T/60),yy,'*'); 

xlabel('Time (min)','FontSize',14); ylabel('Frequency Shift, \Deltaf (kHz)','FontSize',14) 

set(h,'LineWidth',3) 

grid on 

  

%% Time Constant of Analytes (Coating: 0.8um PIB) 

tauA=36; % Benzene 

tauB=88; % Toluene 

tauC=230; % Ethylbenzene 

tauD=610; % Trimethylbenzene  

  

Sa=T/tauA; Sb=T/tauB; Sc=T/tauC; Sd=T/tauD; % Absorption Rate 

ssA=0.078; ssB=0.403; ssC=1.160; ssD=3.640; % Steady-State Sensitivity 

  

%% Exponentially Weighted Recursive Least Square Estimation Section 

%% Select Data to be analyzed 

y=yy(1:end); yb = zeros(1,5); b=y; %y(1)=0; 

kmax = length(y); % Length of the measurement data points 

a = zeros(1,4); 

  

Q=10000;  

lambdha=0.99; % Weighting factor 

W = 2.8; % Measurement Noise Covariance 

  

A = 1; 

B = 1; 

C = 1; 

D = 1; 

  

for j=1:5 

    P=Q*eye(4); % Error covariance 

     

    theta=zeros(4,kmax+1); % Initialize the unknown parameters 

    % Initial normalized concentration 

    mA=0; mB=0; mC=0; mD=0; 

     

    % Call the function EW_RLSE 

    [theta,innovation] = 

EW_RLSE(y,theta,P,W,lambdha,mA,mB,mC,mD,Sa,Sb,Sc,Sd,A,B,C,D,kmax); 

  

    a1 = theta(1,kmax+1); a2 = theta(2,kmax+1); 

    a3 = theta(3,kmax+1); a4 = theta(4,kmax+1); 
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    a(1,:) = [a1 a2 a3 a4]; 

  

    % Estimated Concentration 

    Con_A = abs(a1)/(ssA); 

    Con_B = abs(a2)/(ssB); 

    Con_C = abs(a3)/(ssC); 

    Con_D = abs(a4)/(ssD); 

     

    % Estimated Concentration Compared with Detection Limit 

    if a1>=0 || Con_A<0.100 

        A=0; 

    end 

    if a2>=0 || Con_B<0.050 

        B=0; 

    end 

    if a3>=0 || Con_C<0.030 

        C=0; 

    end 

    if a4>=0 || Con_D<0.015 

        D=0; 

    end 

end 

  

%% Analysis 

disp([a1 a2 a3 a4]) 

  

fprintf('The estimated concentration of Analyte A (in ppm) is \n') 

disp(Con_A) 

  

fprintf('The estimated concentration of Analyte B (in ppm) is \n') 

disp(Con_B) 

  

fprintf('The estimated concentration of Analyte C (in ppm) is \n') 

disp(Con_C) 

  

fprintf('The estimated concentration of Analyte D (in ppm) is \n') 

disp(Con_D) 

  

Per_CA = ((Con_A-CA)/CA)*100; 

Per_CB = ((Con_B-CB)/CB)*100; 

Per_CC = ((Con_C-CC)/CC)*100; 

Per_CD = ((Con_D-CD)/CD)*100; 

  

fprintf('\nPercentage Error of Concentration\n') 

disp (Per_CA) 

disp (Per_CB) 
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disp (Per_CC) 

disp (Per_CD) 

  

%% Plot 

  

vk=0:kmax; vvk=0:kmax-1; 

vt=(0:0.1:kmax-1)'; 

% Estimated Frequency Shift 

vest = a1*(1-exp(-Sa.*vt)) + a2*(1-exp(-Sb.*vt)) + a3*(1-exp(-Sc.*vt)) + a4*(1-exp(-

Sd.*vt));  

  

% Converting time step number to minutes and add baselines 

y = [yb y']; %yhat = [yb';yhat']; 

vest=[((0:0.1:4.9)'*0);vest]; 

vk=((0:length(y)-1)')*(T/60); vt=(0:0.1:length(y)-1)'*(T/60); 

  

figure, 

% Plot of Frequency Shift vs Time step 

h=plot(vk,y, '*b', vt, vest, '--r'); 

%title ('Frequency Shift vs Time','FontSize',24) 

%LineWidth = [3]; 

xlabel('Time (min)','FontSize',14); ylabel('Frequency Shift, \Deltaf (kHz)','FontSize',14) 

h_legend = legend('Experimental Data (B:590ppb T:420ppb EX:330ppb)', 'Estimated 

Sensor Response (B:588ppb T:445ppb EX:335ppb)'); 

set(h_legend,'FontSize',15); 

set(h,'LineWidth',3) 

grid on 

  

%% Time Evolution of Estimated Concentrations 

vk=0:kmax; 

  

CA_Actual = ones(1,length(vk))*CA*1000; 

CB_Actual = ones(1,length(vk))*CB*1000; 

CC_Actual = ones(1,length(vk))*CC*1000; 

CD_Actual = ones(1,length(vk))*CD*1000; 

  

CA_1 = ones(1,length(vk))*CA*1000*0.75; 

CB_1 = ones(1,length(vk))*CB*1000*0.75; 

CC_1 = ones(1,length(vk))*CC*1000*0.75; 

CD_1 = ones(1,length(vk))*CD*1000*0.75; 

  

CA_2 = ones(1,length(vk))*CA*1000*1.25; 

CB_2 = ones(1,length(vk))*CB*1000*1.25; 

CC_2 = ones(1,length(vk))*CC*1000*1.25; 

CD_2 = ones(1,length(vk))*CD*1000*1.25; 
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a1_time = 1000*(abs(theta(1,:))/ssA); a2_time = 1000*(abs(theta(2,:))/ssB); 

a3_time = 1000*(abs(theta(3,:))/ssC); a4_time = 1000*(abs(theta(4,:))/ssD); 

  

figure, 

h=plot(vk*(T/60),CA_Actual,'-b',vk*(T/60),a1_time,'-r',vk*(T/60),CA_1,'-

k',vk*(T/60),CA_2,'-k'); 

xlabel('Time (min)','FontSize',14); ylabel('Concentration (ppb)','FontSize',14) 

h_legend = legend('Actual Concentration', 'Estimated Concentration','25% Difference 

Line'); 

set(h_legend,'FontSize',15); 

set(h,'LineWidth',3) 

  

figure, 

h=plot(vk*(T/60),CB_Actual,'-b',vk*(T/60),a2_time,'-r',vk*(T/60),CB_1,'-

k',vk*(T/60),CB_2,'-k'); 

xlabel('Time (min)','FontSize',14); ylabel('Concentration (ppb)','FontSize',14) 

h_legend = legend('Actual Concentration', 'Estimated Concentration','25% Difference 

Line'); 

set(h_legend,'FontSize',15); 

set(h,'LineWidth',3) 

  

figure, 

h=plot(vk*(T/60),CC_Actual,'-b',vk*(T/60),a3_time,'-r',vk*(T/60),CC_1,'-

k',vk*(T/60),CC_2,'-k'); 

xlabel('Time (min)','FontSize',14); ylabel('Concentration (ppb)','FontSize',14) 

h_legend = legend('Actual Concentration', 'Estimated Concentration','25% Difference 

Line'); 

set(h_legend,'FontSize',15); 

set(h,'LineWidth',3) 

  

figure, 

h=plot(vk*(T/60),CD_Actual,'-b',vk*(T/60),a4_time,'-r',vk*(T/60),CD_1,'-

k',vk*(T/60),CD_2,'-k'); 

xlabel('Time (min)','FontSize',14); ylabel('Concentration (ppb)','FontSize',14) 

h_legend = legend('Actual Concentration', 'Estimated Concentration','25% Difference 

Line'); 

set(h_legend,'FontSize',15); 

set(h,'LineWidth',3) 

toc; 

function [theta,innovation] = 

EW_RLSE(y,theta,P,W,lambdha,mA,mB,mC,mD,Sa,Sb,Sc,Sd,A,B,C,D,kmax)  

% Exponentially Weighted RLSE Scheme 

for i=1:kmax 

    H=[mA mB mC mD]'; 

    innovation=y(i)-theta(:,i)'*H; 
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    %EW-RLSE identifier 

    K = (P*H)/(H'*P*H+W*lambdha^2); 

    theta(:,i+1) = theta(:,i) + K*[innovation]; 

    P = (1/(lambdha^2))*(P - P*(H*H')*P/(H'*P*H+(W*lambdha^2))); 

  

    mA = ((1-Sa)*mA + Sa)*A; 

    mB = ((1-Sb)*mB + Sb)*B; 

    mC = ((1-Sc)*mC + Sc)*C; 

    mD = ((1-Sd)*mD + Sd)*D; 

end 

 

 

 

B.4 MATLAB Code for Detection and Quantification of Multi-Analyte in the 

Presence of Interferents 

 

B.4.1 Four-Analyte Model 

 

a) Sorption Data 

 

%% 

% Author: Karthick Sothivelr 

%% 

% Description: Code for Detection and Quantification of Target Analytes in 

% the Presence of Interferents using EW-RLSE and Bank of Kalman Filters 

% 4-Analyte Model (Sorption) 

%% Sensor Details 

% SH-SAW Coated with 0.6 um PECH 

  

%% Cleaning 

clear all 

close all 

clc 

tic; 

  

%% Open and read the measurement file  

FID = fopen('pech_sorp_data.ini','r'); % Type in the file name 

data = textscan(FID,'%f %f'); 

fclose(FID); 

  

%% USER INPUT 

% Type in the 'End Point' of data 

data_end = [105]; 

  

% Actual Concentration from FROG (GC-PID) 
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CA = 0.325; CB = 0.465; CC = 0.540; start=3; q=10000; 

  

%% Data Preprocessing (Selection of Analyte-In Point) 

nn = 3; % Number of points to check to determine the best curve fit 

T = 12; % Sampling period T=12s 

  

tau = zeros(1,length(data_end)); 

Fe = zeros(1,length(data_end)); 

Eps = zeros(1,nn); 

  

for i=1:length(data_end) 

    % Section to find the best curve fit 

    for j=1:nn 

       if i==1 

           y = data{2}((1+(j-1)):data_end(i)); 

       end 

       if i>1 

           y = data{2}((data_end(i-1)+1+(j-1)):data_end(i)); 

       end 

     kmax = length(y); 

      try 

       [h_fit, G] = fit((0:kmax-1)',y,'fe*(1-exp(-S*x))','StartPoint',[1 1]); 

      catch err 

          j = j-1; 

          break 

      end 

      Eps(j) = G.sse; % Sum of error squared   

    end 

     

    % Section to generate the best curve 

    [Y,I] = min(Eps); 

        if i==1 

            y = data{2}((1+(I-1)):data_end(i)); 

        end 

        if i>1 

            y = data{2}((data_end(i-1)+1+(I-1)):data_end(i)); 

        end 

    kmax = length(y); 

    vt=(0:0.1:kmax-1)'; vk=(0:kmax-1)'; 

end 

% Plot of Baseline Corrected Data 

figure, 

plot(y(start:end),'*') 

  

%% Time Constant of Analytes (Coating: 0.6um PECH) 

tauA=26.5; % Benzene 
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tauB=77.6; % Toluene 

tauC=175; % Ethylbenzene 

  

Sa=T/tauA; Sb=T/tauB; Sc=T/tauC; % Absorption Rate 

ssA=0.109; ssB=0.435; ssC=1.450; ssD=2; ssE=6;% Steady-State Sensitivity 

  

tauD = [700]; % Trimethylbenzene 

Sd = T./tauD; 

  

%% Exponentially Weighted Recursive Least Square Estimation Section 

%% Select Data to be analyzed 

y=y(start:end); yb = zeros(1,5); b=y; %y(1)=0; 

kmax = length(y); % Length of the measurement data points 

a = zeros(length(Sd),4); eps = zeros(length(Sd),1); 

Q=q;  

  

lambdha=0.99; % Weighting factor 

W = 0.1; % Measurement Noise Covariance 

  

for j=1:length(Sd) 

     

    P=Q*eye(4); % Error covariance 

     

    % Initial normalized concentration 

    mA=0; mB=0; mC=0; mD=0; 

     

    theta=zeros(4,kmax+1); % Initialize the unknown parameters 

     

    % Call the function EW_RLSE_4A 

    [theta,innovation] = 

EW_RLSE_4A(y,theta,P,W,lambdha,mA,mB,mC,mD,Sa,Sb,Sc,Sd(j),kmax); 

     

    %% Analysis 

    a1 = theta(1,kmax+1); a2 = theta(2,kmax+1); 

    a3 = theta(3,kmax+1); a4 = theta(4,kmax+1); 

    a(j,:) = [a1 a2 a3 a4]; 

  

    vvk=0:kmax-1; 

    vt=(0:0.1:kmax)'; 

     

    % Estimated Frequency Shift 

    verr = a1*(1-exp(-Sa.*vvk)) + a2*(1-exp(-Sb.*vvk)) + a3*(1-exp(-Sc.*vvk)) + a4*(1-

exp(-Sd(j).*vvk)); verr=verr'; 

  

    ytest = y(1:length(vvk)); 

    eps(j,1) = immse(ytest,verr); 
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    if a1>0 || a2>0 || a3>0 || a4>0 

        eps(j,1)=100; 

    end 

  

end 

  

[ms_error, Ind] = min(eps); 

  

a1 = a(Ind,1); a2 = a(Ind,2); 

a3 = a(Ind,3); a4 = a(Ind,4); 

  

clearvars Sd 

Sd = T/tauD(Ind); 

  

%% Estimated Concentration 

Con_A = abs(a1)/(ssA); 

Con_B = abs(a2)/(ssB); 

Con_C = abs(a3)/(ssC); 

Con_D = abs(a4)/(ssD); 

  

%% Bank of Kalman Filters Section 

  

%% Set the concentration ranges for each analyte 

% Concentration Range in ppm 

B = 0.8*Con_A:0.02:1.2*Con_A; 

Toluene = 0.8*Con_B:0.02:1.2*Con_B; 

EX = 0.8*Con_C:0.02:1.2*Con_C; 

TMB = 0.8*Con_D:0.02:1.2*Con_D; 

  

% Generate the unknown parameters vector 

% Frequency shift range 

alpha1=-B*ssA; 

alpha2=-Toluene*ssB; 

alpha3=-EX*ssC; 

alpha4=-TMB*ssD; 

  

ne = length(B)*length(Toluene)*length(EX)*length(TMB); % Number of filters 

C = zeros(ne,4); 

  

ind=1; 

for i=1:length(B) 

    for j=1:length(Toluene) 

        for k=1:length(EX) 

            for l=1:length(TMB) 

                C(ind,:) = [alpha1(1,i) alpha2(1,j) alpha3(1,k) alpha4(1,l)]; 
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                ind = ind+1; 

            end 

        end 

    end 

end 

  

%% Intialize the weights of each filter 

w = zeros([ne,kmax+1]); cw=zeros([ne,kmax]);% weight 

w(:,1) = w(:,1) + 1/ne; 

  

%% Initialization of State and Error Covariance 

yhat = zeros([ne,kmax]); inno=yhat; 

x = zeros([4,kmax+1,ne]); 

P = zeros(4,4,kmax+1,ne); 

  

Pt = diag([1 1 1 1]); 

for i=1:ne 

    P(:,:,1,i) = P(:,:,1,i) + Pt; 

end 

  

%% Process and Measurement Noise 

V = diag([1e-5 1e-5 1e-5 1e-5]); 

W = 1e-5; 

  

%% Bank of Kalman Filters Scheme 

for i=1:kmax 

    % Setting the first measurement to zero 

    if i==1 

        y(i) = y(i)*0; 

    end 

  

    for j=1:ne 

        [x(:,i+1,j),P(:,:,i+1,j),yhat(j,i),cw(j,i),inno(j,i)] = 

kalman_filter4A(x(:,i,j),P(:,:,i,j),y(i),C(j,:),W,V,w(j,i),Sa,Sb,Sc,Sd,i);     

    end 

    % Normalized Weights 

    c = sum(cw(:,i)); 

    w(:,i+1) = cw(:,i)./c;     

end 

  

%% Analysis 

  

[Y, I]=max(w(:,kmax+1)); 

[Bs, Is]=sort(w(:,kmax+1),'descend'); 

  

Ea = C(I,1); 
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Eb = C(I,2); 

Ec = C(I,3); 

Ed = C(I,4); 

  

% Estimated Concentration 

Con_A = abs(Ea)/(ssA); 

Con_B = abs(Eb)/(ssB); 

Con_C = abs(Ec)/(ssC); 

Con_D = abs(Ed)/(ssD); 

  

Con = [Con_A; Con_B; Con_C]; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Section for Lower Limit of Time Constants 

%% Time Constant of Analytes (Coating: 0.6um PECH) 

tauA=26.5-8; % Benzene 

tauB=77.6-3; % Toluene 

tauC=175-13; % Ethylbenzene 

  

Sa=T/tauA; Sb=T/tauB; Sc=T/tauC; % Absorption Rate 

ssA=0.109; ssB=0.435; ssC=1.450; ssD=2; ssE=6;% Steady-State Sensitivity 

  

tauD = [700]; % Trimethylbenzene 

Sd = T./tauD; 

  

%% Exponentially Weighted Recursive Least Square Estimation Section 

%% Select Data to be analyzed 

y=y(1:end); yb = zeros(1,5); b=y; %y(1)=0; 

kmax = length(y); % Length of the measurement data points 

a = zeros(length(Sd),4); eps = zeros(length(Sd),1); 

Q=q;  

  

lambdha=0.99; % Weighting factor 

W = 0.1; % Measurement Noise Covariance 

  

for j=1:length(Sd) 

     

    P=Q*eye(4); % Error covariance 

     

    % Initial normalized concentration 

    mA=0; mB=0; mC=0; mD=0; 

     

    theta=zeros(4,kmax+1); % Initialize the unknown parameters 
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    [theta,innovation] = 

EW_RLSE_4A(y,theta,P,W,lambdha,mA,mB,mC,mD,Sa,Sb,Sc,Sd(j),kmax); 

         

    %% Analysis 

    a1 = theta(1,kmax+1); a2 = theta(2,kmax+1); 

    a3 = theta(3,kmax+1); a4 = theta(4,kmax+1); 

  

    a(j,:) = [a1 a2 a3 a4]; 

  

    vvk=0:kmax-1; 

    vt=(0:0.1:kmax)'; 

     

    % Estimated Frequency Shift 

    verr = a1*(1-exp(-Sa.*vvk)) + a2*(1-exp(-Sb.*vvk)) + a3*(1-exp(-Sc.*vvk)) + a4*(1-

exp(-Sd(j).*vvk)); verr=verr'; 

  

    ytest = y(1:length(vvk)); 

    eps(j,1) = immse(ytest,verr); 

     

    if a1>0 || a2>0 || a3>0 || a4>0 

        eps(j,1)=100; 

    end 

  

end 

  

[ms_error, Ind] = min(eps); 

  

a1 = a(Ind,1); a2 = a(Ind,2); 

a3 = a(Ind,3); a4 = a(Ind,4); 

  

clearvars Sd 

Sd = T/tauD(Ind); 

  

%% Estimated Concentration 

Con_A = abs(a1)/(ssA); 

Con_B = abs(a2)/(ssB); 

Con_C = abs(a3)/(ssC); 

Con_D = abs(a4)/(ssD); 

  

%% Bank of Kalman Filters Section  

%% Set the concentration ranges for each analyte 

% Concentration Range in ppm 

B = 0.8*Con_A:0.02:1.2*Con_A; 

Toluene = 0.8*Con_B:0.02:1.2*Con_B; 

EX = 0.8*Con_C:0.02:1.2*Con_C; 

TMB = 0.8*Con_D:0.02:1.2*Con_D; 
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% Generate the unknown parameters vector 

% Frequency shift range 

alpha1=-B*ssA; 

alpha2=-Toluene*ssB; 

alpha3=-EX*ssC; 

alpha4=-TMB*ssD; 

  

ne = length(B)*length(Toluene)*length(EX)*length(TMB); % Number of filters 

C = zeros(ne,4); 

  

ind=1; 

for i=1:length(B) 

    for j=1:length(Toluene) 

        for k=1:length(EX) 

            for l=1:length(TMB) 

                C(ind,:) = [alpha1(1,i) alpha2(1,j) alpha3(1,k) alpha4(1,l)]; 

                ind = ind+1; 

            end 

        end 

    end 

end 

  

%% Intialize the weights of each filter 

w = zeros([ne,kmax+1]); cw=zeros([ne,kmax]);% weight 

w(:,1) = w(:,1) + 1/ne; 

  

%% Initialization of State and Error Covariance 

yhat = zeros([ne,kmax]); inno=yhat; 

x = zeros([4,kmax+1,ne]); 

P = zeros(4,4,kmax+1,ne); 

xest = zeros(4,kmax+1); Pest = zeros(4,4,kmax+1); 

  

Pt = diag([1 1 1 1]); 

for i=1:ne 

    P(:,:,1,i) = P(:,:,1,i) + Pt; 

end 

  

%% Process and Measurement Noise 

V = diag([1e-5 1e-5 1e-5 1e-5]); 

W = 1e-5; 

  

%% Bank of Kalman Filters Scheme 

for i=1:kmax 

    % Setting the first measurement to zero 

    if i==1 
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        y(i) = y(i)*0; 

    end 

  

    for j=1:ne 

        [x(:,i+1,j),P(:,:,i+1,j),yhat(j,i),cw(j,i),inno(j,i)] = 

kalman_filter4A(x(:,i,j),P(:,:,i,j),y(i),C(j,:),W,V,w(j,i),Sa,Sb,Sc,Sd,i);     

    end 

    % Normalized Weights 

    c = sum(cw(:,i)); 

    w(:,i+1) = cw(:,i)./c;     

end 

  

%% Analysis 

  

[Y, I]=max(w(:,kmax+1)); 

[Bs, Is]=sort(w(:,kmax+1),'descend'); 

  

Ea = C(I,1); 

Eb = C(I,2); 

Ec = C(I,3); 

Ed = C(I,4); 

  

% Estimated Concentration 

Con_A = abs(Ea)/(ssA); 

Con_B = abs(Eb)/(ssB); 

Con_C = abs(Ec)/(ssC); 

Con_D = abs(Ed)/(ssD); 

  

Con = [Con_A; Con_B; Con_C]+Con; 

  

%% Section for Upper Limit of Time Constants 

%% Time Constant of Analytes (Coating: 0.6um PECH) 

tauA=26.5+8; % Benzene 

tauB=77.6+3; % Toluene 

tauC=175+13; % Ethylbenzene 

  

Sa=T/tauA; Sb=T/tauB; Sc=T/tauC; % Absorption Rate 

ssA=0.109; ssB=0.435; ssC=1.450; ssD=2; ssE=6;% Steady-State Sensitivity 

  

tauD = [700]; % Trimethylbenzene 

Sd = T./tauD; 

  

%% Exponentially Weighted Recursive Least Square Estimation Section 

%% Select Data to be analyzed 

y=y(1:end); yb = zeros(1,5); b=y; %y(1)=0; 

kmax = length(y); % Length of the measurement data points 
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a = zeros(length(Sd),4); eps = zeros(length(Sd),1); 

Q=q;  

  

lambdha=0.99; % Weighting factor 

W = 0.1; % Measurement Noise Covariance 

  

for j=1:length(Sd) 

     

    P=Q*eye(4); % Error covariance 

     

    % Initial normalized concentration 

    mA=0; mB=0; mC=0; mD=0; 

     

    theta=zeros(4,kmax+1); % Initialize the unknown parameters 

     

    [theta,innovation] = 

EW_RLSE_4A(y,theta,P,W,lambdha,mA,mB,mC,mD,Sa,Sb,Sc,Sd(j),kmax); 

         

    %% Analysis 

    a1 = theta(1,kmax+1); a2 = theta(2,kmax+1); 

    a3 = theta(3,kmax+1); a4 = theta(4,kmax+1); 

  

    a(j,:) = [a1 a2 a3 a4]; 

  

    vvk=0:kmax-1; 

    vt=(0:0.1:kmax)'; 

     

    % Estimated Frequency Shift 

    verr = a1*(1-exp(-Sa.*vvk)) + a2*(1-exp(-Sb.*vvk)) + a3*(1-exp(-Sc.*vvk)) + a4*(1-

exp(-Sd(j).*vvk)); verr=verr'; 

  

    ytest = y(1:length(vvk)); 

    eps(j,1) = immse(ytest,verr); 

     

    if a1>0 || a2>0 || a3>0 || a4>0 

        eps(j,1)=100; 

    end 

  

end 

  

[ms_error, Ind] = min(eps); 

  

a1 = a(Ind,1); a2 = a(Ind,2); 

a3 = a(Ind,3); a4 = a(Ind,4); 

  

clearvars Sd 
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Sd = T/tauD(Ind); 

  

%% Estimated Concentration 

Con_A = abs(a1)/(ssA); 

Con_B = abs(a2)/(ssB); 

Con_C = abs(a3)/(ssC); 

Con_D = abs(a4)/(ssD); 

  

%% Bank of Kalman Filters Section  

%% Set the concentration ranges for each analyte 

  

% Concentration Range in ppm 

B = 0.8*Con_A:0.02:1.2*Con_A; 

Toluene = 0.8*Con_B:0.02:1.2*Con_B; 

EX = 0.8*Con_C:0.02:1.2*Con_C; 

TMB = 0.8*Con_D:0.02:1.2*Con_D; 

  

% Generate the unknown parameters vector 

% Frequency shift range 

alpha1=-B*ssA; 

alpha2=-Toluene*ssB; 

alpha3=-EX*ssC; 

alpha4=-TMB*ssD; 

  

ne = length(B)*length(Toluene)*length(EX)*length(TMB); % Number of filters 

C = zeros(ne,4); 

  

ind=1; 

for i=1:length(B) 

    for j=1:length(Toluene) 

        for k=1:length(EX) 

            for l=1:length(TMB) 

                C(ind,:) = [alpha1(1,i) alpha2(1,j) alpha3(1,k) alpha4(1,l)]; 

                ind = ind+1; 

            end 

        end 

    end 

end 

  

%% Intialize the weights of each filter 

w = zeros([ne,kmax+1]); cw=zeros([ne,kmax]);% weight 

w(:,1) = w(:,1) + 1/ne; 

  

%% Initialization of State and Error Covariance 

yhat = zeros([ne,kmax]); inno=yhat; 

x = zeros([4,kmax+1,ne]); 
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P = zeros(4,4,kmax+1,ne); 

xest = zeros(4,kmax+1); Pest = zeros(4,4,kmax+1); 

  

Pt = diag([1 1 1 1]); 

for i=1:ne 

    P(:,:,1,i) = P(:,:,1,i) + Pt; 

end 

  

%% Process and Measurement Noise 

V = diag([1e-5 1e-5 1e-5 1e-5]); 

W = 1e-5; 

Psum = zeros(4,4); 

  

%% Bank of Kalman Filters Scheme 

for i=1:kmax 

    % Setting the first measurement to zero 

    if i==1 

        y(i) = y(i)*0; 

    end 

  

    for j=1:ne 

        [x(:,i+1,j),P(:,:,i+1,j),yhat(j,i),cw(j,i),inno(j,i)] = 

kalman_filter4A(x(:,i,j),P(:,:,i,j),y(i),C(j,:),W,V,w(j,i),Sa,Sb,Sc,Sd,i);     

    end 

    % Normalized Weights 

    c = sum(cw(:,i)); 

    w(:,i+1) = cw(:,i)./c; 

end 

  

%% Plot and Analysis 

  

vk=0:kmax; vvk=0:kmax-1; 

vt=(0:0.1:kmax-1)'; 

  

[Y, I]=max(w(:,kmax+1)); 

[Bs, Is]=sort(w(:,kmax+1),'descend'); 

  

Ea = C(I,1); 

Eb = C(I,2); 

Ec = C(I,3); 

Ed = C(I,4); 

  

% Estimated Concentration 

Con_A = abs(Ea)/(ssA); 

Con_B = abs(Eb)/(ssB); 

Con_C = abs(Ec)/(ssC); 
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Con_D = abs(Ed)/(ssD); 

  

Con = [Con_A; Con_B; Con_C]+Con; 

  

% Estimated Frequency Shift 

vest = Ea*(1-exp(-Sa.*vt)) + Eb*(1-exp(-Sb.*vt)) + Ec*(1-exp(-Sc.*vt)) + Ed*(1-exp(-

Sd.*vt));  

  

% Converting time step number to minutes and add baselines 

yp = [yb y']; %yhat = [yb';yhat']; 

vest=[((0:0.1:4.9)'*0);vest]; 

vk=((0:length(yp)-1)')*(T/60); vt=(0:0.1:length(yp)-1)'*(T/60); 

  

% Plot of Frequency Shift vs Time 

figure, 

h=plot(vk,yp, '*b', vt, vest, '--r'); 

xlabel('Time (min)','FontSize',14); ylabel('Frequency Shift, \Deltaf (kHz)','FontSize',14) 

h_legend = legend('Experimental data', 'Estimated Sensor Response'); 

set(h_legend,'FontSize',15); 

set(h,'LineWidth',3) 

grid on 

  

%% 

gg = inno'; 

eps = mean(abs(gg)); 

[X, Ix]=min(eps); 

  

% Average Concentrations 

Con = Con/3; 

  

% Display Results 

fprintf('\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n') 

fprintf('\n Average Results \n') 

  

fprintf('The estimated concentration of Analyte A (in ppm) is \n') 

disp(Con(1)) 

  

fprintf('The estimated concentration of Analyte B (in ppm) is \n') 

disp(Con(2)) 

  

fprintf('The estimated concentration of Analyte C (in ppm) is \n') 

disp(Con(3)) 

  

Per_CA = ((Con(1)-CA)/CA)*100; 

Per_CB = ((Con(2)-CB)/CB)*100; 

Per_CC = ((Con(3)-CC)/CC)*100; 
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fprintf('\nPercentage Error of Concentration\n') 

disp (Per_CA) 

disp (Per_CB) 

disp (Per_CC) 

  

toc; 

 

function [theta,innovation] = 

EW_RLSE_4A(y,theta,P,W,lambdha,mA,mB,mC,mD,Sa,Sb,Sc,Sd,kmax)  

  

for i=1:kmax 

    H=[mA mB mC mD]'; 

    innovation=y(i)-theta(:,i)'*H; 

  

    %EW-RLSE identifier 

    K = (P*H)/(H'*P*H+W*lambdha^2); 

    theta(:,i+1) = theta(:,i) + K*[innovation]; 

    P = (1/(lambdha^2))*(P - P*(H*H')*P/(H'*P*H+(W*lambdha^2))); 

  

    mA = ((1-Sa)*mA + Sa); 

    mB = ((1-Sb)*mB + Sb); 

    mC = ((1-Sc)*mC + Sc); 

    mD = ((1-Sd)*mD + Sd); 

end 

 

function [x,P,h,cw,inno] = kalman_filter4A(x,P,ymeas,C,W,V,w,Sa,Sb,Sc,Sd,i) 

% KF Kalman Filter for linear dynamic systems 

% Returns state estimate x, Error Covariance P, yhat(or h) 

% Inputs:   x: "a priori" state estimate 

%           P: "a priori" estimated state covariance 

%           ymeas: current measurement 

%           V: process noise covariance  

%           W: measurement noise covariance 

% Output:   x: "a posteriori" state estimate 

%           P: "a posteriori" state covariance 

  

G = [1]; % Matrix G (1 by 1 Matrix) 

F = eye(4); 

U = 1; % Step Input 

A = diag([1-Sa, 1-Sb, 1-Sc, 1-Sd]); 

B = [Sa; Sb; Sc; Sd]; 

 

% Finding the innovation 

h = C(1,1)*(1-exp(-Sa.*(i-1))) + C(1,2)*(1-exp(-Sb.*(i-1))) + C(1,3)*(1-exp(-Sc.*(i-1))) 

+ C(1,4)*(1-exp(-Sd.*(i-1))); 
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inno = ymeas-h; 

  

% Estimator 

K = (A*P*C')/(C*P*C' + G*W*G'); 

x = A*x + B*U + K*inno; 

P = (A-K*C)*P*(A-K*C)' + K*G*W*G'*K' + F*V*F'; 

  

% Weight Update Equations 

S = C*P*C' + W; 

 

% Weight before normalization 

cw = ((abs(S))^(-0.5))*(exp(((-0.5)*(inno)*(inno))/(S)))*w; 

 

 

b) Desorption Data 

 

%% 

% Author: Karthick Sothivelr 

%% 

% Description: Code for Detection and Quantification of Target Analytes in 

% the Presence of Interferents using EW-RLSE and Bank of Kalman Filters 

% 4-Analyte Model (Desorption) 

%% Sensor Details 

% SH-SAW Coated with 0.6 um PECH 

  

%% Cleaning 

clear all 

close all 

clc 

tic; 

  

%% Open and read the measurement file  

FID = fopen('pech_desorp_data.ini','r'); % Type in the file name 

data = textscan(FID,'%f %f'); 

fclose(FID); 

  

%% USER INPUT 

% Type in the 'End Point' of data 

data_end = [101]; 

  

% Actual Concentration from FROG (GC-PID) 

CA = 0.325; CB = 0.565; CC = 0.540; start=0+1; q=10000; 

  

%% Data Preprocessing (Selection of Analyte-In Point) 

T = 12; % Sampling period T=12s 
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y0 = data{2}((start+1:data_end(1))); kmax = length(y0); y0 = y0-y0(1); 

y1 = data{2}((start+2:data_end(1))); kmax1 = length(y1); y1 = y1-y1(1); 

y2 = data{2}((start+3:data_end(1))); kmax2 = length(y2); y2 = y2-y2(1); 

y3 = data{2}((start+4:data_end(1))); kmax3 = length(y3); y3 = y3-y3(1); 

y4 = data{2}((start+5:data_end(1))); kmax4 = length(y4); y4 = y4-y4(1); 

y5 = data{2}((start+6:data_end(1))); kmax5 = length(y5); y5 = y5-y5(1); 

y6 = data{2}((start+7:data_end(1))); kmax6 = length(y6); y6 = y6-y6(1); 

y7 = data{2}((start+8:data_end(1))); kmax7 = length(y7); y7 = y7-y7(1); 

  

y=y0; 

  

% Plot of Baseline Corrected Data 

vk=0:length(y)-1; 

figure, 

h=plot(vk*(T/60),y,'*'); 

xlabel('Time (min)','FontSize',14); ylabel('Frequency Shift, \Deltaf (kHz)','FontSize',14) 

set(h,'LineWidth',3) 

grid on 

  

%% Time Constant of Analytes (Coating: 0.6um PECH) 

tauA=26.5; % Benzene 

tauB=77.6; % Toluene 

tauC=175; % Ethylbenzene 

  

Sa=T/tauA; Sb=T/tauB; Sc=T/tauC; % Absorption Rate 

ssA=0.109; ssB=0.435; ssC=1.450; ssD=2; ssE=6;% Steady-State Sensitivity 

  

tauD = [700]; % Trimethylbenzene 

Sd = T./tauD; 

  

%% Exponentially Weighted Recursive Least Square Estimation Section 

%% Select Data to be analyzed 

y=y(1:end); yb = zeros(1,5); b=y; %y(1)=0; 

kmax = length(y); % Length of the measurement data points 

a = zeros(length(Sd),4); eps = zeros(length(Sd),1); 

Q=q;  

  

lambdha=0.99; % Weighting factor 

W = 1; % Measurement Noise Covariance 

  

for j=1:length(Sd) 

     

    P=Q*eye(4); % Error covariance 

     

    % Initial normalized concentration 

    mA=0; mB=0; mC=0; mD=0; 
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    theta=zeros(4,kmax+1); % Initialize the unknown parameters 

     

    [theta,innovation] = 

EW_RLSE_4A(y,theta,P,W,lambdha,mA,mB,mC,mD,Sa,Sb,Sc,Sd(j),kmax); 

         

    %% Analysis 

    a1 = theta(1,kmax+1); a2 = theta(2,kmax+1); 

    a3 = theta(3,kmax+1); a4 = theta(4,kmax+1); 

  

    a(j,:) = [a1 a2 a3 a4]; 

  

    vvk=0:kmax-1; 

    vt=(0:0.1:kmax)'; 

     

    % Estimated Frequency Shift 

    verr = a1*(1-exp(-Sa.*vvk)) + a2*(1-exp(-Sb.*vvk)) + a3*(1-exp(-Sc.*vvk)) + a4*(1-

exp(-Sd(j).*vvk)); verr=verr'; 

  

    ytest = y(1:length(vvk)); 

    eps(j,1) = immse(ytest,verr); 

     

    if a1<0 || a2<0 || a3<0 || a4<0 

        eps(j,1)=100; 

    end 

end 

  

[ms_error, Ind] = min(eps); 

  

a1 = a(Ind,1); a2 = a(Ind,2); 

a3 = a(Ind,3); a4 = a(Ind,4); 

  

clearvars Sd 

Sd = T/tauD(Ind); 

  

%% Estimated Concentration 

Con_A = abs(a1)/(ssA); 

Con_B = abs(a2)/(ssB); 

Con_C = abs(a3)/(ssC); 

Con_D = abs(a4)/(ssD); 

  

%% Bank of Kalman Filter Section  

%% Set the concentration ranges for each analyte 

% Concentration Range in ppm 

B = 0.8*Con_A:0.02:1.2*Con_A; 

Toluene = 0.8*Con_B:0.02:1.2*Con_B; 
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EX = 0.8*Con_C:0.02:1.2*Con_C; 

TMB = 0.8*Con_D:0.02:1.2*Con_D; 

  

% Generate the unknown parameters vector 

% Frequency shift range 

alpha1=B*ssA; 

alpha2=Toluene*ssB; 

alpha3=EX*ssC; 

alpha4=TMB*ssD; 

  

ne = length(B)*length(Toluene)*length(EX)*length(TMB); % Number of filters 

C = zeros(ne,4); 

  

ind=1; 

for i=1:length(B) 

    for j=1:length(Toluene) 

        for k=1:length(EX) 

            for l=1:length(TMB) 

                C(ind,:) = [alpha1(1,i) alpha2(1,j) alpha3(1,k) alpha4(1,l)]; 

                ind = ind+1; 

            end 

        end 

    end 

end 

  

%% Intialize the weights of each filter 

w = zeros([ne,kmax+1]); cw=zeros([ne,kmax]);% weight 

w(:,1) = w(:,1) + 1/ne; 

  

%% Initialization of State and Error Covariance 

yhat = zeros([ne,kmax]); inno=yhat; 

x = zeros([4,kmax+1,ne]); 

P = zeros(4,4,kmax+1,ne); 

xest = zeros(4,kmax+1); Pest = zeros(4,4,kmax+1); 

  

Pt = diag([1 1 1 1]); 

for i=1:ne 

    P(:,:,1,i) = P(:,:,1,i) + Pt; 

end 

  

%% Process and Measurement Noise 

V = diag([1e-5 1e-5 1e-5 1e-5]); 

W = 1e-5; 

  

%% Bank of Kalman Filters Scheme 

for i=1:kmax 
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    % Setting the first measurement to zero 

    if i==1 

        y(i) = y(i)*0; 

    end 

  

    for j=1:ne 

        [x(:,i+1,j),P(:,:,i+1,j),yhat(j,i),cw(j,i),inno(j,i)] = 

kalman_filter4A(x(:,i,j),P(:,:,i,j),y(i),C(j,:),W,V,w(j,i),Sa,Sb,Sc,Sd,i);     

    end 

    % Normalized Weights 

    c = sum(cw(:,i)); 

    w(:,i+1) = cw(:,i)./c;     

end 

  

%% Analysis 

  

[Y, I]=max(w(:,kmax+1)); 

[Bs, Is]=sort(w(:,kmax+1),'descend'); 

  

Ea = C(I,1); 

Eb = C(I,2); 

Ec = C(I,3); 

Ed = C(I,4); 

  

% Estimated Concentration 

Con_A = abs(Ea)/(ssA); 

Con_B = abs(Eb)/(ssB); 

Con_C = abs(Ec)/(ssC); 

Con_D = abs(Ed)/(ssD); 

  

Con = [Con_A; Con_B; Con_C]; 

  

%% Section for Lower Limit of Time Constants 

%% Time Constant of Analytes (Coating: 0.6um PECH) 

tauA=26.5-8; % Benzene 

tauB=77.6-3; % Toluene 

tauC=175-13; % Ethylbenzene 

  

Sa=T/tauA; Sb=T/tauB; Sc=T/tauC; % Absorption Rate 

ssA=0.109; ssB=0.435; ssC=1.450; ssD=2; ssE=6;% Steady-State Sensitivity 

  

tauD = [700]; % Trimethylbenzene 

Sd = T./tauD; 

  

%% Exponentially Weighted Recursive Least Square Estimation Section 

%% Select Data to be analyzed 
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y=y(1:end); yb = zeros(1,5); b=y; %y(1)=0; 

kmax = length(y); % Length of the measurement data points 

a = zeros(length(Sd),4); eps = zeros(length(Sd),1); 

Q=q;  

  

lambdha=0.99; % Weighting factor 

W = 1; % Measurement Noise Covariance 

  

for j=1:length(Sd) 

     

    P=Q*eye(4); % Error covariance 

     

    % Initial normalized concentration 

    mA=0; mB=0; mC=0; mD=0; 

     

    theta=zeros(4,kmax+1); % Initialize the unknown parameters 

     

    [theta,innovation] = 

EW_RLSE_4A(y,theta,P,W,lambdha,mA,mB,mC,mD,Sa,Sb,Sc,Sd(j),kmax); 

         

    %% Analysis 

    a1 = theta(1,kmax+1); a2 = theta(2,kmax+1); 

    a3 = theta(3,kmax+1); a4 = theta(4,kmax+1); 

  

    a(j,:) = [a1 a2 a3 a4]; 

  

    vvk=0:kmax-1; 

    vt=(0:0.1:kmax)'; 

     

    % Estimated Frequency Shift 

    verr = a1*(1-exp(-Sa.*vvk)) + a2*(1-exp(-Sb.*vvk)) + a3*(1-exp(-Sc.*vvk)) + a4*(1-

exp(-Sd(j).*vvk)); verr=verr'; 

  

    ytest = y(1:length(vvk)); 

    eps(j,1) = immse(ytest,verr); 

     

    if a1<0 || a2<0 || a3<0 || a4<0 

        eps(j,1)=100; 

    end 

  

end 

  

[ms_error, Ind] = min(eps); 

  

a1 = a(Ind,1); a2 = a(Ind,2); 

a3 = a(Ind,3); a4 = a(Ind,4); 
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clearvars Sd 

Sd = T/tauD(Ind); 

  

%% Estimated Concentration 

Con_A = abs(a1)/(ssA); 

Con_B = abs(a2)/(ssB); 

Con_C = abs(a3)/(ssC); 

Con_D = abs(a4)/(ssD); 

  

%% Bank of Kalman Filters Section  

%% Set the concentration ranges for each analyte 

  

% Concentration Range in ppm 

B = 0.8*Con_A:0.02:1.2*Con_A; 

Toluene = 0.8*Con_B:0.02:1.2*Con_B; 

EX = 0.8*Con_C:0.02:1.2*Con_C; 

TMB = 0.8*Con_D:0.02:1.2*Con_D; 

  

% Frequency shift range 

alpha1=B*ssA; 

alpha2=Toluene*ssB; 

alpha3=EX*ssC; 

alpha4=TMB*ssD; 

  

ne = length(B)*length(Toluene)*length(EX)*length(TMB); % Number of filters 

C = zeros(ne,4); 

  

ind=1; 

for i=1:length(B) 

    for j=1:length(Toluene) 

        for k=1:length(EX) 

            for l=1:length(TMB) 

                C(ind,:) = [alpha1(1,i) alpha2(1,j) alpha3(1,k) alpha4(1,l)]; 

                ind = ind+1; 

            end 

        end 

    end 

end 

  

%% Intialize the weights of each filter 

w = zeros([ne,kmax+1]); cw=zeros([ne,kmax]);% weight 

w(:,1) = w(:,1) + 1/ne; 

  

%% Initialization of State and Error Covariance 

yhat = zeros([ne,kmax]); inno=yhat; 
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x = zeros([4,kmax+1,ne]); 

P = zeros(4,4,kmax+1,ne); 

xest = zeros(4,kmax+1); Pest = zeros(4,4,kmax+1); 

  

Pt = diag([1 1 1 1]); 

for i=1:ne 

    P(:,:,1,i) = P(:,:,1,i) + Pt; 

end 

  

%% Process and Measurement Noise 

V = diag([1e-5 1e-5 1e-5 1e-5]); 

W = 1e-5; 

  

%% Bank of Kalman Filters Scheme 

for i=1:kmax 

    % Setting the first measurement to zero 

    if i==1 

        y(i) = y(i)*0; 

    end 

  

    for j=1:ne 

        [x(:,i+1,j),P(:,:,i+1,j),yhat(j,i),cw(j,i),inno(j,i)] = 

kalman_filter4A(x(:,i,j),P(:,:,i,j),y(i),C(j,:),W,V,w(j,i),Sa,Sb,Sc,Sd,i);     

    end 

    % Normalized Weights 

    c = sum(cw(:,i)); 

    w(:,i+1) = cw(:,i)./c; 

end 

  

%% Analysis 

  

[Y, I]=max(w(:,kmax+1)); 

[Bs, Is]=sort(w(:,kmax+1),'descend'); 

  

Ea = C(I,1); 

Eb = C(I,2); 

Ec = C(I,3); 

Ed = C(I,4); 

  

% Estimated Concentration 

Con_A = abs(Ea)/(ssA); 

Con_B = abs(Eb)/(ssB); 

Con_C = abs(Ec)/(ssC); 

Con_D = abs(Ed)/(ssD); 

  

Con = [Con_A; Con_B; Con_C]+Con; 
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%% Section for Upper Limit of Time Constants 

%% Time Constant of Analytes (Coating: 0.6um PECH) 

tauA=26.5+8; % Benzene 

tauB=77.6+3; % Toluene 

tauC=175+13; % Ethylbenzene 

  

Sa=T/tauA; Sb=T/tauB; Sc=T/tauC; % Absorption Rate 

ssA=0.109; ssB=0.435; ssC=1.450; ssD=2; ssE=6;% Steady-State Sensitivity 

  

tauD = [700]; % Trimethylbenzene 

Sd = T./tauD; 

  

%% Exponentially Weighted Recursive Least Square Estimation Section 

%% Select Data to be analyzed 

y=y(1:end); yb = zeros(1,5); b=y; %y(1)=0; 

kmax = length(y); % Length of the measurement data points 

a = zeros(length(Sd),4); eps = zeros(length(Sd),1); 

Q=q;  

  

lambdha=0.99; % Weighting factor 

W = 1; % Measurement Noise Covariance 

  

for j=1:length(Sd) 

     

    P=Q*eye(4); % Error covariance 

     

    % Initial normalized concentration 

    mA=0; mB=0; mC=0; mD=0; 

     

    theta=zeros(4,kmax+1); % Initialize the unknown parameters 

     

    [theta,innovation] = 

EW_RLSE_4A(y,theta,P,W,lambdha,mA,mB,mC,mD,Sa,Sb,Sc,Sd(j),kmax); 

         

    %% Analysis 

    a1 = theta(1,kmax+1); a2 = theta(2,kmax+1); 

    a3 = theta(3,kmax+1); a4 = theta(4,kmax+1); 

  

    a(j,:) = [a1 a2 a3 a4]; 

  

    vvk=0:kmax-1; 

    vt=(0:0.1:kmax)'; 

     

    % Estimated Frequency Shift 
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    verr = a1*(1-exp(-Sa.*vvk)) + a2*(1-exp(-Sb.*vvk)) + a3*(1-exp(-Sc.*vvk)) + a4*(1-

exp(-Sd(j).*vvk)); verr=verr'; 

  

    ytest = y(1:length(vvk)); 

    eps(j,1) = immse(ytest,verr); 

     

    if a1<0 || a2<0 || a3<0 || a4<0 

        eps(j,1)=100; 

    end 

  

end 

  

[ms_error, Ind] = min(eps); 

  

a1 = a(Ind,1); a2 = a(Ind,2); 

a3 = a(Ind,3); a4 = a(Ind,4); 

  

clearvars Sd 

Sd = T/tauD(Ind); 

  

%% Estimated Concentration 

Con_A = abs(a1)/(ssA); 

Con_B = abs(a2)/(ssB); 

Con_C = abs(a3)/(ssC); 

Con_D = abs(a4)/(ssD); 

  

%% Bank of Kalman Filters Section  

%% Set the concentration ranges for each analyte 

  

% Concentration Range in ppm 

B = 0.8*Con_A:0.02:1.2*Con_A; 

Toluene = 0.8*Con_B:0.02:1.2*Con_B; 

EX = 0.8*Con_C:0.02:1.2*Con_C; 

TMB = 0.8*Con_D:0.02:1.2*Con_D; 

  

% Frequency shift range 

alpha1=B*ssA; 

alpha2=Toluene*ssB; 

alpha3=EX*ssC; 

alpha4=TMB*ssD; 

  

ne = length(B)*length(Toluene)*length(EX)*length(TMB); % Number of filters 

C = zeros(ne,4); 

  

ind=1; 

for i=1:length(B) 
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    for j=1:length(Toluene) 

        for k=1:length(EX) 

            for l=1:length(TMB) 

                C(ind,:) = [alpha1(1,i) alpha2(1,j) alpha3(1,k) alpha4(1,l)]; 

                ind = ind+1; 

            end 

        end 

    end 

end 

  

%% Intialize the weights of each filter 

w = zeros([ne,kmax+1]); cw=zeros([ne,kmax]);% weight 

w(:,1) = w(:,1) + 1/ne; 

  

%% Initialization of State and Error Covariance 

yhat = zeros([ne,kmax]); inno=yhat; 

x = zeros([4,kmax+1,ne]); 

P = zeros(4,4,kmax+1,ne); 

xest = zeros(4,kmax+1); Pest = zeros(4,4,kmax+1); 

  

Pt = diag([1 1 1 1]); 

for i=1:ne 

    P(:,:,1,i) = P(:,:,1,i) + Pt; 

end 

  

%% Process and Measurement Noise 

V = diag([1e-5 1e-5 1e-5 1e-5]); 

W = 1e-5; 

Psum = zeros(4,4); 

  

%% Bank of Kalman Filters Scheme 

for i=1:kmax 

    % Setting the first measurement to zero 

    if i==1 

        y(i) = y(i)*0; 

    end 

  

    for j=1:ne 

        [x(:,i+1,j),P(:,:,i+1,j),yhat(j,i),cw(j,i),inno(j,i)] = 

kalman_filter4A(x(:,i,j),P(:,:,i,j),y(i),C(j,:),W,V,w(j,i),Sa,Sb,Sc,Sd,i);     

    end 

    % Normalized Weights 

    c = sum(cw(:,i)); 

    w(:,i+1) = cw(:,i)./c;     

end 
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%% Plot and Analysis 

  

vk=0:kmax; vvk=0:kmax-1; 

vt=(0:0.1:kmax-1)'; 

  

[Y, I]=max(w(:,kmax+1)); 

[Bs, Is]=sort(w(:,kmax+1),'descend'); 

  

Ea = C(I,1); 

Eb = C(I,2); 

Ec = C(I,3); 

Ed = C(I,4); 

  

% Estimated Concentration 

Con_A = abs(Ea)/(ssA); 

Con_B = abs(Eb)/(ssB); 

Con_C = abs(Ec)/(ssC); 

Con_D = abs(Ed)/(ssD); 

  

Con = [Con_A; Con_B; Con_C]+Con; 

  

% Estimated Frequency Shift 

vest = Ea*(1-exp(-Sa.*vt)) + Eb*(1-exp(-Sb.*vt)) + Ec*(1-exp(-Sc.*vt)) + Ed*(1-exp(-

Sd.*vt));  

  

% Converting time step number to minutes and add baselines 

yp = [yb y']; %yhat = [yb';yhat']; 

vest=[((0:0.1:4.9)'*0);vest]; 

vk=((0:length(yp)-1)')*(T/60); vt=(0:0.1:length(yp)-1)'*(T/60); 

  

% Plot of Frequency Shift vs Time 

figure, 

h=plot(vk,yp, '*b', vt, vest, '--r'); 

xlabel('Time (min)','FontSize',14); ylabel('Frequency Shift, \Deltaf (kHz)','FontSize',14) 

h_legend = legend('Experimental data', 'Estimated Sensor Response'); 

set(h_legend,'FontSize',15); 

set(h,'LineWidth',3) 

grid on 

  

%% Average Concentrations 

gg = inno'; 

eps = mean(abs(gg)); 

[X, Ix]=min(eps); 

  

Con = Con/3; 
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fprintf('\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n') 

fprintf('\n Average Results \n') 

  

fprintf('The estimated concentration of Analyte A (in ppm) is \n') 

disp(Con(1)) 

  

fprintf('The estimated concentration of Analyte B (in ppm) is \n') 

disp(Con(2)) 

  

fprintf('The estimated concentration of Analyte C (in ppm) is \n') 

disp(Con(3)) 

  

Per_CA = ((Con(1)-CA)/CA)*100; 

Per_CB = ((Con(2)-CB)/CB)*100; 

Per_CC = ((Con(3)-CC)/CC)*100; 

  

fprintf('\nPercentage Error of Concentration\n') 

disp (Per_CA) 

disp (Per_CB) 

disp (Per_CC) 

  

toc; 

 

function [theta,innovation] = 

EW_RLSE_4A(y,theta,P,W,lambdha,mA,mB,mC,mD,Sa,Sb,Sc,Sd,kmax)  

  

for i=1:kmax 

    H=[mA mB mC mD]'; 

    innovation=y(i)-theta(:,i)'*H; 

  

    %EW-RLSE identifier 

    K = (P*H)/(H'*P*H+W*lambdha^2); 

    theta(:,i+1) = theta(:,i) + K*[innovation]; 

    P = (1/(lambdha^2))*(P - P*(H*H')*P/(H'*P*H+(W*lambdha^2))); 

  

    mA = ((1-Sa)*mA + Sa); 

    mB = ((1-Sb)*mB + Sb); 

    mC = ((1-Sc)*mC + Sc); 

    mD = ((1-Sd)*mD + Sd); 

end 

 

function [x,P,h,cw,inno] = kalman_filter4A(x,P,ymeas,C,W,V,w,Sa,Sb,Sc,Sd,i) 

% KF Kalman Filter for linear dynamic systems 

% Returns state estimate x, Error Covariance P, yhat(or h) 

% Inputs:   x: "a priori" state estimate 

%           P: "a priori" estimated state covariance 
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%           ymeas: current measurement 

%           V: process noise covariance  

%           W: measurement noise covariance 

% Output:   x: "a posteriori" state estimate 

%           P: "a posteriori" state covariance 

  

G = [1]; % Matrix G (1 by 1 Matrix) 

F = eye(4); 

U = 1; % Step Input 

A = diag([1-Sa, 1-Sb, 1-Sc, 1-Sd]); 

B = [Sa; Sb; Sc; Sd]; 

 

% Finding the innovation 

h = C(1,1)*(1-exp(-Sa.*(i-1))) + C(1,2)*(1-exp(-Sb.*(i-1))) + C(1,3)*(1-exp(-Sc.*(i-1))) 

+ C(1,4)*(1-exp(-Sd.*(i-1))); 

inno = ymeas-h; 

  

% Estimator 

K = (A*P*C')/(C*P*C' + G*W*G'); 

x = A*x + B*U + K*inno; 

P = (A-K*C)*P*(A-K*C)' + K*G*W*G'*K' + F*V*F'; 

  

% Weight Update Equations 

S = C*P*C' + W; 

 

% Weight before normalization 

cw = ((abs(S))^(-0.5))*(exp(((-0.5)*(inno)*(inno))/(S)))*w; 

 

 

 

B.4.2 Five-Analyte Model 

 

a) Sorption Data 

 

%% 

% Author: Karthick Sothivelr 

%% 

% Description: Code for Detection and Quantification of Target Analytes in 

% the Presence of Interferents using EW-RLSE and Bank of Kalman Filters 

% 5-Analyte Model (Sorption) 

%% Sensor Details 

% SH-SAW Coated with 0.6 um PECH 

  

%% Cleaning 

clear all 
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close all 

clc 

tic; 

  

%% Open and read the measurement file  

FID = fopen('pech_sorp_data.ini','r'); % Type in the file name 

data = textscan(FID,'%f %f'); 

fclose(FID); 

  

%% USER INPUT 

% Type in the 'End Point' of data 

data_end = [105]; 

  

% Actual Concentration from FROG (GC-PID) 

CA = 0.325; CB = 0.465; CC = 0.540; start=3; q=10000; 

  

%% Data Preprocessing (Selection of Analyte-In Point) 

nn = 3; % Number of points to check to determine the best curve fit 

T = 12; % Sampling period T=12s 

  

tau = zeros(1,length(data_end)); 

Fe = zeros(1,length(data_end)); 

Eps = zeros(1,nn); 

  

for i=1:length(data_end) 

    % Section to find the best curve fit 

    for j=1:nn 

       if i==1 

           y = data{2}((1+(j-1)):data_end(i)); 

       end 

       if i>1 

           y = data{2}((data_end(i-1)+1+(j-1)):data_end(i)); 

       end 

     kmax = length(y); 

      try 

       [h_fit, G] = fit((0:kmax-1)',y,'fe*(1-exp(-S*x))','StartPoint',[1 1]); 

      catch err 

          j = j-1; 

          break 

      end 

      Eps(j) = G.sse; % Sum of error squared   

    end 

     

    % Section to generate the best curve 

    [Y,I] = min(Eps); 

        if i==1 
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            y = data{2}((1+(I-1)):data_end(i)); 

        end 

        if i>1 

            y = data{2}((data_end(i-1)+1+(I-1)):data_end(i)); 

        end 

    kmax = length(y); 

    vt=(0:0.1:kmax-1)'; vk=(0:kmax-1)'; 

end 

% Plot of Baseline Corrected Data 

figure, 

plot(y(start:end),'*') 

  

%% Time Constant of Analytes (Coating: 0.6um PECH) 

tauA=26.5; % Benzene 

tauB=77.6; % Toluene 

tauC=175; % Ethylbenzene 

tauD=460; % Trimethylbenzene  

  

Sa=T/tauA; Sb=T/tauB; Sc=T/tauC; Sd=T/tauD;     % Absorption Rate 

ssA=0.109; ssB=0.435; ssC=1.450; ssD=1.85; ssE=6;  % Steady-State Sensitivity 

  

tauE = [1000]; % Trimethylbenzene 

Se = T./tauE; 

  

%% Exponentially Weighted Recursive Least Square Estimation Section 

%% Select Data to be analyzed 

y=y(start:end); yb = zeros(1,5); b=y; %y(1)=0; 

kmax = length(y); % Length of the measurement data points 

a = zeros(length(Se),5); eps = zeros(length(Se),1); 

Q=q;  

  

lambdha=0.99; % Weighting factor 

W = 15; % Measurement Noise Covariance 

  

for j=1:length(Se) 

     

    P=Q*eye(5); % Error covariance 

     

    % Initial normalized concentration 

    mA=0; mB=0; mC=0; mD=0; mE=0; 

     

    theta=zeros(5,kmax+1); % Initialize the unknown parameters 

     

    [theta,innovation] = 

EW_RLSE_5A(y,theta,P,W,lambdha,mA,mB,mC,mD,mE,Sa,Sb,Sc,Sd,Se(j),kmax); 
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    %% Analysis 

    a1 = theta(1,kmax+1); a2 = theta(2,kmax+1); 

    a3 = theta(3,kmax+1); a4 = theta(4,kmax+1); 

    a5 = theta(5,kmax+1); 

  

    a(j,:) = [a1 a2 a3 a4 a5]; 

  

    vvk=0:kmax-1; 

    % Estimated Frequency Shift 

    verr = a1*(1-exp(-Sa.*vvk)) + a2*(1-exp(-Sb.*vvk)) + a3*(1-exp(-Sc.*vvk)) + a4*(1-

exp(-Sd.*vvk)) + a5*(1-exp(-Se(j).*vvk)); 

  

    ytest = y(1:length(vvk))'; 

    eps(j,1) = immse(ytest,verr); 

  

    if a1>0 || a2>0 || a3>0 || a4>0 || a5>0 

        eps(j,1)=100; 

    end 

  

end 

  

[ms_error, Ind] = min(eps); 

  

a1 = a(Ind,1); a2 = a(Ind,2); 

a3 = a(Ind,3); a4 = a(Ind,4); 

a5 = a(Ind,5); 

  

clearvars Se 

Se = T/tauE(Ind); 

  

%% Estimated Concentration 

Con_A = abs(a1)/(ssA); 

Con_B = abs(a2)/(ssB); 

Con_C = abs(a3)/(ssC); 

Con_D = abs(a4)/(ssD); 

Con_E = abs(a5)/(ssE); 

  

%% Bank of Kalman Filters Section  

%% Set the concentration ranges for each analyte 

% Concentration Range in ppm 

B = 0.8*Con_A:0.02:1.2*Con_A; 

Toluene = 0.8*Con_B:0.02:1.2*Con_B; 

EX = 0.8*Con_C:0.02:1.2*Con_C; 

TMB = 0.8*Con_D:0.02:1.2*Con_D; 

fifth_a = 0.8*Con_E:0.02:1.2*Con_E; 
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% Frequency shift range 

alpha1=-B*ssA; 

alpha2=-Toluene*ssB; 

alpha3=-EX*ssC; 

alpha4=-TMB*ssD; 

alpha5=-fifth_a*ssE; 

  

% Generate the unknown parameters vector 

ne = length(B)*length(Toluene)*length(EX)*length(TMB)*length(fifth_a); % Number of 

filters 

C = zeros(ne,5); 

  

ind=1; 

for i=1:length(B) 

    for j=1:length(Toluene) 

        for k=1:length(EX) 

            for l=1:length(TMB) 

                for m=1:length(fifth_a) 

                    C(ind,:) = [alpha1(1,i) alpha2(1,j) alpha3(1,k) alpha4(1,l) alpha5(1,m)]; 

                    ind = ind+1; 

                end 

            end 

        end 

    end 

end 

  

%% Intialize the weights of each filter 

w = zeros([ne,kmax+1]); cw=zeros([ne,kmax]);% weight 

w(:,1) = w(:,1) + 1/ne; 

  

%% Initialization of State and Error Covariance 

yhat = zeros([ne,kmax]); inno=yhat; 

x = zeros([5,kmax+1,ne]); 

P = zeros(5,5,kmax+1,ne); 

xest = zeros(5,kmax+1); Pest = zeros(5,5,kmax+1); 

  

Pt = diag([1 1 1 1 1]); 

for i=1:ne 

    P(:,:,1,i) = P(:,:,1,i) + Pt; 

end 

  

%% Process and Measurement Noise 

V = diag([1e-5 1e-5 1e-5 1e-5 1e-5]); 

W = 1e-5; 

Psum = zeros(5,5); 
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%% Kalman Filter Scheme 

for i=1:kmax 

    % Setting the first measurement to zero 

    if i==1 

        y(i) = y(i)*0; 

    end 

  

    for j=1:ne 

        [x(:,i+1,j),P(:,:,i+1,j),yhat(j,i),cw(j,i),inno(j,i)] = 

kalman_filter(x(:,i,j),P(:,:,i,j),y(i),C(j,:),W,V,w(j,i),Sa,Sb,Sc,Sd,Se,i);     

    end 

    % Normalized Weights 

    c = sum(cw(:,i)); 

    w(:,i+1) = cw(:,i)./c; 

end 

  

%% Analysis 

  

[Y, I]=max(w(:,kmax+1)); 

[Bs, Is]=sort(w(:,kmax+1),'descend'); 

  

Ea = C(I,1); 

Eb = C(I,2); 

Ec = C(I,3); 

Ed = C(I,4); 

Ee = C(I,5); 

  

% Estimated Concentration 

Con_A = abs(Ea)/(ssA); 

Con_B = abs(Eb)/(ssB); 

Con_C = abs(Ec)/(ssC); 

Con_D = abs(Ed)/(ssD); 

Con_E = abs(Ee)/(ssE); 

  

Con = [Con_A; Con_B; Con_C]; 

  

%% Section for Lower Limit of Time Constants 

%% Time Constant of Analytes (Coating: 0.6um PECH) 

tauA=26.5-8; % Benzene 

tauB=77.6-3; % Toluene 

tauC=175-13; % Ethylbenzene 

tauD=460; % Trimethylbenzene  

  

Sa=T/tauA; Sb=T/tauB; Sc=T/tauC; Sd=T/tauD;     % Absorption Rate 

ssA=0.109; ssB=0.435; ssC=1.450; ssD=1.85; ssE=6;  % Steady-State Sensitivity 
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tauE = [1000]; % Trimethylbenzene 

Se = T./tauE; 

  

%% Exponentially Weighted Recursive Least Square Estimation Section 

%% Select Data to be analyzed 

y=y(1:end); yb = zeros(1,5); b=y; %y(1)=0; 

kmax = length(y); % Length of the measurement data points 

a = zeros(length(Se),5); eps = zeros(length(Se),1); 

Q=q; 

  

lambdha=0.99; % Weighting factor 

W = 15; % Measurement Noise Covariance 

  

for j=1:length(Se) 

     

    P=Q*eye(5); % Error covariance 

     

    % Initial normalized concentration 

    mA=0; mB=0; mC=0; mD=0; mE=0; 

     

    theta=zeros(5,kmax+1); % Initialize the unknown parameters 

     

    [theta,innovation] = 

EW_RLSE_5A(y,theta,P,W,lambdha,mA,mB,mC,mD,mE,Sa,Sb,Sc,Sd,Se(j),kmax); 

         

    %% Analysis 

    a1 = theta(1,kmax+1); a2 = theta(2,kmax+1); 

    a3 = theta(3,kmax+1); a4 = theta(4,kmax+1); 

    a5 = theta(5,kmax+1); 

  

    a(j,:) = [a1 a2 a3 a4 a5]; 

  

    vvk=0:kmax-1; 

    % Estimated Frequency Shift 

    verr = a1*(1-exp(-Sa.*vvk)) + a2*(1-exp(-Sb.*vvk)) + a3*(1-exp(-Sc.*vvk)) + a4*(1-

exp(-Sd.*vvk)) + a5*(1-exp(-Se(j).*vvk)); 

  

    ytest = y(1:length(vvk))'; 

    eps(j,1) = immse(ytest,verr); 

  

    if a1>0 || a2>0 || a3>0 || a4>0 || a5>0 

        eps(j,1)=100; 

    end 

  

end 
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[ms_error, Ind] = min(eps); 

  

a1 = a(Ind,1); a2 = a(Ind,2); 

a3 = a(Ind,3); a4 = a(Ind,4); 

a5 = a(Ind,5); 

  

clearvars Se 

Se = T/tauE(Ind); 

%% Estimated Concentration 

Con_A = abs(a1)/(ssA); 

Con_B = abs(a2)/(ssB); 

Con_C = abs(a3)/(ssC); 

Con_D = abs(a4)/(ssD); 

Con_E = abs(a5)/(ssE); 

  

%% Bank of Kalman Filters Section  

%% Set the concentration ranges for each analyte 

% Concentration Range in ppm 

B = 0.8*Con_A:0.02:1.2*Con_A; 

Toluene = 0.8*Con_B:0.02:1.2*Con_B; 

EX = 0.8*Con_C:0.02:1.2*Con_C; 

TMB = 0.8*Con_D:0.02:1.2*Con_D; 

fifth_a = 0.8*Con_E:0.02:1.2*Con_E; 

  

% Frequency shift range 

alpha1=-B*ssA; 

alpha2=-Toluene*ssB; 

alpha3=-EX*ssC; 

alpha4=-TMB*ssD; 

alpha5=-fifth_a*ssE; 

  

% Generate the unknown parameters vector 

ne = length(B)*length(Toluene)*length(EX)*length(TMB)*length(fifth_a); % Number of 

filters 

C = zeros(ne,5); 

  

ind=1; 

for i=1:length(B) 

    for j=1:length(Toluene) 

        for k=1:length(EX) 

            for l=1:length(TMB) 

                for m=1:length(fifth_a) 

                    C(ind,:) = [alpha1(1,i) alpha2(1,j) alpha3(1,k) alpha4(1,l) alpha5(1,m)]; 

                    ind = ind+1; 

                end 

            end 
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        end 

    end 

end 

  

%% Intialize the weights of each filter 

w = zeros([ne,kmax+1]); cw=zeros([ne,kmax]);% weight 

w(:,1) = w(:,1) + 1/ne; 

  

%% Initialization of State and Error Covariance 

yhat = zeros([ne,kmax]); inno=yhat; 

x = zeros([5,kmax+1,ne]); 

P = zeros(5,5,kmax+1,ne); 

xest = zeros(5,kmax+1); Pest = zeros(5,5,kmax+1); 

  

Pt = diag([1 1 1 1 1]); 

for i=1:ne 

    P(:,:,1,i) = P(:,:,1,i) + Pt; 

end 

  

%% Process and Measurement Noise 

V = diag([1e-5 1e-5 1e-5 1e-5 1e-5]); 

W = 1e-5; 

  

%% Kalman Filter Scheme 

for i=1:kmax 

    % Setting the first measurement to zero 

    if i==1 

        y(i) = y(i)*0; 

    end 

  

    for j=1:ne 

        [x(:,i+1,j),P(:,:,i+1,j),yhat(j,i),cw(j,i),inno(j,i)] = 

kalman_filter(x(:,i,j),P(:,:,i,j),y(i),C(j,:),W,V,w(j,i),Sa,Sb,Sc,Sd,Se,i);     

    end 

    % Normalized Weights 

    c = sum(cw(:,i)); 

    w(:,i+1) = cw(:,i)./c; 

end 

  

%% Analysis 

  

[Y, I]=max(w(:,kmax+1)); 

[Bs, Is]=sort(w(:,kmax+1),'descend'); 

  

Ea = C(I,1); 

Eb = C(I,2); 
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Ec = C(I,3); 

Ed = C(I,4); 

Ee = C(I,5); 

  

% Estimated Concentration 

Con_A = abs(Ea)/(ssA); 

Con_B = abs(Eb)/(ssB); 

Con_C = abs(Ec)/(ssC); 

Con_D = abs(Ed)/(ssD); 

Con_E = abs(Ee)/(ssE); 

  

Con = [Con_A; Con_B; Con_C]+Con; 

  

%% Section for Upper Limit of Time Constants 

%% Time Constant of Analytes (Coating: 0.6um PECH) 

tauA=26.5+8; % Benzene 

tauB=77.6+3; % Toluene 

tauC=175+13; % Ethylbenzene 

tauD=460; % Trimethylbenzene  

  

Sa=T/tauA; Sb=T/tauB; Sc=T/tauC; Sd=T/tauD;     % Absorption Rate 

ssA=0.109; ssB=0.435; ssC=1.450; ssD=1.85; ssE=6;  % Steady-State Sensitivity 

  

tauE = [1000]; % Trimethylbenzene 

Se = T./tauE; 

  

%% Exponentially Weighted Recursive Least Square Estimation Section 

%% Select Data to be analyzed 

y=y(1:end); yb = zeros(1,5); b=y; %y(1)=0; 

kmax = length(y); % Length of the measurement data points 

a = zeros(length(Se),5); eps = zeros(length(Se),1); 

Q=q; 

  

lambdha=0.99; % Weighting factor 

W = 15; % Measurement Noise Covariance 

  

for j=1:length(Se) 

     

    P=Q*eye(5); % Error covariance 

     

    % Initial normalized concentration 

    mA=0; mB=0; mC=0; mD=0; mE=0; 

     

    theta=zeros(5,kmax+1); % Initialize the unknown parameters 
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    [theta,innovation] = 

EW_RLSE_5A(y,theta,P,W,lambdha,mA,mB,mC,mD,mE,Sa,Sb,Sc,Sd,Se(j),kmax); 

     

    %% Analysis 

    a1 = theta(1,kmax+1); a2 = theta(2,kmax+1); 

    a3 = theta(3,kmax+1); a4 = theta(4,kmax+1); 

    a5 = theta(5,kmax+1); 

  

    a(j,:) = [a1 a2 a3 a4 a5]; 

  

    vvk=0:kmax-1; 

    vt=(0:0.1:kmax)'; 

    % Estimated Frequency Shift 

    verr = a1*(1-exp(-Sa.*vvk)) + a2*(1-exp(-Sb.*vvk)) + a3*(1-exp(-Sc.*vvk)) + a4*(1-

exp(-Sd.*vvk)) + a5*(1-exp(-Se(j).*vvk)); 

  

    ytest = y(1:length(vvk))'; 

    eps(j,1) = immse(ytest,verr); 

  

    if a1>0 || a2>0 || a3>0 || a4>0 || a5>0 

        eps(j,1)=100; 

    end 

  

end 

  

[ms_error, Ind] = min(eps); 

  

a1 = a(Ind,1); a2 = a(Ind,2); 

a3 = a(Ind,3); a4 = a(Ind,4); 

a5 = a(Ind,5); 

  

clearvars Se 

Se = T/tauE(Ind); 

%% Estimated Concentration 

Con_A = abs(a1)/(ssA); 

Con_B = abs(a2)/(ssB); 

Con_C = abs(a3)/(ssC); 

Con_D = abs(a4)/(ssD); 

Con_E = abs(a5)/(ssE); 

  

%% Bank of Kalman Filters Section  

%% Set the concentration ranges for each analyte 

% Concentration Range in ppm 

B = 0.8*Con_A:0.02:1.2*Con_A; 

Toluene = 0.8*Con_B:0.02:1.2*Con_B; 

EX = 0.8*Con_C:0.02:1.2*Con_C; 
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TMB = 0.8*Con_D:0.02:1.2*Con_D; 

fifth_a = 0.8*Con_E:0.02:1.2*Con_E; 

  

% Frequency shift range 

alpha1=-B*ssA; 

alpha2=-Toluene*ssB; 

alpha3=-EX*ssC; 

alpha4=-TMB*ssD; 

alpha5=-fifth_a*ssE; 

  

% Generate the unknown parameters vector 

ne = length(B)*length(Toluene)*length(EX)*length(TMB)*length(fifth_a); % Number of 

filters 

C = zeros(ne,5); 

  

ind=1; 

for i=1:length(B) 

    for j=1:length(Toluene) 

        for k=1:length(EX) 

            for l=1:length(TMB) 

                for m=1:length(fifth_a) 

                    C(ind,:) = [alpha1(1,i) alpha2(1,j) alpha3(1,k) alpha4(1,l) alpha5(1,m)]; 

                    ind = ind+1; 

                end 

            end 

        end 

    end 

end 

  

%% Intialize the weights of each filter 

w = zeros([ne,kmax+1]); cw=zeros([ne,kmax]);% weight 

w(:,1) = w(:,1) + 1/ne; 

  

%% Initialization of State and Error Covariance 

yhat = zeros([ne,kmax]); inno=yhat; 

x = zeros([5,kmax+1,ne]); 

P = zeros(5,5,kmax+1,ne); 

xest = zeros(5,kmax+1); Pest = zeros(5,5,kmax+1); 

  

Pt = diag([1 1 1 1 1]); 

for i=1:ne 

    P(:,:,1,i) = P(:,:,1,i) + Pt; 

end 

  

%% Process and Measurement Noise 

V = diag([1e-5 1e-5 1e-5 1e-5 1e-5]); 
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W = 1e-5; 

  

%% Bank of Kalman Filters Scheme 

for i=1:kmax 

    % Setting the first measurement to zero 

    if i==1 

        y(i) = y(i)*0; 

    end 

  

    for j=1:ne 

        [x(:,i+1,j),P(:,:,i+1,j),yhat(j,i),cw(j,i),inno(j,i)] = 

kalman_filter(x(:,i,j),P(:,:,i,j),y(i),C(j,:),W,V,w(j,i),Sa,Sb,Sc,Sd,Se,i);     

    end 

    % Normalized Weights 

    c = sum(cw(:,i)); 

    w(:,i+1) = cw(:,i)./c; 

end 

  

%% Plot and Analysis 

  

vk=0:kmax; vvk=0:kmax-1; 

vt=(0:0.1:kmax-1)'; 

  

[Y, I]=max(w(:,kmax+1)); 

[Bs, Is]=sort(w(:,kmax+1),'descend'); 

  

Ea = C(I,1); 

Eb = C(I,2); 

Ec = C(I,3); 

Ed = C(I,4); 

Ee = C(I,5); 

  

% Estimated Concentration 

Con_A = abs(Ea)/(ssA); 

Con_B = abs(Eb)/(ssB); 

Con_C = abs(Ec)/(ssC); 

Con_D = abs(Ed)/(ssD); 

Con_E = abs(Ee)/(ssE); 

  

Con = [Con_A; Con_B; Con_C]+Con; 

  

% Estimated Frequency Shift 

vest = Ea*(1-exp(-Sa.*vt)) + Eb*(1-exp(-Sb.*vt)) + Ec*(1-exp(-Sc.*vt)) + Ed*(1-exp(-

Sd.*vt)) + Ee*(1-exp(-Se.*vt));  

  

% Converting time step number to minutes and add baselines 
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yp = [yb y']; %yhat = [yb';yhat']; 

vest=[((0:0.1:4.9)'*0);vest]; 

vk=((0:length(yp)-1)')*(T/60); vt=(0:0.1:length(yp)-1)'*(T/60); 

  

% Plot of Frequency Shift vs Time step 

figure, 

h=plot(vk,yp, '*b', vt, vest, '--r'); 

xlabel('Time (min)','FontSize',14); ylabel('Frequency Shift, \Deltaf (kHz)','FontSize',14) 

h_legend = legend('Experimental data', 'Estimated Sensor Response'); 

set(h_legend,'FontSize',15); 

set(h,'LineWidth',3) 

grid on 

  

%% Average Concentrations 

gg = inno'; 

eps = mean(abs(gg)); 

[X, Ix]=min(eps); 

  

Con = Con/3; 

  

fprintf('\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n') 

fprintf('\n Average Results \n') 

  

fprintf('The estimated concentration of Analyte A (in ppm) is \n') 

disp(Con(1)) 

  

fprintf('The estimated concentration of Analyte B (in ppm) is \n') 

disp(Con(2)) 

  

fprintf('The estimated concentration of Analyte C (in ppm) is \n') 

disp(Con(3)) 

  

Per_CA = ((Con(1)-CA)/CA)*100; 

Per_CB = ((Con(2)-CB)/CB)*100; 

Per_CC = ((Con(3)-CC)/CC)*100; 

  

fprintf('\nPercentage Error of Concentration\n') 

disp (Per_CA) 

disp (Per_CB) 

disp (Per_CC) 

  

toc; 

 

function [theta,innovation] = 

EW_RLSE_5A(y,theta,P,W,lambdha,mA,mB,mC,mD,mE,Sa,Sb,Sc,Sd,Se,kmax)  
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for i=1:kmax 

    H=[mA mB mC mD mE]'; 

    innovation=y(i)-theta(:,i)'*H; 

  

    %EW-RLSE identifier 

    K = (P*H)/(H'*P*H+W*lambdha^2); 

    theta(:,i+1) = theta(:,i) + K*[innovation]; 

    P = (1/(lambdha^2))*(P - P*(H*H')*P/(H'*P*H+(W*lambdha^2))); 

  

    mA = ((1-Sa)*mA + Sa); 

    mB = ((1-Sb)*mB + Sb); 

    mC = ((1-Sc)*mC + Sc); 

    mD = ((1-Sd)*mD + Sd); 

    mE = ((1-Se)*mE + Se); 

end 

 

function [x,P,h,cw,inno] = kalman_filter(x,P,ymeas,C,W,V,w,Sa,Sb,Sc,Sd,Se,i) 

% KF Kalman Filter for linear dynamic systems 

% Returns state estimate x, Error Covariance P, yhat(or h) 

% Inputs:   x: "a priori" state estimate 

%           P: "a priori" estimated state covariance 

%           ymeas: current measurement 

%           V: process noise covariance  

%           W: measurement noise covariance 

% Output:   x: "a posteriori" state estimate 

%           P: "a posteriori" state covariance 

  

G = [1]; % Matrix G (1 by 1 Matrix) 

F = eye(5); 

U = 1; % Step Input 

A = diag([1-Sa, 1-Sb, 1-Sc, 1-Sd, 1-Se]); 

B = [Sa; Sb; Sc; Sd; Se]; 

%h = C*x; 

  

% Finding the innovation 

h = C(1,1)*(1-exp(-Sa.*(i-1))) + C(1,2)*(1-exp(-Sb.*(i-1))) + C(1,3)*(1-exp(-Sc.*(i-1))) 

+ C(1,4)*(1-exp(-Sd.*(i-1))) + C(1,5)*(1-exp(-Se.*(i-1))); 

inno = ymeas-h; 

  

% Estimator 

K = (A*P*C')/(C*P*C' + G*W*G'); 

x = A*x + B*U + K*inno; 

P = (A-K*C)*P*(A-K*C)' + K*G*W*G'*K' + F*V*F'; 

  

% Weight Update Equations 

S = C*P*C' + W; 
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% Weight before normalization 

cw = ((abs(S))^(-0.5))*(exp(((-0.5)*(inno)*(inno))/(S)))*w; 

 

 

 

b) Desorption Data 

 

%% 

% Author: Karthick Sothivelr 

%% 

% Description: Code for Detection and Quantification of Target Analytes in 

% the Presence of Interferents using EW-RLSE and Bank of Kalman Filters 

% 5-Analyte Model (Desorption) 

%% Sensor Details 

% SH-SAW Coated with 0.6 um PECH 

  

%% Cleaning 

clear all 

close all 

clc 

tic; 

  

%% Open and read the measurement file  

FID = fopen('pech_desorp_data.ini','r'); % Type in the file name 

data = textscan(FID,'%f %f'); 

fclose(FID); 

  

%% USER INPUT 

% Type in the 'End Point' of data 

data_end = [101]; 

  

% Actual Concentration from FROG (GC-PID) 

CA = 0.325; CB = 0.565; CC = 0.540; start=0+1; q=10000; 

  

%% Data Preprocessing (Selection of Analyte-In Point) 

T = 12; % Sampling period T=12s 

  

y0  = data{2}((start+1:data_end(1))); kmax = length(y0); y0 = y0-y0(1); 

y1 = data{2}((start+2:data_end(1))); kmax1 = length(y1); y1 = y1-y1(1); 

y2 = data{2}((start+3:data_end(1))); kmax2 = length(y2); y2 = y2-y2(1); 

y3 = data{2}((start+4:data_end(1))); kmax3 = length(y3); y3 = y3-y3(1); 

y4 = data{2}((start+5:data_end(1))); kmax4 = length(y4); y4 = y4-y4(1); 

y5 = data{2}((start+6:data_end(1))); kmax5 = length(y5); y5 = y5-y5(1); 

y6 = data{2}((start+7:data_end(1))); kmax6 = length(y6); y6 = y6-y6(1); 

y7 = data{2}((start+8:data_end(1))); kmax7 = length(y7); y7 = y7-y7(1); 
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y=y0; 

  

% Baseline Corrected Data 

vk=0:length(y)-1; 

figure, 

h=plot(vk*(T/60),y,'*'); 

xlabel('Time (min)','FontSize',14); ylabel('Frequency Shift, \Deltaf (kHz)','FontSize',14) 

set(h,'LineWidth',3) 

grid on 

  

%% Time Constant of Analytes (Coating: 0.6um PECH) 

tauA=26.5; % Benzene 

tauB=77.6; % Toluene 

tauC=175; % Ethylbenzene 

tauD=460; % Trimethylbenzene  

  

Sa=T/tauA; Sb=T/tauB; Sc=T/tauC; Sd=T/tauD;     % Absorption Rate 

ssA=0.109; ssB=0.435; ssC=1.450; ssD=1.85; ssE=6;  % Steady-State Sensitivity 

  

tauE = [1000]; % Trimethylbenzene 

Se = T./tauE; 

  

%% Exponentially Weighted Recursive Least Square Estimation Section 

%% Select Data to be analyzed 

y=y(1:end); yb = zeros(1,5); b=y; %y(1)=0; 

kmax = length(y); % Length of the measurement data points 

a = zeros(length(Se),5); eps = zeros(length(Se),1); 

Q=q;  

  

lambdha=0.99; % Weighting factor 

W = 1; % Measurement Noise Covariance 

  

for j=1:length(Se) 

     

    P=Q*eye(5); % Error covariance 

     

    % Initial normalized concentration 

    mA=0; mB=0; mC=0; mD=0; mE=0; 

     

    theta=zeros(5,kmax+1); % Initialize the unknown parameters 

     

    [theta,innovation] = 

EW_RLSE_5A(y,theta,P,W,lambdha,mA,mB,mC,mD,mE,Sa,Sb,Sc,Sd,Se(j),kmax); 

         

    %% Analysis 
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    a1 = theta(1,kmax+1); a2 = theta(2,kmax+1); 

    a3 = theta(3,kmax+1); a4 = theta(4,kmax+1); 

    a5 = theta(5,kmax+1); 

  

    a(j,:) = [a1 a2 a3 a4 a5]; 

  

    vvk=0:kmax-1; 

    % Estimated Frequency Shift 

    verr = a1*(1-exp(-Sa.*vvk)) + a2*(1-exp(-Sb.*vvk)) + a3*(1-exp(-Sc.*vvk)) + a4*(1-

exp(-Sd.*vvk)) + a5*(1-exp(-Se(j).*vvk)); 

  

    ytest = y(1:length(vvk))'; 

    eps(j,1) = immse(ytest,verr); 

  

    if a1<0 || a2<0 || a3<0 || a4<0 || a5<0 

        eps(j,1)=100; 

    end 

  

end 

  

[ms_error, Ind] = min(eps); 

  

a1 = a(Ind,1); a2 = a(Ind,2); 

a3 = a(Ind,3); a4 = a(Ind,4); 

a5 = a(Ind,5); 

  

clearvars Se 

Se = T/tauE(Ind); 

%% Estimated Concentration 

Con_A = abs(a1)/(ssA); 

Con_B = abs(a2)/(ssB); 

Con_C = abs(a3)/(ssC); 

Con_D = abs(a4)/(ssD); 

Con_E = abs(a5)/(ssE); 

  

%% Bank of Kalman Filters Section  

%% Set the concentration ranges for each analyte 

  

% Concentration Range in ppm 

B = 0.8*Con_A:0.02:1.2*Con_A; 

Toluene = 0.8*Con_B:0.02:1.2*Con_B; 

EX = 0.8*Con_C:0.02:1.2*Con_C; 

TMB = 0.8*Con_D:0.02:1.2*Con_D; 

fifth_a = 0.8*Con_E:0.02:1.2*Con_E; 

  

% Frequency shift range 
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alpha1=B*ssA; 

alpha2=Toluene*ssB; 

alpha3=EX*ssC; 

alpha4=TMB*ssD; 

alpha5=fifth_a*ssE; 

  

% Generate the unknown parameters vector 

ne = length(B)*length(Toluene)*length(EX)*length(TMB)*length(fifth_a); % Number of 

filters 

C = zeros(ne,5); 

  

ind=1; 

for i=1:length(B) 

    for j=1:length(Toluene) 

        for k=1:length(EX) 

            for l=1:length(TMB) 

                for m=1:length(fifth_a) 

                    C(ind,:) = [alpha1(1,i) alpha2(1,j) alpha3(1,k) alpha4(1,l) alpha5(1,m)]; 

                    ind = ind+1; 

                end 

            end 

        end 

    end 

end 

  

%% Intialize the weights of each filter 

w = zeros([ne,kmax+1]); cw=zeros([ne,kmax]);% weight 

w(:,1) = w(:,1) + 1/ne; 

  

%% Initialization of State and Error Covariance 

yhat = zeros([ne,kmax]); inno=yhat; 

x = zeros([5,kmax+1,ne]); 

P = zeros(5,5,kmax+1,ne); 

xest = zeros(5,kmax+1); Pest = zeros(5,5,kmax+1); 

  

Pt = diag([1 1 1 1 1]); 

for i=1:ne 

    P(:,:,1,i) = P(:,:,1,i) + Pt; 

end 

  

%% Process and Measurement Noise 

V = diag([1e-5 1e-5 1e-5 1e-5 1e-5]); 

W = 1e-5; 

  

%% Bank of Kalman Filters Scheme 

for i=1:kmax 
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    % Setting the first measurement to zero 

    if i==1 

        y(i) = y(i)*0; 

    end 

  

    for j=1:ne 

        [x(:,i+1,j),P(:,:,i+1,j),yhat(j,i),cw(j,i),inno(j,i)] = 

kalman_filter(x(:,i,j),P(:,:,i,j),y(i),C(j,:),W,V,w(j,i),Sa,Sb,Sc,Sd,Se,i);     

    end 

    % Normalized weights 

    c = sum(cw(:,i)); 

    w(:,i+1) = cw(:,i)./c; 

end 

  

%% Analysis 

  

[Y, I]=max(w(:,kmax+1)); 

[Bs, Is]=sort(w(:,kmax+1),'descend'); 

  

Ea = C(I,1); 

Eb = C(I,2); 

Ec = C(I,3); 

Ed = C(I,4); 

Ee = C(I,5); 

  

% Estimated Concentration 

Con_A = abs(Ea)/(ssA); 

Con_B = abs(Eb)/(ssB); 

Con_C = abs(Ec)/(ssC); 

Con_D = abs(Ed)/(ssD); 

Con_E = abs(Ee)/(ssE); 

  

Con = [Con_A; Con_B; Con_C]; 

  

%% Section for Lower Limit of Time Constants 

%% Time Constant of Analytes (Coating: 0.6um PECH) 

tauA=26.5-8; % Benzene 

tauB=77.6-3; % Toluene 

tauC=175-13; % Ethylbenzene 

tauD=460; % Trimethylbenzene  

  

Sa=T/tauA; Sb=T/tauB; Sc=T/tauC; Sd=T/tauD;     % Absorption Rate 

ssA=0.109; ssB=0.435; ssC=1.450; ssD=1.85; ssE=6;  % Steady-State Sensitivity 

  

tauE = [1000]; % Trimethylbenzene 

Se = T./tauE; 
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%% Exponentially Weighted Recursive Least Square Estimation Section 

%% Select Data to be analyzed 

y=y(1:end); yb = zeros(1,5); b=y; %y(1)=0; 

kmax = length(y); % Length of the measurement data points 

a = zeros(length(Se),5); eps = zeros(length(Se),1); 

Q=q; 

  

lambdha=0.99; % Weighting factor 

W = 1; % Measurement Noise Covariance 

  

for j=1:length(Se) 

     

    P=Q*eye(5); % Error covariance 

     

    % Initial normalized concentration 

    mA=0; mB=0; mC=0; mD=0; mE=0; 

     

    theta=zeros(5,kmax+1); % Initialize the unknown parameters 

     

    [theta,innovation] = 

EW_RLSE_5A(y,theta,P,W,lambdha,mA,mB,mC,mD,mE,Sa,Sb,Sc,Sd,Se(j),kmax); 

         

    %% Analysis 

    a1 = theta(1,kmax+1); a2 = theta(2,kmax+1); 

    a3 = theta(3,kmax+1); a4 = theta(4,kmax+1); 

    a5 = theta(5,kmax+1); 

  

    a(j,:) = [a1 a2 a3 a4 a5]; 

  

    vvk=0:kmax-1; 

    % Estimated Frequency Shift 

    verr = a1*(1-exp(-Sa.*vvk)) + a2*(1-exp(-Sb.*vvk)) + a3*(1-exp(-Sc.*vvk)) + a4*(1-

exp(-Sd.*vvk)) + a5*(1-exp(-Se(j).*vvk)); 

  

    ytest = y(1:length(vvk))'; 

    eps(j,1) = immse(ytest,verr); 

  

    if a1<0 || a2<0 || a3<0 || a4<0 || a5<0 

        eps(j,1)=100; 

    end 

end 

  

[ms_error, Ind] = min(eps); 

  

a1 = a(Ind,1); a2 = a(Ind,2); 
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a3 = a(Ind,3); a4 = a(Ind,4); 

a5 = a(Ind,5); 

  

clearvars Se 

Se = T/tauE(Ind); 

  

%% Estimated Concentration 

Con_A = abs(a1)/(ssA); 

Con_B = abs(a2)/(ssB); 

Con_C = abs(a3)/(ssC); 

Con_D = abs(a4)/(ssD); 

Con_E = abs(a5)/(ssE); 

  

%% Bank of Kalman Filters Section  

%% Set the concentration ranges for each analyte 

% Concentration Range in ppm 

B = 0.8*Con_A:0.02:1.2*Con_A; 

Toluene = 0.8*Con_B:0.02:1.2*Con_B; 

EX = 0.8*Con_C:0.02:1.2*Con_C; 

TMB = 0.8*Con_D:0.02:1.2*Con_D; 

fifth_a = 0.8*Con_E:0.02:1.2*Con_E; 

  

% Frequency shift range 

alpha1=B*ssA; 

alpha2=Toluene*ssB; 

alpha3=EX*ssC; 

alpha4=TMB*ssD; 

alpha5=fifth_a*ssE; 

  

ne = length(B)*length(Toluene)*length(EX)*length(TMB)*length(fifth_a); % Number of 

filters 

C = zeros(ne,5); 

  

ind=1; 

for i=1:length(B) 

    for j=1:length(Toluene) 

        for k=1:length(EX) 

            for l=1:length(TMB) 

                for m=1:length(fifth_a) 

                    C(ind,:) = [alpha1(1,i) alpha2(1,j) alpha3(1,k) alpha4(1,l) alpha5(1,m)]; 

                    ind = ind+1; 

                end 

            end 

        end 

    end 

end 



255 
 

 

 

  

%% Intialize the weights of each filter 

w = zeros([ne,kmax+1]); cw=zeros([ne,kmax]);% weight 

w(:,1) = w(:,1) + 1/ne; 

  

%% Initialization of State and Error Covariance 

yhat = zeros([ne,kmax]); inno=yhat; 

x = zeros([5,kmax+1,ne]); 

P = zeros(5,5,kmax+1,ne); 

xest = zeros(5,kmax+1); Pest = zeros(5,5,kmax+1); 

  

Pt = diag([1 1 1 1 1]); 

for i=1:ne 

    P(:,:,1,i) = P(:,:,1,i) + Pt; 

end 

  

%% Process and Measurement Noise 

V = diag([1e-5 1e-5 1e-5 1e-5 1e-5]); 

W = 1e-5; 

  

%% Bank of Kalman Filters Scheme 

for i=1:kmax 

    % Setting the first measurement to zero 

    if i==1 

        y(i) = y(i)*0; 

    end 

  

    for j=1:ne 

        [x(:,i+1,j),P(:,:,i+1,j),yhat(j,i),cw(j,i),inno(j,i)] = 

kalman_filter(x(:,i,j),P(:,:,i,j),y(i),C(j,:),W,V,w(j,i),Sa,Sb,Sc,Sd,Se,i);     

    end 

    % Normalized Weights 

    c = sum(cw(:,i)); 

    w(:,i+1) = cw(:,i)./c; 

end 

  

%% Analysis 

  

[Y, I]=max(w(:,kmax+1)); 

[Bs, Is]=sort(w(:,kmax+1),'descend'); 

  

Ea = C(I,1); 

Eb = C(I,2); 

Ec = C(I,3); 

Ed = C(I,4); 

Ee = C(I,5); 
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% Estimated Concentration 

Con_A = abs(Ea)/(ssA); 

Con_B = abs(Eb)/(ssB); 

Con_C = abs(Ec)/(ssC); 

Con_D = abs(Ed)/(ssD); 

Con_E = abs(Ee)/(ssE); 

  

Con = [Con_A; Con_B; Con_C]+Con; 

  

%% Section for Upper Limit of Time Constants 

%% Time Constant of Analytes (Coating: 0.6um PECH) 

tauA=26.5+8; % Benzene 

tauB=77.6+3; % Toluene 

tauC=175+13; % Ethylbenzene 

tauD=460; % Trimethylbenzene  

  

Sa=T/tauA; Sb=T/tauB; Sc=T/tauC; Sd=T/tauD;     % Absorption Rate 

ssA=0.109; ssB=0.435; ssC=1.450; ssD=1.85; ssE=6;  % Steady-State Sensitivity 

  

tauE = [1000]; % Trimethylbenzene 

Se = T./tauE; 

  

%% Exponentially Weighted Recursive Least Square Estimation Section 

%% Select Data to be analyzed 

y=y(1:end); yb = zeros(1,5); b=y; %y(1)=0; 

kmax = length(y); % Length of the measurement data points 

a = zeros(length(Se),5); eps = zeros(length(Se),1); 

Q=q; 

  

lambdha=0.99; % Weighting factor 

W = 1; % Measurement Noise Covariance 

  

for j=1:length(Se) 

     

    P=Q*eye(5); % Error covariance 

     

    % Initial normalized concentration 

    mA=0; mB=0; mC=0; mD=0; mE=0; 

     

    theta=zeros(5,kmax+1); % Initialize the unknown parameters 

     

    [theta,innovation] = 

EW_RLSE_5A(y,theta,P,W,lambdha,mA,mB,mC,mD,mE,Sa,Sb,Sc,Sd,Se(j),kmax); 

         

    %% Analysis 



257 
 

 

 

    a1 = theta(1,kmax+1); a2 = theta(2,kmax+1); 

    a3 = theta(3,kmax+1); a4 = theta(4,kmax+1); 

    a5 = theta(5,kmax+1); 

  

    a(j,:) = [a1 a2 a3 a4 a5]; 

  

    vvk=0:kmax-1; 

    % Estimated Frequency Shift 

    verr = a1*(1-exp(-Sa.*vvk)) + a2*(1-exp(-Sb.*vvk)) + a3*(1-exp(-Sc.*vvk)) + a4*(1-

exp(-Sd.*vvk)) + a5*(1-exp(-Se(j).*vvk)); 

  

    ytest = y(1:length(vvk))'; 

    eps(j,1) = immse(ytest,verr); 

  

    if a1<0 || a2<0 || a3<0 || a4<0 || a5<0 

        eps(j,1)=100; 

    end 

  

end 

  

[ms_error, Ind] = min(eps); 

  

a1 = a(Ind,1); a2 = a(Ind,2); 

a3 = a(Ind,3); a4 = a(Ind,4); 

a5 = a(Ind,5); 

  

clearvars Se 

Se = T/tauE(Ind); 

  

%% Estimated Concentration 

Con_A = abs(a1)/(ssA); 

Con_B = abs(a2)/(ssB); 

Con_C = abs(a3)/(ssC); 

Con_D = abs(a4)/(ssD); 

Con_E = abs(a5)/(ssE); 

  

%% Bank of Kalman Filters Section  

%% Set the concentration ranges for each analyte 

% Concentration Range in ppm 

B = 0.8*Con_A:0.02:1.2*Con_A; 

Toluene = 0.8*Con_B:0.02:1.2*Con_B; 

EX = 0.8*Con_C:0.02:1.2*Con_C; 

TMB = 0.8*Con_D:0.02:1.2*Con_D; 

fifth_a = 0.8*Con_E:0.02:1.2*Con_E; 

  

% Frequency shift range 
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alpha1=B*ssA; 

alpha2=Toluene*ssB; 

alpha3=EX*ssC; 

alpha4=TMB*ssD; 

alpha5=fifth_a*ssE; 

  

% Generate the unknown parameters vector 

ne = length(B)*length(Toluene)*length(EX)*length(TMB)*length(fifth_a); % Number of 

filters 

C = zeros(ne,5); 

  

ind=1; 

for i=1:length(B) 

    for j=1:length(Toluene) 

        for k=1:length(EX) 

            for l=1:length(TMB) 

                for m=1:length(fifth_a) 

                    C(ind,:) = [alpha1(1,i) alpha2(1,j) alpha3(1,k) alpha4(1,l) alpha5(1,m)]; 

                    ind = ind+1; 

                end 

            end 

        end 

    end 

end 

  

%% Intialize the weights of each filter 

w = zeros([ne,kmax+1]); cw=zeros([ne,kmax]);% weight 

w(:,1) = w(:,1) + 1/ne; 

  

%% Initialization of State and Error Covariance 

yhat = zeros([ne,kmax]); inno=yhat; 

x = zeros([5,kmax+1,ne]); 

P = zeros(5,5,kmax+1,ne); 

xest = zeros(5,kmax+1); Pest = zeros(5,5,kmax+1); 

  

Pt = diag([1 1 1 1 1]); 

for i=1:ne 

    P(:,:,1,i) = P(:,:,1,i) + Pt; 

end 

  

%% Process and Measurement Noise 

V = diag([1e-5 1e-5 1e-5 1e-5 1e-5]); 

W = 1e-5; 

Psum = zeros(5,5); 

  

%% Bank of Kalman Filters Scheme 
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for i=1:kmax 

    % Setting the first measurement to zero 

    if i==1 

        y(i) = y(i)*0; 

    end 

  

    for j=1:ne 

        [x(:,i+1,j),P(:,:,i+1,j),yhat(j,i),cw(j,i),inno(j,i)] = 

kalman_filter(x(:,i,j),P(:,:,i,j),y(i),C(j,:),W,V,w(j,i),Sa,Sb,Sc,Sd,Se,i);     

    end 

    c = sum(cw(:,i)); 

    w(:,i+1) = cw(:,i)./c; 

     

    % Estimate of state and error covariance 

    xx = x(:,i+1,:); 

    xx = permute(xx,[3 1 2]); 

    xest(:,i+1) = w(:,i+1)'*xx(:,:,1);  

     

    for j=1:ne 

        Psum = w(j,i+1)*(P(:,:,i+1,j)+(x(:,i+1,j)*(x(:,i+1,j))')) + Psum; 

    end 

    Pest(:,:,i+1) = Psum - xest(:,i+1)*xest(:,i+1)'; 

    Psum = zeros(5,5); 

     

end 

  

%% Plot and Analysis 

  

vk=0:kmax; vvk=0:kmax-1; 

vt=(0:0.1:kmax-1)'; 

  

[Y, I]=max(w(:,kmax+1)); 

[Bs, Is]=sort(w(:,kmax+1),'descend'); 

  

Ea = C(I,1); 

Eb = C(I,2); 

Ec = C(I,3); 

Ed = C(I,4); 

Ee = C(I,5); 

  

% Estimated Concentration 

Con_A = abs(Ea)/(ssA); 

Con_B = abs(Eb)/(ssB); 

Con_C = abs(Ec)/(ssC); 

Con_D = abs(Ed)/(ssD); 

Con_E = abs(Ee)/(ssE); 
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Con = [Con_A; Con_B; Con_C]+Con; 

  

% Estimated Frequency Shift 

vest = Ea*(1-exp(-Sa.*vt)) + Eb*(1-exp(-Sb.*vt)) + Ec*(1-exp(-Sc.*vt)) + Ed*(1-exp(-

Sd.*vt)) + Ee*(1-exp(-Se.*vt));  

  

% Converting time step number to minutes and add baselines 

yp = [yb y']; %yhat = [yb';yhat']; 

vest=[((0:0.1:4.9)'*0);vest]; 

vk=((0:length(yp)-1)')*(T/60); vt=(0:0.1:length(yp)-1)'*(T/60); 

  

% Plot of Frequency Shift vs Time 

figure, 

h=plot(vk,yp, '*b', vt, vest, '--r'); 

xlabel('Time (min)','FontSize',14); ylabel('Frequency Shift, \Deltaf (kHz)','FontSize',14) 

h_legend = legend('Experimental data', 'Estimated Sensor Response'); 

set(h_legend,'FontSize',15); 

set(h,'LineWidth',3) 

grid on 

  

%% Average Concentrations 

gg = inno'; 

eps = mean(abs(gg)); 

[X, Ix]=min(eps); 

  

Con = Con/3; 

  

% Display in Command Window 

fprintf('\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n') 

fprintf('\n Average Results \n') 

  

fprintf('The estimated concentration of Analyte A (in ppm) is \n') 

disp(Con(1)) 

  

fprintf('The estimated concentration of Analyte B (in ppm) is \n') 

disp(Con(2)) 

  

fprintf('The estimated concentration of Analyte C (in ppm) is \n') 

disp(Con(3)) 

  

Per_CA = ((Con(1)-CA)/CA)*100; 

Per_CB = ((Con(2)-CB)/CB)*100; 

Per_CC = ((Con(3)-CC)/CC)*100; 

  

fprintf('\nPercentage Error of Concentration\n') 
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disp (Per_CA) 

disp (Per_CB) 

disp (Per_CC) 

  

toc; 

 

function [theta,innovation] = 

EW_RLSE_5A(y,theta,P,W,lambdha,mA,mB,mC,mD,mE,Sa,Sb,Sc,Sd,Se,kmax)  

  

for i=1:kmax 

    H=[mA mB mC mD mE]'; 

    innovation=y(i)-theta(:,i)'*H; 

  

    %EW-RLSE identifier 

    K = (P*H)/(H'*P*H+W*lambdha^2); 

    theta(:,i+1) = theta(:,i) + K*[innovation]; 

    P = (1/(lambdha^2))*(P - P*(H*H')*P/(H'*P*H+(W*lambdha^2))); 

  

    mA = ((1-Sa)*mA + Sa); 

    mB = ((1-Sb)*mB + Sb); 

    mC = ((1-Sc)*mC + Sc); 

    mD = ((1-Sd)*mD + Sd); 

    mE = ((1-Se)*mE + Se); 

end 

 

function [x,P,h,cw,inno] = kalman_filter(x,P,ymeas,C,W,V,w,Sa,Sb,Sc,Sd,Se,i) 

% KF Kalman Filter for linear dynamic systems 

% Returns state estimate x, Error Covariance P, yhat(or h) 

% Inputs:   x: "a priori" state estimate 

%           P: "a priori" estimated state covariance 

%           ymeas: current measurement 

%           V: process noise covariance  

%           W: measurement noise covariance 

% Output:   x: "a posteriori" state estimate 

%           P: "a posteriori" state covariance 

  

G = [1]; % Matrix G (1 by 1 Matrix) 

F = eye(5); 

U = 1; % Step Input 

A = diag([1-Sa, 1-Sb, 1-Sc, 1-Sd, 1-Se]); 

B = [Sa; Sb; Sc; Sd; Se]; 

%h = C*x; 

  

% Finding the innovation 

h = C(1,1)*(1-exp(-Sa.*(i-1))) + C(1,2)*(1-exp(-Sb.*(i-1))) + C(1,3)*(1-exp(-Sc.*(i-1))) 

+ C(1,4)*(1-exp(-Sd.*(i-1))) + C(1,5)*(1-exp(-Se.*(i-1))); 
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inno = ymeas-h; 

  

% Estimator 

K = (A*P*C')/(C*P*C' + G*W*G'); 

x = A*x + B*U + K*inno; 

P = (A-K*C)*P*(A-K*C)' + K*G*W*G'*K' + F*V*F'; 

  

% Weight Update Equations 

S = C*P*C' + W; 

  

% Weight before normalization 

cw = ((abs(S))^(-0.5))*(exp(((-0.5)*(inno)*(inno))/(S)))*w; 
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